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trol condition within each site (e.g., school), are among the most com-
monly used experimental designs across a broad range of disciplines.
MCRTs often align with the theory that programs are delivered at a clus-
ter-level (e.g., teacher professional development) and provide opportunities
to explore treatment effect heterogeneity across sites. In designing experi-
mental studies, a critical step is the statistical power analysis and sample
size determination. However, the statistical tools for power analysis of
moderator effects in three-level MCRTs are not available. In this study, we
derived formulas for calculating the statistical power and the minimum
detectable effect size difference (MDESD) with confidence intervals for
investigating the effects of various moderators in three-level MCRTs. We
considered the levels of the moderators (level-1, —2, and —3), the scales of
the moderators (binary and continuous), and random and nonrandomly
varying slopes of the (moderated) treatment effects. We validated our for-
mulas through Monte Carlo simulations. Finally, we conclude with direc-
tions for future work.

The quality of study designs in educational and psychological research has been increasingly
emphasized in the production of rigorous evidence of the effects of programs and policies.
Because the organization of many social structures (e.g., schooling) typically involves multilevel
data structure (e.g., students are nested within classrooms, and classrooms are nested within
schools), multilevel experiments are widely used in research and program evaluation in these
areas. Multisite cluster randomized trials (MCRTs), in which, the intermediate-level clusters (e.g.,
classrooms) are randomly assigned to the treatment or control condition within each site (e.g.,
schools), are the most commonly used experimental designs, followed by cluster randomized trials
(CRTs), in which, the units for random assignment are the top-level clusters (Spybrook et al.,
2016; Spybrook & Raudenbush, 2009). MCRTs align with the theory that many programs are
delivered at the cluster-level (e.g., teacher professional development) and provide opportunities to
explore treatment effect heterogeneity across sites (Kelcey et al., 2017; Weiss et al., 2014).

In addition to detecting simple average effects to addresses “what works” questions, researchers
and policy makers are increasingly interested in additional questions regarding for “whom, and
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under what circumstances” programs work for, and interpreting and exploring the sources of the
treatment effect variation using moderation analyses (Weiss et al., 2014). For example, it is possible
that the effects of a teacher development program vary across schools or districts, and that there
are heterogeneous responses by students across different subgroups defined by students” characteris-
tics (e.g., race, gender, SES, and pretest), teachers’ characteristics (e.g., teaching experience, race,
and gender), schools’ and districts’ characteristics (e.g., size, urbanity, poverty level, and average
achievement), and program implementation. These characteristics may be potential moderators,
which are the variables that affect the direction and/or magnitude of the relation between the treat-
ment variable and the outcome variable (Baron & Kenny, 1986). Understanding the context in
which an intervention is likely to be (more) effective is fundamental to understanding the extent to
which results are applicable and scalable to a wide range of schools and students.

In designing such studies, a critical step is the statistical power analysis. The statistical power
analysis is now routinely required to demonstrate sufficient power to detect the treatment effects
if they exist (e.g., Kelcey et al., 2019; US DoE & NSF, 2013). There exist the tools for power anal-
yses of the main effects of multisite randomized trials (MRTs) (e.g., Borenstein & Hedges, 2012;
Dong & Maynard, 2013; Konstantopoulos, 2008; Raudenbush et al., 2011) and for power analyses
of moderator effects in two- and three-level CRTs (e.g., Dong et al., 2018, 2021; Spybrook et al.,
2016). Although Dong et al. (2021) and Raudenbush and Liu (2000) provided a framework for
power analysis of moderator effects in two-level multisite individual randomized trials, and
Bloom and Spybrook (2017) developed formulas for the minimum detectable effect size difference
(MDESD) for the site-level binary moderator in MRTs, there is no comprehensive statistical tool
for power analyses of moderator effects in three-level MCRTs. It is still not clear how the intra-
class correlations at levels 2 and 3, the sample size allocations, the covariates, the scales and levels
of moderators, and the treatment effect variation/heterogeneity coefficients affect the statistical
power of the moderator effects in three-level MCRTs. Given the increasing uses of three-level
MCRTs in program evaluation, the statistical tools and software for power analyses of the effects
of moderators at different levels would enhance the capacity of researchers to design rigorous
studies to answer research questions related to the treatment effect heterogeneity.

