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Consensus Tree Under the Ancestor—Descendant
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ABSTRACT

Due to uncertainty in tumor phylogeny inference from sequencing data, many methods infer
multiple, equally plausible phylogenies for the same cancer. To summarize the solution
space 7 of tumor phylogenies, consensus tree methods seek a single best representative
tree S under a specified pairwise tree distance function. One such distance function is the
ancestor—descendant (AD) distance d(T, T'), which equals the size of the symmetric differ-
ence of the transitive closures of the edge sets E(T) and E(T’). Here, we show that finding a
consensus tree S for tumor phylogenies 7~ that minimizes the total AD distance ZTG 74, T)
is NP-hard.

Keywords: cancer, consensus tree, infinite sites assumption, intra-tumor heterogeneity.

1. INTRODUCTION

CANCER RESULTS FROM AN EVOLUTIONARY PROCESS during which somatic mutations accumulate in a
population of cells (Nowell, 1976). To study tumor evolution, researchers apply phylogeny inference
algorithms to sequencing data of tumors (Schwartz and Schiffer, 2017). Due to uncertainty in tumor phy-
logeny inference from sequencing data, these methods typically yield multiple candidate trees 7 for the same
tumor (EI-Kebir et al., 2016; Qi et al., 2019).

To summarize this solution space, several works have been proposed to infer a consensus tree S that best
represents the set 7 of candidate trees. More formally, these consensus tree methods typically employ a
distance function d(T), T>) that compares two trees 7 and 75, and seek a consensus tree S that minimizes
the total distance ZTGT d(S, T) (Aguse et al., 2019; DiNardo et al., 2020; Fu and Schwartz, 2021; Govek
et al., 2018, 2020; Guang et al., 2023; Karpov et al., 2019).

As many tumor phylogeny inference methods make the infinite sites assumption, which states that each
mutation is gained exactly once on the tree and never subsequently lost (Kimura, 1969), tumor phylogenies
that adhere to this assumption are typically represented as mutation trees. These are rooted trees where each
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node represents a clone composed of the mutations labeling the nodes of the unique path to the root
(Fig. 1a). For example, GraPhyC (Govek et al., 2018, 2020) finds an optimal consensus mutation tree based
on the parent—child (PC) distance in polynomial time.

Briefly, the PC distance of trees T, and T is defined as the size of the symmetric difference between the
edge sets E(T) and E(T,). Aguse et al. (2019) generalized the problem to identify multiple consensus trees
under the PC distance, and Christensen et al. (2020) considered a multiple-choice version of the problem to
identify repeated evolutionary trajectories in cancer phylogeny cohort data.

Although computationally tractable, DiNardo et al. (2020) suggest the PC distance may not provide
enough resolution for tumor phylogeny comparison. Recently, Guang et al. (2023) developed TuELIP,
which uses integer linear programming to identify the optimal consensus tree with the ancestor—descendant
(AD) distance, originally proposed by Govek et al. (2018). The AD distance equals the size of the sym-
metric difference of the transitive closures of the directed edge sets E(T) and E(T3).

In other words, the AD distance equals the number of ordered pairs of vertices (u, v) where u is an
ancestor of v that are unique to either 7 or 7, (Fig. 1b). Compared with the PC distance, the AD distance
provides greater resolution to detect subtle differences between the two trees. Importantly, the hardness of
the consensus tree problem under the AD distance is unknown (Fig. 1c), leaving the existence of a
polynomial-time algorithm as an open problem.

In this study, we show that finding the optimal consensus tree under the AD distance is NP-hard.
Therefore, unlike the PC distance consensus tree problem, for which a polynomial-time algorithm exists
(Govek et al., 2020; Govek et al., 2018), there is no polynomial-time algorithm for the consensus tree
problem under the AD distance unless P=NP.

2. PROBLEM STATEMENT

We consider mutation trees 7, which are rooted, vertex-labeled trees with vertex set V(T) and edge set
E(T). Intuitively, each vertex i of a mutation tree T corresponds to a tumor clone comprising the mutations
that label the vertices of the unique path from i to the root of 7 (Fig. 1a). We write i<y if (i) vertex i is an
ancestor of vertex j and (ii) i # j. We write i L7 j if vertices i and j occur on distinct root-to-leaf paths of T,
that is, i£A;j and jA;i. While L7 is symmetrical, that is, i_L7j if and only if j L7 i, the relation <7 is not
symmetrical.

