

High-Throughput Automated Exploration of Phase Growth Behaviors in Quasi-2D Formamidinium Metal Halide Perovskites

Jonghee Yang, Benjamin J. Lawrie, Sergei V. Kalinin, and Mahshid Ahmadi*

Quasi-2D metal halide perovskites (MHPs) are an emerging material platform for sustainable functional optoelectronics, but the uncontrollable, broad phase distribution remains a critical challenge for applications. Nevertheless, the basic principles for controlling phases in quasi-2D MHPs remain poorly understood, due to the rapid crystallization kinetics during the conventional thin-film fabrication process. Herein, a high-throughput automated synthesis-characterization-analysis workflow is implemented to accelerate material exploration in formamidinium (FA)-based quasi-2D MHP compositional space, revealing the early-stage phase growth behaviors fundamentally determining the phase distributions. Upon comprehensive exploration with varying synthesis conditions including 2D:3D composition ratios, antisolvent injection rates, and temperatures in an automated synthesis-characterization platform, it is observed that the prominent $n = 2$ 2D phase restricts the growth kinetics of 3D-like phases— α -FAPbI₃ MHPs with spacer-coordinated surface—across the MHP compositions. Thermal annealing is a critical step for proper phase growth, although it can lead to the emergence of unwanted local PbI₂ crystallites. Additionally, fundamental insights into the precursor chemistry associated with spacer-solvent interaction determining the quasi-2D MHP morphologies and microstructures are demonstrated. The high-throughput study provides comprehensive insights into the fundamental principles in quasi-2D MHP phase control, enabling new control of the functionalities in complex materials systems for sustainable device applications.

1. Introduction

Metal halide perovskites (MHPs) have gained significant attention as materials for high-performance optoelectronic applications due to their favorable optoelectronic properties. The power conversion efficiency of photovoltaics (PVs) based on MHPs has reached up to $\approx 25.8\%$ ^[1] and green and red light-emitting devices (LEDs) based on MHPs have demonstrated emission efficiencies exceeding 20%.^[2,3] However, one of the major challenges hindering the widespread adoption of MHPs is their instability, which affects the long-term operation and durability of devices.^[4,5] Quasi-2D MHPs have recently garnered attention for their unique properties distinctive from those observed in 3D MHP systems. Quasi-2D MHPs are represented by the chemical formula $L_2A_{n-1}B_nX_{3n+1}$, where L, A, B, and X represent the spacer cations confining the inorganic 2D lattices, monovalent organic/inorganic cations, divalent metal cations, and halides, respectively.^[6-8]

Control over the thickness of the $[PbX_6]^{4-}$ octahedra unit in quasi-2D MHPs, denoted by n , manifests tunable bandgap and exciton binding energy

in a quantum-well electronic structure, beneficial for LED applications.^[3,6,9-13] Furthermore, quasi-2D MHPs offer improved phase stability compared to 3D MHPs due to the surface-protecting ability of spacer cations against external stresses. Particularly, the implementation of the quasi-2D structure into the long-range 3D MHP lattices that form “3D-like phases”—a structure of 3D MHP lattice where the spacers are coordinated to the surface—leads to stability enhancement of MHP optoelectronics without compromising the bandgap and performances.^[13-15]

A major challenge in the development of quasi-2D MHP systems is the difficulty in obtaining a pure desired phase, as multiple phases are often formed during film fabrication.^[16] Several efforts were attempted to regulate the multi-phase emergence via spacer engineering,^[17] optimal 2D:3D MHP ratio,^[13] and additive engineering.^[3] Recently, the implementation of high-throughput robotic synthesis platforms have opened a new avenue of

J. Yang, S. V. Kalinin, M. Ahmadi
Institute for Advanced Materials and Manufacturing
Department of Materials Science and Engineering
University of Tennessee
Knoxville, TN 37996, USA
E-mail: mahmadi3@utk.edu

B. J. Lawrie
The Center for Nanophase Materials Sciences
Oak Ridge National Laboratory
Oak Ridge, TN 37831, USA
B. J. Lawrie
Materials Science and Technology Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831, USA

 The ORCID identification number(s) for the author(s) of this article can be found under <https://doi.org/10.1002/aenm.202302337>

DOI: 10.1002/aenm.202302337

materials explorations and processing optimizations,^[18] not only accelerating the discovery of functional MHP compositions (particularly in 3D system) but also providing comprehensive insights into the phase distributions, physical properties and stability of the complex quasi-2D MHP systems.^[19–21]

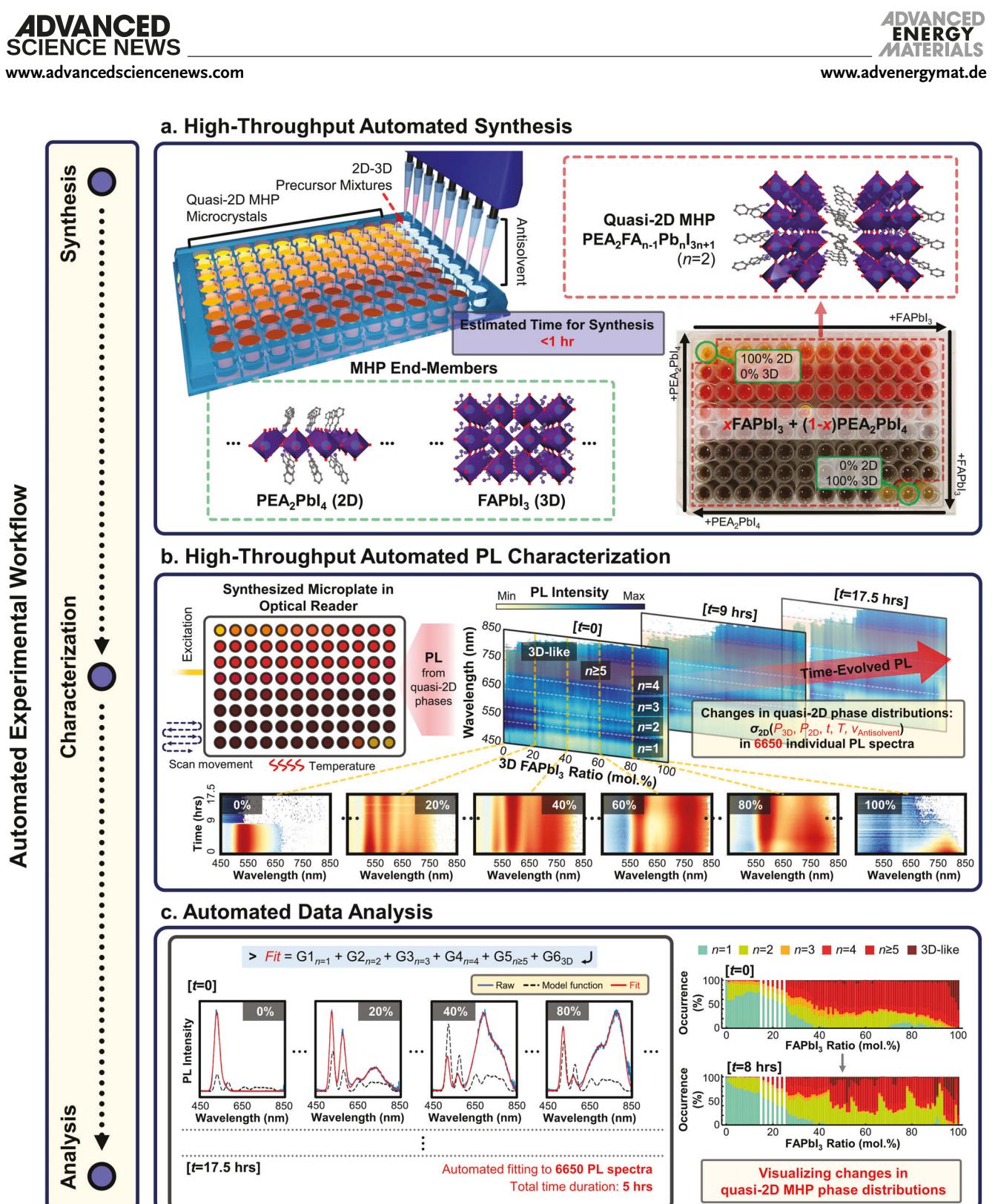
Nevertheless, all those strategies have exhibited limited success, which could be attributed to a lack of understanding of the phase growth behaviors of the complex quasi-2D MHP system. It has been shown that the broad phase distribution in quasi-2D MHP stems from the disproportionation of a kinetically-grown intermediate-*n* 2D phase.^[17] Still, the understanding of early-stage formation and growth kinetics of quasi-2D MHP phases, primarily determining the phase distribution in the system before disproportionation, remains far elusive. The missing piece originates from the difficulty in capturing the features during the practical film fabrications such as spin-coating, which quickly takes place within a few seconds by solvent evaporation.

