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Cancer results from an evolutionary process that typically yields multiple clones with varying sets of mutations within the
same tumor. Accurately modeling this process is key to understanding and predicting cancer evolution. Here, we introduce
clone to mutation (CloMu), a flexible and low-parameter tree generative model of cancer evolution. CloMu uses a two-layer
neural network trained via reinforcement learning to determine the probability of new mutations based on the existing mu-
tations on a clone. CloMu supports several prediction tasks, including the determination of evolutionary trajectories, tree
selection, causality and interchangeability between mutations, and mutation fitness. Importantly, previous methods sup-
port only some of these tasks, and many suffer from overfitting on data sets with a large number of mutations. Using sim-
ulations, we show that CloMu either matches or outperforms current methods on a wide variety of prediction tasks. In
particular, for simulated data with interchangeable mutations, current methods are unable to uncover causal relationships
as effectively as CloMu. On breast cancer and leukemia cohorts, we show that CloMu determines similarities and causal re-
lationships between mutations as well as the fitness of mutations. We validate CloMu’s inferred mutation fitness values for
the leukemia cohort by comparing them to clonal proportion data not used during training, showing high concordance. In
summary, CloMu’s low-parameter model facilitates a wide range of prediction tasks regarding cancer evolution on increas-
ingly available cohort-level data sets.

[Supplemental material is available for this article.]

Cancer results from an evolutionary process during which somatic
mutations accumulate in a population of cells. This process results
in a tumor composed of multiple subpopulations of cells, or clones,
with varying sets of mutations (Nowell 1976). As different clones
within the same tumor harbor different sets of mutations, they
have varying phenotypes and fitness (Yates and Campbell 2012).
Moreover, althougheach cancer results froma separate evolutionary
process, there are repeated patterns of evolution that recur across
cancers (Hanahan and Weinberg 2000). The key challenge in com-
parative cancer phylogenetics revolves around identifying such re-
peated evolutionary patterns or trajectories (Turajlic et al. 2018).
This is a challenging problem and requires a mathematical model
that accurately captures the somatic evolutionary process of cancers.

There are many existing methods for modeling cancer evolu-
tionwith single-nucleotide variations (SNVs), which can be distin-
guished into three classes. The first class of methods is based on
tree generative models, which include TreeMHN (Luo et al.
2023) and HINTRA (Khakabimamaghani et al. 2019). A generative
model restricted to paths and trained using inverse reinforcement
learning was considered by Kalantari et al. (2020). The second class
ofmethods is consensus treemodels, which seek a small number of
consensus trees that summarize common patterns among patient
trees. Methods such as REVOLVER (Caravagna et al. 2018), RECAP
(Christensen et al. 2020), CONETT (Hodzic et al. 2020), and
MASTRO (Pellegrina and Vandin 2022) fall into this category.
The third class of methods uses statistical tests to evaluate patterns
of co-occurrence and mutual exclusivity of mutations across trees
without trying to fully model the evolutionary process.
GeneAccord is one such method (Kuipers et al. 2021). Although

consensus treemethods have the advantage of being able to detect
complicated patterns in tumor evolution, tree generative models
must be carefully designed to accommodate complex multimuta-
tion effects. An example of such an effect is when mutations s
and t only increase the probability of mutation r when they are
present together. Conversely, tree generativemethods have the ad-
vantage of being able to directlymodel howa clone’smutations af-
fect the probability of new mutations occurring.

A second distinguishing feature of current methods is how the
number ofmodel parameters scales with an increasing numberm of
mutations. Having the number of parameters scale too rapidly with
the number of mutations can lead to greatly overfitting on real data
sets, as well as a prohibitive running time.One such example isHIN-
TRA (Khakabimamaghani et al. 2019), in which the number of pa-
rameters grows exponentially in m, and consequently, it can only
accommodate a handful of mutations. On the other hand, models
that directly measure relationships between pairs of mutations or
fit trees with edges determined by pairs of mutations have their pa-
rameters grow quadratically in the number of mutations, reducing
overfitting and running time (Caravagna et al. 2018; Christensen
et al. 2020; Hodzic et al. 2020; Kuipers et al. 2021; Luo et al. 2023).

Finally, current methods can be distinguished by the predic-
tion tasks they support. The majority of current methods, span-
ning both tree generative (Khakabimamaghani et al. 2019; Luo
et al. 2023) and consensus tree methods (Caravagna et al. 2018;
Christensen et al. 2020; Hodzic et al. 2020), aim to identify evolu-
tionary trajectories, which correspond to ordered sequences or
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trees of mutations reflecting repeated patterns of evolution. Addi-
tionally, severalmethods use signals fromacross patients to resolve
uncertainty in phylogeny inference within a single patient (Cara-
vagna et al. 2018; Khakabimamaghani et al. 2019; Christensen
et al. 2020; Hodzic et al. 2020). Another task is the prediction of
causality between pairs of mutations. This can be performed in a
signedmanner, distinguishing between causal and inhibitory rela-
tionships, as well as in a bidirectional manner, distinguishing be-
tween a mutation s causing t and vice versa. Although TreeMHN
(Luo et al. 2023) supports both signed and bidirectional causal re-
lationships, GeneAccord (Kuipers et al. 2021) only supports signed
causal relationships. On the other hand, consensus tree methods
are unable to support inhibitory causal relationships (Caravagna
et al. 2018; Christensen et al. 2020; Hodzic et al. 2020).

In this work, we identify three additional tasks that no current
evolutionary trajectorymethod supports. First is determining the fit-
ness of amutation, namely, assessing howhaving thatmutation im-
pacts the rate at which a clone develops. Second, although previous
work has focused on identifying co-occurrence andmutual exclusiv-
ity of mutations at the patient level without directly considering
downstream mutation evolution (Leiserson et al. 2015; Dao et al.
2017; Kim et al. 2017; Kuipers et al. 2021), we introduce the task
of determining sets of interchangeable mutations that have similar
impacts on subsequent mutation evolution. Third is determining
collections of evolutionary trajectories between sets of interchange-
able mutations. To accommodate these new and all previous tasks,
we introduce clone to mutation (CloMu). Underlying CloMu is a
tree generative model, which uses a low-parameter neural network
trained using reinforcement learning, resulting in fewer parameters
than all current models while maintaining high flexibility to model
complex multimutation effects. In summary, this study aims to in-
troduce amethod for accurately performing awide variety of predic-
tion tasks on cohort-level cancer phylogeny data.

Results

Overview of CloMu

We take as input tumor phylogenies of n patients withm total mu-
tations. Because of uncertainty in tree inference from sequencing

data (Qi et al. 2019), each patient p has a set T p ofmultiple possible
trees {T1, . . . , T|T p|}. Similarly to HINTRA (Khakabimamaghani
et al. 2019) and TreeMHN (Luo et al. 2023), we make the indepen-
dent clonal evolution assumption that the event of a clone acquiring
a newmutation only depends on the genotype of that clone. Each
clone can be represented as a binary vector c∈ {0, 1}m, where cs=1
if the clone harbors mutation s and cs=0 otherwise. The goal is to
identify a model that best describes the causal relationship be-
tween clones c and acquired mutations [m] = {1, …, m} under our
assumption for the observed data T 1, . . . , T n.Wemodel this using
the function fu:{0, 1}

m × [m] � R such that fu(c, s) is the loga-
rithm of the rate at which mutation s occurs on clone c (Fig. 1A).
Starting with an initial tree T(0) with just a single node correspond-
ing to the normal clone c0 = [0, . . . , 0]`, we sample the mutation
that occurs next, yielding a new tree T(1) with an additional clone
c1 that introduces one mutation w.r.t. c0. Repeating this process
yields a new partial tree T(k) after each mutation is introduced, as
shown in Supplemental Figure S1. Note that any tree can be gener-
ated through this process.

Our goal is to find the model parameters θ∗ that maxi-
mize the probability of observing the input data, namely,
u∗ = argmaxu Pr (T 1, . . . , T n| fu). To do so, we must estimate the
probability of any input tree T denoted by Pr (T| fu), noting the
fact that there are multiple ways of generating each tree (Fig. 1B).
This leads to the following problem, whichwe describe inmore de-
tail in the Methods.

Problem 1 (INDEPENDENT CLONAL EVOLUTION). Given a cohort of
tumor phylogenies T 1, . . . , T n for n tumors on m mutations,
findmodel parameters θ such that Pr (T 1, . . . , T n| fu) ismaximized.

To solve the INDEPENDENT CLONAL EVOLUTION problem, we intro-
duce CloMu, which represents the model fu using a two-layer neu-
ral network with a small number L=5 of hidden neurons for the
function fu (Fig. 1C). This neural network is trained via reinforce-
ment learning (Methods).