To address this gap, the purpose of this study is to develop a statistical and empirical frame-
work for designing three-level MCRTs to investigate the moderated treatment effect. Specifically,
we will derive formulas for calculating the statistical power and the minimum detectable effect
size difference (MDESD) with confidence intervals for investigating the effects of various potential
moderators in three-level MCRTs. In the following, we first provide an illustrative example of
teacher professional development for investigating moderation effects in three-level MCRTs. We
then present the formulas for the standard error (SE), statistical power, and the MDESD and its
confidence intervals for the moderator effect at level 1 followed by levels 2 and 3. Within this
scope, we begin by detailing the case of continuous moderators with random slopes and then
extend these cases to allow for binary moderators and nonrandomly varying slope models. We
use Monte Carlo simulations to assess the validity of the formulas we derived. Finally, we con-
clude with directions for future work.

An illustrative example for investigating moderation effects in MCRTs

Universal prevention interventions have been implemented in schools to reduce student problem
behaviors. For instance, using MCRTs, several classroom management programs have been found
effective in reducing students’ emotional dysregulation (Reinke et al,, 2018) and concentration
problems (Herman, Reinke et al., 2022). In addition, the results of these two projects indicated
that the treatment effects were moderated by the pretest (Reinke et al., 2018), by the special edu-
cation status (Reinke et al., 2021), and by the student risk of behavior problems (Sinclair et al.,
2021). However, the demographic information such as gender, race, and free lunch status were
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not found to be significant moderators in some universal interventions (e.g., Domitrovich et al.,
2016; Herman, Dong et al., 2022; Ialongo et al., 2019; Reinke et al., 2018).

Although researchers have begun examining whether the effects of teacher professional devel-
opment on student outcomes are moderated by the student level variables, there is no compre-
hensive framework to guide the design and analyses of moderator effects. The alignment of the
analytic design with the substantive theory underlying the program can inform the rigorous
design of teacher development studies (e.g., Rossi et al., 2004; Wayne et al., 2008). Recent litera-
ture has highlighted the importance of the designs and data collection regimes in the studies of
professional development because they affect the scale of data collections and the types of
research questions that we can address (Kelcey & Phelps, 2013; Schochet, 2011).

To provide an illustration of the complexity of the designs and the capacity to answer research
questions, a simplified conceptual framework for investigating moderation effects of professional
development using three-level MCRTs is illustrated in Figure 1. This is a common study of a
teacher professional development program (treatment) that is designed to improve student out-
comes (e.g., social and behavioral outcome). The treatment (teacher professional development) is
at the intermediate or second level. In a three-level MCRT, where teachers within each school are
randomly assigned to receive professional development, teacher characteristics are not related to
the treatment; in non-experimental designs, the teacher characteristics may be related to the treat-
ment status. The schools are at level 3, i.e., the schools serve as blocks or sites under which there
are two treatment conditions (receiving professional development or not) in each school. The stu-
dents are at level 1. The characteristics of students, teachers, and schools may be related to the
student outcome (black arrows), which will not affect the accuracy of the main effect estimates of
the professional development under random assignment but may affect the precision (e.g., stand-
ard error, power) of the treatment effect estimates. The key research questions may include: (1)
what are the average/main effects of the professional development on the student outcome, and
(2) is there any variation in the effects of the professional development across the schools (sites/-
blocks), and do the effects differ by the characteristics of students, teachers, and schools (red
arrows indicating the moderation)? Note that it is also common to probe the mediation effect,
e.g., the effect of the teacher professional development is mediated by teacher knowledge or
instruction (Kelcey et al., 2019; 2020), however, this article focuses on Research Question 2 above
by studying multisite moderation analyses.

Statistical framework

In designing moderation studies in three-level MCRTs (Figure 1), there are multiple considera-
tions concerning the potential form of the moderation including (a) level(s) of the moderator

Level 3 School Characteristics/ 4
Contextual Factors (urbanity) Level 3 Moderation
Level 2 Moderation
[
Level 2 Teacher Characteristics | __,| Professional Development l
(gender, teaching experience) (Treatment)
Level 1 Moderatiol v
Level 1 Student Character?st‘ics - Student Outcome
(gender, race/ethnicity, pretest) =

*

Figure 1. A conceptual framework for investigating moderation effects of professional development.
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Table 1. List of design and software modules of three-level multisite cluster randomized trials (MCRTs).