Herein, we systematically investigate the phase formation and growth kinetics of quasi-2D MHPs as a function of 2D:3D ratios via high-throughput synthesis and characterization of the microcrystals from the precursor solution, allowing for monitoring the early-stage phase evolution over time.^[22,23] Utilizing an integrated workflow based on high-throughput automated synthesis by pipetting robot, temporal photoluminescence (PL) characterization, and automated peak analysis, comprehensive phase growth kinetics in quasi-2D systems under different synthesis conditions—2D:3D compositions, antisolvent injection rates and temperatures that are controlled in the automated platform—are explored.^[22,23] Formamidinium (FA) and phenethylammonium (PEA) cations are selected as building blocks for the 3D and 2D MHP systems, respectively, due to the excellent performances of the 3D FA MHP optoelectronics,^[1,5] and it is well known that the incorporation of 2D PEA MHPs improves the stability of the entire system.^[13] We note that the presented workflow in this study exploits an automated peak fitting function with a preset of rough information of PL characteristics for each phase in quasi-2D MHPs based on known physics, which is a stark difference from the previous experimental workflows. This enables more accurate assessment of the phase emergence features in the complex system.

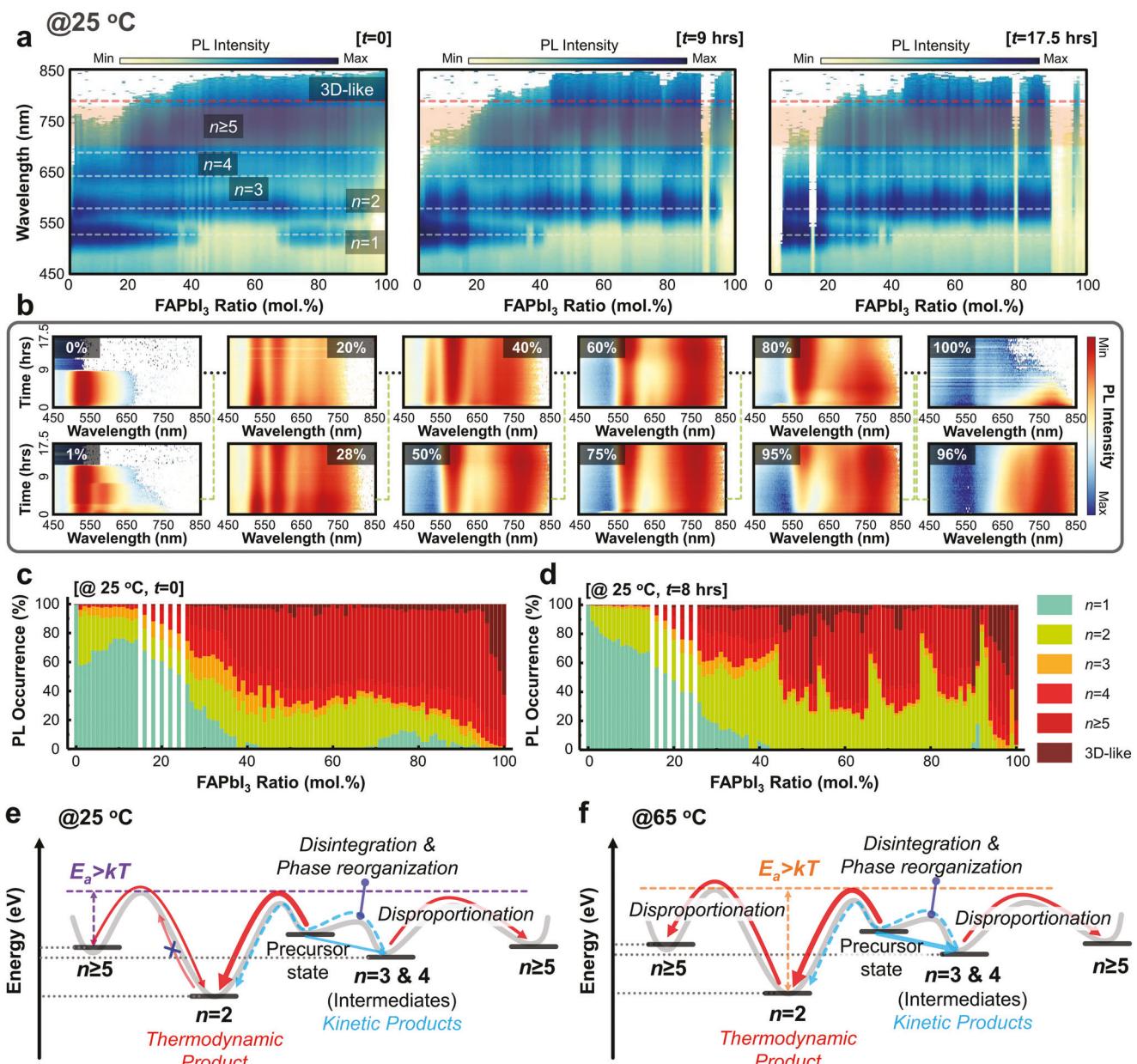
We found that, unlike the broad phase distributions in methylammonium (MA)- or cesium (Cs)-based systems,^[24] in the FA-based system, up to 95% of 3D FAPbI₃ ratio in a compositional space, the *n* = 2 2D MHP is the most dominant and stable phase. Higher-*n* (*n* ≥ 5) phases also develop alongside the *n* = 2 phase with increasing the ratio of 3D MHP. However, the 3D-like MHPs only appear after the *n* = 2 phase has been depleted (beyond 96% FAPbI₃ composition ratio). Note that these trends in the large quasi-2D compositional space are further confirmed by the unsupervised machine learning (ML) analysis of the PL spectra.

Characterizations of thin films further reveal that the emergence of the δ-FAPbI₃ phase—a room temperature stable non-perovskite phase—particularly at high 3D ratios^[25,26] inhibits the growth of 3D-like phases. Thermal annealing of the films converts the 2D phases to higher-*n* polymorphs, thereby leading to the appearance of 3D-like MHPs. Using hyperspectral cathodoluminescence (CL) microscopy, we reveal that thermal annealing results in formation of local PbI₂ crystallite byproduct, which may negatively impact the optoelectronic properties of the quasi-2D

MHPs.^[27] In addition, we found that the selection of solvent crucially impact on the surface morphologies, microstructures, and local phase inhomogeneities of the quasi-2D MHP films. Chemical principles associated with these features are proposed.


Our study exemplifies how a high-throughput synthesis platform can effectively accelerate our understanding of complex material systems with multiple functionalities. It provides comprehensive insights into the phase growth kinetics of the quasi-2D MHPs and identifies crucial factors that should be considered when designing the formation mechanism of functional semiconductor systems.

2. Results and Discussion


2.1. High-Throughput Exploration of Phase Evolution Kinetics in PEA-FA Quasi-2D MHPs

Multiple phases associated with the quasi-2D MHP start to be crystallized from the precursor solution in a reservoir. The synthesized microcrystals subsequently undergo dynamic evolutions over time with a slow rate in the presence of solvent in a reservoir, without leaving kinetically grown intermediates by solvent evaporation. This allows to comprehensively elucidate the early-stage phase growth kinetics of the quasi-2D MHP system via simple photoluminescence (PL) characterization in the large compositional space, which cannot be deeply observed in thin-film fabrication process with advanced in situ characterization techniques.^[17] We investigate the phase formation kinetics and evolution of 95 different quasi-2D MHP configurations by varying the 2D:3D precursor ratios in each precursor solution. Herein, we employ a modified high-throughput automated experimental workflow specifically designed to explore the compositional space of quasi-2D MHP. This workflow is developed from our well-established 3D MHP exploration workflows.^[22,23] This includes a robot-based synthesis platform, rapid PL characterization, and automated data analysis. The overall methodology is depicted in Figure 1, accelerating materials exploration process.

We designed a binary quasi-2D MHP system composed of 2D PEA₂PbI₄ and 3D FAPbI₃ endmembers. Precursor solutions were prepared in a wellplate and crystallized by injecting chloroform as an antisolvent (Figure 1a).^[12] Additionally, the dispensing rate of antisolvent into the precursor reservoir was controlled during synthesis, allowing us to investigate the effect of antisolvent injection rate that directly correlates with thin-film fabrication process via spin-coating. The resulting wellplate, containing multiple phases of quasi-2D MHPs, was then characterized using a high-throughput fast optical reader, enabling monitoring the temporal changes in PL and phase evolutions in the quasi-2D system as a function of reaction time and 2D:3D composition ratios (Figure 1b). During optical characterizations, temperature of the wellplate can be precisely controlled within the range of 25–65 °C. This temperature control enables us to explore the impact of temperature in the early-stage crystallization process that can be similarly governed in thin-film annealing process, providing valuable thermodynamic insights into crystallization of quasi-2D MHPs. As an example, Figure S1 (Supporting Information) shows PL spectra of 95 quasi-2D MHP microcrystal systems collected over 17.5 h with a 15 min interval, consisting of 6650 individual spectra in total (95 wells in a plate × 70 measurement

Figure 1. An automated synthesis-characterization-analysis workflow for explorations of quasi-2D MHP phase growths. a) An illustration describing high-throughput automated synthesis of quasi-2D MHPs, with 95 different binary mixtures of 2D PEA_2PbI_4 and 3D FAPbI_3 endmembers. The overall synthesis process can be completed within an hour. b) High-throughput automated PL characterizations of the synthesized quasi-2D microcrystals for 20 h. After characterizations, a massive dataset containing 6650 individual PL spectra (95 compositions \times 70 measurement cycles; per every 15 min for 17.5 h) is collected. c) Automated data analysis of the PL dataset to distinguish and estimate the emergence of each quasi-2D phase by using a designed peak fitting function operated in Python interface. Complete assessment of the entire PL dataset takes \approx 5 h, which allows us to visualize the temporal changes of the quasi-2D phases and their distributions in the system.