Although we train the model fu only once for each data set
{T 1, . . . , T n} by solving a single instance of the INDEPENDENT

CLONAL EVOLUTION problem, its outputs can be postprocessed to
complete a wide variety of tasks, gaining insights into cancer
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Figure 1. Overview of CloMu. (A) Using the independent clonal evolution assumption, our model determines a log rate fu(c, s) of any clone c∈ {0, 1}m

acquiring a mutation s∈ [m]. (B) This in turn enables us to compute probabilities P= [pi,s] that the next mutation to occur on a tree T is mutation s at
node/clone ci. The resulting INDEPENDENT CLONAL EVOLUTION problem seeks model parameters θ that maximize the data probability Pr (T 1, . . . , T n| fu) of a co-
hort of trees for n patients. (C) CloMu represents fu using a low-parameter, two-layer neural network that is trained via reinforcement learning. We use the
model for five prediction tasks: (D) tree selection for each patient, (E) determination of mutation fitness, (F ) causality inference for pairs of mutations, (G)
identification of interchangeable mutations, and (H) identification of their evolutionary pathways.
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evolution. The exact mathematical details of these tasks are dis-
cussed in the Methods, but we give a brief summary here. First,
one can use the model to reduce uncertainty in tree inference by
determining which phylogenies are most likely to be the true phy-
logeny for a particular patient (Fig. 1D). Second, the model can be
used to determine the fitness of different mutations based on how
they affect the likelihood of new mutations occurring on a clone
(Fig. 1E). Third, the model can be used to infer co-occurrence pat-
terns between pairs of mutations, which we refer to as causal rela-
tionships (Fig. 1F). Fourth, the model can be used to detect
interchangeable mutations, namely, mutations with similar
downstreammutation effects that are mutually exclusive or co-oc-
curring, by assessing the values of the L hidden neurons when a
clone is taken as an input (Fig. 1G). Fifth, we can determine path-
ways of interchangeable mutations (Fig. 1H).

Benchmarking on simulated data

We use simulations with known ground truth to assess the perfor-
mance of CloMu and several existing methods on the prediction
tasks (outlined in the section “Prediction tasks”). We consider
four sets of simulation instances: (1) simulations to assess tree se-
lection and causality, (2) simulations to assess mutation inter-
changeability and evolutionary pathways, as well as previous
simulations generated in the (3) RECAP (Christensen et al. 2020)
and (4) TreeMHN (Luo et al. 2023) papers (Table 1). We include
TreeMHN (Luo et al. 2023), RECAP (Christensen et al. 2020),
REVOLVER (Caravagna et al. 2018), and GeneAccord (Kuipers
et al. 2021) in the benchmarking, and refer to Supplemental
Material B.2 for parameter settings.

We begin by discussing the generation of the first set of sim-
ulation instances to assess tree selection, causality, and mutation
interchangeability. We focus on the simplest case with no inter-
changeablemutations.We consideredm=10mutations, subdivid-
ed into five driver mutations and five passenger mutations. For
every ordered pair (s, t) of distinct driver mutations, there is a
50% chance that s causes t. Let X be the resulting set of causal re-
lationship pairs. Note that |X|≤20 as there are 20 ordered pairs
(s, t) of distinct driver mutations. For each pair (s, t)∈ [m] × [m] of
mutations, we set the rate multiplier to g(s, t) = 11 if (s, t)∈X
and to g(s, t) = 1 otherwise. We defined the rate λ(c, t) of a clone
c∈ {0, 1}m acquiring a mutation t as

∏m
s=1,cs=1 g(s, t). We define

the log rate f (c, t) of a clone c∈ {0, 1}m acquiring a mutation t as
log (λ(c, t)). Given a number n=500 of patients, we generated
one ground-truth tree T∗

p for each patient p∈ [n] by first drawing
the number ℓ of mutations of the tree T∗

p uniformly from {5, 6,
7}. We used the rates λ(c, t) to construct T∗

p following the genera-

tive process with ℓ mutations discussed in the section “Overview
of CloMu”—with fu(c, t) replaced with f(c, t) [or, equivalently,
exp( fu(c, t)) replaced with λ(c, t)]. Although not required by
CloMu, we imposed the infinite sites assumption in our simu-
lations. Finally, we simulated five bulk DNA sequencing samples
and performed clonal tree enumeration, resulting in sets
T 1, . . . , T n of trees per patient with a varying number of trees
per patient as shown in Supplemental Figure S3.We generated a to-
tal of 20 simulation instances, denoted simulations I-a.
Additionally, to assess the effect of interchangeable mutations,
we generated two additional sets of 20 simulation instances, de-
noted simulations I-b and I-c, with, respectively, five pairwise dis-
joint sets of two and three interchangeable mutations among m=
10 and m=15 total mutations. Finally, we generated a set of 20
simulation instances, denoted simulation II, to assess evolutionary
pathway identification. Note that each simulation instance is gen-
erated independently and thus does not necessarily share random-
ly generated properties such as causal relationships with other
instances. For further details, see Table 1 and Supplemental
Material B.1.

For the tree selection task, we compared CloMu to RECAP and
REVOLVER on simulations I-a (Table 1). For each simulation in-
stance,we determined the tree selection accuracydefined as the frac-
tion of patients for which each method correctly identified the
ground-truth tree. Figure 2A shows that CloMu achieves the highest
tree selection accuracy (median, 0.76), followed by REVOLVER (me-
dian, 0.70) and thenRECAP (median, 0.65). To assess causality infer-
ence, we compared CloMu (using absolute causality) against
TreeMHN and GeneAccord, which directly support causality infer-
ence (Table 2). AlthoughRECAPandREVOLVERdonotdirectly sup-
port this task, we used a simple heuristic based on the frequency of
mutation pairs/edges (s, t) among selected trees (Supplemental
Material B.2). Figure 2B shows that CloMu and TreeMHNperformed
near perfectly on this task (median recall and precision of 1.0), fol-
lowed by RECAP and REVOLVER (respectively, median recall, 0.76
and 0.77;median precision, 1.0 and 1.0) and thenGeneAccord (me-
dian recall and precision, 0.78 and 0.85). Additionally, we used
bootstrapping to assess the confidence intervals on absolute causal-
ity predictions, showing that the lower bound for pairs ofmutations
with a true causal relationship vastly exceeds the upper bound
for pairs of mutations without a true causal relationship (Supple-
mental Material B.3.1; Supplemental Figs. S4, S5). Moreover, we as-
sessed the effect of decreasing numbers of patients and mutations
per patient as well as an increased number of passenger mutations
and varying causation effect sizes, showing good performance of
CloMu in each simulation condition (Supplemental Materials B.3.
2–B.3.5; Supplemental Figs. S6–S10).

Table 1. Characteristics of simulation data sets

No. of
Drivers

No. of
mutations

No. of interchangeable
mutation sets

No. of interchangeable
mutations per set

No. of
patients

Signed
causality

No. of
paths

No. of
instances.

(I-a) 5 10 NA NA 500 No NA 20
(I-b) 10 10 5 2 400 Yes NA 20
(I-c) 15 15 5 3 600 Yes NA 20
(II) {3, …, 18} 20 No. of paths. ×3 {1, 2, 3} 500 No {1, 2} 30
(III) NA {5, 12} NA NA {50, 100} NA NA 400
(IV) {10, 15, 20} {10, 15, 20} NA NA 300 Yes NA 60

We considered six sets of simulations, labeled I-a to IV with varying number of driver mutations, total number of mutations, number of interchangeable
mutation sets, number of interchangeable mutations per set, number of patients, the presence of both causation and inhibition, the number of evolu-
tionary pathways of interchangeable mutations and the total number of instances. Simulations III correspond to previously published RECAP simula-
tions (Christensen et al. 2020). Simulations IV correspond to previously published TreeMHN simulations (Luo et al. 2023).
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Upon observing CloMu and TreeMHN’s near perfect perfor-
mance, we decided to include interchangeable mutations as well
as inhibitory relationships (simulations I-b and I-c) (see Table 1).
We refer to Supplemental Material B.2 and Supplemental Table
S2 for the updated definitions of causality precision and recall
for the case of signed causality, which match TreeMHN’s defini-
tions.We found thatCloMumaintained goodperformancewhere-
as TreeMHN’s performance dropped, especially with increasing
numbers of interchangeable mutations (Fig. 2C). This was also
the case when all causal relationships between interchangeable
mutations were made inhibitory (Supplemental Material B.3.8;
Supplemental Fig. S14). We believe the reason TreeMHN per-
formed poorly on these instances is its assumption of independent
causal relationships between pairs of mutations. The numberm2−
m of causal relationships that TreeMHN must independently
determine grows quadratically with the number m of mutations.
In contrast, if CLoMu’s neural network learns that there are only
k≪m noninterchangeable types of mutations, it must only detect
k2 causal relationships. Specifically, for these simulation instances,
there were k= 5 sets of interchangeablemutations among a total of
m∈ {10, 15} mutations (see Supplemental Material B.1), leading to
k2 = 25 causal relationships for CloMu to detect and m2−m∈ {90,
210} for TreeMHN. One potential concern is that the high perfor-
mance of CloMu and avoidance of overfitting is only owing to the
small number of parameters caused by our choice of L=5 hidden
neurons. However, in Supplemental Material B.3.9, we show that
with an increased number L=20 of hidden neurons, CloMu
even gives slightly more accurate causal relationship predictions
(Supplemental Fig. S15). Supplemental Material B.3.10 and
Supplemental Figures S17 and S18 show CloMu’s accuracy on sim-
ulations in whichmutations have related effects rather than being
exactly interchangeable. The effects of mutations are not indepen-
dent despite not being identical, as shown in Supplemental Figure
S16. We show CloMu’s ability to accurately identify multimuta-
tion causality effects in Supplemental Material B.3.11 and
Supplemental Figure S19.