Neither <7 nor Ly are reflexive, that is, it does not hold that i<y i, nor does it hold that i L 7 i for any
vertex i. To compute the distance between two rooted trees 77 and 7, on the same vertex set, we compare
the AD sets A(T) and A(T,) of T, and T5, respectively. More formally, A(7T) equals the transitive closure
of E(Ty).
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FIG. 1. Overview of the ADCT problem. (a) There is a bijection between phylogenies under the infinite sites

assumption and mutation trees. (b) The AD distance d(7T}, T>) of mutation trees 7', and 7, equals the size of the
symmetric difference of the AD sets A(T}) and A(73). Here, d(T}, T,) =1 due to the unmatched pair of A(7) indicated
in a box. (¢) In the ADCT problem, we seek a consensus mutation tree S that minimizes the sum of the distances to the
STEP trees 7. AD, ancestor—descendant; ADCT, Ancestor—Descendant Consensus Tree.
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Definition 1. The AD set A(T) of a rooted tree T consists of all ordered pairs (i, j) of vertices such that
i is ancestor of j, that is, A(T)={(i,j) € V(T)x V(T)|i<rj}.
The AD distance d(T;, T») equals the size of the symmetric difference of A(T}) and A(T,), more formally
defined as follows. See Figure 1b for an example.

Definition 2. Given two rooted trees Ty, T, on the same vertex set, the AD distance d(Ty, T,) equals
the size of the symmetric difference of A(Ty) and A(T,), that is, d(Ty, T») = |A(T)\A(T?)| + |A(T)\A(TY)|.
This leads to the following problem.
Problem 2.3 (Ancestor-Descendant Consensus Tree [ADCT]). Given a multi-set T ={Ty, ..., Ty} of
rooted trees on the same vertex set V(T), find a rooted tree S on vertex set V(T) such that the sum
Yot d(S, T)) of the distances from S to each input tree T € T is minimum.

3. COMBINATORIAL CHARACTERIZATION

For any unordered pair {7, j} of distinct vertices in a mutation tree 7, it must hold that i<z j, j<ri or
iLrj. We indicate the first two cases using 1{i<rj} such that 1{i<rj} =1 if i<rj and 0 otherwise, and the
third case using 1{i_L7j} such that 1{i L7} =1if i L7 and O otherwise. As such, the distance d(T}, T>) can
be decomposed as follows.

Lemma 1. The AD distance d(Ty, T») for trees T, and T, on the same vertex set [n] equals
n n o
d(Ty, T)=Y_ > d"/(Ty, Ty (1)
i=1j=i+1
where d"/(Ty, T,) is the distance contributed by the unordered pair {i,j} of distinct vertices defined as

d™(Ty, Ty)  =1{i<r, j}2 1{j=<p i} +1{ils,j})
+1{j=<r, i}(2 - i<, j} +1{iLy,j}) @
+{ily jE (i< j}+{j=r, i}).

Proof. See Section 6. O
We can similarly decompose the total AD distance d(S, 7) between a tree S and trees 7 by first defining
the AD matrix and the branching matrix as follows.

Definition 3. An nxn matrix Ar =[a; ;] is an AD matrix for trees T provided each entry a; ; equals
ZTET l{i'<Tj}~

Definition 4. An nxn matrix By =[b; ;] is a branching matrix for trees 7 provided each entry b;

equals Y r.r H{iLlrj}.

While A7 may not be symmetric, matrix By is symmetric due to symmetry of the relation L. Moreover,
the diagonal of both matrices consist of 0s. Finally, note that a; j+a; ;+b; j=|7 | if i # j. See Figure 1c for
an example.

Lemma 2. The AD distance d(S, T) between a tree S and trees T on the same vertex set [n] equals
des, T)= Z Z d"(s,T) A3)
i=1j=i+1
where d"I(S, T) is the distance contributed by the unordered pair {i, j} of distinct vertices defined as
d" (S, TY=1{i=s j} (2a;; +b; ;) + 1{j=si} (2a; ; + b; ;)
+1{iLs j}(ai;+aj). )

Proof. See Section 6. O
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4. COMPLEXITY
Our main result is as follows.

Theorem 1. The ADCT problem is NP-hard.
We show NP-hardness by giving a polynomial-time reduction from the MAX-CLIQUE problem, defined as
follows.

Problem 4.1 (MaxClique). Given an undirected graph G with n=|V(G)| vertices and m=|E(G)| edges,
find a cliqgue C C V(G) such that |C| is maximum.

The MaXCLIQUE problem is NP-hard (Cook, 1971; Karp, 1972). In the following reduction, we assume
the undirected graph G contains at least three vertices, that is, n > 2. This assumption does not affect the
hardness of the MAaXCLIQUE problem. We impose an arbitrary ordering on the vertices V(G) such that
V(G)=[n]={1, ..., n}. For each vertex i € V(G), let 4(i) be the set of vertices adjacent to i in G, that is,
3(i)={j € [nll(i.j) € E(D)}.