Figure 2. Phase growth behaviors of quasi-2D MHPs. a) Snapshots of PL spectra as a function of quasi-2D MHP compositional space collected at different timepoints. b) Time-evolved PL spectra of PEA-FA quasi-2D MHPs with selected 3D (FAPbI₃) compositional ratios. c,d) quasi-2D MHP phase distributions estimated from automated peak fitting functions: c) initial and d) after 8 h from the synthesis. e,f) Thermodynamic models describing the emergence and evolution of the FA-based quasi-2D MHP phases at e) room temperature and f) 65 °C, respectively.

cycles). To analyze the large PL dataset, an automated peak fitting and tracking function was implemented (Figure 1c). We then utilize a preset of rough PL characteristics for each quasi-2D phase from known physics. This facilitates efficient analysis of the PL dataset (6650 spectra in total), which automatically quantifies the intensity of each peak component associated with the corresponding 2D or 3D MHP phases. Subsequently, this allows for rendering the growth kinetics of each phase in the compositional space of the quasi-2D system. The analysis of this big data took only 5 h in total, which is far beyond human effort alone. As a result, the proposed high-throughput experimental workflow

based on the automated PL characterization is the most efficient method for comprehensive exploration in phase growth behaviors of the complex quasi-2D MHP systems.

Figure 2a shows the PL spectral maps of the FA-based quasi-2D MHPs as a function of 3D FAPbI₃ composition ratios (95 in total) at three different timepoints. Regardless of the sliced timepoint, 6 distinctive PL features can be identified, each of which corresponds with one (or several) phases emerging in the quasi-2D system: 2D MHPs with inorganic layer thicknesses of $n = 1\text{--}4$ (peak centered at 532, 583, 645, and 700 nm, respectively), a broadband of $n \geq 5$ quasi-2D MHPs centered at $\approx 730\text{--}770$ nm,

and 3D-like MHP peak centered >780 nm, respectively. Here, the 3D-like phases indicate the 3D α -FAPbI₃ phase where the PEA cations are passivating the surface, which therefore exhibits negligible PL blueshift from that of pure 3D α -FAPbI₃. Such lattice structure is known to enhance the lattice stability, as the PEA cation can protect the MHP lattice from external stimuli.^[13] The intensities of each component—with assumption that the PL intensity is proportional to the quantity of the corresponding 2D MHP phases in an ensemble—change over time (up to 17.5 h), suggesting a dynamic phase growth behaviors in this system.

Figure 2b shows the spectro-temporal PL maps (collected for 17.5 h) of the quasi-2D MHP microcrystal ensembles with selected 3D composition ratios (corresponding time-evolved PL decay features are shown in Figure S2, Supporting Information). While the single PL peak is observed over time for the MHP microcrystals with an exact $n = 1$ phase stoichiometry (i.e., 0% 3D ratio; PEA₂PbI₄), multiple PL peaks emerge from the quasi-2D MHP microcrystals with 3D ratios over 1%. At 1% 3D ratio, in addition to $n = 1$ 2D phase, a distinctive $n = 2$, as well as weak PL traces of $n = 3$ and 4 2D phases emerge initially. Those PL disappear over the course of the time series, particularly the $n = 3$ and 4 2D phases disappear within 3 h. These observations suggest that the introduction of a small amount of 3D component results in the formation of multiple 2D phases as kinetic products, but only the $n = 1$ phase remains for a longer time.

Around 20% 3D ratio, the intensity of $n = 1$ PL starts to reduce over time, while the intensity of $n = 2$ PL still grows over time. Meanwhile, the changes of intermediate $n = 3$ and 4 PL are insignificant at 20%. Above 28% 3D ratio, it is observed that $n = 2$ phase dominate over the PL spectra. At 50% 3D ratio (corresponding with $n = 2$ stoichiometric condition), the $n = 2$ PL dominates whereas the $n = 1$ PL disappears. Even at a 95% 3D MHP ratio, the $n = 2$ PL emission is still present. These results suggest a transition process from the $n = 1$ to $n = 2$ 2D phase driven by the decomposition of the unstable $n = 1$ phase, which is irrespective to the notable disproportionation of $n = 3$ and 4 phases in FA-based quasi-2D MHP system.^[17]

At 50% 3D ratio, it is observed that the growths of intermediate phases (i.e., $n = 3$ and 4 2D MHPs) are largely suppressed and also quickly disappeared. From 96% 3D ratio, it is difficult to identify the intermediate phases. This aligns with the previous observation in FA-based quasi-2D MHP system that the intermediate phases subsequently undergo disproportionation and therefore maintaining the intermediate phases difficult unless engineering spacer cations.^[17]

In addition, from 20% 3D ratio, the PL band associated with $n \geq 5$ starts to emerge, which becomes dominant at 50%—compatible with that of $n = 2$ phase. As the 3D ratio increases to 96%, the emission sharpens and redshifts while the $n = 2$ PL disappears (Figure S3, Supporting Information). This suggests that the (relatively) phase-pure 3D-like MHP can only be obtained once the $n = 2$ phase is depleted, which can only be observed at high 3D composition ratios (i.e., over 96%). The growth kinetics of the $n = 2$ phase could obstruct the growth of the 3D-like MHP phase.

Each peak intensity identified from the automated PL peak fitting function allows us to render an overall distribution of quasi-2D MHP phases, as shown in Figure 2c,d at initial timepoint and after 8 h. Evidently, the $n = 2$ phase dominates across the quasi-

2D MHP composition ratios over time. Also, the small portions of the intermediate phases are observed, which are further reduced as a result of phase disproportionation.

It is worth noting that different phase emergence behaviors are observed from MA-based quasi-2D MHP system. By using the experimental workflow onto the selected 3D ratios, we explored MA-based quasi-2D MHP system at room temperature (Figures S4 and S5, Supporting Information). An evenly distributed phase emergences are observed at both initial timepoint and after 8 h, showing considerable amounts of the intermediate phases. These observations imply that the dominance of $n = 2$ phase and suppression of intermediate phases are exclusive features of FA-based quasi-2D MHPs. Given that the majority of the high-performance optoelectronics are based on FA-based MHPs,^[17,28,29] understanding such non-universal features observed in this materials system is crucially important.

The A-cation site in the quasi-2D MHP lattice can be occupied by either FA or PEA. The rapid crystallization caused by antisolvent injection leads to the formation of multiple phases in the quasi-2D microcrystal system. Density-functional theory (DFT) calculations have proposed that the formation energy of quasi-2D phases increases (i.e., formation becomes difficult) with increasing n , with $n = 1$ being the easiest phase to form.^[30,31] This is supported by the initial strong $n = 1$ PL emission. The absorption spectra of solvated forms of PbI₂ in the precursor solution (in γ -butyrolactone; GBL) are consistent for all PEA:FA ratios (Figure S6, Supporting Information),^[32–34] suggesting that the MHP formation reaction is independent of the precursor ratio, at least for GBL-based solution system. Over time, dynamic transformations of these quasi-2D phases result in a reorganization mainly into the $n = 2$ phase. This suggests that the phase stability favors $n = 2$ as the most stable and preferred phase in the mixed ensemble system.