We now focus on simulations II to further assess performance
on determining interchangeablemutations and their evolutionary

pathways. Figure 2D shows that CloMu accurately distinguishes
between pairs of interchangeable and noninterchangeable muta-
tions as assessed by the Euclidean distance on CloMu’s latent rep-
resentation. We note that these simulations contain causal effects
that only occur in the presence of specific combinations of muta-
tions on a clone (SupplementalMaterial B.1). Accurately determin-
ing the pathways requires modeling these multimutation effects,
as shown in Supplemental Figure S2. To have some baseline for
comparison, we applied a heuristic to determine the pathways of
interchangeable mutations from the trees selected by RECAP and
REVOLVER (Supplemental Material B.2). Briefly, our heuristic
measured the number of times each edge occurs in selected trees
for this method and then inferred the pathway edges as all edges
that occur above some frequency. TreeMHN and GeneAccord
could not be adapted to form a baseline because they do not select
trees. Additionally, they have noway ofmodeling effects that only
occur in the presence of a combination of mutations. We deter-
mined the number of true and false positives, as well as false neg-
atives, by comparing the set of true pathways edges and predicted
edges, enabling us to compute pathway precision and recall. We
found that CloMu, RECAP, and REVOLVER all achieved a median
pathway recall of 1.0 in simulations with only one pathway (Fig.
2E). However, CloMu outperformed the baselines in terms of pre-
cision (overall median, 1.0 vs. 0.92 and 0.87 for RECAP and
REVOLVER, respectively), and especially for cases with two evolu-
tionary pathways, it additionally outperformed the baselinemeth-
ods in terms of recall (overall median, 1.0 vs. 0.75 and 0.83 for
RECAP and REVOLVER, respectively).

Finally, we ran CloMu on data generated in the RECAP and
TreeMHN papers, denoted as simulations III and IV, respectively
(Table 1). We found that we matched RECAP’s performance
(Supplemental Material B.3.12; Supplemental Fig. S20) but that
CloMu was outperformed by TreeMHN when using L=5 hidden
neurons but achieved approximately similar performance when
using a linear model with no hidden neurons (Supplemental
Material B.3.13; Supplemental Fig. S21). It is important to note
that this results from the absence of interchangeable mutations
or any mutations with shared causal properties in TreeMHN’s

A B

D E

C

Figure 2. CloMu outperforms existingmethods on several prediction tasks on simulated datawith known ground truth. (A) Tree selection accuracymea-
sures the ability to correctly identify the ground-truth tree from a set T p of possible trees generated from simulated bulk sequencing for each patient p. (B)
Causality precision and recall measure the ability to determine positive causal relationships between ordered pairs of mutations. Panels A and B show results
for simulations I-a. (C ) On simulations I-b and I-c, causality precision and recall measure the ability to identify causation and inhibition between pairs of
mutations in the presence of mutation interchangeability. (D) On simulations II, interchangeability detection shows that the latent representations gen-
erated by our model are meaningful, accurately encapsulating mutation similarity. (E) On simulations II, pathway precision and recall measure the ability
to determine evolutionary pathways in the presence of both interchangeability and complex multimutation interactions.
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simulations. Such mutations are present in real data as we will
show. As previously stated, ourmodel uses the independent clonal
evolution assumption. To show that our model is robust to viola-
tions in this assumption, we generated causal relationship simula-
tionswith clonal cooperation, showing robustness bymaintaining
high causal inference performance on these data (Supplemental
Material B.3.6; Supplemental Fig. S11). To test robustness to the in-
clusion of highly incorrect trees, we additionally generated simula-
tions in Supplemental Material B.3.7, achieving highly accurate
causal relationship prediction (Supplemental Fig. S12) and tree se-
lection (Supplemental Fig. S13). Naturally, the quality of CloMu’s
outputs is limited by the quality of the patterns that exist in the in-
put trees. In Supplemental Material B.3.7, we also show that
CloMu does not predict causal relationships when all input trees
are randomly generated.

In summary, this simulation study shows that CloMu is a ver-
satile model and supports a wide variety of prediction tasks.
CloMu’s low-parameter neural network affords it the flexibility
to model complex multimutation interactions while retaining re-
sistance to overfitting.

CloMu identifies high-fitness mutations and causal
relationships in a breast cancer cohort

We applied CloMu to a breast cancer cohort composed of 1918 tu-
mors from 1756 patients that were sequenced using a gene panel
(Razavi et al. 2018). We used the same processing steps as in the
RECAP paper (Christensen et al. 2020), restricting our analysis to
SNVs that occur in copy-neutral autosomal regions followed by
running SPRUCE (El-Kebir et al. 2016) to obtain a set T p for each
patient p. As in the RECAP analysis, we only retained mutations
that occurred in at least 100 patients and removed patients that
did not contain any of these recurrent mutations. CloMu can be
run on arbitrarily large trees; however, patients with vast numbers
(hundreds or thousands) of possible trees can greatly increase the
computational requirements of running CloMu if not removed.
Therefore, we additionally removed patients with more than
nine mutations and consequently had a large number of trees.
This left us with a data set with n=1224 patients andm=406 mu-
tations. We ran CloMu with default settings and L=5 hidden neu-
rons. Our RL algorithm took <5 h to train the neural network on a
laptop with a 2.4-GHz CPU and 64 GB of RAM without using a
GPU.

On the task of determining mutation fitness, we found that
only eight mutations have high fitness values ( > 0.003) as shown
in Figure 3A. Specifically, the highest fitness mutation was deter-
mined to be TP53, a known tumor-suppressor gene (Hollstein
et al. 1991). The clone with only TP53 had a fitness (0.0125)
over five times the median fitness value (0.00234). Additionally,
in order, the next highest fitness mutations were determined to
be CDH1, PIK3CA, GATA3, and MAP3K1, with fitness values be-
tween 0.00658 and 0.0104. Finally, the third tier consists of
ARID1A, ESR1, and KMT2C with fitness values between 0.00384
and 0.00440. All of these are known driver mutations (Sondka
et al. 2018).

On the task of determining interchangeability and shared
mutation properties, we inspected the latent representations of
all mutations. We found five mutations with significant magni-
tude latent representations, corresponding to the five highest fit-
ness mutations: CDH1, GATA3, MAP3K1, PIK3CA, and TP53.
Among these mutations, we found two pairs of interchangeable
mutations (Fig. 3B). First,CDH1 and PIK3CAhad similar latent rep-
resentations, with similar values (0.580 and 0.491, respectively) in
the first component and values of roughly zero (magnitude under
0.03) in the other components. Second,GATA3 andMAP3K1 have
similar latent representations, with similar values (0.334 and
0.233, respectively) in the first component and values of roughly
zero (magnitude under 0.001) in the other components. In fact,
the only high-fitness mutation that our model determined to be
highly unique is TP53. We found TP53 to have a separate property
expressed by having a different dimension in its latent representa-
tion unseen by other mutations (corresponding to the second
component). In Supplemental Material C.1.2 and Supplemental
Figure S25, these latent representations are also shown to be asso-
ciated with the hormone receptor status of the breast cancer pa-
tient. Additionally, Supplemental Figures S26 and S27 further
analyze the latent representations and their association with
fitness.