Using the ordering, we further split the set (i) of neighboring vertices &(i) into vertices & (i)=
{j € [nl|j € 8(i), i < j} that are adjacent to i and occur after i in the ordering. The vertex set V(7") of the
corresponding ADCT problem instance includes 2n+1 vertices, labeled {0, 1, ...,n,n+1, ..., 2n}.
Vertex 0 denotes a special vertex that is the shared root of all trees 7, and a set {n+1, ...,2n} of
n vertices that forms a chain in all trees. We construct the following multi-set 7 of rooted trees on the new
vertex set V(7)={0, ..., 2n}, with three types of trees (Fig. 2b).

First, let Ty be a chain tree whose vertices are in ascending order, that is, E(Tp)={(i, i+ 1)|0 < i < 2n}.
The multi-set 7o comprises n° —2n? +2n— 3 copies of Tj. Second, for each vertex i in the undirected graph
V(G), let T; be a tree rooted at 0. The edge set E(T;) consists of (i) edges from 0 to every vertex in G that is
either at most i or is not adjacent to i, that is, {(0,)|j € V(G)\é~ (i)}; (ii) edges from O to every vertex in
G that is greater than i and adjacent to i, that is, {(i, /)| j € 6~ (i)}; (iv) the edge {(i, n+1)}; and (v) a chain
from n+1 to 2n in ascending order, that is, {(j, j+ D)|n < i < 2n}.

The multi-set 7; comprises n*+1 copies of T;. Third, for each vertex i € V(G), let T} be a tree rooted
at 0. The edge set E(T}) consists of (i) edges from 0 to every vertex in G, that is, {(0,)|j € V(G)}; (ii) the
edge {(i,n+1)}; and (iii) a chain from n+ 1 to 2n in ascending order, that is, {(j, j+ D)|n+1 < j < 2n}. The
multi-set 7} comprises only one copy of T7.

The multi-set 7 of trees corresponding to MaxCLIQUE, for instance G comprises the sum of multi-
sets 7o, 71, .... T, T4, ..., T". Note that the sum of two multi-sets X and X’ results in a multi-set Y

FIG. 2. An example reduction from MaxClique to ADCT. (a) An undirected graph G with n=35 vertices and m=5
edges with a maximum clique C of size 3. Here, 6(2)={1, 3,4} and 6~ (2)={3, 4}. (b) The corresponding trees in 7,
with n® —2n? +2n—3 =82 copies of Ty, n>+1=26 copies of T; and one copy of T"; for each vertex i € V(G). (c) The
optimal consensus tree S*. The vertices on the directed path between 0 and n+ 1 =06 indicate the maximum clique C.
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whose unique elements have a multiplicity equal to the sum of the multiplicities of that element in X and X'.
As such, the total number 7 of trees equals 2n° —2n? +4n—3. Clearly, the reduction can be completed
in polynomial time. We have the following two lemmas characterizing the AD and branching matrix of 7,
respectively.

Lemma 3. For any i,j € V(T), the entry a; ; of the AD matrix At equals:

20 =22 +4n-3, if 0 = i<j < 2n,
n—n*+2n-2, if 0<i<j<n, (i,)) € EG),
n-2n’+2n-3, if0<i<j<n,(i,))¢EG),

4j= n—n*+2n-1, if 0 <i<n<j<2n, )
23 =2n*+4n-3, if n <i<j<2n,
0, if 0 <j<i<2n.
Proof. See Section 6. O

Lemma 4. For any i,j € V(T) such that i < j, entries b; j=b; ; of the branching matrix Br equal:

0, if0=i<j < 2n,

w-n?+2n—1, if0<i<j<n,(, ) €EQG),
bij=b; ;=4 n*+2n, ifo<i<j<n(,j ¢ EG),

n—n?+2n-2, ifo<i <n<j < 2n,

0, ifn<i<j < 2n.

Proof. Recall that a; j+a; ;+b; j=|T|. Let i,j € V(7) such that i <j. Since a; ;=0 by Lemma 3,
we have a; j+b; j=|T|. As such, b; j=b; ;=|T|—a; ;. This lemma follows using the values of a; ; from
Lemma 3. ]

We prove the following lower bound on the distance d(S, 7) of any tree S on vertex set V(7).

Lemma 5. If S is a tree on V(T), then d(S, T) is at least L=3 7/ >0, aij+ D i, Z;:Hl b ;.