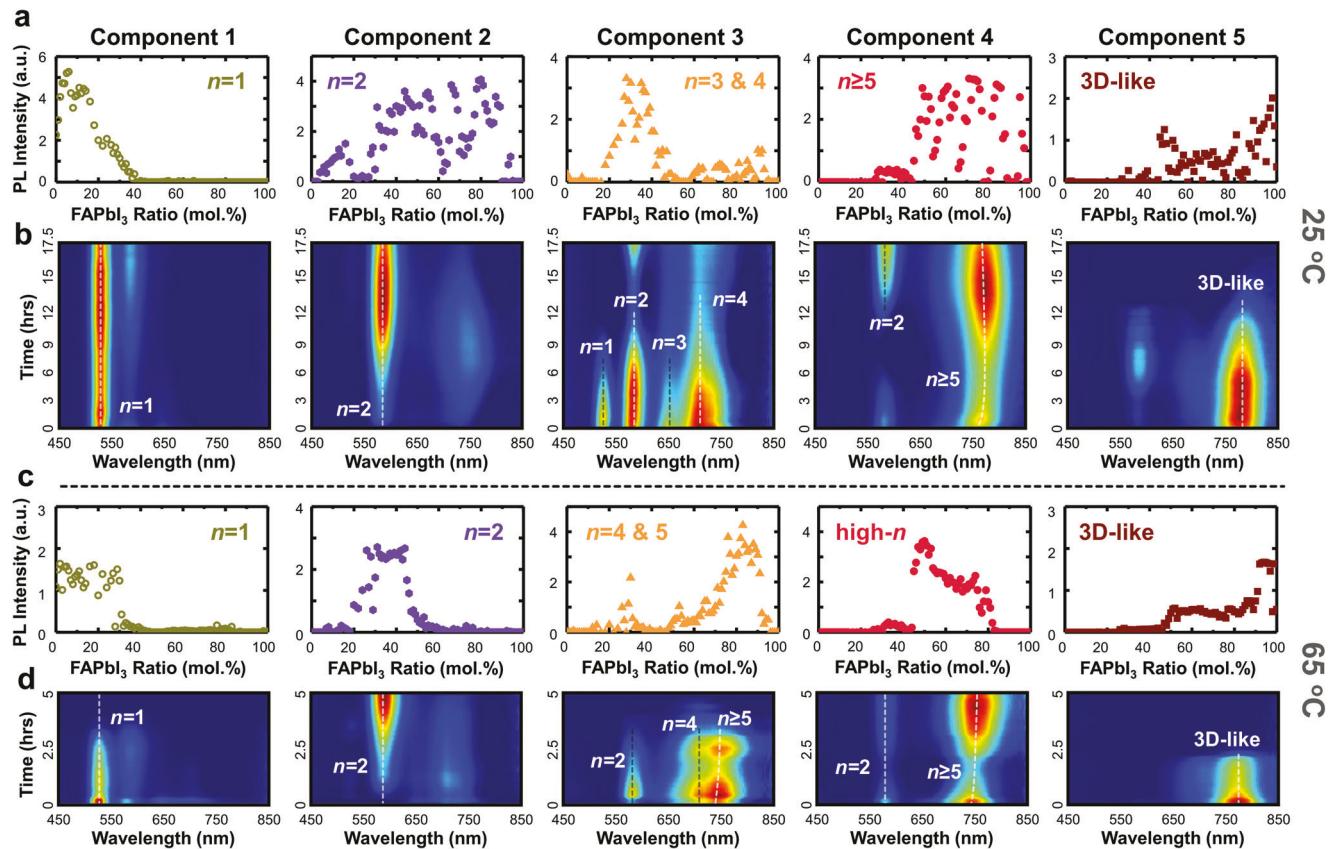
Experimentally, we also observed that the quasi-2D MHP with 98% 3D exhibits a longer lifetime over 12 h compared to that of pure 3D FAPbI₃, disappearing within 6 h (Figure S7, Supporting Information). This indicates that small incorporation of PEA spacer cation is beneficial to enhance the stability of α -FAPbI₃ phase,^[13] which is not thermodynamically stable at room temperature.^[25] These observations are consistent with previous reports in the thin film system, where the PEA spacer passivates the 3D MHP surface and protects the lattice against external stresses.^[4,13]

To further explore the thermodynamic insights into the quasi-2D phase growth behaviors, we studied the evolution of phase growth at an elevated temperature of 65 °C during PL characterizations for 4 h (Figures S8 and S9, Supporting Information) by using a temperature control function equipped in the optical reader. The higher temperature results in the increase of kinetic energy in the overall system, which accelerates the reaction kinetics. Initially, we observed the larger portions of the intermediate phases, particularly $n = 4$ MHP, which becomes larger over time. This can be explained by a facilitated growth of the kinetic products as a result of the increased kinetic energy at an elevated temperature. Additionally, $n = 4$ and $n \geq 5$ phases become dominant at the expense of the emergence of the $n = 2$ phase. Figure S10a (Supporting Information) exhibit histograms of the wavelength at the strongest PL peak in each spectrum of the datasets collected at 25 and 65 °C. Clearly, suppression on $n = 2$ phases and

increases of $n = 4$ and $n \geq 5$ phases are observed at a higher temperature (Figure S10b, Supporting Information). This implies that, rather than intermediate phases, $n = 2$ phase—stable at room temperature—starts to disproportionate and transform to high- n phases.

Combining these observations with the formation energy proposed by previous DFT calculations,^[30] we establish a plausible thermodynamic model describing the observed phase growth behaviors of the FA-based quasi 2D MHP system (Figure 2e,f, Supporting Information). From the precursor state, all 2D phases can be formed initially, as the kinetic energy at room temperature is enough to overcome the activation barriers required for each phase. Due to the low activation barrier, the intermediate phases can be kinetically formed, however these phases subsequently undergo disproportionation to be merged to $n \geq 5$ phase or directed to $n = 2$ phase. However, it is difficult for the thermodynamically most stable $n = 2$ phase to undergo disproportionation, given the large activation barrier toward the formation of $n \geq 5$ (Figure 2e). This rationalizes why the $n = 2$ phase dominates the overall quasi-2D MHP system. At the higher temperature, however, the kinetic energy becomes sufficient to overcome the activation barrier for the disproportionation of $n = 2$ phase and subsequent formation of $n \geq 5$ phase (Figure 2f). This can allow the evolution of $n = 2$ phase to $n \geq 5$ MHPs, justifying our observations.

In addition, we explored the effect of antisolvent injection rate—a crucial factor determining the quality of MHPs^[35]—by controlling the dispensing rate of antisolvent injection for high-throughput quasi-2D MHP synthesis in robotic platform operated under Python interface. This allows us to gain practical insights into the processing-property relationship for obtaining high quality quasi-2D MHPs. We employed a slow antisolvent dispensing rate ($40 \mu\text{L sec}^{-1}$) during high-throughput automated synthesis (Figures S11 and S12, Supporting Information). Notably, the larger portions of intermediate phases were initially observed at the expense of the emergence of $n = 2$ phase. The slow antisolvent injection manifests the nucleation takes place for a longer time, thereby increasing the number of kinetic products. After 8 h, those intermediate phases almost disappeared and $n = 2$ phase dominates over the quasi-2D MHP compositional space, even with a larger portion compared to that obtained from the fast antisolvent injection. These results also corroborate our hypothesis of thermodynamic model, thus suggesting that slow antisolvent injection is inferior to manifest 3D-like phase. Nevertheless, we note there are special demands on the realization of the intermediate phases for red light-emitting diode applications. Given that the large spacer cation can effectively suppress the disproportionation and thereby maintain the intermediate phases,^[17] the slow antisolvent injection can lead to a synergistic effect in this regard.

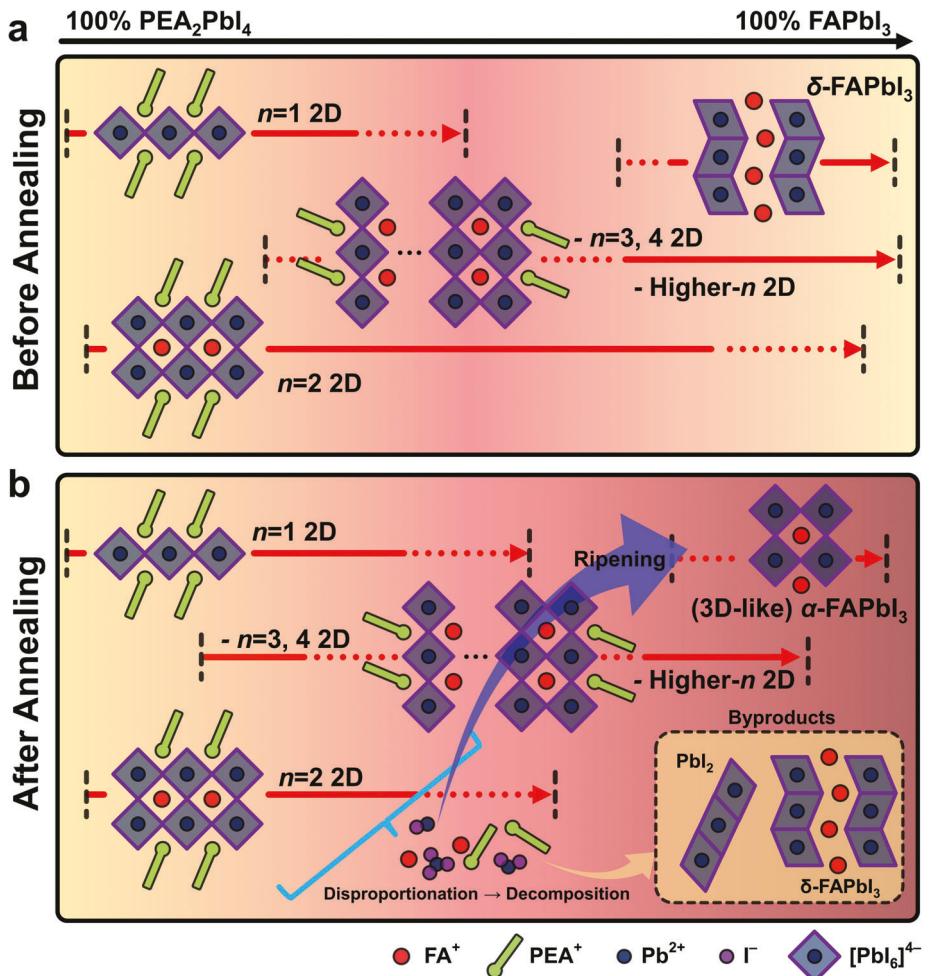

Overall, high-throughput exploration of quasi-2D MHP compositional space uncovers the early-stage phase formation and growth kinetics in the solution phase, which could not be properly observed from device-level or even in situ film characterizations. We reveal that, among the multiple quasi-2D phases, $n = 2$ MHP is the most stable phase and preferentially formed at the early stage of MHP crystallization. Furthermore, the growth kinetics of $n = 2$ phases dominates the quasi-2D MHP compositional space, leaving broad distributions of higher- n ($n \geq$