Finally, we analyzed relative causality among the five highest-
fitnessmutations. Recall that a relative causality value R(s, t) signif-
icantly greater than zero is indicative of mutation s causing muta-
tion t in the same clone, whereas a value significantly smaller than
zero is indicative of mutation s inhibiting the occurrence of muta-
tion t in the same clone (see section “Prediction tasks”). We iden-
tified more negative (11 pairs) than positive (six pairs) causal
relationships between pairs (s, t) of mutations (Fig. 3C). This indi-
cates that high-fitness mutations, or drivers, increase the

Table 2. Overview of methods for detecting patterns of cancer evolution

Method
Tree
model

No. of
parameters

Evolutionary
trajectories

Tree
selection

Multimutation
effects

Signed
causality

Bidirectional
causality

Mutation
fitness

Interchangeable
mutations

CloMu Generative O(mL) ✓ ✓ ✓ ✓ ✓ ✓ ✓
TreeMHN Generative O(m2) ✓ ✓/✗b ✗ ✓ ✓ ✓/✗b ✗
HINTRA Generative O(m2m) ✓ ✓ ✓ ✗ ✓ ✗ ✗
RECAP Consensus O(m2) ✓ ✓ ✓ ✗ ✓ ✗ ✗
CONETT Consensus O(m2) ✓ ✓ ✓ ✗ ✓ ✗ ✗
REVOLVER Consensus O(m2) ✓ ✓ ✓ ✗ ✓ ✗ ✗
GeneAccord Statistical

testa
O(m2) ✗ ✗ ✗ ✓ ✗ ✗ ✗

For each method, we specify, from left to right, the underlying tree model, the number of parameters, support for evolutionary trajectories, tree selec-
tion, multimutation effects, signed and bidirectional causality inference, mutation fitness, and interchangeable mutations and their pathways.
aGeneAccord does not contain a generative model of trees nor does it seek to infer a tree. Rather it takes as input a set of trees and assesses the causali-
ty between all pairs of mutations using a statistical test.
bAlthough the feature is unimplemented, it could be supported by TreeMHN’s model.
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likelihood of passenger mutations by more than they increase the
likelihood of other driver mutations. This is especially the case for
TP53, which has amedian relative causality value of−0.253 for the
seven other highest-fitness mutations versus a relative causality
value of 0.476 for the remaining mutations. Among the positive
causal relationships, we found that CDH1 and GATA3 both cause
PIK3CA. This is in agreement with TreeMHN’s conclusions that
CDH1 causes PIK3CA and that there is some level of co-occurrence
between GATA3 and PIK3CA (Luo et al. 2023).

To summarize, CloMu agrees with TreeMHN on many
causal relationship predictions while also producing interchange-
able mutation predictions and fitness predictions that match
known driver mutations. We assessed the confidence of our muta-
tion fitness and causality predictions using bootstrapping in
Supplemental Material C.1.1 and Supplemental Figures S22
through S24, finding that our predictions are stable across boot-
strapped instances. Amore systematic comparison of the causal re-
lationship predictions of CloMu and TreeMHN is provided in
Supplemental Material C.1.3 and Supplemental Table S3, showing
that CloMu and TreeMHN fully agree on a subset ofmutation pairs
in which one would expect agreement despite our definition dif-
ferences. We note that, unlike our simulations (Supplemental
Material B.3.11), we did not detect any evidence of nonlinear mul-
timutation causality. Finally, we tested CloMu’s ability to predict
subsequent mutations on subtrees (as explained in Supplemental
Fig. S28) in Supplemental Material C.1.4 and Supplemental
Figure S29, showing accuracy beyond baseline methods.

CloMu identifies orthogonally validated fitness values in an acute
myeloid leukemia cohort

We analyzed a cohort of 123 acute myeloid leukemia (AML) pa-
tients that underwent high-throughput single-cell DNA panel se-
quencing (Morita et al. 2020). Because of the relatively small
number of patients, we only analyzed the gene-level data with
the exception of the gene FLT3, for which we additionally distin-
guished an internal tandem duplication mutation in FLT3 denot-
ed as FLT3-ITD. We used the phylogenies inferred by Morita et al.
(2020) using SCITE (Jahn et al. 2016). We restricted our analysis to
the 77 patients with reported clonal prevalences. Again, for train-
ing efficiency reasons for our particular RL implementation
(Supplemental Material A.1.4), we removed patients with more
than 10 mutated genes. We arrived at n=75 patients with m=22
total mutated genes. One reason we chose to analyze this data

set is that it includes clonal prevalence data, an independent
source of fitness information that we used for orthogonal valida-
tion of our fitness predictions. Because we collapsed mutations
to the gene level, we disabled the infinite sites mode in CloMu.
We used default parameters with L= 5 hidden neurons. Training
the neural network took <1 h on a laptop with a 2.4-GHz CPU
and 64 GB of RAM without using a GPU.

We used CloMu to predict mutation fitness, interchangeabili-
ty, and causality. Our model determined the most fit mutations to
be NPM1 and DNMT3A, with fitness values of 0.338 and 0.184 rel-
ative to a median fitness of 0.019 (Fig. 4A).NPM1 andDNMT3A are
well-known driver mutations for AML (Sondka et al. 2018).
Corroboratingour finding, TreeMHNdetermined theDNMT3Amu-
tation to cause the largest number of other mutations (eight pairs)
while only inhibiting one mutation. In addition, CloMu deter-
mined mutations ASXL1, GATA2, and U2AF1 to have high fitness,
with values ranging from 0.0394 to 0.0546. On the other hand,
we found that FLT3 had a below median fitness of 0.00585. This
matches the fact that TreeMHNdetermined FLT3 to have the largest
number of strong negative causal relationships (three pairs).

To confirm the validity of our fitness predictions, we investi-
gated the clone prevalence data that we did not use for training
CloMu. Specifically, for each patient p and mutation s, let γ1(p, s)
be the prevalence of the clone in which mutation s was intro-
duced. Additionally, let γ0(p, s) be the prevalence of the parent
clone of the clone in whichmutation swas introduced. We define
the log prevalence ratio as Γ(p, s) = log ((γ1(p, s) + 0.01)/(γ0(p, s) +
0.01)), which adds 0.01 to all prevalence measurements in order
to avoid issues caused by dividing by or taking the log of very
lownumbers. Intuitively, if mutation s is highly fit, it should cause
the clone that introduced mutation s to outgrow its parent clone,
which would lead to a positive value for Γ(p, s). Conversely, a mu-
tation s that does not increase the fitness of the clone that intro-
duced it would lead to a nonpositive Γ(p, s). We analyzed the
eightmutations with the lowest standard error in their Γ(p, s) mea-
surements. Three of these mutations (DNMT3A, ASXL1, and
NPM1) were determined to be highly fit by our model, and five
were determined to have low fitness (IDH1, FLT3-ITD, PTPN11,
NRAS, and FLT3). The log prevalence ratio measurements agreed
with our model’s conclusion on all eight mutations (Fig. 4B). In
fact, the onemutation, FLT3, that our model predicted to have be-
lowmedian fitness also was determined to have the smallest medi-
an log prevalence ratio of −0.888. We further investigated the
association between fitness and prevalence in Supplemental

A B C

Figure 3. CloMu determines mutation fitness, uncovers mutation similarity, and interchangeability, and finds relative causal relationships on a breast
cancer cohort (Razavi et al. 2018). (A) CloMu identified eight mutations that have a far greater fitness value than other mutations. (B) Among these eight
mutations, five mutations had latent representations with significant nonzero magnitudes. This plot shows that CDH1 and PIK3CA, as well as GATA3 and
MAP3K1, are interchangeable on these data. (C) Relative causal relationships between mutation pairs (s, t). A value greater than zero (red) is indicative of
mutation s (row) causing mutation t (column) in the same clone, whereas a value smaller than zero (blue) is indicative of mutation s inhibiting the occur-
rence of mutation t in the same clone.
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Material C.2.1 and Supplemental Figures S30 and S31 to ensure the
validity of these results. Briefly, we found that although our meth-
od may have diminished sensitivity in detecting high fitness mu-
tations that typically occur terminally, we believe that specificity is
not affected by mutation timing.

CloMu also analyzed shared properties and interchangeability
of mutations. We found GATA2 and U2AF1 to be interchangeable
with similar latent representations (Fig. 4C). Additionally, we found
NPM1 andDNMT3A to have shared properties. Specifically, the first
dimension of their latent representation is nearly identical (shown
in blue in Fig. 4C). However,NPM1 also has a shared property in the
third latent dimension (shown in green in our plot), which is not
present in DNMT3A. Finally, ASXL1 was determined to be
completely unique, using the second dimension in its latent repre-
sentation (shown in orange in our plot) unlike any other mutation.
These patterns of interchangeability were also reflected in the cau-
sality relationships identified by CloMu (Fig. 4D). We provide addi-
tional plots and analyses of these latent representations in
Supplemental Material C.2.2, Supplemental Figures S32 and S33.