Proof. Recall that for any pair (i, j) of vertices in any mutation tree S, exactly one of i<y j, j<si, iLgj is
true. Therefore, a trivial lower bound on d"/(S, T) can be obtained from Eq. (4): d*/(S, T) > d) (T)=
min{2a; ;+b; j, 2a; j+b; j, a; j+a; ;}. Note that b; j=b; ; by Definition 4. As such, d>/ (T)=d"! (T).
Using Lemma 3, if i< j, we have di'j (T)= min{2aj, i +bi,j, 2a,-,j +bi,j, ai, +aj,i} = min{b,-,j, 2(1,'!]' +
b; j, ai j} = min{b; ;, a; ;}. Further, for i < j, by Lemma 4, we obtain

min
min

0, if0 =i<j<2n,

ij _)oay, if0<i<j<n,

oin(T) = ij, If0<i<n<j < 2n, (6)
0, ifn<i<j<2n.

Plugging this into Eq. (3) of Lemma 2, we finally obtain

2n 2n

2n 2n

ds. =Y Y dis. =Y Y di(T

i=0 j=i+1

i=0 j=i+1

n 2n

=i i ai'j+z Z b,',j. (7)

i=1j=i+1

i=1j=n+1

We define a C-constrained tree as follows—shown in Figure 3a.
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FIG. 3. (a) The structure of a C-constrained tree S, as well as an optimal consensus tree S*. (b) The tree used to prove
an upper bound on d(S*, 7) in Lemma 7. (¢) An example tree based on the instance shown in Figure 2 used in Lemma
12, where the chain {n+1, ..., 2n} is attached to vertex 5 which has smaller depth than vertex 3. (d) An example tree
based on the instance shown in Figure 2 used in Lemmas 12 and 14. In the former lemma, the chain {n+1, ..., 2n} is
attached to vertex 5, which has higher depth than vertex 3. In the latter lemma, vertex 5 is a leaf whose parent is not 0.
(e) An example tree based on the instance shown in Figure 2 used in Lemma 14 where the parent of 5 is O instead of 4.

Definition 5. For vertices C={vy, ..., v} C V(G) of G such that vi < ... < vy, the C-constrained
tree S¢ has vertex set {0, ..., 2n} such that (i) vertex 0 is the root, (ii) there is an edge (0, i) for each vertex
ie{l,...,n}\C, and (iii) there is a chain 0 - v — ... v, > n+1 — ... — 2n.

If C is a clique in G then the corresponding tree S induces the following distance d(S¢, 7).
Lemma 6. For any clique C of size k of G, we have d(Sc, T)=L+n?—nk+k(k— 1)/2.

Proof. Using Eq. (3) in Lemmas 2, 3, and 4 and Eq. (6) in Lemma 5, we discuss the following six cases
for the difference between d“/(S¢, T) and d] (T) of vertices 0 < i < j < 2n.

First, we consider 0=i < j < 2n. Since i=0 is the root vertex of Sc. Therefore, it holds that i<g,. ;.
As such, d"/(S¢, T)=2a; ;+b; j=0=d"] (T). Second, we consider 0 < i < j < nand i,j € C. In this case,
i, j are on the same branch in S¢. Therefore, it holds that i<, j. As such, d"/(S¢, T)=2a; ;+b; j=b; ;. Since
C is a clique, we have (i, j) € E(G).

Therefore, d*/(S¢, T)— d;n{n(’f) b;; a,j—l Third, we consider 0 < i <j<n, and i¢C or j¢C.

In this case, it holds that i Ls,. j. As such, d"/(Sc, T)=a; j+a; i =a;, J—d;nfn(T) Fourth, we consider 0 < i <
n<j<2nandi€C. In this case, it holds that i<s.j. As such, d"/(Sc, T)=2a;;+b; j=b; ;= din{n(T).
Fifth, we consider 0 < i <n <j<2n and i¢ C.
In this case, it holds that i Ls. j. As such, d"/(Sc, T)=a; j+a; ;=a; ;. Therefore, d"/(Sc, T)— dmm(T)—
a,J b; j=1. Sixth, we consider n <i <j < 2n. It holds that i<s.j. As such, d"(Se, T)= 2a;i+b; ;=
0=di (T

Thus, only the second and fifth case have a non-zero value for (d"/(S¢, T) - dI’n{n(T )). Putting everything
together, we have that d(S¢, 7)—L equals

2n  2n 2n

22 @Se. D=dy @)= > 1+ 3 31

i=0 j= i<j,i,jEC  0<i<n,i¢ Cj=n+1
=n* —nk+k(k—1)/2.

This proves the lemma. O
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Our goal now is to show that an optimal consensus tree $* of the multi-set 7 obtained from the
undirected graph G is a C-constrained tree such that C is a clique of G. To this end, we establish the
following useful upper bound on d(S*, 7).

Lemma 7. It holds that d(S*, T) is at most L+n*—n.