5) phases and suppressing the growth of the 3D-like phase. This not only manifests the energetic disorder in the system but also restricts the growth of the functional 3D-like phases, both limiting the optoelectronic performances—particularly in PV applications.^[36] The use of high temperature suppresses the $n = 2$ phase and facilitates the growths of intermediate phases and $n \geq 5$ phases, suggesting that complicated thermodynamic relationships between each 2D MHP are entangled in this system. The control over the antisolvent dispensing rate further provides practical insights into the control of quasi-2D MHP emergences, where the slow rate is beneficial to manifest intermediate phases.

Multivariate analysis using non-negative matrix factorization (NMF) was applied to analyze the PL datasets of the quasi-2D MHP system.^[23] This method allows for the extraction of key dynamics related to phase growth kinetics and the mapping of time- and composition-dependent PL evolution in the system. Five components were optimally chosen from the analysis: $n = 1$, $n = 2$, intermediate n ($n = 3$ and 4), high- n ($n \geq 5$, PL peak wavelength $<\approx 780 \text{ nm}$), and 3D-like (PL peak $>780 \text{ nm}$), as shown in Figure 3a,b. As the 3D ratio increases, the intensity of the $n = 1$ phase decreases and eventually disappears at a 3D ratio of $\approx 40\%$. In contrast, the $n = 2$ phase emerges throughout all 3D compositions. The intermediate phases emerge in the 3D ratio range of 20–50%, which almost disappeared quicker than the other phases. The high- n ($n \geq 5$) phases, accompanied by the $n = 2$ phase, develops from the 3D ratio of 50%. 3D-like phase also starts to emerge from 40%, which rapidly increases in intensity over 90%, unveiling the optimal compositional range to get 3D-like phase rich MHP system. The PL dataset collected at 65°C was also deconvoluted with the same way (Figure 3c,d). Notably, the compositional range where $n = 2$ phase emerges (accompanied with a weak signal of intermediate phases) is confined within 20–50%. Meanwhile, the emergence of intermediate phases including partial $n \geq 5$ phases (peak center $<750 \text{ nm}$) gradually increase from 60% 3D ratio and peaked at $\approx 85\%$. Given the high- n phases (≥ 5 , peak center $>750 \text{ nm}$) emerge at a distinctive 3D compositional range from 40–80%, this could be attributed to the disproportionation of the high- n phases. The phase emergence of 3D-like phase exhibits similar trend with that observed at 25°C . This unsupervised machine learning approach confirms the overall behaviors of the studied quasi-2D system with the observations made through automated peak fitting, emphasizing its usefulness in the data analysis of high-throughput experiments.

2.2. Emerging Features of Quasi-2D MHPs in Thin Films

To further explore how the initially determined quasi-2D phases at the early stage of crystallization evolve during film fabrication process, phase evolutions of quasi-2D MHPs in thin films are investigated. Based on our high-throughput synthesis, we selected 6 ratios of 2D:3D, prepared them as thin films using the same conditions (Figure S13a, Supporting Information), and similarly studied the evolution of PL behavior. The PL results show that the $n = 2$ phase is present in the films up to 50% 3D ratios while the $n = 1$ is absent. Even in the film with 67% 3D ratio, the $n = 2$ phase remains, which is confirmed by the corresponding XRD patterns and absorption spectrum (Figures S14 and S15).


Figure 3. NMF Analysis. a) PL loading maps and b) the characteristic spectro-temporal PL profiles (collected at 25 °C) of each NMF component—illustrating the emergence of each phase in quasi-2D MHPs: $n = 1$, $n = 2$, $n = 3$ and 4, high- n ($n \geq 5$) and 3D-like phase, respectively. c) PL loading maps and d) the characteristic spectro-temporal PL profiles (collected at 65 °C) of each NMF component—illustrating the emergence of each phase in quasi-2D MHPs: $n = 1$, $n = 2$, $n = 3$ & 4, high- n ($n \geq 5$) and 3D-like phase, respectively.

Supporting Information). Note that, for this film, the $n = 2$ phase cannot be seen from the PL spectra (Figure S13e, Supporting Information), attributed to energy transfer to the vicinal higher- n phase.^[3,9–12] Meanwhile, the high- n ($n \geq 5$) phases emerge in the films with 3D ratio over 50%, where the corresponding PL band gradually broadened or redshifted over time, likely attributed to the disproportionation of $n = 3$ –4 phases upon film drying. Note that the overall phase constitutions are analogous to those observed in the microcrystal system, indicating the major phases in the films are primarily determined at the early stage of phase formation. The use of molecularly tailored spacers and associated organic-inorganic interaction could control the early-stage phase growth kinetics,^[17] thereby beneficial to achieve phase-pure quasi-2D system.

In contrast to the microcrystals in the solution phase, thermal annealing was found to be necessary for the formation of higher- n and 3D-like phases in the thin films (Note S1 and Figures S13–S15, Supporting Information). This was likely due to the formation of the δ -FAPbI₃ phase at room temperature,^[25,37] which impedes the formation of the 3D-like phase—a structure of α -FAPbI₃ MHP lattice where the spacers are coordinated to the surface. X-ray diffraction (XRD) patterns of the films show no appreciable peaks associated with the solvent-intermediate phase (Figure S15a, Supporting Information),^[38] ruling out the

influence of the solvent on MHP crystallization. Additionally, thermal annealing induces disproportionation of intermediate phases that results in higher- n phases,^[17] at the expense of emergence of $n = 1$ (for 1% and 28% 3D ratio) or $n = 2$ (for 50% and 67% 3D ratio) phases.

Local phase inhomogeneities in the quasi-2D MHP films were explored using hyperspectral CL microscopy (Note S2 and Figures S16–S18, Supporting Information).^[39] The CL maps of 2D MHPs are strongly homogeneous. However, it is observed that local PbI₂ crystallites emerge on the surface of quasi-2D MHPs after annealing. These results indicate that thermal annealing is necessary for the formation of functional 3D-like α -FAPbI₃ phase, but it also results in the emergence of local PbI₂ crystallites, which may negatively impact device performance.^[27,39] Given that the pure PEA₂PbI₄ is stable up to 250 °C,^[40] the incomplete evaporation of the solvent in the film before annealing may support thermal disproportionation and decomposition of the lower- n phases. Some of the disintegrated ions may be diffused into the higher- n lattice, induce ripening of the 3D-like phase^[41] or passivate internal defects that result in temporal PL enhancements—observed from the films with 92 and 98% 3D ratios. Meanwhile, the remainder is left as PbI₂ (and/or δ -FAPbI₃) byproducts.