The two main positive causal relationships found are from
ASXL1 and NPM1 to NRAS—with R(ASXL1, NRAS) = 0.814 and R
(NPM1, NRAS) = 0.505 (Fig. 4D). TreeMHN agrees with our conclu-
sion thatNPM1 causesNRAS. AlthoughGeneAccord detects the co-
occurrence of NPM1 and NRAS, the method does not have the ca-
pability to identify the directionality causal relationships. In our
model, we found the strongest negative causal relationship to be
from NPM1 to ASXL1, namely, R(NPM1, ASXL1) =−1.57. In addi-
tion, we identified a strong negative causal relationship in the

reverse direction, namely, R(ASXL1,NPM1) =−0.667. Such bidirec-
tional negative causality is indicative of mutual exclusivity.
Indeed, TreeMHN also identified this bidirectional negative causal
relationship. Mutual exclusivity between ASXL1 and NPM1 has
been described previously in the literature (Pratcorona et al.
2012). Moreover, a strong negative association from ASXL1 to
FLT3-ITD has also been reported (Pratcorona et al. 2012). Indeed,
CloMu identified a strong negative causal relationship from
ASXL1 to FLT3-ITD (R(ASXL1, FLT3− ITD) =−0.754 and R(FLT3
− ITD,ASXL1) = 0.131). CloMu thus determines known causal rela-
tionships not picked up by othermethodswhile also producing or-
thogonally validated fitness predictions. For a more systematic
comparison of the causal relationship predictions of CloMu and
TreeMHN, see Supplemental Material C.2.3 and Supplemental
Table S4. We did not detect any evidence of nonlinear multimuta-
tion causality in this data set. Finally, we evaluated CloMu’s ability
to predict subsequent mutations on subtrees of these data in
Supplemental Material C.2.4 and Supplemental Figure S34.

Discussion
In this work, we introduced CloMu, a tree generativemodel of can-
cer evolution, which can be used to perform tree selection; deter-
mine mutation fitness, causality, and interchangeability; and
detect complex evolutionary pathways composed of sets of inter-
changeable mutations. Like TreeMHN (Luo et al. 2023) and
HINTRA (Khakabimamaghani et al. 2019), CloMumodels the gen-
eration of trees by independently determining the rate of new

A B

C D

Figure 4. CloMu predicts fitness values validated by clone prevalencemeasurements and uncovers interchangeability and relative causal relationships on
an AML data set (Morita et al. 2020). (A) CloMu identifies seven mutations with far greater fitness values than other mutations and identified one mutation
(FLT3) with a substantially lower fitness value. (B) Box plot of log prevalence ratios for the eight mutations with the low standard error in log prevalence
ratios (left y-axis), as well as a line showing our predicted mutation fitness values (right y-axis). The results show the validity of our fitness predictions.
(C ) Latent representations of mutations obtained from the L=5 hidden neurons. This plot shows that GATA2 and U2AF1 are interchangeable on these
data. (D) Relative causal relationships between mutation pairs (s, t). A value greater than zero (red) is indicative of mutation s (row) causing mutation t
(column) in the same clone, whereas a value smaller than zero (blue) is indicative of mutation s inhibiting the occurrence of mutation t in the same clone.
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mutations occurring on a clone based on the clone’s currentmuta-
tions. CloMu uses a low-parameter neural network, which affords
it the flexibility to model complex multimutation interactions
while retaining resistance to overfitting. Using simulations with-
out interchangeable mutations, we showed that CloMu matches
TreeMHN’s performance and outperforms all other baselinemeth-
ods for the task of detecting causal relationships. Additionally, in
the presence of interchangeable mutations, CloMu greatly outper-
formed TreeMHN as well. Our simulations further showed
CloMu’s accuracy in performing tree selection and identifying in-
terchangeablemutations and their evolutionary pathways, outper-
forming competing methods. On real cancer data consisting of a
breast cancer cohort (Razavi et al. 2018) and an AML cohort
(Morita et al. 2020), CloMu was able to assess mutation fitness,
determine interchangeable mutations and find causal relation-
ships. We found that mutations with high fitness typically corre-
spond to known driver mutations and that causal relationships
matched previously reported associations and patterns of mutual
exclusivity. For the AMLdata, we performed additional orthogonal
validation by comparing predicted mutation fitness values to the
prevalences of clones, finding high consistency. These findings
show that CloMu is a versatile and effective method for a wide va-
riety of prediction tasks regarding cancer evolution.

There are several directions for future work and expansions of
CloMu. First, a limitation of our method is how sampling time af-
fects our predictions. In practice, the time at which the tumor is
sampled is nonrandom. If some mutation greatly increases the
severity of the tumor as well as symptoms, the patient is more like-
ly to have the tumor sequenced at this time. Consequently, if a
clone is sufficiently severe, it may result in the tumor being se-
quenced before that clone has had time to acquire additional mu-
tations (thus leading to lower fitness per our definition). Such a
terminal clone may have high clonal prevalence, a signal that is
not used by the model. Thus, beyond only considering tree topol-
ogy and mutation placement, one could incorporate cancer pro-
gression models that incorporate measurements of clonal
prevalences to improve predictions (Beerenwinkel et al. 2015).
Second, one could use CloMu’s low-dimensional representations
of clones and mutations to predict measured properties of cancer
clones ormutations, such as response to treatment or other patient
outcomes. Third, one could extend CloMu’s model to support
somatic mutations beyond SNVs such as copy-number aberrations
(CNAs) and their interplay with SNVs, including mutation loss.
Fourth, one could improve CloMu’s computational efficiency on
data sets with large numbers of mutations per patient and vast
numbers of possible trees per patient, especially when including
mutations beyond SNVs such as CNAs. We note that to keep run-
times manageable, our present analyses restricted the number of
SNVs per patient on real data sets. Fifth, the effects of germline pre-
dispositions can be captured by encoding them in the sameway as
mutations, that is, including an additional predisposition-specific
“mutation” at the root node followed by the rest of the original
tree. Similarly, one could encode therapeutics as occurring on all
clones at the same time in the sameway asmutations are encoded.
Encoding such events in the input trees will enable the model to
learn their downstream effects on future mutations. Sixth, we
only evaluatedmultimutation effects on simulated data, which re-
quired a large number n≈500 of patients and large effect sizes. Our
simulations showed that it is feasible to detect complex patterns
such as two mutations s and t only causing a third mutation r
when paired together. Additionally, because of limited cohort siz-
es, we collapsed mutations in the real data to the gene level and

only retained frequently recurrent genes, preventing the detection
of mutation-specific patterns or the effects of rare genes. To per-
formmore detailed analyses on real data in future work, we require
much larger data sizes than currently available, whichwe expect to
see in the future.

Methods

Independent clonal evolution problem

As previously stated, we take as input a set of possible tumor phy-
logeny trees {T1, . . . , T|T p |} for each patient p among a cohort of n
patients with m total mutations. Additionally, we have assumed
independent clonal evolution. Although clonal cooperation has
been described in the literature (Tabassum and Polyak 2015;
Kuipers et al. 2021), the resulting problem under our assumption
still enables meaningful analyses even for cases with violations
to this assumption (Supplemental Material B.3.6). Our function,
fu:{0, 1}

m × [m] � R, outputs the logarithm of the rate at which
themutation occurs on the clone (Fig. 1A). As such, the probability
of mutation s occurring on the clone c in the next δ time units is
dexp( fu(c, s)) for small δ. Our trees are generated by iteratively
building upon partial trees starting with the tree T(0) with only a
single normal clone c0 = [0, . . . , 0]`. Given a tree T(k) with
clones C(k) = [c0, . . . , ck]

`, the conditional probability
Pr ((ci, s)|c0, . . . , ck, fu) of the next mutation s to occur on clone
ci among clones C(k), denoted by (ci, s), equals

Pr ((ci, s)|c0, . . . , ck, fu) = exp( fu(ci, s))/
∑k
j=0

∑m
t=1

exp( fu(cj, t)). (1)

This yields a new tree T(k+1) with a new clone ck+1 with ci as
its parent. Equivalently, we may represent the conditional
probability density function with a softmax as P =
[ p0,1, . . . , pk,m]

` = softmax([ fu(c0, 1), . . . , fu(ck, m)]`) where
pi,s = Pr ((ci, s)|c0, . . . , ck, fu) (see Fig. 1B). Importantly, we assume
mutations are irreversible as clones can only be modified by adding
additional mutations. Optionally, the infinite site assumption can
be enforced by setting the probabilities p0,s, …, pk,s of a new muta-
tion s to zero if mutation s already exists in one of the clones
c0, …, ck. We terminate the tree generation process when we reach
a prespecified number ℓ≤m of mutations.