Proof. To prove the lemma, we consider a tree S=(V, E(S)), ES)={(0,)[0 <i<n}U{l,(n+1)}U
{(i,i+Dln <i<2n} as shown in Figure 3b. By Lemmas 2, 3, and 4, we have d(S, 7)= S jziiﬂ
d"/(S,T) where

0, if0=i<j<o2n,
. aj,j, 1f0<l<]§n,
A, T)=4 b, ifl=i<n<j<o2n,
ai,j, if1<i§n<j§2n,
0, ifn<i<j<2n

Observe that a; j=b; j+1 for 0 <i <n <j < 2n in Lemmas 3 and 4. Using the lower bound L estab-
lished in Lemma 5, we have

2n 2n n n 2n n 2n
dS. D=3 > dIS D=3 Y aij+ > b+, > Gij+D
i=0 j=i+1 i=1j=i+1 j=n+1 i=2 j=n+1
=L+n’—n.
Hence, d(S*,7) < d(S,T)=L+n*>—n. O

We now reason about the topology of §*. The following lemma shows that j cannot be an ancestor of i in
S*if i <.
Lemma 8. For any pair (i, j) of vertices such that 0 < i < j < 2n, either i<gj or i Lg:].

Proof. See Section 6. ]
Our reduction enforces that O is the root of S* and that 2n is a leaf.

Lemma 9. Vertex 0 is the root of S*.

Proof. Suppose for a contradiction that 0 < j < 2n is the root of S*. Consider vertex 0. Since j is the root,
it holds that j<s-0. However, since 0 < j, by Lemma 8, it must hold that either 0<g-j or 0_Ls- j, yielding a

contradiction. Hence, vertex 0 must be the root of S*. O

Lemma 10. The subgraph of S* induced by vertices {0, ..., n} forms a tree.

Proof. Tt suffices to prove that no vertex {n+1, ...,2n} is an ancestor of a vertex {1, ...,n} in S*.
Suppose for a contradiction there exist vertices 0 <i <n <j <2n such that j<gs i. Since i <j, by
Lemma 8, it must hold that either i< j or iLs- j, yielding a contradiction. [l

Moreover, vertices {n+1, ...,2n} form a chain from n+1 to 2n in ascending order as shown by the

following lemma.
Lemma 11. For any pair (i, j) of vertices such that n < i < j < 2n, it holds that i<g-j.

Proof. Suppose for a contradiction that uA4g. v for some n < u < v < 2n. By Lemma 8, we have vA4g. u.
Therefore, ulg-v, that is, u and v are branched in S*. By Eq. (3) in Lemmas 2 and 3, we have
d“"(S*,T)=a, ,. As such,

2n  2n
ds.1)=3 S diS = D+ Y. dIST)
i=0 j=i+1 0<i<j<2n, (i, )#(u, v)

>ant Y, iS5 T)

0<i<j<n, (i, #(u, v)

=L+2n*-2n*+4n-3
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Since 2n® —2n%+4n—3 > n? —n, Lemma 7, which states that d(S*, 7) < L+n*—n, implies that S* is not

an optimal consensus tree, a contradiction. O
The root vertex r of a mutation tree S has depthg(r)=0, and every vertex v # r with parent u has
depthg(v) =depthg(u)+ 1. In Lemma 11, we have shown that the chain {n+1, ..., 2n} remains intact in an

optimal consensus tree S*. In the following lemma, we will show that this chain is attached to a maximum-
depth vertex among {0, ...,n} in S*.

Lemma 12. The parent of vertex n+1 in S* is a vertex in the set {0, ..., n} with maximum depth.

Proof. Let i be the parent of vertex n+ 1. Lemma 11 states that the chain n+1 — ... — 2n is kept intact
in S*. This means that i must be in {0, ..., n}. Suppose for a contradiction that depthg:(i) does not have
the maximum depth among vertices {0, ...,n}. Therefore, there is a vertex 0 <j<n such that
depthgs-(j) > depthg-(i)—as illustrated in Figure 3c. Let P; be the unique path from O to i. Let P; be the
unique path from O to j.

Since depthg-(j) > depthg-(i), we have |V(P;)| < |V(P;)|. We remove the chain and re-attach it to
the higher-depth vertex j, yielding S=(V, E(S)), where E(S)=(E(S*)\{(,n+ 1)} U {(j, n+ 1)} as shown in
Figure 3d. By Lemma 10, S is a tree. We will show that d(S, 7) < d(S*, T) by distinguishing four cases
regarding the placement of vertices 0 < u < v < 2n.

First, we consider 0 <u <v<n or n<u <v<2n In the former case, u,v are located outside
the chain and in the latter case, inside the chain. In both cases, the relation between u and v is the same
in both $* and S. As such, d*V(S§*,7)—d""(S,7)=0 by Eq. (3) in Lemma 2. Second, we consider
0<u<n<v<2nand uc V(P;)NV(P;). The relation between u and v also stays the same, and u is an
ancestor of v in both §* and S.

