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Consensus Tree Under the Ancestor–Descendant

Distance is NP-Hard
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ABSTRACT

Due to uncertainty in tumor phylogeny inference from sequencing data, many methods infer
multiple, equally plausible phylogenies for the same cancer. To summarize the solution
space T of tumor phylogenies, consensus tree methods seek a single best representative
tree S under a specified pairwise tree distance function. One such distance function is the
ancestor–descendant (AD) distance d(T‚T0), which equals the size of the symmetric differ-
ence of the transitive closures of the edge sets E(T) and E(T0). Here, we show that finding a
consensus tree S for tumor phylogenies T that minimizes the total AD distance +T˛T d(S‚T)

is NP-hard.

Keywords: cancer, consensus tree, infinite sites assumption, intra-tumor heterogeneity.

1. INTRODUCTION

Cancer results from an evolutionary process during which somatic mutations accumulate in a

population of cells (Nowell, 1976). To study tumor evolution, researchers apply phylogeny inference

algorithms to sequencing data of tumors (Schwartz and Schäffer, 2017). Due to uncertainty in tumor phy-

logeny inference from sequencing data, these methods typically yield multiple candidate trees T for the same

tumor (El-Kebir et al., 2016; Qi et al., 2019).

To summarize this solution space, several works have been proposed to infer a consensus tree S that best

represents the set T of candidate trees. More formally, these consensus tree methods typically employ a

distance function d(T1‚ T2) that compares two trees T1 and T2, and seek a consensus tree S that minimizes

the total distance
P

T2T d(S‚ T) (Aguse et al., 2019; DiNardo et al., 2020; Fu and Schwartz, 2021; Govek

et al., 2018, 2020; Guang et al., 2023; Karpov et al., 2019).

As many tumor phylogeny inference methods make the infinite sites assumption, which states that each

mutation is gained exactly once on the tree and never subsequently lost (Kimura, 1969), tumor phylogenies

that adhere to this assumption are typically represented as mutation trees. These are rooted trees where each
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node represents a clone composed of the mutations labeling the nodes of the unique path to the root

(Fig. 1a). For example, GraPhyC (Govek et al., 2018, 2020) finds an optimal consensus mutation tree based

on the parent–child (PC) distance in polynomial time.

Briefly, the PC distance of trees T1 and T2 is defined as the size of the symmetric difference between the

edge sets E(T1) and E(T2). Aguse et al. (2019) generalized the problem to identify multiple consensus trees

under the PC distance, and Christensen et al. (2020) considered a multiple-choice version of the problem to

identify repeated evolutionary trajectories in cancer phylogeny cohort data.

Although computationally tractable, DiNardo et al. (2020) suggest the PC distance may not provide

enough resolution for tumor phylogeny comparison. Recently, Guang et al. (2023) developed TuELiP,

which uses integer linear programming to identify the optimal consensus tree with the ancestor–descendant

(AD) distance, originally proposed by Govek et al. (2018). The AD distance equals the size of the sym-

metric difference of the transitive closures of the directed edge sets E(T1) and E(T2).

In other words, the AD distance equals the number of ordered pairs of vertices (u‚ v) where u is an

ancestor of v that are unique to either T1 or T2 (Fig. 1b). Compared with the PC distance, the AD distance

provides greater resolution to detect subtle differences between the two trees. Importantly, the hardness of

the consensus tree problem under the AD distance is unknown (Fig. 1c), leaving the existence of a

polynomial-time algorithm as an open problem.

In this study, we show that finding the optimal consensus tree under the AD distance is NP-hard.

Therefore, unlike the PC distance consensus tree problem, for which a polynomial-time algorithm exists

(Govek et al., 2020; Govek et al., 2018), there is no polynomial-time algorithm for the consensus tree

problem under the AD distance unless P =NP.

2. PROBLEM STATEMENT

We consider mutation trees T, which are rooted, vertex-labeled trees with vertex set V(T) and edge set

E(T). Intuitively, each vertex i of a mutation tree T corresponds to a tumor clone comprising the mutations

that label the vertices of the unique path from i to the root of T (Fig. 1a). We write i�T j if (i) vertex i is an

ancestor of vertex j and (ii) i 6¼ j. We write i?T j if vertices i and j occur on distinct root-to-leaf paths of T,

that is, i 6�T j and j 6�T i. While ?T is symmetrical, that is, i?T j if and only if j?T i, the relation �T is not

symmetrical.

Neither �T nor ?T are reflexive, that is, it does not hold that i�T i, nor does it hold that i?T i for any

vertex i. To compute the distance between two rooted trees T1 and T2 on the same vertex set, we compare

the AD sets A(T1) and A(T2) of T1 and T2, respectively. More formally, A(T1) equals the transitive closure

of E(T1).

FIG. 1. Overview of the ADCT problem. (a) There is a bijection between phylogenies under the infinite sites

assumption and mutation trees. (b) The AD distance d(T1‚ T2) of mutation trees T1 and T2 equals the size of the

symmetric difference of the AD sets A(T1) and A(T2). Here, d(T1‚ T2) = 1 due to the unmatched pair of A(T1) indicated

in a box. (c) In the ADCT problem, we seek a consensus mutation tree S that minimizes the sum of the distances to the

STEP trees T . AD, ancestor–descendant; ADCT, Ancestor–Descendant Consensus Tree.
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Definition 1. The AD set A(T) of a rooted tree T consists of all ordered pairs (i‚ j) of vertices such that

i is ancestor of j, that is, A(T) = f(i‚ j) 2 V(T) ·V(T)ji�T jg.

