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Incremental Cycle Bases for Cycle-Based Pose
Graph Optimization
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Abstract—Pose graph optimization is a special case of the simul-
taneous localization and mapping problem where the only variables
to be estimated are pose variables and the only measurements are
inter-pose constraints. The vast majority of pose graph optimiza-
tion techniques are vertex based (variables are robot poses), but
recent work has parameterized the pose graph optimization prob-
lem in a relative fashion (variables are the transformations between
poses) that utilizes a minimum cycle basis to maximize the sparsity
of the problem. We explore the construction of a cycle basis in
an incremental manner while maximizing the sparsity. We validate
an algorithm that constructs a sparse cycle basis incrementally and
compare its performance with a minimum cycle basis. Additionally,
we present an algorithm fo approximate the minimum cycle basis
of two graphs that are sparsely connected as is common in multi-
agent scenarios. Lastly, the relative parameterization of pose graph
optimization has been limited to using rigid body transforms on
SE(2) or SE(3) as the constraints between poses. We introduce
a methodology to allow for the use of lower-degree-of-freedom
measurements in the relative pose graph optimization problem.
We provide extensive validation of our algorithms on standard
benchmarks, simulated datasets, and custom hardware.

Index Terms—SLAM, localization, multi-robot systems.

1. INTRODUCTION

HE simultaneous localization and mapping (SLAM) is
T often modeled as a factor graph with variable nodes con-
sisting of both pose and landmark variables, and factor nodes
representing constraints between variables. A special case of
SLAM, called pose graph optimization (PGO), occurs when the
only variable nodes are robot poses and the only factor nodes
are constraints between poses.

Inrobotics, PGO has become a common technique to estimate
the discrete-time trajectory of a robot when only the robot
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trajectory is of interest, as in the cases described in [1], [2].
PGO is usually solved using nonlinear least squares (NLS)
optimization techniques and, as such, requires an initial estimate
to start the optimization. The convergence of the problem to the
global minima requires that the initial guess be in the basin of
convergence of the global minima or otherwise a suboptimal
local minima will be found.

A. Related Work

The birth of modern SLAM algorithms started with the
seminal paper by Lu and Milos [3]. Since then, the robotics
community has developed many fast and robust algorithms to
enable autonomous agents to solve the SLAM problem. Various
techniques have been developed to increase the robustness of
SLAM algorithms including obtaining a good initialization [4],
[5]. using robust cost functions [6], [7], using convex relax-
ations [8], [9], [10], and finding globally optimal solutions [11],
[12]. At their core, these algorithms exploit the sparse nature of
SLAM to efficiently compute estimates of the variables using
sparse nonlinear solvers such as GTSAM [13] or g2o [14].
The sparsity of the problem is maintained by methods such as
variable reordering [15]. The iSAM2 solver presented in [16], in
addition to doing online variable reordering, provides a method
to incrementally update the solution by only updating the af-
fected variables.

Recent work has focused on a relative parameterization of
PGO [17], [18], [19] where each robot pose is expressed in
the frame of the pose that precedes it. Olson et al. [20] notes
that the relative parameterization of PGO loses the sparse prop-
erty present in the traditional global parameterization. Jackson
et al. [18] show that the relative parameterization is better
conditioned than the traditional global parameterization. Bai
etal. [17] reformulate the problem as a constrained optimization
problem by enforcing that cycles in the graph return to the origin
when traversed. Bai notes that the set of cycles must form a cycle
basis for the graph being optimized. In his most recent work [19],
Bai presents a method to maximize the sparsity of the relative
parameterization by forcing the set of cycle constraints to form
a minimum cycle basis (MCB) and shows that the run time of
the relative parameterization is comparable to that of the global
parameterization. The primary drawback to the method is that
computing a MCB is an expensive procedure, showcasing the
need for methods to incrementally update the MCB.