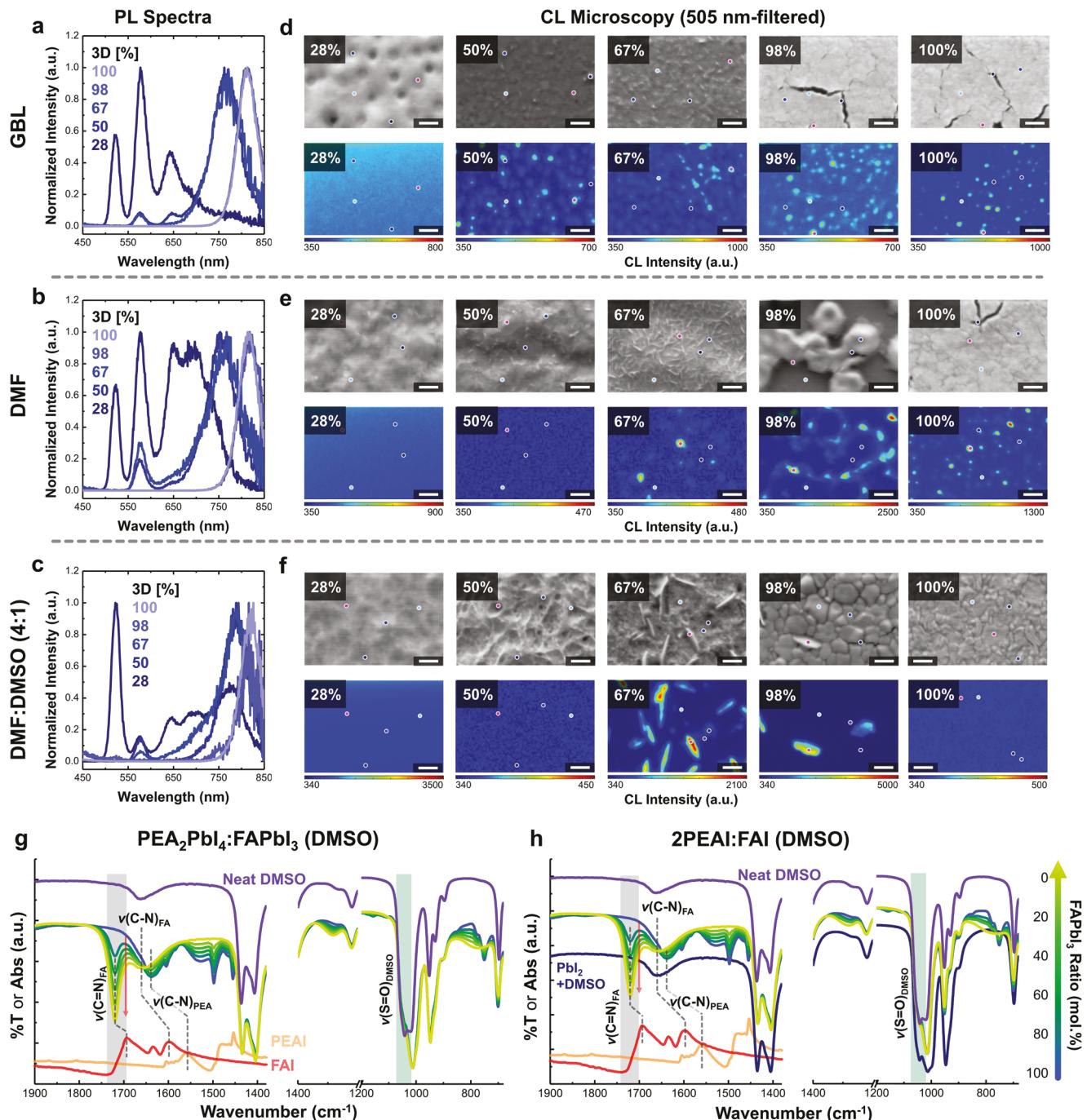

Figure 4. Overall Phase emergence landscape of PEA-FA quasi-2D MHP system. a,b) Schematic of phase distribution and growth behaviors in PEA-FA quasi-2D MHP film system in a 2D:3D compositional space: a) before and b) after annealing. The initial phase distributions are defined at the early-stage phase growth process, as seen in microcrystal system. At high 3D ratios, thermodynamically stable δ -FAPbI₃ emerges. By annealing the films, higher- n and 3D-like phases are formed at the expense of intermediate $n = 2$ –4 2D phases via disproportionation, which also leaves the unwanted PbI₂ byproduct.

Figure 4 provides a general schematic of the fate of associated phases in the quasi-2D MHP, offering a comprehensive guide for designing the functional system. Before annealing, the phase distributions in the films are majorly defined at the early stage of growth process, as observed in microcrystal systems. At high 3D ratios, thermodynamically stable δ -FAPbI₃ emerges and suppresses the growth of 3D-like phase. Thermal annealing enables them to transform to the 3D-like phase and improves crystallinity. However, it also induces lattice disproportionation, which not only results in higher- n phases at the expense of intermediate $n = 2$ –4 phases but also leaves local PbI₂ byproducts. The resulting broader phase distributions and the impurity phases can limit the optoelectronic performances.^[27,39]

2.3. Influence of Solvent on the Phase Distribution of Quasi-2D MHP

Solvents play a crucial role in shaping the surface morphology and crystallinity of the resulting MHP films due to their interac-

tion with the precursor solutes.^[32–34,38] Hence, we increased the concentration of MHP precursors to the nominal level for optoelectronic device fabrication and studied the impact of solvent on the phase formation in quasi-2D MHP films (Figure S19, Supporting Information). For films with 28% 3D ratio, along with the growth of the $n = 1$ phase, higher- n phases emerge by using more coordinative solvents in the order of GBL < DMF < DMSO (Figure 5a–c; Figure S20, Supporting Information). The emission from the $n = 1$ phase became stronger with increasing Lewis basicity of the solvent (DMSO), in agreement with the trend of growing $n = 1$ 2D diffraction peak (Figure S21, Supporting Information). These observations suggest that the disproportionation of the intermediate- n phases (particularly $n = 2$ phase in this case) is promoted by the coordinative solvents. This has been explained by the increase of nucleation barrier of quasi-2D phases, collectively attributed to the formation of PbI₂-solvent adduct and strong spacer-solvent interaction.^[42] The polar nature of PEA cation, with a dipole moment of ≈ 14.0 Debye results in strong hydrogen bond with the Lewis base DMSO, inhibiting the 2D phase formation.^[42,43] In contrast, FA has a weak

Figure 5. Local phase inhomogeneities of quasi-2D MHPs associated with chemical interactions in precursor solution. a–c) PL spectra, d–f) SEM and 505 nm filtered CL maps (assigned to PbI_2) for the quasi-2D MHPs films with different solvent systems. All films were prepared by annealing the spin-casted substrates at 150 °C for 20 min (Scale bar: 1 μm). Four local spots are chosen and color-marked in the map, where the corresponding CL spectra are shown in Figure S25 (Supporting Information). g, h) FTIR spectra of g) quasi-2D MHP precursor and h) organic cation solutions with different 2D:3D ratios in DMSO. For convenience, FTIR spectra of neat solvents, as well as PEAI and FAI powders are also included.

polarity (dipole moment of 0.25 Debye) and therefore the nucleation of 3D phase can be relatively feasible.^[44] We collected absorption spectra of 2D and 3D precursor solutions to assess the iodoplumbate formation in the solution phase (Figure S22, Supporting Information). Indeed, with increasing coordinative character of the solvent, notable imbalance in ionic forms between

the 2D and 3D precursors is observed,^[33] with the 3D precursor exhibiting more disintegrated forms than the 2D precursor. This results in the broader phase distributions with higher- n phases in PL spectra.

At 3D ratios up to 67%, a preferential product, i.e., the $n = 2$ phase, appears along with a 3D-like phase. At a 3D ratio of

98%, only the single peak of α -FAPbI₃ is observed in the films, regardless of the solvent used, with superior crystallinity compared to pure 3D MHP (sharper XRD peak, Figure S21, Supporting Information). Particularly, the films produced using the DMF and DMF:DMSO solvent systems show large and smooth MHP grains as seen by scanning electron microscopy (Figure S23, Supporting Information), showing notable difference with those of pure 3D films. However, the overall surface morphology of the 98% MHP film produced using only DMF is poor—presumably due to fast vaporization of the solvent,^[45] suggesting that DMF is not compatible for making films with high 3D compositional ratios. The addition of DMSO improves morphology. We hypothesize that the difference in solute-solvent interaction between 2D and 3D solutions is associated with these results (Figure S22, Supporting Information). The heterogeneous solvation of precursor ions in different solvents would cause different nucleation kinetics in 2D and 3D phases,^[42] where the larger difference (in this case, DMF) could infer the kinetic imbalance and subsequently result in the irregular morphology. For DMF:DMSO mixed solvent system, although there is still an imbalance of precursor solvation, the strong hydrogen bonding between the spacer and DMSO can inhibit the 2D phase growth and promote the selective crystallization and coarsening of 3D phases.^[42] As a result, this can render larger 3D MHP grains,^[46] whereas the residual 2D precursors smoothen and passivate the 3D grain surfaces—analogous to the observations in 3D MHPs incorporating alkylammonium salts.^[28,46]

Indeed, Fourier-transform infrared (FTIR) spectroscopy analysis reveals that solvent dominantly interacts with organic cations—stronger for 2D spacer cation compared to 3D counterpart—than PbI₂ (Figure 5g,h; Figure S24, Supporting Information). Particularly, there are hydrogen bonding interactions between DMSO and organic cations (reflected as peak broadening),^[47,48] which likely cause imbalanced solvation of the precursors as seen in Figure S22 (Supporting Information).

From the CL analysis, the presence of local PbI₂ crystallites (505 nm CL) in the films is again observed (Figure 5d–f; Figure S25, Supporting Information), with larger sizes seen when DMSO is added in the solvent mixture. While DMSO can make PbI₂-DMSO adducts, it can strongly coordinate with PEA cation via hydrogen bonding inhibiting the 2D phase growth.^[42] Experimentally, we observed that the interaction between the PEA cation and solvent—particularly in DMSO—is substantial, overwhelming that of PbI₂ (Figure 5g,h; Figure S24, Supporting Information). After annealing, the residual adducts, after consuming all FA cations to form FAPbI₃ first, could be left. While some of the PEA spacers are used to render smooth 3D MHP grains upon crystallization from the solvated ion precursors,^[28] considerable amount of the spacer can be stripped out with the solvent during spin coating process. the remaining (PbI₂-rich) 2D precursor adducts are subsequently transform into large PbI₂ aggregates or PEA-poor, defective 2D phases that readily undergo lattice disproportionation (Figure S26, Supporting Information). Relatively weaker coordination of DMF could be responsible for the smaller size of PbI₂ crystallites. Meanwhile, the poor surface morphology particularly at 98% 3D ratio could also lead to extrusion of PbI₂ alongside the grain exteriors.