The AD distance d(T1‚ T2) equals the size of the symmetric difference of A(T1) and A(T2), more formally

defined as follows. See Figure 1b for an example.

Definition 2. Given two rooted trees T1‚ T2 on the same vertex set, the AD distance d(T1‚ T2) equals

the size of the symmetric difference of A(T1) and A(T2), that is, d(T1‚ T2) = jA(T1)nA(T2)j + jA(T2)nA(T1)j.
This leads to the following problem.

Problem 2.3 (Ancestor–Descendant Consensus Tree [ADCT]). Given a multi-set T = fT1‚ . . . ‚ Tmg of

rooted trees on the same vertex set V(T ), find a rooted tree S on vertex set V(T ) such that the sumPm
i = 1 d(S‚ Ti) of the distances from S to each input tree T 2 T is minimum.

3. COMBINATORIAL CHARACTERIZATION

For any unordered pair fi‚ jg of distinct vertices in a mutation tree T, it must hold that i�T j, j�T i or

i?T j. We indicate the first two cases using 1fi�T jg such that 1fi�T jg = 1 if i�T j and 0 otherwise, and the

third case using 1fi?T jg such that 1fi?T jg = 1 if i?T j and 0 otherwise. As such, the distance d(T1‚ T2) can

be decomposed as follows.

Lemma 1. The AD distance d(T1‚ T2) for trees T1 and T2 on the same vertex set [n] equals

d(T1‚ T2)=
Xn
i = 1

Xn
j = i + 1

di‚ j(T1‚ T2) (1)

where di‚ j(T1‚ T2) is the distance contributed by the unordered pair fi‚ jg of distinct vertices defined as

di‚ j(T1‚ T2) = 1fi�T1
jg 2 � 1fj�T2

ig + 1fi?T2
jgð Þ

+ 1fj�T1
ig 2 � 1fi�T2

jg + 1fi?T2
jgð Þ

+ 1fi?T1
jg 1fi�T2

jg + 1fj�T2
igð Þ:

(2)

Proof. See Section 6. ,
We can similarly decompose the total AD distance d(S‚ T ) between a tree S and trees T by first defining

the AD matrix and the branching matrix as follows.

Definition 3. An n · n matrix AT = [ai‚ j] is an AD matrix for trees T provided each entry ai‚ j equalsP
T2T 1fi�T jg.

Definition 4. An n · n matrix BT = [bi‚ j] is a branching matrix for trees T provided each entry bi‚ j
equals

P
T2T 1fi?T jg.

While AT may not be symmetric, matrix BT is symmetric due to symmetry of the relation ?T . Moreover,

the diagonal of both matrices consist of 0s. Finally, note that ai‚ j + aj‚ i + bi‚ j = jT j if i 6¼ j. See Figure 1c for

an example.

Lemma 2. The AD distance d(S‚ T ) between a tree S and trees T on the same vertex set [n] equals

d(S‚ T )=
Xn
i = 1

Xn
j = i + 1

di‚ j(S‚ T ) (3)

where di‚ j(S‚ T ) is the distance contributed by the unordered pair fi‚ jg of distinct vertices defined as

di‚ j(S‚ T ) = 1fi�S jg 2aj‚ i + bi‚ j
� �

+ 1fj�S ig 2ai‚ j + bi‚ j
� �

+ 1fi?S jg ai‚ j + aj‚ i
� �

: (4)

Proof. See Section 6. ,

CONSENSUS TREE UNDER AD DISTANCE IS NP-HARD 3
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4. COMPLEXITY

Our main result is as follows.

Theorem 1. The ADCT problem is NP-hard.

We show NP-hardness by giving a polynomial-time reduction from the Max-Clique problem, defined as

follows.

Problem 4.1 (MaxClique). Given an undirected graph G with n = jV(G)j vertices and m = jE(G)j edges,
find a clique C � V(G) such that jCj is maximum.

The MaxClique problem is NP-hard (Cook, 1971; Karp, 1972). In the following reduction, we assume

the undirected graph G contains at least three vertices, that is, n > 2. This assumption does not affect the

hardness of the MaxClique problem. We impose an arbitrary ordering on the vertices V(G) such that

V(G) = [n] = f1‚ . . . ‚ ng. For each vertex i 2 V(G), let d(i) be the set of vertices adjacent to i in G, that is,

d(i) = f j 2 [n]j(i‚ j) 2 E(T)g.

Using the ordering, we further split the set d(i) of neighboring vertices d(i) into vertices d>(i) =
fj 2 [n]j j 2 d(i)‚ i < jg that are adjacent to i and occur after i in the ordering. The vertex set V(T ) of the

corresponding ADCT problem instance includes 2n + 1 vertices, labeled f0‚ 1‚ . . . ‚ n‚ n + 1‚ . . . ‚ 2ng.

Vertex 0 denotes a special vertex that is the shared root of all trees T , and a set fn + 1‚ . . . ‚ 2ng of

n vertices that forms a chain in all trees. We construct the following multi-set T of rooted trees on the new

vertex set V(T ) = f0‚ . . . ‚ 2ng, with three types of trees (Fig. 2b).

First, let T0 be a chain tree whose vertices are in ascending order, that is, E(T0) = f(i‚ i + 1)j0 � i < 2ng.