Constructing a MCB is a well studied process in graph theory
with the first polynomial time algorithm being developed by
Horton [21]. The MCB can be found by first finding the all pairs
shortest paths (APSP) data structure and then creating a Horton
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set. The Horton set is a set of cycles known to be a superset of
a MCB. The set is ordered by weight and the MCB is found by
taking the shortest cycles that form a cycle basis for the graph.
Other algorithms to construct or approximate a MCB have been
proposed [22], [23], [24], [25] that are less computationally com-
plex than Horton’s algorithm. However, all of these methods are
for static graphs, or graphs without edge insertions or deletions.
To our knowledge, no incremental algorithm to construct a MCB
exists. Bai describes an algorithm in [17] based on a fundamental
cycle basis that uses the odometry backbone to generate a sparse
fundamental cycle basis. In his dissertation [26], Bai describes
a greedy algorithm to incrementally approximate a MCB but
does not evaluate the algorithm in the dissertation or any peer
reviewed work.
The contributions made in this paper are as follows:
1) Extensive validation of the greedy incremental algorithm
presented in [26].
2) An algorithm to generate a cycle basis of multiple graphs
that are sparsely connected.
3) A methodology to use low-degree-of-freedom measure-
ments in the relative parameterization of PGO.
4) Validation of the proposed algorithms on standard bench-
marks, simulated data, and in hardware experiments.

II. PROBLEM DEFINITION

Here we define the PGO problem to be solved, relevant
technical definitions, and other notation. A graph G is defined
as G = G(V, £) where G is the graph, V are vertices, and £ are
the edges. A path, P, in G is a subgraph of G where all vertices
have degree two except for two vertices, which have degree one.
A cycle in G, denoted as C, is a subgraph of G where all vertices
have an even degree. The cycle space of G is the set of all the
cycles in G and a cycle basis of G, denoted as B, is a set of
independent cycles from which any cycle in G can be created
by combining cycles in B. It is known that the dimension of
the cycle basis is v = |£] — [V| 4 1 [19], where | - | denotes the
cardinality of the set.

Now we define the PGO problem that we wish to solve. Given
agraph G = G(V, £), where V are robot poses and £ are the rigid
body transformations (in 2D or 3D) between poses, we wish to
estimate the edges in £. The estimates are found by solving the
following problem defined in [19]

{Tk}ree = arg min ) _ |Log(T, ' Tk)lI3,
keE

st. I= [[ T« ¥ CieB (1)

T eCy

where Ty is an edge in £ to be estimated, Tk is the measurement
of edge Ty, and C is a cycle in B. From this solution the
robot poses can be calculated by composing the rigid body
transformations from the origin to the desired vertex along any
pathin G.

ITI. METHODS

Given the incremental nature of PGO problems in robotics, be-
ing able to incrementally create a sparse cycle basis to constrain
the problem defined in (1) is desirable. However, it is known that
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a MCB does not behave well under standard graph operations
(insertions, deletions, etc.), [27] meaning that there is no known
way to update the MCB of a graph under a given operation. In
this section we provide an overview of the incremental algorithm
to construct a cycle basis presented in [26]. We additionally
present an algorithm that will incrementally approximate the
MCB of two disjoint graphs that become connected as is the
case in multi-agent scenarios where inter-vehicle measurements
are obtained. Lastly, we present a framework that will enable low
degree of freedom measurements to be used in the cycle-based
PGO problem defined in (1).

A. Incremental Cycle Basis Algorithm

Bai, in his dissertation [26], presents the following algorithm
to incrementally approximate a MCB. Assume that a previously
valid cycle basis, By, for a graph G exists and that a new edge
€;; is introduced into the graph where i and j are non-sequential
nodes. An approximate MCB of G can be defined as By =
By UC;; where C;; is any cycle that contains e;;. The sparsity
of By can be maximized by defining the cycle C;; such that
it has minimum length. This is accomplished by letting C;; =
P(z, ) U e;; where P(z, j) is the shortest path between nodes 7
and j. A proof that this algorithm forms a valid cycle basis can
be found in [26].