4 5 6 7

1 2 3
Binary Moderator Continuous Moderator
Slope of

Model Level of Treatment or MDESD Power MDESD Power
Number Moderator Moderation Calculation Calculation Calculation Calculation
MRT3-2R-1 1 Random
MRT3-2R-2 2 Random MRT32R_MDESD  MRT32R_Power  MRT32Rc_MDESD  MRT32Rc_Power
MRT3-2R-3 3 Random
MRT3-2N-1 1 Nonrandomly Varying
MRT3-2N-2 2 Nonrandomly Varying MRT32N_MDESD  MRT32N_Power MRT32Nc_MDESD  MRT32Nc_Power
MRT3-2N-3 3 Nonrandomly Varying

variables, (b) the random or nonrandomly varying slopes (coefficients) of the treatment and mod-
erator variables, and (c) the scale of the moderator(s) (e.g., continuous or categorical). Table 1
presents the list of moderation designs in three-level MCRTs. For example, Model MRT3-2R-1
refers to a three-level multisite randomized trial with the treatment at level 2 and a moderator at
level 1, and with a random slope for the moderation. Below we describe how we develop the for-
mulas for the standard error (SE), statistical power, and the MDESD and its CIs for the moder-
ator effect at level 1 followed by levels 2 and 3. Within this scope, we first detail the case of
continuous moderators with random slopes and then extend these cases to allow for binary mod-
erators and nonrandomly varying slope models.

The random slope Model

A random slope model assumes that the moderator effect randomly varies across sites when the
moderator is at levels 1 or 2, or the treatment effect randomly varies across sites after controlling
for the level-3 moderator.

Moderator at level 1

Suppose there are n students in each teacher’s classroom. There are ] teachers per school, where
a proportion (P) of the teachers within each school are randomly assigned to the treatment group
to receive professional development, and there are total K schools which serve as blocks or sites.
For example, a research question may probe the extent to which the effects of a professional
development program on a student outcome vary by the students’ pretest or gender (ie., the
moderated treatment effects) while the moderated treatment effects also varying randomly across
schools. This design corresponds to Model MRT3-2R-1 in Table 1.

To test for this cross-level moderation in the presence of heterogeneous effects across schools,
we use three-level random slope hierarchical linear modeling (HLM) (Raudenbush & Bryk, 2002):
Level 1 : Yj = moj + nljkMEj}c) + Mo Xijk + eiik> eijk ~ N(O, G%|M,X)‘ (1)
Level 2 : Tojk = ﬁOOk + ﬂo]kT}'k + ﬂozkvvjk + Tojk

Tk = Brok + BuuxTix + rijk
Tjk = ﬁzok (2)

2
<T’ojk> ~N (0> TOO‘T)W TolT,w
. > 2
Tjk 0 Tt
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Level 3 : Book = Vooo + Hook
Boik = Yoo + otk
Boak = V020
glok = Y100 i U1k
11k = V110 T Y11k
Baok = 7200 ®
Ugok
Uo1k ~ N

U0k
Uik

2
Toooo  Toool  Tooio  Tooll
Toror  Toito  Toi1l

2
Tio10  T1011

SO O O

2
T

Yjj is the outcome for student i with teacher j in school k. The treatment variable, Tj, is a bin-
ary variable indicating whether the teachers receive the professional development. Xjj is a level-1
covariate and Wj is a level-2 covariate. Ml(k) is a continuous level-1 moderator, and M, k)
N(0, a3,). M(]}() can be viewed as a grand-mean centered variable. Of interest for the moderator
analysis is the parameter f3,;;, which represents the site-specific moderation effect and consists of
the cross-site average moderated treatment effect (y;,,) and the random site-specific deviation
from that average (u11x). 7150 can also be interpreted as the average difference on the association
of the variable MS() and the outcome between the treatment conditions.

By extending Snijders (2001, 2005) work on the variance of the estimated regression coeffi-
cients of a level-1 variable with a random slope, Dong et al. (2021) showed that the variance of
the cross-level moderation effect estimate in two-level multisite randomized trials is associated
with the residual variance in the level-1 slope, the variance of the level-1 residuals, and the var-
iances of the moderator and treatment variables in addition to sample sizes (Dong et al., 2021,
Equation (8)). We extend Dong et al. (2021) and Snijders (2001, 2005) to three-level MCRTSs, and

the standard error of the moderator effect estimate (},,) can be expressed as:

i T Tl x
SE(110) = P !
(P110) K + P(1 - P)KJ + a%.wP(1 = P)KJn @

The standard error of the moderatlon effect is associated with the variance (73,;,) of the ran-
dom slope of the moderation (Ml oy >< Tj) across sites/blocks (level 3), the variance (T11|T) of the
random slope of the moderator (M ) among level-2 clusters conditional on treatment the vari-
ance (0'1| M «) of level-1 residuals cond1t1onal on MY .k and X, the variance of Ml k , the variance
[P(1 — P)] of the treatment variable, and the sample sizes (K, ], n).