The multi-set T 0 comprises n3 - 2n2 + 2n - 3 copies of T0. Second, for each vertex i in the undirected graph

V(G), let Ti be a tree rooted at 0. The edge set E(Ti) consists of (i) edges from 0 to every vertex in G that is

either at most i or is not adjacent to i, that is, f(0‚ j)j j 2 V(G)nd>(i)g; (ii) edges from 0 to every vertex in

G that is greater than i and adjacent to i, that is, f(i‚ j)j j 2 d>(i)g; (iv) the edge f(i‚ n + 1)g; and (v) a chain

from n + 1 to 2n in ascending order, that is, f(j‚ j + 1)jn < i < 2ng.

The multi-set T i comprises n2 + 1 copies of Ti. Third, for each vertex i 2 V(G), let T 0
i be a tree rooted

at 0. The edge set E(T 0
i) consists of (i) edges from 0 to every vertex in G, that is, f(0‚ j)j j 2 V(G)g; (ii) the

edge f(i‚ n + 1)g; and (iii) a chain from n + 1 to 2n in ascending order, that is, f(j‚ j + 1)jn + 1 � j < 2ng. The

multi-set T 0
i comprises only one copy of T 0

i .

The multi-set T of trees corresponding to MaxClique, for instance G comprises the sum of multi-

sets T 0‚ T 1‚ . . . ‚ T n‚ T 0
i ‚ . . . ‚ T 0

n. Note that the sum of two multi-sets X and X0 results in a multi-set Y

a b

c

FIG. 2. An example reduction from MaxClique to ADCT. (a) An undirected graph G with n= 5 vertices and m = 5

edges with a maximum clique C of size 3: Here, d(2) = f1‚ 3‚ 4g and d>(2) = f3‚ 4g. (b) The corresponding trees in T ,

with n3 - 2n2 + 2n- 3= 82 copies of T0, n2 + 1= 26 copies of Ti and one copy of T 0
i for each vertex i 2 V(G). (c) The

optimal consensus tree S�. The vertices on the directed path between 0 and n + 1 = 6 indicate the maximum clique C.
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whose unique elements have a multiplicity equal to the sum of the multiplicities of that element in X and X0.
As such, the total number T of trees equals 2n3 - 2n2 + 4n - 3. Clearly, the reduction can be completed

in polynomial time. We have the following two lemmas characterizing the AD and branching matrix of T ,

respectively.

Lemma 3. For any i‚ j 2 V(T ), the entry ai‚ j of the AD matrix AT equals:

ai‚ j =

2n3 - 2n2 + 4n - 3‚ if 0 = i<j � 2n‚

n3 - n2 + 2n - 2‚ if 0 < i <j � n‚ (i‚ j) 2 E(G)‚

n3 - 2n2 + 2n - 3‚ if 0< i <j � n‚ (i‚ j) =2E(G)‚

n3 - n2 + 2n - 1‚ if 0 < i�n< j � 2n‚

2n3 - 2n2 + 4n - 3‚ if n � i<j � 2n‚

0‚ if 0 � j<i � 2n:

8>>>>>><
>>>>>>:

(5)

Proof. See Section 6. ,

Lemma 4. For any i‚ j 2 V(T ) such that i < j, entries bi‚ j = bj‚ i of the branching matrix BT equal:

bi‚ j = bj‚ i =

0‚ if 0 = i < j � 2n‚

n3 - n2 + 2n - 1‚ if 0 < i < j � n‚ (i‚ j) 2 E(G)‚

n3 + 2n‚ if 0 < i < j � n‚ (i‚ j) =2 E(G)‚

n3 - n2 + 2n - 2‚ if 0 < i � n< j � 2n‚

0‚ if n � i< j � 2n:

8>>>><
>>>>:

Proof. Recall that ai‚ j + aj‚ i + bi‚ j = jT j. Let i‚ j 2 V(T ) such that i < j. Since aj‚ i = 0 by Lemma 3,

we have ai‚ j + bi‚ j = jT j. As such, bi‚ j = bj‚ i = jT j - ai‚ j. This lemma follows using the values of ai‚ j from

Lemma 3. ,
We prove the following lower bound on the distance d(S‚ T ) of any tree S on vertex set V(T ).

Lemma 5. If S is a tree on V(T ), then d(S‚ T ) is at least L =
Pn

i = 1

Pn
j = i + 1 ai‚ j +

Pn
i = 1

P2n
j = n + 1 bi‚ j.

Proof. Recall that for any pair (i‚ j) of vertices in any mutation tree S, exactly one of i�S j, j�S i, i?S j is

true. Therefore, a trivial lower bound on di‚ j(S‚ T ) can be obtained from Eq. (4): di‚ j(S‚ T ) � d
i‚ j
min(T ) =

minf2aj‚ i + bi‚ j‚ 2ai‚ j + bi‚ j‚ ai‚ j + aj‚ ig. Note that bi‚ j = bj‚ i by Definition 4. As such, d
i‚ j
min(T ) = dj‚ imin(T ).