The complexity of this algorithm is much lower than that of
the MCB algorithm presented in [19]. Bai notes that the most
complex portion of his MCB algorithm is constructing an APSP
structure and has a complexity of O(nmlogn + nlogn + nm)
where n = |V| and m = |£|. In comparison, the incremental
algorithm only requires finding the shortest path between two
nodes, which can be done with a breadth first search and a
complexity of O(n + m).

B. Multi-Agent Incremental Cycle Basis Algorithm

In this section we propose an algorithm that will approximate
the MCB of a graph that is created in multi-agent scenarios.
Assume two robots are collecting data and each are forming
their own graphs G*, where the superscript denotes the robot ID.
Each robot is maintaining and updating its own cycle basis, be
it an approximation or an exact MCB, Bj,, where the subscript k
denotes at timestep k. The robots communicate periodically to
share data. The data is used to form the graph G/ and to estimate
any inter-robot loop closures. The question becomes can the
MCB, B:;"f , be approximated, where the superscript denotes the
union of the two graphs and the connecting edges.

We begin by proving that a cycle basis can be constructed
incrementally and then outline a heuristic to decrease the com-
putational complexity. We define the set of inter-agent relative
pose measurements £2° = (e, e1,. .., €;), and P(a;, a;) as the
shortest path between nodes ¢ and j on agent a and likewise
for agent b. Assume that cycle bases B® and B’ are valid
when the second inter-vehicle measurement is taken and £2? is
formed. It is easy to identify that B U B® U B%?, where BI? =
egp UP(ap,a1) Uer UP(bp,b1), is a valid cycle basis since
edges ey and e; are in no cycles in either B* or BY. Assuming
that cycle bases B* and BB? stay valid when the third inter-vehicle
measurement is taken then, cycle basis B3? = B§® U C (e, £7)
is valid where C(e2, £{?) is a cycle containing edges e; and any
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edge in £2°. This process can be continued to show that the cycle
basis at timestep k is valid so long as the new cycle added to the
basis contains edges e and any edge in £22,.

Having shown that we can incrementally form a cycle basis of
the union of connection of two graphs we note that the shortest
cycle containing the new edge, e can be created by identifying
which edge in £, makes the shortest cycle. This becomes
computationally complex as the number of edges in £2°, in-
creases. We present our algorithm in Algorithm 1 where we
make the design decision to always use edges e and e;_; when
constructing loops to cut down on the computational complexity.
Our algorithm is presented for the general case where multiple
inter-vehicle relative pose measurements may be detected at one
time as in the case when data is shared after a long period with
no communication.

We note that our choice to use edges e, and er_; when
forming a loop comes with no performance guarantees and that
this choice of ordering in Algorithm 1 will potentially produce
longer cycles than another heuristic. While a more optimal
solution would be to select the edge in £2°; that results in
the shortest cycle, this becomes computationally complex as
the number of edges in £%° increases since a large number of
shortest-path operations will need to be computed. Additional
orderings of the newly arrived edges could be used or the whole
cycle basis could be recomputed using an arbitrary order of the
edges in £2°. The order of the edges would surely impact the
lengths of the produced cycles but determining an optimal or
near optimal ordering in an efficient manner is not obvious and
is outside the scope of this paper and thus left as a topic of future
work.

We note that the algorithm in [26] would also work for
constructing a cycle basis of the the union of graphs G* and G.
However, there are several reasons why our algorithm would be
preferable. The first is that our algorithm is more scalable. Bai’s
algorithm operates over a single graph that will be growing faster
than the individual graphs of each agent, meaning that graph
operations such as BFS will take longer. The second benefit of
our algorithm is that ours is parallelizable. Since our algorithm
consists of operations over disconnected graphs, operations on
different graphs can be done in parallel. Constructing cycles
in parallel also improves the scalability of the algorithm by
allowing more cycles to be constructed in the same processing
time.