Similar to the previous case, we have d“"(S*,7)—d""(S,7)=0. Third, we consider 0 <u <
n<v<2nandué€ V(Pi)\V(Pj). Thus, u is an ancestor of v in S*; however, they are branched in S. By
Eq. (3) in Lemmas 2, 3, and 4, 4“'($*,7)-d""(S,7T)=b, ,—a, ,=—1. Fourth, we consider
0<u<n<v<2nanduc V(P)\V(P;). Thus, u is an ancestor of v in S; however, they are branched
in S*. Similar to the previous case, we have d*"(S*,7)—d""(S, T)=ay,, ,—b,, ,=1. Therefore,

n

2n
A, T)-dS, T)y= Y > @S, T)-d""(S, 7))

ucV(P)AV(P))v=n+1
=(|V(P)| - |V(P)])n > 0.

Note that A indicates the symmetric difference. This contradicts that S* is optimal. O
We have that non-adjacent vertices i, j in G must be branched in an optimal consensus tree S*.

Lemma 13. For any pair i,j € V(G) of distinct vertices where (i, j) ¢ E(G), it holds that i L j.

Proof. Suppose for a contradiction there exist vertices u, v € V(G) such that (u, v)¢ E(G) and ufg. v.
WLOG, we assume u < v. By Lemma 8, either u<g- v or u_L g v. Therefore, it holds that u<g v. By Eq. (3)
in Lemma 2 and Lemma 3, d* (S, 7)=b,, . As such, d(S, T) equals

2n 2n

Z Z d-(S, T)y=d""(S, T)+ Z d-i(s, T)

i=0 j=i+1 0<i<j<2n, (i, j)#(u, v)

> byt > dil
@i<)), G, HEV, (i, )Fu, v)

($.7)

=L+b, ,—a,,=L+2n*+3

Since 2n*+3 > n?—n, Lemma 7, which states that d(S*, 7) < L+n?—n, implies S* is not an optimal

consensus tree, a contradiction. O
In the following lemma, we show that S* is a star tree except for one linear branch containing a subset
C C {1, ...,n} of vertices and terminating with the chain {n+1, ..., 2n} (Fig. 3a, e).

Lemma 14. Let C be the vertices on the unique path from vertex 0 to vertex n+ 1, excluding 0 and n+ 1.
Then, vertex 0 is the parent of all vertices {1, ..., n}\C in S*.
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Proof. Suppose for a contradiction that there are vertices in {1, ..., n}\C whose parents are not 0 in S*.
Among these vertices, consider a leaf vertex i. Let vertex j # 0 be the parent of i (see Fig. 3d where i=5
and j=4). Recall that by Lemma 9, vertex 0 is the root of S*. Let V; be the vertices on the unique path from
vertex 0 to i, excluding 0 and i. By Lemma 8, V; consists of vertices u such that u < i. Consider the tree S
where we attach vertex i to the root 0, that is, E(S)=E(S*)\{(j, i)} U {(0, i)}. See Figure 3e for an example.

To compute d*"(S*,7)—d""(S,T), we distinguish two cases for vertices 0 < u < v < 2n. First, we
consider v=i and u € V;. Thus, u<g- v. By the contrapositive of Lemma 13, we have (u, i) € E(G) for any
u € V;. Since ulgv, by Eq. (3) in Lemmas 2, 3, and 4, we have d“"(S*, T)—d"“"(S,T)=b,,v—a, ,=1.
Second, we consider the case where v # i or u¢ V;. The relationship between u and v is the same in S and
S*. As such, d*"(S*, T)—d""(S,7)=0 by Eq. (3) in Lemma 2. Therefore,

d(S" T)-d(S. T)=Y_d"* (s, T)~d"*(S. T)=|Vi{| > 0

ueV;

This contradicts that S* is optimal and thus proves the lemma. ]
Finally, we show that vertices C of S* are, indeed, a clique of G.

Lemma 15. The vertices C of S* on the unique path from vertex 0 to vertex n+ 1, excluding 0 and n+1,
form a clique in G.

Proof. By Lemma 9, vertex 0 is the root of S*. Therefore, for any i,j € C, we have il j. By
the contrapostive of Lemma 13, (i, j) € E(G) for all i,j € C. Hence, C is a clique of G. O

Corollary 1. Any optimal consensus tree S* is a C-constrained tree such that C is a clique of G.

Lemma 16. For any subset C C V(G) of vertices, the C-constrained tree Sc is an optimal consensus tree
of T if and only if C is a maximum clique in G.