Using Lemma 3, if i < j, we have d
i‚ j
min(T ) = minf2aj‚ i + bi‚ j‚ 2ai‚ j + bi‚ j‚ ai‚ j + aj‚ ig = minfbi‚ j‚ 2ai‚ j +

bi‚ j‚ ai‚ jg = minfbi‚ j‚ ai‚ jg. Further, for i < j, by Lemma 4, we obtain

d
i‚ j
min(T ) =

0‚ if 0 = i< j � 2n‚

ai‚ j‚ if 0 < i< j � n‚

bi‚ j‚ if 0 < i � n< j � 2n‚

0‚ if n � i< j � 2n:

8>><
>>: (6)

Plugging this into Eq. (3) of Lemma 2, we finally obtain

d(S‚ T ) =
X2n
i = 0

X2n
j = i + 1

di‚ j(S‚ T ) �
X2n
i = 0

X2n
j = i + 1

d
i‚ j
min(T )

=
Xn
i = 1

Xn
j = i + 1

ai‚ j +
Xn
i = 1

X2n
j = n + 1

bi‚ j: (7)

,
We define a C-constrained tree as follows—shown in Figure 3a.
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Definition 5. For vertices C = fv1‚ . . . ‚ vkg � V(G) of G such that v1 < . . . < vk, the C-constrained

tree SC has vertex set f0‚ . . . ‚ 2ng such that (i) vertex 0 is the root, (ii) there is an edge (0‚ i) for each vertex

i 2 f1‚ . . . ‚ ngnC, and (iii) there is a chain 0 ! v1 ! . . . ! vk ! n + 1 ! . . . ! 2n.

If C is a clique in G then the corresponding tree SC induces the following distance d(SC‚ T ).

Lemma 6. For any clique C of size k of G, we have d(SC‚ T ) = L+ n2 - nk + k(k - 1)=2.

Proof. Using Eq. (3) in Lemmas 2, 3, and 4 and Eq. (6) in Lemma 5, we discuss the following six cases

for the difference between di‚ j(SC‚ T ) and d
i‚ j
min(T ) of vertices 0 � i < j � 2n.

First, we consider 0 = i < j � 2n. Since i = 0 is the root vertex of SC. Therefore, it holds that i�SC j.

As such, di‚ j(SC‚ T ) = 2aj‚ i + bi‚ j = 0 = di‚ jmin(T ). Second, we consider 0 < i < j � n and i‚ j 2 C. In this case,

i‚ j are on the same branch in SC. Therefore, it holds that i�SC j. As such, di‚ j(SC‚ T ) = 2aj‚ i + bi‚ j = bi‚ j. Since

C is a clique, we have (i‚ j) 2 E(G).

Therefore, di‚ j(SC‚ T ) - di‚ jmin(T ) = bi‚ j - ai‚ j = 1. Third, we consider 0 < i < j � n, and i =2C or j =2C.

In this case, it holds that i?SC j. As such, di‚ j(SC‚ T ) = ai‚ j + aj‚ i = ai‚ j = di‚ jmin(T ). Fourth, we consider 0 < i �
n < j � 2n and i 2 C. In this case, it holds that i�SC j. As such, di‚ j(SC‚ T ) = 2aj‚ i + bi‚ j = bi‚ j = di‚ jmin(T ).

Fifth, we consider 0 < i � n < j � 2n and i =2C.

In this case, it holds that i?SC j. As such, di‚ j(SC‚ T ) = ai‚ j + aj‚ i = ai‚ j. Therefore, di‚ j(SC‚ T ) - di‚ jmin(T ) =
ai‚ j - bi‚ j = 1. Sixth, we consider n � i < j � 2n. It holds that i�SC j. As such, di‚ j(SC‚ T ) = 2aj‚ i + bi‚ j =
0 = di‚ jmin(T ).

Thus, only the second and fifth case have a non-zero value for (di‚ j(SC‚ T ) - di‚ jmin(T )). Putting everything

together, we have that d(SC‚ T ) -L equals

X2n
i = 0

X2n
j = 0

(di‚ j(SC‚ T ) - di‚ jmin(T )) =
X

i<j‚ i‚ j2C
1 +

X
0<i�n‚ i =2C

X2n
j = n + 1

1

= n2 - nk + k(k - 1)=2:

This proves the lemma. ,

a b c d e

FIG. 3. (a) The structure of a C-constrained tree Sc as well as an optimal consensus tree S�. (b) The tree used to prove

an upper bound on d(S�‚ T ) in Lemma 7. (c) An example tree based on the instance shown in Figure 2 used in Lemma

12, where the chain fn + 1‚ . . . ‚ 2ng is attached to vertex 5 which has smaller depth than vertex 3. (d) An example tree

based on the instance shown in Figure 2 used in Lemmas 12 and 14. In the former lemma, the chain fn + 1‚ . . . ‚ 2ng is

attached to vertex 5, which has higher depth than vertex 3. In the latter lemma, vertex 5 is a leaf whose parent is not 0.

(e) An example tree based on the instance shown in Figure 2 used in Lemma 14 where the parent of 5 is 0 instead of 4.
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Our goal now is to show that an optimal consensus tree S� of the multi-set T obtained from the

undirected graph G is a C-constrained tree such that C is a clique of G. To this end, we establish the

following useful upper bound on d(S�‚ T ).

Lemma 7. It holds that d(S�‚ T ) is at most L+ n2 - n.

Proof. To prove the lemma, we consider a tree S = (V‚E(S)), E(S)= f(0‚ i)j0 < i � ng [ f1‚ (n + 1)g[
f(i‚ i + 1)jn < i < 2ng as shown in Figure 3b. By Lemmas 2, 3, and 4, we have d(S‚ T ) =

P2n
i = 0

P2n
j = i + 1

di‚ j(S‚ T ) where

di‚ j(S‚ T ) =

0‚ if 0 = i < j � 2n‚

ai‚ j‚ if 0 < i < j � n‚

bi‚ j‚ if 1 = i � n < j � 2n‚

ai‚ j‚ if 1 < i � n< j � 2n‚

0‚ if n � i < j � 2n:

8>>>><
>>>>:

Observe that ai‚ j = bi‚ j + 1 for 0 < i � n < j � 2n in Lemmas 3 and 4. Using the lower bound L estab-

lished in Lemma 5, we have

d(S‚ T ) =
X2n
i = 0

X2n
j = i + 1

di‚ j(S‚ T ) =
Xn
i = 1

Xn
j = i + 1

ai‚ j +
X2n

j = n + 1

b1‚ j +
Xn
i = 2

X2n
j = n + 1

(bi‚ j + 1)

= L+ n2 - n:

Hence, d(S�‚ T ) � d(S‚ T ) =L + n2 - n. ,
We now reason about the topology of S�. The following lemma shows that j cannot be an ancestor of i in

S� if i < j.