Additionally, our algorithm is beneficial if there is sufficient
communication bandwidth for the agents to share their respec-
tive cycle bases. The communication of the cycle bases B}, and
B“; eliminate the need for these cycle bases to be recomputed.
If such communication is possible, then the presented algorithm
will eliminate the duplication of effort and the only cycles to be
computed are those that exist between agents. Lastly, we note
that this algorithm is also incremental and allows for the cycle
basis BY to be constructed as the inter-vehicle measurements
arrive, resulting in fast update times due to the low complexity
of shortest path operations.

C. Low-Degree-of-Freedom Measurements

One of the shortcomings of the relative parameterization of
PGO is that it requires that the measurements between poses be
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Algorithm 1: Algorithm for finding a cycle basis incremen-
tally for the connection of two graphs.

INPUT: G;, G;, BY ,, &7 1, €.

OUTPUT: Updated Cycle Basis B}’

function CONNECTEDCYCLEBASIS(G;, G;, 8;-"'_ &)
Bl « B,
for ex in £ do
ex—1 + &, [k—1]
P: + Shortest path between nodes a; and az_1
‘P; + Shortest path between nodes by, and b1
C+PiUer_1 U'PJ- U e
B}f — B;j uc
E &0 Ues
end for
1 T,
gl &2
end function

a relative pose. This requirement arises because of the cycle
constraints used in the optimization. However, measuring a
relative pose between two poses can be difficult, especially in
multi-agent scenarios, and often low-degree-of-freedom (DOF)
measurements (range, bearing, etc.) are easier to obtain in real
world scenarios. The cycle constraints currently used to con-
strain the relative PGO problem are not well suited to such
measurements.

If low-DOF were to be used there would be several instances
where it becomes unclear how to traverse a cycle. This is espe-
cially true in multi-agent scenarios when there is no single odom-
etry backbone and two inter-agent measurements are required to
form a cycle. For example, there is no intuitive way to traverse
a cycle that contains two range measurements between different
vehicles because there is not enough information present to do
so0. In such scenarios, the cycle constraints lose their usefulness,
despite the fact that cycles still exist in the graph and the graph
structure is unchanged.

Using low-DOF measurements requires a different approach.
One possible approach is to use the low-DOF measurements to
estimate a relative pose as done in [28], [29] and then use the
relative pose in a cycle constraint. Another possible approach
would be to formulate a different kind of constraint that would
use n measurements, where n measurements would be sufficient
to uniquely satisfy the constraint. While the number of measure-
ments n is known for many measurement types, however, there
is no concept or tool in graph theory, to our knowledge, that can
aid in the generation of such a constraint. As such, we adopt
the method of condensing low-DOF measurements into a single
rigid-body transformation.

The remainder of this section will apply this method using
inter-vehicle range and bearing measurements.

1) Range and Bearing: Estimating a relative pose from low-
DOF measurements is a topic that has received some attention
in the robotics community. In [29] Zhou shows that in three
dimensions, the rotation between the two poses is unobservable
for two range and bearing measurements because the rotation
around a specific unit vector is undetermined. This can be
overcome by using a third range and bearing measurement and
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solving a system of linear equations for the rotation matrix.
Another method assumes that each robot is equipped with an
IMU. An onboard IMU makes the roll and pitch angles of each
agent observable because the IMU is able to measure the gravity
vector which, when combined with vehicle motion, allows the
roll and pitch to be estimated accurately. Assuming the roll
and pitch estimates are accurate, they can be treated as known
constants, making the problem of estimating the relative rotation
a two dimensional problem where the relative heading can be
solved for uniquely.

We solve for the relative pose using optimization techniques,
as opposed to the algebraic solutions in [29], to obtain greater
accuracy in our relative pose estimates. The problem can be
solved quickly given its small size. The optimization problem is
defined as follows

T = arg ming. ) _ ||z — h(T, To, To)|1%, )
i=1
and h(T,T,,T}) is defined as
lldt]|
T, To, Ts) = 3
(T, Ta, To) (atan2(dy, dz) 3

where dt is the translation component of (T, 1(T'T})) and dx
and dy are the components of dt. We solve the problem using
Ceres [30] assuming that T}, and T} are known and constant. We
can then use the transform 7 in the cycle constraints defined in
(1). A minimum of two measurements are needed to solve (2) but
more can be used depending on the quality of the measurements.