A strong 745 nm CL band, which is not detected in photoluminescence analysis, is also observed in films with high 3D ra-

tios (98% and 100%), particularly at grain boundaries or wrinkled surface structures (Figure S27, Supporting Information). This is attributed to the CL emission from the photoinactive δ -FAPbI₃, rather than other low-dimensional FAPbI₃ polymorphs,^[49,50] as no significant XRD peaks of the latter are observed. We note that this CL band becomes stronger with increasing the coordinative character of the solvent, which also involves rougher surface morphology with more amounts of wrinkled structures. We hypothesize that the coarse surface edges at the grain boundary and the microstructures—possibly with larger amounts of surface defects^[51]—could readily be transformed to the δ -FAPbI₃ phase.

Summarizing, the strong chemical interaction between the solvent and precursors leads to significant changes in surface morphology, microstructures, phase distributions and emergence of secondary phases in the quasi-2D MHP films. The spacer cation, due to its high polarity, strongly interacts with solvent, where the chemical interaction is proportional to the coordinative strength of the solvent. The increase of solvent-spacer interaction strength can induce an imbalanced solvation of 2D and 3D components in precursor solutions. Subsequently, this lacks the amounts of “activated” 2D spacer cations and largely complicates the MHP crystallization behaviors associated with the surface morphologies, phase inhomogeneities, local microstructures in the films. Solving such complexities requires multimodal approaches including molecular tailoring of the spacers and solvent engineering. High-throughput exploration of the early-stage phase growth kinetics of quasi-2D MHPs and hyperspectral CL microscopy reveal indispensable features and principles associated with the system, which could not be conventionally observed. In turn, these findings provide crucial insights for optimization and development of the functional quasi-2D MHP system.

3. Conclusion

In summary, the phase growth kinetics of PEA-FA quasi-2D MHPs are systematically explored using an automated experimental workflow based on high-throughput automated synthesis, optical characterization, and spectral analysis. Without relying on manual intervention, this allows for efficient monitoring of the early-stage phase growth kinetics of 95 different microcrystalline ensembles in a quasi-2D MHP compositional space, which could not be properly observed from the conventional film fabrication protocols.

Experimentally, the most preferentially formed and stable phase is found to be the $n = 2$ 2D phase, which is irrespective of the disproportionation of kinetically grown products and prominent in the overall compositional space. Furthermore, the $n \geq 5$ phases emerge with increasing 3D ratios up to 95%, as a result of the restricted growth of 3D-like phase by $n = 2$ phase; the stable 3D-like phase can be observed after the $n = 2$ phase is depleted (from 96%).^[13]

Characterizations of the quasi-2D MHP films reveal that the presence of thermodynamically stable δ -FAPbI₃ also hinders the formation of the 3D-like phase. Thermal annealing transforms the non-perovskite phase to photoactive α -FAPbI₃, thereby allowing the emergence of the 3D-like phase. However, hyperspectral analysis also revealed the emergence of locally formed

PbI₂ crystallites, presumably due to thermal-assisted disproportionation; this impurity phase is known to negatively impact MHP functionality^[27] but difficult to be identified via conventional analysis such as PL and XRD.^[39] Furthermore, it is revealed that the choice of spacer cations and solvent system—due to the strong chemical interaction with each other—crucially impacts the phase distributions, surface morphologies and local phase inhomogeneities, necessitating judicious considerations of molecular and solvent engineering. These new findings provide crucial insights into the phase distributions and growth kinetics in quasi-2D MHP systems, important for optimizing MHP functionality. Furthermore, the powerfulness of the integrated workflow utilized in this work enables us to accelerate materials discovery, processing optimization, and comprehensive mechanistic study in other functional systems in future.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

J.Y. and M.A acknowledge support from the National Science Foundation (NSF), Award Number No. 2043205 and the Alfred P. Sloan Foundation, award No. FG-2022-18275. The CL microscopy was supported by the Center for Nanophase Materials Sciences (CNMS) user facility, project CNMS2022-A-01171, which is a US Department of Energy, Office of Science User Facility at Oak Ridge National Laboratory.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are openly available in Figshare at <https://doi.org/10.6084/m9.figshare.22350910.v1>, reference number 22350910.

Keywords

2D perovskites, accelerated materials discovery, high-throughput synthesis, phase growths

Received: July 20, 2023

Revised: September 3, 2023

Published online: September 24, 2023

- [1] H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. Il Seok, *Nature* **2021**, *598*, 444.
- [2] Y. Hassan, J. H. Park, M. L. Crawford, A. Sadhanala, J. Lee, J. C. Sadighian, E. Mosconi, R. Shivanna, E. Radicchi, M. Jeong, C. Yang, H. Choi, S. H. Park, M. H. Song, F. De Angelis, C. Y. Wong, R. H. Friend, B. R. Lee, H. J. Snaith, *Nature* **2021**, *591*, 72.
- [3] D. Ma, K. Lin, Y. Dong, H. Choubisa, A. H. Proppe, D. Wu, Y.-K. Wang, B. Chen, P. Li, J. Z. Fan, F. Yuan, A. Johnston, Y. Liu, Y. Kang, Z.-H. Lu, Z. Wei, E. H. Sargent, *Nature* **2021**, *599*, 594.

- [4] C. C. Boyd, R. Cheacharoen, T. Leijtens, M. D. Mcgehee, *Chem. Rev.* **2019**, *119*, 3418.
- [5] J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Gratzel, J. Y. Kim, *Nature* **2021**, *592*, 381.
- [6] J.-C. Blancon, J. Even, C. C. Stoumpos, M. G. Kanatzidis, A. D. Mohite, *Nat. Nanotechnol.* **2020**, *15*, 969.
- [7] C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, M. G. Kanatzidis, *Proc. Natl. Acad. Sci. USA* **2019**, *116*, 58.
- [8] X. Li, J. M. Hoffman, M. G. Kanatzidis, *Chem. Rev.* **2021**, *121*, 2230.
- [9] Z. Gan, W. Chen, C. Liu, J. Zhang, Y. Di, L. Yu, L. Dong, B. Jia, X. Wen, *Adv. Photonics Res.* **2022**, *3*, 2100283.
- [10] M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboons, Z. Lu, D. H. Kim, E. H. Sargent, *Nat. Nanotechnol.* **2016**, *11*, 872.
- [11] L. N. Quan, Y. Zhao, F. P. García De Arquer, R. Sabatini, G. Walters, O. Voznyy, R. Comin, Y. Li, J. Z. Fan, H. Tan, J. Pan, M. Yuan, O. M. Bakr, Z. Lu, D. H. Kim, E. H. Sargent, *Nano Lett.* **2017**, *17*, 3701.
- [12] L. Quan, D. X. Ma, Y. B. Zhao, O. Voznyy, H. F. Yuan, E. Bladt, J. Pan, F. P. G. de Arquer, R. Sabatini, Z. Piontowski, A. H. Ermwas, P. Todorovic, R. Quintero-Bermudez, G. Walters, J. Z. Fan, M. X. Liu, H. R. Tan, M. I. Saidaminov, L. Gao, Y. Y. Li, D. H. Anjum, N. N. Wei, J. Tang, D. W. McCamant, M. B. J. Roeffaers, S. Bals, J. Hofkens, O. M. Bakr, Z. H. Lu, E. H. Sargent, *Nat. Commun.* **2020**, *11*.
- [13] J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang, S.-J. Lee, N. De Marco, H. Zhao, P. Sun, Y. Huang, Y. Yang, *Nat. Commun.* **2018**, *9*, 3021.
- [14] S. Sidhik, Y. Wang, M. De Siena, R. Asadpour, A. J. Torma, T. Terlier, K. Ho, W. Li, A. B. Puthirath, X. Shuai, A. Agrawal, B. Traore, M. Jones, R. Giridharagopal, P. M. Ajayan, J. Strzalka, D. S. Ginger, C. Katan, M. A. Alam, J. Even, M. G. Kanatzidis, A. D. Mohite, *Science* **2022**, *377*, 1425.
- [15] F. Zhang, S. Y. Park, C. Yao, H. Lu, S. P. Dunfield, C. Xiao, S. Ulicná, X. Zhao, L. Du Hill, X. Chen, X. Wang, L. E. Mundt, K. H. Stone, L. T. Schelhas, G. Teeter, S. Parkin, E. L. Ratcliff, Y.-L. Loo, J. J. Berry, M. C. Beard, Y. Yan, B. W. Larson, K. Zhu, *Science* **2022**, *375*, 71.
- [16] C. Sun, Y. Jiang, M. Cui, L. Qiao, J. Wei, Y. Huang, L. Zhang, T. He, S. Li, H.-Y. Hsu, C. Qin, R. Long, M. Yuan, *Nat. Commun.* **2021**, *12*, 2207.
- [17] K. Wang, Z.-Y. Lin, Z. Zhang, L. Jin, K. Ma, A. H. Coffey, H. R. Atapattu, Y. Gao, J. Y. Park, Z. Wei, B. P. Finkenauer, C. Zhu, X. Meng, S. N. Chowdhury, Z. Chen, T. Terlier, T.-H. Do, Y. Yao, K. R. Graham, A. Boltasseva, T.-F. Guo, L. Huang, H. Gao, B. M. Savoie, L. Dou, *Nat. Commun.* **2023**, *14*, 397.
- [18] S. L. Sanchez, Y. Tang, B. Hu, J. Yang, M. Ahmadi, *Matter* **2023**, *6*, 2900.
- [19] J. Yang, S. V. Kalinin, E. D. Cubuk, M. Ziatdinov, M. Ahmadi, *MRS Bull.* **2023**, *48*, 164.
- [20] J. Zhang, S. Langner, J. Wu, C. Kupfer, L. Lüer, W. Meng, B. Zhao, C. Liu, M. Daum, A. Osvet, N. Li, M. Halik, T. Stubhan, Y. Zhao, J. A. Hauch, C. J. Brabec, *ACS Energy Lett.* **2022**, *7*, 70.
- [21] Y. Zhao, T. Heumueller, J. Zhang, J. Luo, O. Kasian, S. Langner, C. Kupfer, B. Liu, Y. Zhong, J. Elia, A. Osvet, J. Wu, C. Liu, Z. Wan, C. Jia, N. Li, J. Hauch, C. J. Brabec, *Nat. Energy* **2022**, *7*, 144.
- [22] K. Higgins, S. M. Valletti, M. Ziatdinov, S. V. Kalinin, M. Ahmadi, *ACS Energy Lett.* **2020**, *5*, 3426.
- [23] K. Higgins, M. Ziatdinov, S. V. Kalinin, M. Ahmadi, *J. Am. Chem. Soc.* **2021**, *143*, 19945.