Note that when Ml(]}() is a binary variable with a proportion of Q; in one subgroup and (1-Q;)
in another subgroup, ij}c) ~ Bernoulli (Q,):

VAR( ,(]k)> oy = Qi(1— Q). (5)

We insert Expression 5 into Expression 4, and the standard error of the moderator effect esti-
mate for a binary level-1 moderator can be expressed as:

Qo ™ T§1|T af\M»X
SE(P110) = \/ K +p(1 _p)K]+P(1 —P)Q;(1 - Ql)K]n- ©

Moderator at level 2

The research question is whether the effects of the professional development on student outcome
vary by the teachers’ teaching experience or gender (i.e., the moderated treatment effects) while
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the moderated treatment effects also varying randomly across schools. This design corresponds to
Model MRT3-2R-2 in Table 1.

To test for this same-level moderation, we use three-level random slope HLM (Raudenbush &
Bryk, 2002):

Level 1 : Yijk = ank + Tclijijk + eijk, e,-jk ~ N(O, O'%‘X). (7)
2 2
Level 2: nojk = :[))OOk + ﬁOlkTik + BOZkT.‘ikA4j(k) + ﬁ03kM;k) + ﬁ04k]’k + T'ojk, T’()jk ~ N(O, T§0|T,M, W)’
Tjk = Bioks
(8)
Level 3 : fBoox = Yooo + Hook
Boik = Yoro + o1k
Boak = V020 + toak
Bosk = Y030
Boak = Voao )
Biok = V100
Uook 0 2000 Toool  To002
ok | ~N|| 0], Too1  To102
Uozk 0 75202

M](,f ) is a continuous level-2 moderator, and M](,f )N (0, 03,2)- The parameter, fiyy, represents
the site-specific moderation effect and consists of the cross-site average moderated treatment
effect (yq,) and the random site-specific deviation from that average (o).

By extending Dong et al. (2021) and Snijders (2001, 2005) to three-level MCRTs, the standard
error of the moderator effect point estimate (},,,) can be expressed as:

72 TooT M, W
SE(5 _ 0202 T, M, .
(P020) \/ K + 0%, P(1 — P)K] + a3 P(1 — P)KJn

2
O1x

(10)

Similarly, when the level-2 moderator M](k2 Visa binary variable with a proportion of Q, in one

subgroup, Mj(,f)m/ Bernoulli (Q,): VAR (]\/I](k2>) = 6?\4@ =Q(1 — Q).
The standard error of the moderator point estimate for a binary level-2 moderator can be
expressed as:

2

R T TgO\T,M,W %1x
SE(o0) _\/ K +P(1 —P)Q,(1 - Q) K]+P(1 — P)Q,(1 — Q) KJn' (1)

Moderator at level 3

A level-3 moderator example research question in the current context is whether the effects of
the professional development program on a student outcome vary by the site-level characteristics
(e.g., school size, urbanity) while also varying randomly across schools. This design corresponds
to Model MRT3-2R-3 in Table 1.

To test for this cross-level moderation, we use three-level random slope HLM (Raudenbush &
Bryk, 2002):

Level 1: Yijk = TC()jk + nlijijk + eijk, eijk ~ N(O, O'%‘X). (12)

Level 2 mojk = Book + Bowk Tik + Boak Wik + rojk> Tojx ~ N(O, Tgo\r,w)>

13
Tk = Brok> .
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Level 3 : Boor = 7000 + V001M1((3) ~+ Uook

Boik = Yoro + VouM;((S) + Uoik
Bozk = V020
Biok = V100

2
( Uook ) N ( 0 ) Toooo|m  T0001|M
~Y > 2 .
Uotk 0 To101|M
MY is a continuous level-3 moderator, and MY ~ N 0, a2 ). The parameter, , represents
k k MO p o1k> T€P
the site-specific treatment effects that include three components: (1) the average treatment effects
across sites (19)> (2) the average moderation effect (y,,;) across sites, and (3) the random treat-
ment effects across sites (1g1x).
By extending Dong et al. (2021) and Snijders (2001, 2005) to three-level MCRTs, the standard
error of the moderator effect estimate (,;;) can be expressed as:

TSIOI\M TSO\T w af\x
SE(jor,) = + ’ + . (15)
o) oK 02, P(1—P)K] o2, P(1—P)Kn

(14)

()

Similarly, when the level-3 moderator M;™ is a binary variable with a proportion of Q3 in one

subgroup, M,(f)w Bernoulli (Q3): VAR(M,(f)) = ‘7§4<3> =Q5(1 — Q3).