IV. RESULTS

In this section we provide extensive validation of the algo-
rithms described above. We outline the experiments used to
evaluate all the algorithms presented in Section III and provide
a discussion of their implications.

A. Incremental Algorithm Validation

Since no experimental validation of the incremental cycle ba-
sis algorithm in [26] has been done, we first perform experiments
to compare the performance of the incremental and minimum
cycle bases.

Cycle Basis Density: Our first experiment was designed to
compare the sparsity of the incremental cycle basis with the
MCB. This was deemed important since the use of the MCB
was done to maximize the sparsity of the problem. We define a
metric to measure the density as the following

_Zeeltl
€]

The metric sums the number of edges in each cycle in the cycle
basis, which corresponds to the number of non-zero entries in the
Jacobian, and normalizes it by the number of edges in the graph.
The MCB will have the minimum achievable density. Our goal is
to compare how well the incremental cycle basis approximates
the density of the MCB. We provide the comparison on several
standard benchmark datasets.

Fig. 2 contains a visualization of how the density of both cycle
bases change as the graph grows for the M3500 dataset [20]

)
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Fig. 1. A visual description of the cycles created in Algorithm 1. Dotted lines

denote the shortest path between two nodes while solid lines denote the edge
connecting two nodes.
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Fig. 2.  Visual comparison of the density of the incremental cycle basis and
the MCB as the graph grows for the M3500 dataset.

plotted against the number of edges in the graph. Table I contains
the density for the entirety of each dataset found in [4], [5]. Asis
expected, the incremental algorithm produces a cycle basis that
is denser than the MCB. Observing the values in Table I shows
that the incremental algorithm produces a cycle basis that is
about 1.3 times more dense than the MCB. However, many of
these datasets (M3500, City10k, Torus1000, and Sphere2500)
produce graphs that are more dense than those in many PGO
applications. The incremental algorithm is capable of producing
a cycle basis that has almost the same density of the MCB in
sparser graphs, such as those in the MITb and Kitti datasets.
Algorithm Complexity: The complexity of both the incre-
mental algorithm and the MCB algorithm in [19] were presented
earlier. We provide additional validation on the runtime of each
algorithm. We test the time that it takes for both the incremental
algorithm and the MCB algorithm to update their respective
cycle bases. Since no incremental update to an MCB exists
we report the time required to recompute the cycle basis. We
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TABLEI
DENSITY FOR ALL OF THE BENCHMARK DATASETS WHEN ALL DATA HAS BEEN USED
INTEL | MITb | M3500 | Cityl0k | Torus10000 | Sphere2500 | Kitti
ICB 2.62 1.34 2.79 3.25 331 2.48 1.40
MCB 2.06 1.31 2.17 2.36 2.42 1.99 1.32

ICB indicates using the incremental cycle basis algorithm and MCB indicates the minimum cycle

basis algorithm.

Cycle Basis Update Time

10td — MCB
3 — Incremental

10! 4

7
E
v 10°4
E
(=
1071 4
10-2 4
250 500 750 1000 1250 1500 1750
Graph Size (number of edges)
Fig. 3. Time required to update the cycle bases for the incremental algorithm

and MCB algorithm on the INTEL dataset. Note the log scale on the vertical
axis.

Optimization Runtime

504 — MCB
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40 4
w
E
o
E 304
=
{ =
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E 20 A
B
o
10 1
0 L T T T T T T T
250 500 750 1000 1250 1500 1750
Graph Size (number of edges)
Fig. 4. Time required for the optimization to converge on the INTEL dataset.

then record the update time to be plotted against the number of
edges in the graph. We also record the time required to solve
the optimization problem in (1) to determine the effect of the
increased cycle basis density on the optimization runtime. As
with the sparsity experiment, we provide a comparison across
multiple benchmark datasets.