[24] H. Long, X. Peng, J. Lu, K. Lin, L. Xie, B. Zhang, L. Ying, Z. Wei, *Nanoscale* **2019**, *11*, 21867.

[25] V. L. Pool, B. Dou, D. G. Van Campen, T. R. Klein-Stockert, F. S. Barnes, S. E. Shaheen, M. I. Ahmad, M. F. A. M. Van Hest, M. F. Toney, *Nat. Commun.* **2017**, *8*, 14075.

[26] J. V. Milic, S. M. Zakeeruddin, M. Grätzel, *Acc. Chem. Res.* **2021**, *54*, 2729.

[27] S. Macpherson, T. A. S. Doherty, A. J. Winchester, S. Kosar, D. N. Johnstone, Y. H. Chiang, K. Galkowski, M. Anaya, K. Frohna, A. N. Iqbal, S. Nagane, B. Roose, Z. Andaji-Garmaroudi, K. W. P. Orr, J. E. Parker, P. A. Midgley, K. M. Dani, S. D. Stranks, *Nature* **2022**, *607*, 294.

[28] J. Park, J. Kim, H.-S. Yun, M. J. Paik, E. Noh, H. J. Mun, M. G. Kim, T. J. Shin, S. I. Seok, *Nature* **2023**, *616*, 724.

[29] J. S. Kim, J. M. Heo, G. S. Park, S. J. Woo, C. Cho, H. J. Yun, D. H. Kim, J. Park, S. C. Lee, S. H. Park, E. Yoon, N. C. Greenham, T. W. Lee, *Nature* **2022**, *611*, 688.

[30] Y. Fu, T. Wu, J. Wang, J. Zhai, M. J. Shearer, Y. Zhao, R. J. Hamers, E. Kan, K. Deng, X.-Y. Zhu, S. Jin, *Nano Lett.* **2017**, *17*, 4405.

[31] Y. Fu, *Adv. Mater.* **2022**, *34*, 2108556.

[32] E. Radicchi, E. Mosconi, F. Elisei, F. Nunzi, F. De Angelis, *ACS Appl. Energy Mater.* **2019**, *2*, 3400.

[33] J. C. Hamill Jr., J. Schwartz, Y. L. Loo, *ACS Energy Lett.* **2018**, *3*, 92.

[34] J. Yang, M. Kim, S. Lee, J. W. Yoon, S. Shome, K. Bertens, H. Song, S. G. Lim, J. T. Oh, S. Y. Bae, B. R. Lee, W. Yi, E. H. Sargent, H. Choi, *ACS Appl. Mater. Interfaces* **2021**, *13*, 36992.

[35] A. D. Taylor, Q. Sun, K. P. Goetz, Q. An, T. Schramm, Y. Hofstetter, M. Litterst, F. Paulus, Y. Vaynzof, *Nat. Commun.* **2021**, *12*, 1878.

[36] W. Fu, H. Liu, X. Shi, L. Zuo, X. Li, A. K.-Y. Jen, *Adv. Funct. Mater.* **2019**, *29*, 1900221.

[37] W. Hui, L. Chao, H. Lu, F. Xia, Q. Wei, Z. Su, T. Niu, L. Tao, B. Du, D. Li, Y. Wang, H. Dong, S. Zuo, B. Li, W. Shi, X. Ran, P. Li, H. Zhang, Z. Wu, C. Ran, L. Song, G. Xing, X. Gao, J. Zhang, Y. Xia, Y. Chen, W. Huang, *Science* **2021**, *371*, 1359.

[38] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, *Nat. Mater.* **2014**, *13*, 897.

[39] J. Yang, D. K. LaFollette, B. J. Lawrie, A. V. Ilevlev, Y. Liu, K. P. Kelley, S. V. Kalinin, J. P. Correa-Baena, M. Ahmadi, *Adv. Energy Mater.* **2022**, *13*, 2202880.

[40] H.-H. Fang, J. Yang, S. Tao, S. Adjokatse, M. E. Kamminga, J. Ye, G. R. Blake, J. Even, M. A. Loi, *Adv. Funct. Mater.* **2018**, *28*, 1800305.

[41] Q. Z. An, F. Paulus, D. Becker-Koch, C. Cho, Q. Sun, A. Weu, S. Bitton, N. Tessler, Y. Vaynzof, *Matter* **2021**, *4*, 1683.

[42] X. Zhang, R. Munir, Z. Xu, Y. Liu, H. Tsai, W. Nie, J. Li, T. Niu, D.-M. Smilgies, M. G. Kanatzidis, A. D. Mohite, K. Zhao, A. Amassian, S. (F.) Liu, *Adv. Mater.* **2018**, *30*, 1707166.

[43] H. Song, J. Yang, W. H. Jeong, J. Lee, T. H. Lee, J. W. Yoon, H. Lee, A. J. Ramadan, R. D. J. Oliver, S. C. Cho, S. G. Lim, J. W. Jang, Z. Yu, J. T. Oh, E. D. Jung, M. H. Song, S. H. Park, J. R. Durrant, H. J. Snaith, S. U. Lee, B. R. Lee, H. Choi, *Adv. Mater.* **2023**, *35*, 2209486.

[44] M. Zilka, D. V. Dudenko, C. E. Hughes, P. A. Williams, S. Sturniolo, W. T. Franks, C. J. Pickard, J. R. Yates, K. D. M. Harris, S. P. Brown, *Phys. Chem. Chem. Phys.* **2017**, *19*, 25949.

[45] C. Hu, S. B. Shivarudraiah, H. H. Y. Sung, I. D. Williams, J. E. Halpert, S. Yang, *Sol. RRL* **2021**, *5*, 2000712.

[46] C. M. M. Soe, W. Nie, C. C. Stoumpos, H. Tsai, J.-C. Blancon, F. Liu, J. Even, T. J. Marks, A. D. Mohite, M. G. Kanatzidis, *Adv. Energy Mater.* **2018**, *8*, 1700979.

[47] G. Giubertoni, O. O. Sofronov, H. J. Bakker, *Commun. Chem.* **2020**, *3*, 84.

[48] V. M. Wallace, N. R. Dhumal, F. M. Zehentbauer, H. J. Kim, J. Kiefer, *J. Phys. Chem. B* **2015**, *119*, 14780.

[49] P. Wang, X. Chen, T. Liu, C.-H. Hou, Y. Tian, X. Xu, Z. Chen, P. Ran, T. Jiang, C.-H. Kuan, B. Yan, J. Yao, J.-J. Shyue, J. Qiu, Y. (M.) Yang, *Small Methods* **2022**, *6*, e2200048.

[50] F. Ma, J. Li, W. Li, N. Lin, L. Wang, J. Qiao, *Chem. Sci.* **2017**, *8*, 800.

[51] J. Xue, R. Wang, K.-L. Wang, Z.-K. Wang, I. Yavuz, Y. Wang, Y. Yang, X. Gao, T. Huang, S. Nuryeva, J.-W. Lee, Y. Duan, L.-S. Liao, R. Kaner, Y. Yang, *J. Am. Chem. Soc.* **2019**, *141*, 13948.