The standard error of the moderator point estimate for a binary level-3 moderator can be
expressed as:

R TélOI\M OO\T w G%‘X
SE(: _ . 16
(Four) \/Q3(1 - Q3)K+P(1 — P)Qs(1 — Q3)KJ P(l — P)Qs(1 — Q3)KJn (16)

Power formulas

We can test Y150, Yoa0» and 7yg;; using a t-test. Assuming the alternative hypothesis is true, the
test statistic follows a non-central ¢-distribution, T°, and the noncentrality parameters (unstandar-
dized) for the continuous moderators are:

2
T 11|T 1 mx
) _ llll , 17
MO “/110/\/ )K]+ ~P(1— P)KIn (17)
5 TéO\T M a%\x
Ame =7 o2+ - , (18)
e = Foa/ [ T o2, P(1—P)KJ] ' o2, P(1—P)KJn
and

a — o/ 0101|M éO\T w n O-%|X (19)

3) — .

ME = Forl 2 wP(L1=P)KJ " &2, P(1 — P)K]n

Note that the treatment may affect the variance of the outcome and the association of the out-
come with the covariate and moderator for the treatment group. We use the common assumption
of homogeneous variance of residuals between the treatment and control groups; that is, the var-
iances are equal between the treatment and control groups after the treatment effect is accounted
for. For instance, this assumption implies that the variance (‘cfl‘T) of the level-1 moderator slope
among level-2 clusters conditional on treatment from the analysis of data including both treat-
ment and control groups is equal to the variance (73,) from the analysis of data only from the
control group. In addition, we use the variance components (‘c%, r%, and af are levels-3, 2, and 1
variances) in the three-level unconditional HLM for standardization.
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Level 1: Yy = 7o + ek ek ~ N(0,07). (20)
Level 2 : Tojk = Book + Tojks Tojk ™~ N(o, T%) 1)
Level 3: Boox = Vooo T+ Hook> ook ~ N(O, T%) (22)

Let 65,, =1 and 1. = y;3//7} + 73 + 01, the noncentrality parameter (standardized) for
the continuous level-1 moderator is:

O 3 (1—-ps—p)(1 - R})
Jig) = O1c 3TMM 2MM 3 2 iV P
M 5‘/\/ K PA—-PK ' P(l—P)Kn 23)

p; is the unconditional intraclass correlation coefficient (ICC) at level 3, p; = 13/(13 + 13 + 02).
p, is the unconditional ICC at level 2, p, = 13/(13 + 15 + 01). @i, = 1y, /(73 4+ 75 +07)
indicates the standardized effect variability of the moderation (Ml..}( X Tj) across blocks (level 3).
w5 = ll\T /(T3 415+ O'P indicates the standardized effect variability of the random slope of
the level-1 moderator (M( ) among level-2 clusters conditional on the treatment variable (Tj).
R? is the proport10n of varlance at level 1 that is explained by the level-1 covariate (Xjj) and
moderator (Mlk) R=1- 1‘M /%
The standardized noncentrahty parameter for the binary level-1 moderator is:

3TMY 2M(‘) (1—p;5—p,)(1 —R})
Am) = 51b/\/ )K]+P(1 ~ PO (1— QK (24)

The statistical power for a two-sided test with the degrees of freedom of v = K — 1 is:

1-f=1- P[T’(K — L) < to} —|—P[T’(K — L) < —to}, where fo = t,_5 k1.

Let 02, =1 and dy = y459/+/73 + 13 + 6, the noncentrality parameter (standardized) for
the continuous level-2 moderator is:

—R})  (1—p3—py)(1 = R})
e —525/\/ 3TME )12<]+ P(1— P\Kn L. (25)

OF s = Toaoa/ (T3 + r% + ¢%) indicates the standardized effect variability of the random slope of
the moderation (Tj ) across sites (level 3). R3 is the proportion of Varlance at the level-2
intercept that is explalned by the level-2 covariate (Wj), moderator (M( ), treatment variable
(Ti), and the interaction (Tj ) RE=1- ‘EOO‘TM W/‘L'2

The standardized noncentrahty parameter for the binary level-2 moderator is:

_ 3 D v po(1 — R3) (1—ps—p)(1-R})
Ame = (32b/\/ TP Pl - QZ)I<]+P(1 “ PO - 0K (26)

The statistical power for a two-sided test with the degrees of freedom of v =K — 1 is:

1-— ,B =1- P|:T/<K — l,)»‘M(z)) < t():| —|—p{T/(K — 1,;L|M(2)) < —t0:|, where ty = tlf%’K,l.