Proof. (=) Let S¢ be an optimal C-constrained consensus tree. By Lemma 15, we know that C is a
clique. Let |C|=k. By Lemma 6, we have d(S¢, 7)=L+n>—nk+k(k—1)/2. Suppose for a contradiction
that C is not a maximum clique of G. By our premise, there must exist another clique C’ such that
|C'|=¢ > k=|C|. Let S¢ be the corresponding C’'-constrained tree following Definition 5. By Lemma 6, we
have d(S¢/, T)=L+n*>—nl+0({—1)/2. Since n > £ > k+1,

(k+0)(—k)
2

< (n+ %)(k—€)+n(€—k) < - % <0,

dSc, T)—-d(Sc, T)=(n+ %)(k—[)%—

which contradicts that S¢ is optimal.

(+<=) Let C be a maximum clique of G such that |C|=k. Suppose for a contradiction that the corre-
sponding C-constrained tree Sc is not an optimal consensus tree of 7. By Lemma 6, we have
dSc, T)=L+n%—nk+k(k—1) /2. Therefore, by Corollary 1, there exists an optimal C’-constrained con-
sensus tree S¢, where |C'| =/, such that the distance d(S¢, 7) is strictly less than d(S¢, 7). By Lemma 6,
d(Sc, T)=L+n*>—nl+4({—1)/2. We have

1 k+0)(0—k
d(Sc. T)=d(Sc. T)=(n+ 5)(k=0)+ %
1 k+¢
=(n+5-—-)k-0) <0.
(nt 5 =5 )k=0) <
Since k, ¢ < n, we have (k+¢)/2 < n. This implies that k— ¢ < 0, which contradicts that C is a maximum
clique of size k. m

5. DISCUSSION

In this work, we demonstrated the NP-hardness of the consensus tree problem under the AD distance.
While the problem of finding a maximum clique for a graph with n vertices is hard to approximate within a
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factor of O(n'~%) for any real number ¢ > 0 unless P=NP (Zuckerman, 2006), our reduction is not
approximation-factor preserving. As such, one might be able to achieve better approximation factors for the
consensus tree problem under the AD distance, including possibly constant factors. We will investigate this
in future work.
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6. APPENDIX
6.1. Supplementary proofs

Lemma 1. The AD distance d(T, T») for trees T\ and T, on the same vertex set [n] equals

ATy, T)=Y > d(T,T») ®)

i=1j=i+1
where d"/(Ty, T») is the distance contributed by the unordered pair {i,j} of distinct vertices defined as

d" (T, To)  =Wi<p jH2 - Wj=<g i} +{ily j}) +1{j=<7i} (2 H{i<pj} +H{ilr,j})
+1{iLT1 j}(l{i_<sz}+1{j_<Tz l})

9
Proof. By Definition 2, we have
d(Ty, Ty) = |A(T)\A(TL)| + |A(T)\A(Ty)|

= Z Z Hi=p, jYUiArj}+ ZZ i<r, j}1{iAr j}

i=1 j=1 i=1 j=1

= Z Z (Mi=rp, j}HiAn i} +Wj=p i} H{jAr i})

i=1j=i+1

+ Z Z (Hi=n YAz )+ =0, i} 1{j A7, i})

i=1j=i+1

=SS i< (Uj<a, 1} + 1Ly 13+ i<} (U<, 1} + 1L )
i=1j=i+1
U<} (i<} + 10 L 1)+ 1< £} (i< 7} +1{iLr, )]

= Z Z dH(Ty, T»).

i=1j=i+1
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Lemma 2. The AD distance d(S, T) between a tree S and trees T on the same vertex set [n] equals
s, T)=> > d(s,T) (10)
i=1j=i+1
where d"/(S, T) is the distance contributed by the unordered pair {i,j} of distinct vertices defined as

di"i(S, T)= l{l‘<5]} (zaj, i +bi,j) + 1{]'<S l} (Za,-,j +b,"j) + l{lJ_S‘]} (a,»,j+aj, ,') . (11)

Proof. We apply Lemma 1 and obtain

des, T)= Zd(S, T)= Z Z Z d-i(S, T)

TeT TeT i=1j=i+1

= ZZ Z ({i<sj}(2 - Wj=ri}+1{ilrj})
TeT i=1 j=i+1

+1{j=si} (2 - Yi=rj}+1{iLrj})
+1{iLsj (1{i=rj} +1{j=<ri})]

= Z Z [1{i=sj} (22 j=ri}+ > l{im}>

i=1j=i+1 TeT TeT
+1{j<si} <2 > Ki<rji+ > 1{1¢Tj}>
TeT TeT
+1{ilgj} (Z {i<rj}+ Zl{j<ﬂ'})]= >N dHEs .
TeT TeT i=1j=i+1
Il
Lemma 3. For any i,j € V(T), the entry a; ; of the AD matrix At equals:
2n% —2n* +4n -3, if 0=i<j < 2n,
n—n*+2n-2, if0<i<j<nm, (i, j) € EG),
=2’ +2n-3, if0<i<j<n, (i, j) ¢ EG),
a;,j= 3.2 ; ; i (12)
nw-n"+2n-1, if0<i<n<j<2n,
2n3 —2n2+4n-3, ifn<i<j <2n,
0, if 0<j<i <2n.