Lemma 8. For any pair (i‚ j) of vertices such that 0 � i < j � 2n, either i�S� j or i?S� j.

Proof. See Section 6. ,
Our reduction enforces that 0 is the root of S� and that 2n is a leaf.

Lemma 9. Vertex 0 is the root of S�.

Proof. Suppose for a contradiction that 0 < j � 2n is the root of S�. Consider vertex 0. Since j is the root,

it holds that j�S�0. However, since 0 < j, by Lemma 8, it must hold that either 0�S� j or 0?S� j, yielding a

contradiction. Hence, vertex 0 must be the root of S�. ,

Lemma 10. The subgraph of S� induced by vertices f0‚ . . . ‚ ng forms a tree.

Proof. It suffices to prove that no vertex fn + 1‚ . . . ‚ 2ng is an ancestor of a vertex f1‚ . . . ‚ ng in S�.
Suppose for a contradiction there exist vertices 0 < i � n < j � 2n such that j�S� i. Since i < j, by

Lemma 8, it must hold that either i�S� j or i?S� j, yielding a contradiction. ,
Moreover, vertices fn + 1‚ . . . ‚ 2ng form a chain from n + 1 to 2n in ascending order as shown by the

following lemma.

Lemma 11. For any pair (i‚ j) of vertices such that n < i < j � 2n, it holds that i�S� j.

Proof. Suppose for a contradiction that u 6�S� v for some n < u < v � 2n. By Lemma 8, we have v 6�S� u.

Therefore, u?S� v, that is, u and v are branched in S�. By Eq. (3) in Lemmas 2 and 3, we have

du‚ v(S�‚ T ) = au‚ v. As such,

d(S‚ T ) =
X2n
i = 0

X2n
j = i + 1

di‚ j(S‚ T ) = du‚ v(S‚ T ) +
X

0<i<j�2n‚ (i‚ j)6¼(u‚ v)

di‚ j(S‚ T )

� au‚ v +
X

0<i<j�n‚ (i‚ j)6¼(u‚ v)

d
i‚ j
min(S‚ T )

= L+ 2n3 - 2n2 + 4n - 3

CONSENSUS TREE UNDER AD DISTANCE IS NP-HARD 7
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Since 2n3 - 2n2 + 4n - 3 > n2 - n, Lemma 7, which states that d(S�‚ T ) � L + n2 - n, implies that S� is not

an optimal consensus tree, a contradiction. ,
The root vertex r of a mutation tree S has depthS(r) = 0, and every vertex v 6¼ r with parent u has

depthS(v) = depthS(u) + 1. In Lemma 11, we have shown that the chain fn + 1‚ . . . ‚ 2ng remains intact in an

optimal consensus tree S�. In the following lemma, we will show that this chain is attached to a maximum-

depth vertex among f0‚ . . . ‚ ng in S�.

Lemma 12. The parent of vertex n + 1 in S� is a vertex in the set f0‚ . . . ‚ ng with maximum depth.

Proof. Let i be the parent of vertex n + 1. Lemma 11 states that the chain n + 1 ! . . . ! 2n is kept intact

in S�. This means that i must be in f0‚ . . . ‚ ng. Suppose for a contradiction that depthS�(i) does not have

the maximum depth among vertices f0‚ . . . ‚ ng. Therefore, there is a vertex 0 � j � n such that

depthS�(j) > depthS� (i)—as illustrated in Figure 3c. Let Pi be the unique path from 0 to i. Let Pj be the

unique path from 0 to j.

Since depthS�(j) > depthS�(i), we have jV(Pi)j < jV(Pj)j. We remove the chain and re-attach it to

the higher-depth vertex j, yielding S = (V‚E(S)), where E(S) = (E(S�)nf(i‚ n + 1)g) [ f(j‚ n + 1)g as shown in

Figure 3d. By Lemma 10, S is a tree. We will show that d(S‚ T ) < d(S�‚ T ) by distinguishing four cases

regarding the placement of vertices 0 � u < v � 2n.

First, we consider 0 � u < v � n or n < u < v � 2n. In the former case, u‚ v are located outside

the chain and in the latter case, inside the chain. In both cases, the relation between u and v is the same

in both S� and S. As such, du‚ v(S�‚ T ) - du‚ v(S‚ T ) = 0 by Eq. (3) in Lemma 2. Second, we consider

0 � u � n < v � 2n and u 2 V(Pi) \ V(Pj). The relation between u and v also stays the same, and u is an

ancestor of v in both S� and S.