Let 63, =1 and ds. = y0;,/+/73 + 13 + 01, the noncentrality parameter (standardized) for
the continuous level-3 moderator is:

. /\/ng LK) (= py— )1 R o

TP —P)K P(1 — P)KJn
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03p = 1810,/ (13 + 75 + 02) indicates the standardized effect variability of the treatment effect
(Tix) across blocks (level 3), where 2,0, is the variance of the treatment effect that is uncondi-
tional on any moderator. 73, ), = Tg101 — o110 -

The standardized noncentrality parameter for the binary level-3 moderator is:

2 32 _ 2 o 2
}'MG):&}]/\/%TK()%@(I %) pall —I) +(1 ps—)(1 = R) (28)

QBI-Q) PU-P)Q(1- Q@)K P(1-P)Qy(1 - QK

The statistical power for a two-sided test with the degrees of freedom of v = K — 2 is:
1—f=1- P[T’(K — 2 p0) < to} +P[T’ (K = 2.p0) < —to}, where f) = f;_3 x 2.

Note that the effect size of the moderation effect is defined as the standardized coefficient for
a continuous moderator in Expressions 23, 25, and 27, and as the standardized mean difference
for a binary moderator in Expressions 24, 26, and 28. The parameters (p;, p,, @3, and R})
can be estimated from the data in observational studies without any interventions, or data from
the intervention studies controlling for the treatment variables, while the parameters (w?

3TMW?
@3 0> and @37) must be estimated from the intervention studies.

Formulas for the minimum detectable effect size difference with confidence interval

In addition to knowing the statistical power for a study to detect a desired effect size, it is useful
to know the minimum effect size difference that a moderation study can detect with sufficient
power (e.g., 80%) given sample sizes. The minimum detectable effect size difference (MDESD)
can be expressed as (Bloom, 1995, 2005, 2006; Dong et al., 2018; Dong, Spybrook, & Kelcey et al.,
2020; Murray, 1998; Spybrook, Kelcey, & Dong et al., 2016):

MDESD(’ESD = M, x SE(5)/SDy, (29)

where M, =t, + 1t for one-tailed tests with v degrees of freedom, and M, =t,/, +t 5 for
two-tailed tests. SE(9) is the standard error of the moderation effect estimate as in Expressions 4,
6, 10, 11, 15 & 16. SDy is the standard deviation of the outcome measure (Y), and is defined as
the square root of the total unconditional variance in Expressions 20-22, SDy = /13 + 13 + 07.

Hence, the MDESD regarding the standardized coefficient for a continuous level-1 moderator
is:

MDESD 8 =M ngM(l) + w%M(l) + (1 — Pz — p2)(1 — R%) (30)
e "W K T P1-PK P(1—P)Kjn
where the degrees of freedom of v =K — 1. R
The 100*(1-0)% confidence interval for MDESD(‘(?IC > is given by:
(M, %t,,) D a0y O3\ (1—ps—p))(1 - R}) (31)
I\ T P(1 - PRI P(1—P)KJn

The MDESD regarding the standardized mean difference for a binary moderator is:

. @ w? (1—p;—py)(1 —R?)
_ 3TMW 2M() P3s — P2 1
MDESD(‘élb‘> _M”\/ K +P(1 —P)K]+P(1 — P)Qi(1 — Q)KJn’ (32)
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The 100*(1-0)% confidence interval for MDESD(’élbD is given by:

2 2 2
(Mvitx/z)\/w”Mm n D3m0 " (1—p3—py)(1 = R}) (33)

K ' P(1-P)KJ ' P(1—P)Q(1— Q)Kn’

Similarly, the MDESD and its 100*(1-2)% confidence interval for a continuous or binary level-
2 or —3 moderator are presented in Table 2.