As stated in the INDEPENDENT CLONAL EVOLUTION problem, our
goal is maximizing the probability of observing the input data.
Thus, we must describe exactly how to define the probability
Pr (T| fu) of any tree T. However, there are multiple possible
ways of generating each tree. For example, consider the tree T
with ℓ= 2 mutations having the normal clone c0 as the root with
two children: a clone with mutation 1 and a clone with mutation
2. There are twoways to generate T, either mutation 1 or mutation
2 could occur first on c0 followed by the other mutation, namely,
(c0, 1), (c0, 2) or (c0, 2), (c0, 1). We refer to a specific way of gener-
ating a treeTwith ℓmutations as a tree generating process G, which is
an ordered list (c0, si0 ), (ci1 , si1 ), . . . , (ciℓ−1 , siℓ−1 ), where each pair
indicates the source clone and the mutation that was added to it.
Using the independent clonal evolution assumption, we can
now express the probability of a tree generating process
G = (c0, si0 ), (ci1 , si1 ), . . . , (ciℓ−1 , siℓ−1 ) as

Pr (G| fu) =
∏ℓ−1

k=0

Pr ((cik , sk)|c0, . . . , ck−1, fu). (2)

We denote the set of all tree generating processes that yield a tree T
by G(T) such that Pr (T| fu) =

∑
G[G(T) Pr (G| fu). As tumors are sepa-

rate evolutionary processes, we have independence across patients
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and can therefore express the probability of our data as

Pr (T 1, . . . , T n| fu) =
∏n
p=1

∑
T[T p

Pr (T | fu)

=
∏n
p=1

∑
T[T p

∑
G[G(T)

Pr (G| fu). (3)

We note that HINTRA (Khakabimamaghani et al. 2019) and
TreeMHN (Luo et al. 2023) solve the INDEPENDENT CLONAL EVOLUTION

problem with different types of models (Table 2). The function fu
used by HINTRA explicitly enumerates all 2m×m clone–mutation
pairs. The advantage of HINTRA’s model is its flexibility to fit any
pattern of clone-to-mutation interactions, but this comes at the ex-
pense of severely restricting its scalability to a small number of mu-
tations. On the other hand, TreeMHN defines fu using a linear
model of additive rate coefficients for all m×m pairs of mutations.
As we showed in the section “Benchmarking on simulated data,”
this scales well but does not capture nonadditive clone-to-mutation
interactions nor shared properties of mutations such as two muta-
tions similarly affecting the probability of other mutations. As dis-
cussed in the section “CloMu: low-parameter neural network
trained via reinforcement learning,” in our method CloMu, the
model fu is a two-layer neural network with L=5≪m hidden neu-
rons (Fig. 1C). The small number of parameters and the ability to
model nonadditive clone-to-mutation interactions lead CloMu to
achieve flexibility like HINTRA while also being more resistant to
overfitting thaneither TreeMHNorHINTRAondata setswith a large
number ofmutations. Beyond themodel type, there are other subtle
differences. Rather than considering the set G(T) of all tree genera-
tive processes of a tree T, HINTRA considers a single tree generative
process G to compute the probability of T.

Prediction tasks

We gave a brief description of the prediction task in the Results.
These prediction tasks are elaborated on and definedmore precise-
ly here. Importantly, these prediction tasks correspond to postpro-
cessing the model fu learned only once for each data set
{T 1, . . . , T n}.

Reducing phylogeny uncertainty can be accomplished by se-
lecting trees T [ T p with a high value of Pr (T| fu) for each patient p
(Fig. 1D). To select a single tree per patient, one can simply choose
the tree T that maximizes Pr (T| fu).

For determining the fitness of mutations, we consider the set
{c1, …, cm} of clones in which each clone cs consists of only muta-
tion s. Intuitively, the fitness of a clone cs and, consequently, mu-
tation s is proportional to the rate atwhich amutationwould occur
on the clone (Fig. 1E). As such, normalizing this over all clones c1,
…, cm yields the expression of mutation fitness Fs for mutations s:

Fs =
∑m
t=1

exp( fu(cs, t))/
∑m
i=1

∑m
t=1

exp( fu(ci, t)). (4)

As an example, if the fitness Fs ofmutation s is 10 times larger than
the fitness Ft of mutation t, this implies mutations occur on the
clone cs at a rate that is 10 times higher than the rate at which
new mutations occur on the clone ct. Although the fitness value
is defined only in terms of clones with a single mutation, we typ-
ically expect the fitness value to generalize such that on all clones,
havingmutation s rather than twill increase the rate of newmuta-
tions occurring. Additionally, our fitness definition assumes that
an increasing rate ofmutations on a clone is associated with clonal
expansion. However, there exist some exceptions to this assump-
tion. For instance,mutations that interferewithDNAmismatch re-
pairmechanismsmay increase the rate ofmutations, and thus, our

definition may overestimate their fitness. That is, unless there is
specific evidence of nonlinear effects of combinations of muta-
tions in the data set, our regularized neural network model would
naturally predict the same linear effect of a mutation on the rates
of all other mutations for all clones. In cases with such nonlinear
effects, assigning a single fitness value to a mutation will not cap-
ture these effects. An important note is that our fitness predictions
for amutation s are entirely learned based on the occurrence of ad-
ditional mutations in clones withmutation s in the phylogeny. As
such, if mutation s is always terminal, ourmodel would not be able
to conclude s to be high fitness. This is an intrinsic limitation of
only using tree data but could be addressed by incorporating addi-
tional information such as clonal prevalence values.

We determine causal relationships between pairs of muta-
tions. By causal relationships, wemean temporal patterns of co-oc-
currence andmutual exclusivity on a clonal level in the context of
phylogenetic tree. Under our simplifiedmodel of clonal evolution,
these patterns are causal. However, the biology of clonal evolution
is too complex to know definitively if they are causal or simply cor-
relative in the true biological systemof clonal evolution.We define
absolute causality as

A(s, t) = fu(cs, t)− fu(c0, t), (5)

namely, the log ratio of rates of mutation t occurring on clone cs
versus clone c0 (Fig. 1F). Recall that fu(c, s) is the logarithm of
the rate at which a mutation s occurs on clone c. In practice,
some threshold value τ>0 in the strength of the causal relation-
ship must be used in order to avoid false positives. Therefore, for
absolute causality, we say s causes t if fu(cs, t)− fu(c0, t) . t, s in-
hibits t if fu(cs, t)− fu(c0, t) , −t, and there is no causal relation-
ship from s to t otherwise. Note that causality is bidirectional,
namely, we can assess causality from t to s by evaluating
fu(ct , s)− fu(c0, s), amounting to a total of nine possible pairs of
causal relationships between any twomutations. One potential is-
suewith absolute causality is that a high fitnessmutation smay in-
crease the rates of all other mutations t≠ s and thus have a positive
causal relationshipwith all othermutations t. To address this issue,
we define relative causality R(s, t) from s to t as

R(s, t) = log
exp( fu(cs, t))/

∑m
r=1

exp( fu(cs, r))

1
m

∑m
q=1

(exp( fu(cq, t))/
∑m
r=1

exp( fu(cq, r)))

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦
. (6)

This measures howmuch a mutation s increases the relative prob-
ability that t will be the next mutation to occur on the clone, rela-
tive to the average of all clones cq with one mutation q. As an
example, consider three mutations s, t, and r such that R(s, t) =R
(r, t) + x. Then the probability that the nextmutation is t on a clone
that already has s is exp (x) times larger than the probability that
the next mutation is t on a clone that already has r. Let 0.1 be
the probability that the next mutation on a clone with r is muta-
tion t. Also, let x= log2. An example further showing relative and
absolute causality is provided in Supplemental Table S1. Then
the probability of the next mutation on a clone with s being mu-
tation t is exp (log2) · 0.1 = 0.2. Similarly to absolute causality, we
say s causes t if R(s, t) > τ, s inhibits t if R(s, t) <−τ, and there is no
causal relationship from s to t otherwise. In general, one should
use absolute causality if one simply wants to know if havingmuta-
tion s increases the rate of mutation t occurring for any reason in-
cluding mutation s being high fitness. Alternatively, one should
use relative causality if one wants to know if there is a specific rela-
tionship between s and t such that s increases the likelihood of t
occurring relative to all other mutations. Additionally, we define
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multimutation causality to capture the nonlinear effect of a combi-
nation of multiple mutations causing some other mutation
(Supplemental Material A.2.2).