Similar to the previous case, we have du‚ v(S�‚ T ) - du‚ v(S‚ T ) = 0. Third, we consider 0 � u �
n < v � 2n and u 2 V(Pi)nV(Pj). Thus, u is an ancestor of v in S�; however, they are branched in S. By

Eq. (3) in Lemmas 2, 3, and 4, du‚ v(S�‚ T ) - du‚ v(S‚ T ) = bu‚ v - au‚ v = - 1. Fourth, we consider

0 � u � n < v � 2n and u 2 V(Pj)nV(Pi). Thus, u is an ancestor of v in S; however, they are branched

in S�. Similar to the previous case, we have du‚ v(S�‚ T ) - du‚ v(S‚ T ) = au‚ v - bu‚ v = 1. Therefore,

d(S�‚ T ) - d(S‚ T ) =
Xn

u2V(Pi)DV(Pj)

X2n
v = n + 1

(du‚ v(S�‚ T ) - du‚ v(S‚ T ))

= (jV(Pj)j - jV(Pi)j)n > 0:

Note that D indicates the symmetric difference. This contradicts that S� is optimal. ,
We have that non-adjacent vertices i‚ j in G must be branched in an optimal consensus tree S�.

Lemma 13. For any pair i‚ j 2 V(G) of distinct vertices where (i‚ j) =2E(G), it holds that i?S� j.

Proof. Suppose for a contradiction there exist vertices u‚ v 2 V(G) such that (u‚ v) =2E(G) and u 6?S� v.

WLOG, we assume u < v. By Lemma 8, either u�S� v or u?S� v: Therefore, it holds that u�S� v. By Eq. (3)

in Lemma 2 and Lemma 3, du‚ v(S‚ T ) = bu‚ v: As such, d(S‚ T ) equals

X2n
i = 0

X2n
j = i + 1

di‚ j(S‚T ) = du‚ v(S‚ T ) +
X

0<i<j�2n‚ (i‚ j) 6¼(u‚ v)

di‚ j(S‚ T )

� bu‚ v +
X

(i<j)‚ (i‚ j)2V‚ (i‚ j)6¼(u‚ v)

d
i‚ j
min(S‚ T )

= L+ bu‚ v - au‚ v = L+ 2n2 + 3

Since 2n2 + 3 > n2 - n, Lemma 7, which states that d(S�‚ T ) � L + n2 - n, implies S� is not an optimal

consensus tree, a contradiction. ,
In the following lemma, we show that S� is a star tree except for one linear branch containing a subset

C � f1‚ . . . ‚ ng of vertices and terminating with the chain fn + 1‚ . . . ‚ 2ng (Fig. 3a, e).

Lemma 14. Let C be the vertices on the unique path from vertex 0 to vertex n + 1, excluding 0 and n + 1.

Then, vertex 0 is the parent of all vertices f1‚ . . . ‚ ngnC in S�.
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Proof. Suppose for a contradiction that there are vertices in f1‚ . . . ‚ ngnC whose parents are not 0 in S�.
Among these vertices, consider a leaf vertex i. Let vertex j 6¼ 0 be the parent of i (see Fig. 3d where i = 5

and j = 4). Recall that by Lemma 9, vertex 0 is the root of S�. Let Vi be the vertices on the unique path from

vertex 0 to i, excluding 0 and i. By Lemma 8, Vi consists of vertices u such that u < i. Consider the tree S

where we attach vertex i to the root 0, that is, E(S) =E(S�)nf(j‚ i)g [ f(0‚ i)g. See Figure 3e for an example.

To compute du‚ v(S�‚ T ) - du‚ v(S‚ T ), we distinguish two cases for vertices 0 � u < v � 2n. First, we

consider v = i and u 2 Vi. Thus, u�S� v. By the contrapositive of Lemma 13, we have (u‚ i) 2 E(G) for any

u 2 Vi. Since u?S v, by Eq. (3) in Lemmas 2, 3, and 4, we have du‚ v(S�‚ T ) - du‚ v(S‚ T ) = bu‚ v - au‚ v = 1.

Second, we consider the case where v 6¼ i or u =2Vi. The relationship between u and v is the same in S and

S�. As such, du‚ v(S�‚ T ) - du‚ v(S‚ T ) = 0 by Eq. (3) in Lemma 2. Therefore,

d(S�‚ T ) - d(S‚ T ) =
X
u2Vi

du‚ v(S�‚ T ) - du‚ v(S‚ T ) = jVij > 0

This contradicts that S� is optimal and thus proves the lemma. ,
Finally, we show that vertices C of S� are, indeed, a clique of G.

Lemma 15. The vertices C of S� on the unique path from vertex 0 to vertex n + 1, excluding 0 and n + 1,

form a clique in G.

Proof. By Lemma 9, vertex 0 is the root of S�. Therefore, for any i‚ j 2 C, we have i 6?S� j. By

the contrapostive of Lemma 13, (i‚ j) 2 E(G) for all i‚ j 2 C. Hence, C is a clique of G. ,

Corollary 1. Any optimal consensus tree S� is a C-constrained tree such that C is a clique of G.

Lemma 16. For any subset C � V(G) of vertices, the C-constrained tree SC is an optimal consensus tree

of T if and only if C is a maximum clique in G.

Proof. (0) Let SC be an optimal C-constrained consensus tree. By Lemma 15, we know that C is a

clique. Let jCj= k. By Lemma 6, we have d(SC‚ T ) = L+ n2 - nk + k(k - 1)=2: Suppose for a contradiction

that C is not a maximum clique of G. By our premise, there must exist another clique C0 such that

jC0j = ‘ > k = jCj. Let SC0 be the corresponding C0-constrained tree following Definition 5. By Lemma 6, we

have d(SC0‚ T ) = L+ n2 - n‘ + ‘(‘- 1)=2. Since n � ‘ � k + 1,

d(SC0‚ T ) - d(SC‚ T ) = (n +
1

2
)(k - ‘) +

(k + ‘)(‘ - k)

2

< (n +
1

2
)(k - ‘) + n(‘ - k) � -

1

2
< 0‚

which contradicts that SC is optimal.