The nonrandomly varying slope model

A nonrandomly varying slope model assumes that the moderator effect does not randomly varies
across sites when the moderator is at level 1 or 2, and/or the treatment effect does not randomly
vary across sites after controlling for the level-3 moderator. An approach similar to that of the
random slope model can be used for deriving formulas for the power and the MDESD for the
designs in Table 1. For example, for Model MCRT3-2N-1, where the treatment effect is assumed
to nonrandomly varying, i.e., only varying by the moderator but not randomly varying across
schools, and the coefficient of the level-1 moderator (iji)) is not randomly varying across level-2
clusters, hence, only the third component under the square root in Expressions 4 & 6 is left for
the standard error of the moderator effect estimate (9,;,).

Similarly, the moderation effect does not randomly vary across sites for Model MCRT3-2N-2
and the treatment effect does not randomly vary across sites after controlling for level-3 moder-
ator for MCRT3-2N-3, the standard error of the moderator effect estimate is only associated with
the second and third components under the square root in Expressions 10, 11, 15, and 16. It
results in the same power and MDESD formulas for MCRT3-2N-2 and MCRT3-2N-3 (Table 2).
All the formulas for power and MDESD for the nonrandomly varying slope model in three-level
MCRTs are presented in Table 2.

Monte Carlo simulations

We conducted Monte Carlo simulations to examine whether the standard error and power for-
mulas that we derived were consistent with the simulated results. The procedures for the Monte
Carlo simulation are below:

1. We generated data using six HLMs in Table 2. For each model, we generated data for a con-
tinuous and a binary moderator separately, and with a nonzero and zero moderator effect
separately. Hence, there were 24 scenarios: 3 (levels of moderators) x 2 (random and non-
randomly varying slopes) x 2 (scales of the moderator: continuous and binary) x 2 (nonzero
and zero moderator effect).

2. We used SAS PROC MIXED to analyze the datasets. We estimated the unconditional ICCs
at school and teacher levels using the unconditional HLMs. We calculated the moderator
effect, the standardized effect variability of the moderation across sites for level-1 moderator,

@3> the standardized effect variability of the moderation across sites for level-2 moder-
ator, w2, o, the standardized effect variability of level-1 moderator across level-2 units,
@3, and the proportions of variances at level 1 and level 2 explained by covariates (R}

and R3) using the same estimation models as the models for generating data. The standar-
dized variability of the treatment effect across sites for level-3 moderator, ®3,, was estimated
using the models that only included the treatment variable.

3. The moderator effect was standardized to the standardized mean difference for the binary
moderators or the standardized coefficient for the continuous moderators; a p-value of the
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moderator effect that is less than 0.05 was coded a rejection of the null hypothesis of no
moderation.

4. We replicated Steps (1) to (3) 2,000 times and calculated the means of the moderator effect
size and the other parameters; The standard deviation of 2,000 moderator effect sizes served
as the standard error estimate based on the empirical distribution of the moderator effect;
We also calculated the standard error based on our formulas, and constructed the 95% confi-
dence interval (CI) for each point estimate; we calculate the absolute difference and relative
difference between the standard errors based on our formulas and that from the empirical
distribution; we calculate the coverage rate of the 95% CI as the percentage of the 95% CI
based on our formulas covering the true moderator effect. The proportion of times the null
was rejected across the 2,000 replications estimated the Type I error rate when the moder-
ation effect was set to 0 and the empirical power when the moderation effect was not set as

2a. Continous Moderators, Random Slopes 2b. Binary Moderators, Random Slopes
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Figure 2. Power from simulation and formulas.

o Simulation A Formulas

Note. Simulation results were based on 2,000 replications. Under the assumptions: The intraclass correlation coefficients at Level-
2 and 3: p, = 0.1, and p; = 0.2; The proportions of variances at level 1 and level 2 explained by covariates: R? = R2 = 0.50; The
proportion of clusters assigned to the treatment group, P=0.5; Q; = Q, = Q; = 0.5 for binary moderators. For random slope
models, the standardized effect variability of the moderation across sites for Level-1 moderator (w%wm) and Level-2 moderator
(®%;) are 0.05, the standardized variability of the treatment effect across sites for Level-3 moderator (w3;) is 0.09, the standar-
dized effect variability of Level-1 moderator across Level-2 units (w%Mm) is 0.05, the moderator effect size = 0.20, sample size
per level-2 unit (n) is 20, sample size per site (J) is 10, and total sample size of sites (K) is 20. For nonrandom slope models, the
moderator effect size = 0.10, sample size per level-2 unit (n) is 20, sample size per site (J) is 4 for level 1 moderator and 10 for
levels-2 and 3 moderators, and total sample size of sites (K) is 20 (except for binary level-1 moderator, K= 40).
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0; We compared the power and Type I error rate calculated from our derived formulas with
those estimated from simulation.