Fig. 3 shows the time it takes to update the cycle bases on
the INTEL dataset and Fig. 4 shows the time it takes for the
optimization to reach a solution. Looking at Figs. 3 and 4 we
see that the incremental algorithm can update a cycle basis in a
time three orders of magnitude faster than the MCB algorithm
while having comparable optimization speeds. Observing Table
II shows a similar trend where the incremental cycle basis update

is several orders of magnitude faster than the MCB calculation,
but sacrifices comparatively little optimization speed despite the
increased cycle basis density.

B. Multi-Agent Cycle Basis Validation

In this section we provide validation of the multi-agent incre-
mental cycle basis (MA-ICB) algorithm in Algorithm 1. We first
compare the density and cycle basis update times of Algorithm
1 with those of the algorithm in [26]. We also compare the
error statistics of using the MCB and the cycle basis found in
Algorithm 1 in both simulation and hardware experiments.

1) Performance Evaluation: We validate Algorithm 1 using
the same density and algorithm complexity experiments pre-
sented in Section I'V-A on the same datasets but with modifica-
tions to simulate multi-agent scenarios. Each dataset was split
in half and the two halves were assumed to be collected si-
multaneously. We recomputed the density, using (4), after every
inter-agent loop closure. We show the benefit of being able to
parallelize Algorithm 1 by measuring the time to update the cycle
basis for both algorithms and comparing them. Additionally, to
show the value of recomputing inter-agent loops, we show the
density after recomputing the inter-agent loops at the end of the
simulation.

We present our results in Table III where we present the
density at the end of the simulation, the average time to update
the cycle basis, and the density of the cycle basis using Algorithm
1 when the inter-agent loops have been recomputed at the end of
the simulation. As can be seen Algorithm 1 improves the update
time by around 30 percent on most datasets. We note that there is
significant variation of the density of the cycle basis produced by
Algorithm 1 and this is primarily a result of the edge ordering we
utilize in Algorithm 1. However, the density can be siginifcantly
reduced by recomputing inter-agent loops as the graphs for each
individual agent become more developed. In our experiment we
recomputed all inter-agent loops and this usually required tens
of milliseconds to complete. Further examination of the original
loops produced by Algorithm 1 shows that a minority of the
loops contribute to significant portion of the density. A more
targeted recomputation strategy could reduce the time required
while significantly decreasing the density by identifying and
recomputing the longest inter-agent loops.

2) Simulation Experiment: Our simulation experiment was
done to compare the error in both the edges and the trajectory
with the ground truth data produced in the simulator. Our sim-
ulator generated 10 agents that operated in a Manhattan-world-
like trajectory. Each robot has 500 odometry edges and 100
intra-vehicle loop closures. Between any given pair of robots
there are 50 inter-vehicle loop closure measurements that are
generated randomly. Noise was added to both the odometry and
loop closure measurements using the noise characteristics of
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TABLE I
TIME REQUIRED TO UPDATE THE CYCLE BASES AND RUN THE OPTIMIZATION WHEN FOR THE FOLLOWING DATASETS

INTEL | MITb | M3500 | Cityl0k | Torus10000 | Sphere2500 | Kitti

Cycle Basis ICB 0.057 0.076 0.14 0.59 0.81 0.13 0.17

Update (ms) | MCB 174 49.0 1896 2189 2702 1030 1865
Optimization | ICB 3.93 2.06 45.76 293 1668 234 6.56
(ms) MCB 2.90 1.65 26.7 184 1277 240 7.86

ICB is using the incremental cycle basis and MCB is using the minimum cycle basis.