There is an extensive body of work on identifying mutations
that are mutually exclusive or co-occur (Leiserson et al. 2015; Dao
et al. 2017; Kim et al. 2017; Kuipers et al. 2021). Briefly, mutations
in genes in the same biological pathway tend to be mutually exclu-
sive as any individual mutation dysregulates the same pathway
(Yeang et al. 2008). On the other hand, some mutations tend to
co-occur as their simultaneous presencemight be beneficial for can-
cer progression (Muznyet al. 2012;Wang et al. 2014;Hill et al. 2015;
Ulz et al. 2016). Although many previous works have focused on
identifying suchmutations at the patient level without directly con-
sidering their effects on subsequentmutations, herewe seek to iden-
tify interchangeable mutations that have similar impacts on
subsequent mutation evolution. That is, we define two mutations
s≠ t to be interchangeable if it holds that fu(c, r) ≈ fu(c′, r) for allmu-
tations r [ [m]\{s, t} and for any two clones c and c

′
that are identi-

cal except for c containingmutation s but not t, and vice versa for c
′

(Fig. 1G). Note that this definition does not constrain the causal re-
lationship among s and t. If s and t are interchangeable and pairwise
inhibitory, this could be a result of them belonging to the same
functional pathway. Conversely, if s and t are interchangeable and
co-occur, it could be a result of s and t having an additive effect
when simultaneously present. The probability fu(c, r) for all r is en-
tirely determined by the values of the hidden neurons of our neural
network when c is taken as an input. Consequently, two clones c
and c

′
behave identically according to our model if their latent rep-

resentations (hidden neuron values) are identical. Thus, the clone cs
with only mutation s and the clone ct with only mutation t behave
identically if they have identical latent representations. Rather than
comparing the latent representations on vast numbers of pairs of
clones differing by one mutation, we define the latent representa-
tion of a mutation s as the latent representation of the clone cs
and predict two mutations to be interchangeable if their latent rep-
resentations are very close in terms of Euclidean distance.

A pathway of interchangeable mutations requires that
mutations in some set A and some set B are required together
in order to increase the likelihood of mutations in some set C (Fig.
1H). Mathematically, if t∈A, s∈B, and r∈C, this implies
fu(cs, r) ≈ fu(c0, r) ≈ fu(ct , r) and fu(cst , r) . fu(c0, r), where cst is
the clone that contains only mutations s and t. Note that the case
in which each set consists of a single mutation, namely, |A| = |B| = |
C| = 1, corresponds to multimutation causality (for discussion, see
Supplemental Material A.2.2). For a detailed description on
how we infer pathways of interchangeable mutations, see
SupplementalMaterial A.2.1. A final prediction task is the inference
of consensus trees, which are a small number of trees that best sum-
marize the diversity of trees in the cohort (SupplementalMaterial A.
2.3). Finally, we use bootstrapping to assess confidence of CloMu’s
predictions (Supplemental Material A.3).

CloMu: low-parameter neural network trained via reinforcement
learning

CloMu uses a two-layer neural network with a small number L of
hidden neurons for the function fu (Fig. 1C). This model has
2Lm+m+L=O(Lm) total parameters. In experiments in this paper,
we use L=5 hidden neurons. As the number of parameters grows
linearly in the number of mutations, this model is very resistant
to overfitting.Moreover, wemade a slightmodification to the neu-
ral network to allow for easier regularization, which is used primar-
ily for the sake of interpretability but also is used to avoid
overfitting on some extremely small data sets. This modification

did not affect the scaling of the number parameters. For more de-
tails, see Supplemental Material A.1.1.

The small number L of hidden neurons allows us to form a
small L-dimensional representation of any input clone c.
Applying this to the set {c1, …, cm} of clones with only one muta-
tion, we obtain latent representations lt= [l1,…, lL]∈RL for eachmu-
tation t∈ [m] by observing the values of the L hidden neurons
given the clone ct. The latent representation encapsulates any ef-
fect themutation could have on some clone according to themod-
el, and thus, similarity of two latent representations also indicates
similarity between the two mutations. In practice, we use the
Euclidean distance ls − lt‖ ‖2 between latent representations to
determine the interchangeability of any pair (s, t) of mutations.
For the sake of interpretability, we subtract themedian value across
all mutations from each component of each latent representation.

For the task of modeling evolutionary pathways of inter-
changeable mutations, it is vital to understand when two muta-
tions are required together in order to cause a third mutation.
Having a nonlinear model such as our neural network is thus re-
quired for this task. Specifically, we find evolutionary pathways
of interchangeable mutations through the following, which is de-
scribed extensively in Supplemental Material A.2.1. First, we eval-
uate the probability of the tumor evolving in some evolutionary
pathway according to our model. Then, we evaluate the probabil-
ity of the tumor evolving in that same pathway under a null hy-
pothesis in which mutations have no effect on clonal evolution.
Finally, we search for evolutionary pathways in which the proba-
bility according to our model vastly exceeds the null hypothesis
probability.

The sets T 1, . . . , T n and especially G(T) can be very large. For
instance, if T is the star tree in which 10 mutations are made on
the root node, G(T) will have 10! = 3,628,800 elements. Explicitly
calculating Pr (G| fu) for every G [ G(T) and T [ T p can be infea-
sible. To avoid doing this, we use reinforcement learning to train
the neural network, that is, infer model parameters θ that maxi-
mize the likelihood of the data. Note that the use of reinforce-
ment learning is a standard approach for training neural
networks (François-Lavet et al. 2018). We use policy gradients,
adapting the REINFORCE method (Williams 1992), in which
the model is given a reward when it generates a tree in the data
set. Specifically, the reward is proportional to howmuch increas-
ing the probability of that tree would increase the overall log
probability of our data set. Typically, in reinforcement learning,
the reward given to the model for a given action sequence is in-
dependent of the model itself. In our case, in order to maximize
the probability of observing the data, our reward is a function
that depends on the model. However, to correctly optimize our
objective, the rewards must be treated only as numerical values,
and the gradient of the reward must not be taken with respect
to the parameters. Although it is less common to have a changing
reward function during training, there exist other examples of
this in the reinforcement learning literature. One such example
is curiosity driver exploration in which the intrinsic reward
changes during training (Pathak et al. 2017). Another such exam-
ple is maximum entropy gain exploration, in which entropy is
maximized in addition to maximizing total rewards (Pitis et al.
2020). In CloMu, as well as these papers, the reward changes
based on how the probability of states/actions change owing to
the policy changing during training. As is typical, our model is
trained via stochastic gradient descent on the typical policy gra-
dient’s loss function. Additionally, we have modified our sam-
pling procedure to increase training speed and accuracy in the
case that there are moderately few trees per patient and conse-
quently adjusted the reward function. For more details, see
Supplemental Material A.1.4.
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We implemented CloMu in Python 3 using the PyTorch li-
brary. CloMu is open source and is available at GitHub (https
://github.com/elkebir-group/CloMu).

Software availability

The code for CloMu and the used simulated and real data are avail-
able at GitHub (https://github.com/elkebir-group/CloMu). These
are also available as Supplemental Code and Supplemental Data,
respectively.

Competing interest statement
The authors declare no competing interests.

Acknowledgments
We thank the Beerenwinkel laboratory and Xiang Ge Luo for pro-
viding access to TreeMHN simulation results. This work started as a
course project in “CS598MEB: Computational Cancer Genomics.”
M.E.-K. was supported by the National Science Foundation (CCF-
2046488) as well as funding from the Cancer Center at Illinois.

Author contributions: S.I. and M.E.-K. designed the study. S.I.
implemented the method and performed the analyses. S.I. and
M.E.-K. interpreted the results and wrote the manuscript.

References
Beerenwinkel N, Schwarz RF, Gerstung M, Markowetz F. 2015. Cancer evo-

lution: mathematical models and computational inference. Syst Biol 64:
e1–e25. doi:10.1093/sysbio/syu081

Caravagna G, Giarratano Y, Ramazzotti D, Tomlinson I, Graham TA,
Sanguinetti G, Sottoriva A. 2018. Detecting repeated cancer evolution
from multi-region tumor sequencing data. Nat Methods 15: 707–714.
doi:10.1038/s41592-018-0108-x

Christensen S, Kim J, Chia N, Koyejo O, El-Kebir M. 2020. Detecting evolu-
tionary patterns of cancers using consensus trees. Bioinformatics 36:
i684–i691. doi:10.1093/bioinformatics/btaa801

Dao P, Kim YA, Wojtowicz D, Madan S, Sharan R, Przytycka TM. 2017.
BeWith: a Between-Within method to discover relationships between
cancer modules via integrated analysis of mutual exclusivity, co-occur-
rence and functional interactions. PLoS Comput Biol 13: e1005695.
doi:10.1371/journal.pcbi.1005695

El-Kebir M, Satas G, Oesper L, Raphael BJ. 2016. Inferring the mutational
history of a tumor using multi-state perfect phylogeny mixtures. Cell
Syst 3: 43–53. doi:10.1016/j.cels.2016.07.004

François-Lavet V, Henderson P, Islam R, Bellemare MG, Pineau J. 2018. An
introduction to deep reinforcement learning. Found Trends Mach Learn
11: 219–354. doi:10.1561/2200000071

Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100: 57–70.
doi:10.1016/S0092-8674(00)81683-9

Hill RM, Kuijper S, Lindsey JC, Petrie K, Schwalbe EC, Barker K, Boult JK,
Williamson D, Ahmad Z, Hallsworth A, et al. 2015. Combined MYC
and P53 defects emerge at medulloblastoma relapse and define rapidly
progressive, therapeutically targetable disease. Cancer Cell 27: 72–84.
doi:10.1016/j.ccell.2014.11.002

Hodzic E, Shrestha R,Malikic S, Collins CC, Litchfield K, Turajlic S, Sahinalp
SC. 2020. Identification of conserved evolutionary trajectories in tu-
mors. Bioinformatics 36: i427–i435. doi:10.1093/bioinformatics/
btaa453

Hollstein M, Sidransky D, Vogelstein B, Harris CC. 1991. p53 mutations in
human cancers. Science 253: 49–53. doi:10.1126/science.1905840

Jahn K, Kuipers J, Beerenwinkel N. 2016. Tree inference for single-cell data.
Genome Biol 17: 86. doi:10.1186/s13059-016-0936-x

Kalantari J, Nelson H, Chia N. 2020. The unreasonable effectiveness of in-
verse reinforcement learning in advancing cancer research. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, February 7–12, 2020, pp.
437–445. AAAI Press.