The results provided evidence of the close correspondence on standard errors and power (or
Type I error) between our formulas and the empirical distribution from the simulation. For
example, in all scenarios the absolute difference and relative difference between the SE based on
the empirical distribution of the moderator effect estimates and SE calculated from our formulas
range from 0.000 to 0.005 and from —6.1% to 0.0%, respectively. The coverage rate of the 95%
confidence interval (CI) ranges from 0.94 to 0.97. The absolute difference between the Type I
error calculated from the formulas and that estimated from simulation ranges from 0.001 to
0.012; The absolute difference between the power calculated from the formulas and that estimated
from simulation ranges from 0.004 to 0.043. Figure 2 presents the plots of power of levels-1, —2,
and —3 moderators from simulation and formulas varying by the scales of moderators (continu-
ous and binary) and slopes (random or nonrandom). Black circles represent power from simula-
tion, and red triangles represent power from formulas.

Conclusion

This study provided a conceptual and statistical framework to guide the design and analysis of
MCRTs. We derived the formulas to calculate the statistical power and MDESD with confidence
intervals, and validated our formulas with Monte Carlo simulation. The results will have the
potential to substantively impact our understanding of treatment effect variation by providing
comprehensive tools to researchers to design rigorous multisite moderation studies. The frame-
work and statistical formulas are expected to expand the scope and enhance the quality of evi-
dence in examining the programs “work for whom and under what circumstances”. Some
suggestions are below.

First, when we design a three-level MCRT to investigate the treatment effect heterogeneity, we
have multiple options to consider: the individual or contextual factors that may moderate the
treatment effect, and these moderators can be at either level-1, —2, or —3; the moderators can be
either binary or continuous; the (moderated) treatment effect can be either random or nonran-
domly varying. It is important to be inclusive by focusing on confirmatory hypothesis testing
based on program theory as well as additional exploratory hypothesis testing of moderation. For
example, a MCRT with adequate power for the main effect analysis will likely also be adequately
powered to for the level-1 moderator effect analysis. Similarly, a MCRT with adequate power for
the level-2 moderator effect analysis will be very likely for the main effect and level-1 moderator
effect analysis with adequate power.

Second, our formulas assume that the sample size n is same across level-2 clusters and j is the
same across sites, Q; is the same across level-2 clusters, and P and Q, are the same across sites.
In practice, it is more likely to have an unbalanced design. Dong et al. (2021) conducted a simu-
lation in two-level MRTs and found that the power calculation based on the geometric means of
these sample sizes approximated the power from the simulation very well, the geometric means
performed better than the harmonic means which underestimated the actual power and the arith-
metic means which overestimated the actual power. We suggest using the geometric means of the
sample sizes in the calculation of power or MDESD for the unbalanced designs.

Finally, it is important to justify the parameters used for a power analysis based on the litera-
ture or pilot studies (Bloom et al., 2007; Dong et al., 2016, 2022; Hedges & Hedberg, 2007, 2013;
Phelps et al., 2016). The power is sensitive to some parameters (e.g., R?) and less sensitive to
other parameters (e.g., P, Q;, Qz, and Qs when they are close to 0.5). The researchers may con-
duct a series of power analysis with a range of parameter values, especially for the parameter
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values that are less documented in the literature such as the treatment/moderator effect
heterogeneity.

Hence, one direction for future research is to conduct more empirical studies to report the
design parameters in three-level design such as ICCs, treatment/moderator effect heterogeneity,
and meaningful size regarding the moderator effects. Furthermore, this study focused on three-
level MCRTs where treatment is at level 2. The extension to three-level MRTs with treatment is
at level 1 may enhance researchers’ capacity to investigate multisite moderation with level-1, —2,
and —3 moderators. In addition, although we expect that the power formulas are fairly robust to
violation of normality assumptions for moderators based on prior research (Dong et al., 2021),
the power can be affected by unreliability in the measurement of the moderator and outcome
(Kelcey, Cox, & Dong et al.,, 2021), additional partially nested data structures (Cox et al., 2022),
and missing data. Future studies to address these aspects are also needed. Finally, based on the
formulas presented in this article, creating free publicly available software packages with a tutorial
would facilitate applied researchers in their design of multisite moderation studies.
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