TABLE III
COMPARISON OF THE DENSITY AND AVERAGE UPDATE TIMES OF ALGORITHM | AND THE INCREMENTAL ALGORITHM IN [26]

INTEL | M3500 | City 10k | Torus10000 | Sphere2500 | Kitti
Average Update ICB 0.026 0.122 0.40 0.43 0.13 0.39
Time (ms) | MA-ICB 0.039 0.082 0.29 0.27 0.052 0.19
Density ICB 2.16 2.46 2.77 2.79 2.00 1.38
MA-ICB | 6.02 541 11.43 8.62 2.00 1.84
Recomputed
Density MA-ICB 2.52 2.62 332 3.38 2.00 1.40
TABLE IV Single agent hardware experiment results
RESULTS COMPARING THE ERROR OF THE MCB AND THE MA-ICB
ALGORITHM IN ALGORITHM | 34
Algorithm | Rot. RMSE (deg) | Trans. RMSE (m) | ATE (m) 2
MCB 5.74 0.39 0.55
MA-ICB 5.74 039 0.56 Y
E o
the M3500 dataset in [4]. The optimization problem in (1) was -11
solved using the cycle constraints from both the MCB and the
cycle basis defined in Algorithm 1. After solving the optimiza- -
tion, we compute the root-mean-squared error (RMSE) of the _34
edges, defined in (5), and the average trajectory error (ATE) of ! : . . : .
the poses, defined in (6), for all agents. The trans(-) operator L - = =
in (6) indicates the translation component of the rigid-body
transformation. Fig. 5. Results of the single agent hardware experiment using a cycle basis

i ~1 770 112
RMSE = \/2¢=1 ||Log(dT; " dT;)||

N (5)
N —1qy 12
e \/ Dl s ) -

We report the RMSE of the translational components and the
rotational components of the edges separately, and our results
appear in Table IV. Observing Table IV we find that the two
cycle basis algorithms produce nearly identical results, where the
small differences can be attributed to different stopping points
that satisfied the stopping criteria of the optimization. The time
required to compute all the required cycles between graphs using
Algorithm 1 was 118 ms while the time required using the MCB
algorithm was 4170 ms, showing that we can achieve similar
accuracy while using only a small fraction of the time to compute
cycle constraints.

3) Hardware Experiment: Inthis section, we describe the ex-
perimental validation of the algorithms presented in Algorithm 1
and in [26]. The experiments are performed on Turtlebots carry-
ing an Intel NUC processor on board running Ubuntu 18.04. The
Robot Operating System is used to facilitate message passing
between the sensors and agents. A motion capture system is used
to generate edges every 0.5 meters or a change of 15 degrees in
yaw as a stand-in for vision based alternatives like [31]. We test

described by Bai [26].

Bai’s incremental algorithm in a single-agent scenario and our
algorithm in a multi-agent experiment.

In the single-agent case, the ground robot follows a rectangu-
lar trajectory with feedback from the motion capture system to
generate loop closures when the Turtlebot returned to a location
it had previously been. The results of this experiment are shown
in Fig. 5. The average RMS error for this experiment can be
found in Table V. The algorithm took 1.46 ms to optimize over
210 edges using the MCB and 1.87 ms using the incremental
cycle basis.

In the multi-agent scenario, three Turtlebots are used and
follow rectangular trajectories. Each agent has its own process-
ing unit and generates edges as described in the single-agent
experiment. Periodically, agents will communicate with each
other. During a communication, agents will share the data they
have collected and obtain a relative pose between them. In this
experiment, agents 0, 1 and 2 have 209, 217 and 193 edges,
respectively, and 20 different communication events evenly dis-
tributed among pairs of robots. The results of this run are shown
in Fig. 6 and show the results from the perspective of agent
0. The RMS error for this run when compared to the motion
capture truth reference is shown in Table V, along with the ATE.
We also compared the time to update the cycle bases on the last
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TABLE V

ERROR RESULTS FOR BOTH THE SINGLE AND MULTI-AGENT HARDWARE EXPERIMENTS
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Experiment | Algorithm | Rot. RMSE (deg) | Trans. RMSE(m) | ATE (m)
2 MCB 2.65 0.070 0.19
Single agent —— ey 290 0.068 022
; MCB 0.63 0.024 0.052
Multi-agent —xroroR 0.63 0023 0.033
Multi-agent hardware experiment results Low-DOF Example
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Fig. 6. Results of the multi-agent experiment using a cycle basis generated by
Algorithm 1.

optimization. Updating the MCB took 49.6 ms, while updating
the the cycle bases between all pairs of robots using Algorithm 1
required 0.66 ms.