(*) Let C be a maximum clique of G such that jCj = k. Suppose for a contradiction that the corre-

sponding C-constrained tree SC is not an optimal consensus tree of T . By Lemma 6, we have

d(SC‚ T ) = L+ n2 - nk + k(k - 1)=2. Therefore, by Corollary 1, there exists an optimal C0-constrained con-

sensus tree SC0 , where jC0j = ‘, such that the distance d(SC0 ‚ T ) is strictly less than d(SC‚ T ). By Lemma 6,

d(SC0‚ T ) = L+ n2 - n‘ + ‘(‘ - 1)=2. We have

d(SC0 ‚ T )- d(SC‚ T ) = (n +
1

2
)(k - ‘) +

(k + ‘)(‘- k)

2

= (n +
1

2
-
k + ‘

2
)(k - ‘) < 0:

Since k‚ ‘ � n, we have (k + ‘)=2 � n. This implies that k - ‘ < 0, which contradicts that C is a maximum

clique of size k. ,

5. DISCUSSION

In this work, we demonstrated the NP-hardness of the consensus tree problem under the AD distance.

While the problem of finding a maximum clique for a graph with n vertices is hard to approximate within a

CONSENSUS TREE UNDER AD DISTANCE IS NP-HARD 9
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factor of O(n1 - e) for any real number e > 0 unless P =NP (Zuckerman, 2006), our reduction is not

approximation-factor preserving. As such, one might be able to achieve better approximation factors for the

consensus tree problem under the AD distance, including possibly constant factors. We will investigate this

in future work.
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6. APPENDIX

6.1. Supplementary proofs

Lemma 1. The AD distance d(T1‚ T2) for trees T1 and T2 on the same vertex set [n] equals

d(T1‚ T2)=
Xn
i = 1

Xn
j = i + 1

di‚ j(T1‚ T2) (8)

where di‚ j(T1‚ T2) is the distance contributed by the unordered pair fi‚ jg of distinct vertices defined as

di‚ j(T1‚ T2) = 1fi�T1
jg 2 � 1fj�T2

ig + 1fi?T2
jgð Þ + 1fj�T1

ig 2 � 1fi�T2
jg + 1fi?T2

jgð Þ
+ 1fi?T1

jg 1fi�T2
jg + 1fj�T2

igð Þ: (9)

Proof. By Definition 2, we have

d(T1‚ T2) = jA(T1)nA(T2)j + jA(T2)nA(T1)j

=
Xn
i = 1

Xn
j = 1

1fi�T1
jg1fi 6�T2

jg +
Xn
i = 1

Xn
j = 1

1fi�T2
jg1fi6�T1

jg

=
Xn
i = 1

Xn
j = i + 1

1fi�T1
jg1fi6�T2

jg + 1fj�T1
ig1fj6�T2

igð Þ

+
Xn
i = 1

Xn
j = i + 1

1fi�T2
jg1fi 6�T1

jg + 1fj�T2
ig1fj6�T1

ig
� �

=
Xn
i = 1

Xn
j = i + 1

[1fi�T1
jg 1fj�T2

ig + 1fi?T2
jgð Þ + 1fi�T2

jg 1fj�T1
ig + 1fi?T1

jgð Þ

+ 1fj�T1
ig 1fi�T2

jg + 1fi?T2
jgð Þ + 1fj�T2

ig 1fi�T1
jg + 1fi?T1

jgð Þ]

=
Xn
i = 1

Xn
j = i + 1

di‚ j(T1‚ T2):

,
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Lemma 2. The AD distance d(S‚ T ) between a tree S and trees T on the same vertex set [n] equals

d(S‚ T ) =
Xn
i = 1

Xn
j = i + 1

di‚ j(S‚ T ) (10)

where di‚ j(S‚ T ) is the distance contributed by the unordered pair fi‚ jg of distinct vertices defined as

di‚ j(S‚ T ) = 1fi�S jg 2aj‚ i + bi‚ j
� �

+ 1fj�S ig 2ai‚ j + bi‚ j
� �

+ 1fi?S jg ai‚ j + aj‚ i
� �

: (11)

Proof. We apply Lemma 1 and obtain

d(S‚ T )=
X
T2T

d(S‚ T) =
X
T2T

Xn
i = 1

Xn
j = i + 1

di‚ j(S‚ T)

=
X
T2T

Xn
i = 1

Xn
j = i + 1

[1fi�S jg 2 � 1fj�T ig + 1fi?T jgð Þ

+ 1fj�Sig 2 � 1fi�T jg + 1fi?T jgð Þ
+ 1fi?S jg 1fi�T jg + 1fj�T igð Þ]

=
Xn
i = 1

Xn
j = i + 1

[1fi�S jg 2
X
T2T

1fj�T ig +
X
T2T

1fi?T jg
 !

+ 1fj�Sig 2
X
T2T

1fi�T jg +
X
T2T

1fi?T jg
 !

+ 1fi?S jg
X
T2T

1fi�T jg +
X
T2T

1fj�T ig
 !