Khakabimamaghani S, Malikic S, Tang J, Ding D, Morin R, Chindelevitch L,
Ester M. 2019. Collaborative intra-tumor heterogeneity detection.
Bioinformatics 35: i379–i388. doi:10.1093/bioinformatics/btz355

Kim YA, Madan S, Przytycka TM. 2017. WeSME: uncovering mutual exclu-
sivity of cancer drivers and beyond. Bioinformatics 33: 814–821. doi:10
.1093/bioinformatics/btw242

Kuipers J, Moore AL, Jahn K, Schraml P, Wang F, Morita K, Futreal PA,
Takahashi K, Beisel C, Moch H, et al. 2021. Statistical tests for intra-tu-
mour clonal co-occurrence and exclusivity. PLoS Comput Biol 17:
e1009036. doi:10.1371/journal.pcbi.1009036

Leiserson MD, Wu HT, Vandin F, Raphael BJ. 2015. CoMEt: a statistical ap-
proach to identify combinations of mutually exclusive alterations in
cancer. Genome Biol 16: 160. doi:10.1186/s13059-015-0700-7

Luo XG, Kuipers J, Beerenwinkel N. 2023. Joint inference of exclusivity pat-
terns and recurrent trajectories from tumormutation trees.Nat Commun
14: 3676. doi:10.1038/s41467-023-39400-w

Morita K, Wang F, Jahn K, Hu T, Tanaka T, Sasaki Y, Kuipers J, Loghavi S,
Wang SA, YanY, et al. 2020. Clonal evolution of acutemyeloid leukemia
revealed by high-throughput single-cell genomics. Nat Commun 11:
5327. doi:10.1038/s41467-020-19119-8

Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G,
Kovar CL, Lewis LR, Morgan MB, Newsham IF, et al. 2012.
Comprehensive molecular characterization of human colon and rectal
cancer. Nature 487: 330–337. doi:10.1038/nature11252

Nowell PC. 1976. The clonal evolution of tumor cell populations. Science
194: 23–28. doi:10.1126/science.959840

Pathak D, Agrawal P, Efros AA, Darrell T. 2017. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6–11 August 2017, Vol. 70 of Proceedings of Machine Learning Research
(ed. Precup D, Teh YW), pp. 2778–2787. PMLR.

Pellegrina L, Vandin F. 2022. Discovering significant evolutionary trajecto-
ries in cancer phylogenies. Bioinformatics 38: ii49–ii55. doi:10.1093/bio
informatics/btac467

Pitis S, Chan H, Zhao S, Stadie B, Ba J. 2020. Maximum entropy gain explo-
ration for long horizon multi-goal reinforcement learning. In
Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13–18 July 2020, Virtual Event, Vol. 119 of Proceedings of
Machine Learning Research, pp. 7750–7761. PMLR.

Pratcorona M, Abbas S, Sanders MA, Koenders JE, Kavelaars FG, Erpelinck-
Verschueren CA, Zeilemakers A, Löwenberg B, Valk PJ. 2012. Acquired
mutations in ASXL1 in acute myeloid leukemia: prevalence and prog-
nostic value. Haematologica 97: 388–392. doi:10.3324/haematol.2011
.051532

Qi Y, Pradhan D, El-Kebir M. 2019. Implications of non-uniqueness in phy-
logenetic deconvolution of bulkDNA samples of tumors.AlgorithmsMol
Biol 14: 23–14. doi:10.1186/s13015-019-0155-6

Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N, Cai Y, Bielski
CM, Donoghue MT, Jonsson P, et al. 2018. The genomic landscape of
endocrine-resistant advanced breast cancers. Cancer Cell 34: 427–
438.e6. doi:10.1016/j.ccell.2018.08.008

Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. 2018. The
COSMIC Cancer Gene Census: describing genetic dysfunction across
all human cancers. Nat Rev Cancer 18: 696–705. doi:10.1038/s41568-
018-0060-1

Tabassum DP, Polyak K. 2015. Tumorigenesis: it takes a village. Nat Rev
Cancer 15: 473–483. doi:10.1038/nrc3971

Turajlic S, Xu H, Litchfield K, Rowan A, Horswell S, Chambers T, O’Brien T,
Lopez JI, Watkins TB, Nicol D, et al. 2018. Deterministic evolutionary
trajectories influence primary tumor growth: TRACERx Renal. Cell
173: 595–610.e11. doi:10.1016/j.cell.2018.03.043

Ulz P, Heitzer E, Speicher MR. 2016. Co-occurrence of MYC amplification
and TP53 mutations in human cancer. Nat Genet 48: 104–106. doi:10
.1038/ng.3468

Wang L, Hu H, Pan Y, Wang R, Li Y, Shen L, Yu Y, Li H, Cai D, Sun Y, et al.
2014. PIK3CAmutations frequently coexist with EGFR/KRASmutations
in non-small cell lung cancer and suggest poor prognosis in EGFR/KRAS
wildtype subgroup. PLoS One 9: e88291. doi:10.1371/journal.pone
.0088291

Williams RJ. 1992. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning.Mach Learn 8: 229–256. doi:10.1007/
BF00992696

Yates LR, Campbell PJ. 2012. Evolution of the cancer genome.Nat Rev Genet
13: 795–806. doi:10.1038/nrg3317

Yeang CH, McCormick F, Levine A. 2008. Combinatorial patterns of
somatic gene mutations in cancer. FASEB J 22: 2605–2622. doi:10
.1096/fj.08-108985

Received January 6, 2023; accepted in revised form June 9, 2023.

Ivanovic and El-Kebir

1088 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on September 19, 2023 - Published by genome.cshlp.orgDownloaded from 

https://github.com/elkebir-group/CloMu
https://github.com/elkebir-group/CloMu
https://github.com/elkebir-group/CloMu
https://github.com/elkebir-group/CloMu
https://github.com/elkebir-group/CloMu
https://github.com/elkebir-group/CloMu
https://github.com/elkebir-group/CloMu
https://github.com/elkebir-group/CloMu
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277672.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277672.123/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


 10.1101/gr.277672.123Access the most recent version at doi:
2023 33: 1078-1088 originally published online June 21, 2023Genome Res. 

  
Stefan Ivanovic and Mohammed El-Kebir
  
learning
Modeling and predicting cancer clonal evolution with reinforcement

  
Material

Supplemental
  

 http://genome.cshlp.org/content/suppl/2023/08/10/gr.277672.123.DC1

  
References

  
 http://genome.cshlp.org/content/33/7/1078.full.html#ref-list-1

This article cites 31 articles, 3 of which can be accessed free at:

  
License

Commons 
Creative

.http://creativecommons.org/licenses/by-nc/4.0/as described at 
under a Creative Commons License (Attribution-NonCommercial 4.0 International), 

). After six months, it is availablehttps://genome.cshlp.org/site/misc/terms.xhtml
first six months after the full-issue publication date (see 
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the

Service
Email Alerting

  
 click here.top right corner of the article or 

Receive free email alerts when new articles cite this article - sign up in the box at the

 https://genome.cshlp.org/subscriptions
go to: Genome Research To subscribe to 

© 2023 Ivanovic and El-Kebir; Published by Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on September 19, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/doi/10.1101/gr.277672.123
http://genome.cshlp.org/content/suppl/2023/08/10/gr.277672.123.DC1
http://genome.cshlp.org/content/33/7/1078.full.html#ref-list-1
https://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=protocols;10.1101/gr.277672.123&return_type=article&return_url=http://genome.cshlp.org/content/10.1101/gr.277672.123.full.pdf
http://genome.cshlp.org/cgi/adclick/?ad=57163&adclick=true&url=https%3A%2F%2Fwww.usascientific.com%2Fgreen-initiatives
https://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com