Proof. We prove the lemma by examining each of the six cases separately. For the first case, consider a
pair (i, ) such that 0=i < j < 2n. Recall that i=0 is the root vertex of all trees in 7. Thus, it holds that
i<rjforany T € T. Therefore, a; j=|7 |= 213 —2n% +4n— 3. For the second case, consider a pair (i, j) such
that 0 < i <j < n,(i,)) € E(G).

Then, i<rj for all trees T in 7 and 7;. However, i#4;j for any tree T in the remaining multi-sets
different from 7y and 7. Therefore, a; ;j=|To|+|7;|= 3 -2n*+2n-3)+(n*+ )=n*-n*+2n-2. For
the third case, consider a pair (i, ) such that 0 < i < j < n(i,j) ¢ E(G). Then, i<rj for all trees T in 7.
However, iA;j for any tree T in the remaining multi-sets different from 7. Therefore,
a;j=|To|=n*-2n"+2n-3.

For the fourth case, consider a pair (i, j) such that 0 < i <n < j < 2n. Then, i<rj for all trees T in the
multi-sets 7, 7; and 7. However, iA;j for any tree T in the remaining multi-sets. Therefore,
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a; j=|To|+|T:|+|T"i|=m*-2n*+2n-3)+(n* + 1)+ 1 =n> —n?> + 2n— 1. For the fifth case, consider a pair
(i,j) such that n < i < j < 2n.

By construction, the chain n+1, ..., 2n is kept intact in every tree. Thus, i<7j for any tree T € 7.
Therefore, a; j=|T|=2n*-2n+4n-3. Finally, consider (i, ) such that 0 <j <i <2n. For any T € T
and each edge (i, j) € E(T), it holds that i < j. Therefore, it holds that i4;j and thus g; ;=0if i >j. [

Lemma 8. For any pair (i, j) of vertices such that 0 < i < j < 2n, either i<g-j or i Lgj.

Proof. To prove this lemma, consider a tree S such that v<gu for some 0 < u < v < 2n. By Eq. (3) in
Lemma 2, d*"(S, T)=2a, ,+b, ,. We distinguish three cases regarding the occurrence of u and v, and
show for each case that the resulting distance d(S, 7) will exceed the upper bound established in Lemma 7.
First, consider 0 < u < v < n. Then, d*."(7)=a,,, by Eq. (6), yielding

min
2n 2n o B
S, T)=> > d(S, T)=d""(S. T)+ > d-i(S, T)
i=0 j=i+1 0<i<j<2n, (i, /)#(u, v)
> 2+ by o+ > dpt(T)

0<i<j<2n, (i, )#u, v)
=L+a, ,+b, ,=L+2n>-2n"+4n-3.

Since 213 —2n® +4n—3 > n*—n, Lemma 7, which states that d(S*, 7) < L+n*—n, implies S is not an
optimal consensus tree.
Second, consider 0 < u < n < v < 2n. Then, d%'(7T)=b,, , by Eq. (6), yielding

min
2n 2n o ..
S, T)=>_ > d(S, T)=d""(S, T)+ > d™(s, T)
i=0 j=i+1 0<i<j<2n, (i, )#u, v)
Z 2au, vt bu, vt Z d;;‘l{n(T)

0<i<j<n, (i, j)#u, v)
=L+2a, ,=L+2n°—2n*+4n—4
Since 2n® —2n% +4n—4 > n*> —n, Lemma 7, which states that d(S*, T) < L+n?—n, implies S is not an

optimal consensus tree.
Third, consider u=0 or n < u < v < 2n. Then, d%."(T)=b, ,=0 by Eq. (6), yielding

2n 2n
des, T)= Z Z d~ (S, T)=d""(S, T)+ Z di(S, T)
i=0 j=i+1 0<i<j<2n, (i, )7, v)

> 2a, ,+b, ,+ > dol (T)

0<i<j<n, (i, j)#(u, v)
=L+4n* —4n*+8n-6

Since 4n> —4n*+8n—6 > n*—n, Lemma 7, which states that d(S*, 7) < L+n*—n, implies § is not an
optimal consensus tree. U