] =
Xn
i = 1

Xn
j = i + 1

di‚ j(S‚ T ):

,

Lemma 3. For any i‚ j 2 V(T ), the entry ai‚ j of the AD matrix AT equals:

ai‚ j =

2n3 - 2n2 + 4n - 3‚ if 0 = i< j � 2n‚

n3 - n2 + 2n - 2‚ if 0< i< j � n‚ (i‚ j) 2 E(G)‚

n3 - 2n2 + 2n - 3‚ if 0< i< j � n‚ (i‚ j) =2 E(G)‚

n3 - n2 + 2n - 1‚ if 0< i � n< j � 2n‚

2n3 - 2n2 + 4n - 3‚ if n � i< j � 2n‚

0‚ if 0 � j< i � 2n:

8>>>>>><
>>>>>>:

(12)

Proof. We prove the lemma by examining each of the six cases separately. For the first case, consider a

pair (i‚ j) such that 0 = i < j � 2n. Recall that i = 0 is the root vertex of all trees in T . Thus, it holds that

i�T j for any T 2 T . Therefore, ai‚ j = jT j = 2n3 - 2n2 + 4n - 3. For the second case, consider a pair (i‚ j) such

that 0 < i < j � n‚ (i‚ j) 2 E(G).

Then, i�T j for all trees T in T 0 and T i. However, i6�T j for any tree T in the remaining multi-sets

different from T 0 and T i. Therefore, ai‚ j = jT 0j + jT ij = (n3 - 2n2 + 2n - 3) + (n2 + 1) = n3 - n2 + 2n - 2. For

the third case, consider a pair (i‚ j) such that 0 < i < j � n(i‚ j) =2E(G). Then, i�T j for all trees T in T 0.

However, i6�T j for any tree T in the remaining multi-sets different from T 0. Therefore,

ai‚ j = jT 0j = n3 - 2n2 + 2n - 3.

For the fourth case, consider a pair (i‚ j) such that 0 < i � n < j � 2n. Then, i�T j for all trees T in the

multi-sets T 0‚ T i and T 0
i . However, i6�T j for any tree T in the remaining multi-sets. Therefore,

12 QI AND EL-KEBIR
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ai‚ j = jT 0j + jT ij + jT 0
ij = (n3 - 2n2 + 2n - 3) + (n2 + 1) + 1 = n3 - n2 + 2n - 1. For the fifth case, consider a pair

(i‚ j) such that n < i < j � 2n.

By construction, the chain n + 1‚ . . . ‚ 2n is kept intact in every tree. Thus, i�T j for any tree T 2 T .

Therefore, ai‚ j = jT j = 2n3 - 2n2 + 4n - 3. Finally, consider (i‚ j) such that 0 � j < i � 2n. For any T 2 T
and each edge (i‚ j) 2 E(T), it holds that i < j. Therefore, it holds that i6�T j and thus ai‚ j = 0 if i > j. ,

Lemma 8. For any pair (i‚ j) of vertices such that 0 � i < j � 2n, either i�S� j or i?S� j.

Proof. To prove this lemma, consider a tree S such that v�S u for some 0 � u < v < 2n. By Eq. (3) in

Lemma 2, du‚ v(S‚ T ) = 2au‚ v + bu‚ v. We distinguish three cases regarding the occurrence of u and v, and

show for each case that the resulting distance d(S‚ T ) will exceed the upper bound established in Lemma 7.

First, consider 0 < u < v � n. Then, du‚ v
min(T ) = au‚ v by Eq. (6), yielding

d(S‚ T ) =
X2n
i = 0

X2n
j = i + 1

di‚ j(S‚ T ) = du‚ v(S‚ T ) +
X

0<i<j�2n‚ (i‚ j)6¼(u‚ v)

di‚ j(S‚ T )

� 2au‚ v + bu‚ v +
X

0<i<j�2n‚ (i‚ j)6¼(u‚ v)

d
i‚ j
min(T )

=L+ au‚ v + bu‚ v = L+ 2n3 - 2n2 + 4n - 3:

Since 2n3 - 2n2 + 4n - 3 > n2 - n, Lemma 7, which states that d(S�‚ T ) � L+ n2 - n, implies S is not an

optimal consensus tree.

Second, consider 0 < u � n < v < 2n. Then, du‚ v
min(T ) = bu‚ v by Eq. (6), yielding

d(S‚ T ) =
X2n
i = 0

X2n
j = i + 1

di‚ j(S‚ T ) = du‚ v(S‚ T ) +
X

0<i<j�2n‚ (i‚ j)6¼(u‚ v)

di‚ j(S‚ T )

� 2au‚ v + bu‚ v +
X

0<i<j�n‚ (i‚ j)6¼(u‚ v)

d
i‚ j
min(T )

= L+ 2au‚ v = L+ 2n3 - 2n2 + 4n - 4

Since 2n3 - 2n2 + 4n - 4 > n2 - n, Lemma 7, which states that d(S�‚ T ) � L+ n2 - n, implies S is not an

optimal consensus tree.

Third, consider u = 0 or n < u < v � 2n. Then, du‚ v
min(T ) = bu‚ v = 0 by Eq. (6), yielding

d(S‚ T ) =
X2n
i = 0

X2n
j = i + 1

di‚ j(S‚ T ) = du‚ v(S‚ T ) +
X

0<i<j�2n‚ (i‚ j)6¼(u‚ v)

di‚ j(S‚ T )

� 2au‚ v + bu‚ v +
X

0<i<j�n‚ (i‚ j) 6¼(u‚ v)

d
i‚ j
min(T )

= L+ 4n3 - 4n2 + 8n - 6

Since 4n3 - 4n2 + 8n - 6 > n2 - n, Lemma 7, which states that d(S�‚ T ) � L+ n2 - n, implies S is not an

optimal consensus tree. ,
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