Observing the results in Figs. 5, 6, and those in Table V
show that choice of cycle basis has little impact on the accuracy
obtained by the optimization. In combination with the results
from Section IV-A, we show that we can obtain this accuracy
and significantly lower the computational time, especially for
large graphs, by using algorithms to approximate a MCB instead
of exactly computing one.

C. Low-DOF Measurements

This experiment was designed to validate the use of low-DOF
measurements in the relative parameterization of PGO. In this
experiment, two agents were simulated in a planar environment
traveling along sine waves of different frequencies and phase
offsets. Odometry was simulated by taking two poses along the
trajectory at times between 0.5 and 2.5 seconds apart, comput-
ing the transformation between them, and adding noise. This
approach created between 75 and 95 poses per agent along a
120 s long simulation. 30 range and bearing measurements were
computed at random intervals along the trajectories as shown in
Fig. 7. These measurements were used to create inter-vehicle
loop closures by solving (2) using pairs of sequential measure-
ments. This resulted in 15 relative-pose measurements to be used
in the cycle-based PGO problem. We ran 30 different trials to
record and average the error in the relative localization between
the agents. The noise characteristics used in the experiment are
described below.

Yodom = diag(0.01 m?,0.01 m?2,0.001 rad?)
Pieas = diag(0.1 m?, 0.01 rad?)

* (m)

Fig. 7. Example trajectories for the two agents. Note that each agent travels
in the direction it is facing. The range measurement r = ||r|| and the bearing
measurement is & = atan2(r,,r,) — 6.

TABLE VI
RELATIVE POSE ERROR RESULTS FOR THE LOW-DOF MEASUREMENT
EXPERIMENT
Time Variable | Mean Relative Pose Error Std. Deviation
CBPGO GTSAM CBPGO | GTSAM
X (m) -0.0017 -0.12 0.84 1.39
0 (s) y (m) 0.019 0.024 0.94 1.40
@ (deg) -0.14 0.14 6.69 0.86
X (m) 0.010 -0.022 1.37 1.51
120 (s) y(m) -0.78 -0.29 1.38 2.41
7 (deg) 302 -0.68 13.6 1.00

Since the purpose of multi-agent PGO is for the agents to
localize relative to one another, we evaluate the error in the
relative pose estimates at the start and the end of the trajectory.
We compute the average and standard deviation of the error
across the different trials and report the results in Table VI. We
compare the results of our method with the results produced by
GTSAM [13] when range and bearing factors are used to model
inter-agent measurements.

As can be seen, we obtain accurate relative-pose estimates
with the average error between the two agents being less than
a meter in the translational components and less than three
degrees in the relative orientation showing that low-DOF mea-
surements can effectively be used in the cycle-based PGO prob-
lem described in (1). Additionally, our method obtains similar
translational accuracy when compared with GTSAM but suffers
both lower relative heading accuracy and larger variance on the
relative heading error. This degredation in the relative heading
is expected as we do not recompute the relative pose factors by
solving (2) using updated estimates for 7, and T},. The accuracy
in the relative heading factors, 7', are dependent on the quality of
the odometry of each robot and the errors in the measurements.
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V. CONCLUSION

In summary, we have validated a proposed but untested
algorithm to incrementally compute a sparse cycle basis and
shown that the incremental cycle basis closely approximates
the MCB. Additionally, we presented and validated an algo-
rithm to approximate the MCB of the sparse connection of two
disjoint graphs and demonstrated its ability to run in real-time
PGO scenarios and give accurate estimates of the edges in
each robot’s graph. Lastly, we have introduced a methodol-
ogy to utilize low degree of freedom measurements in a rel-
ative PGO framework and demonstrated that the method pro-
duces accurate relative-pose measurements between the differ-
ent agents. These improvements take steps toward allowing rel-
ative PGO to be efficiently used in multi-agent scenarios where
obtaining a relative-pose measurement between agents can be
difficult.
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