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Empowering scientists with data-driven 
automated experimentation

Jonghee Yang & Mahshid Ahmadi

Automated experiments with integrated 
characterization techniques greatly accelerate 
materials synthesis and provide data to be used 
by machine learning algorithms. We reflect 
on the current use of data-driven automated 
experimentation in materials synthesis and 
consider the future of this approach.

In recent years, automated experiments have revolutionized the way 
scientists study materials. Advances in robotic systems have enabled the 
use of automation in chemical synthesis and materials processing, which 
has boosted the rate, accuracy, scope, and reproducibility of experiments 
carried out in a laboratory. When combined with rapid and precise char-
acterization techniques, this greatly increases research throughput and 
accelerates overall research sequences while minimizing human efforts. 
Now, researchers can quickly, efficiently, and comprehensively assess 
the products from the various experimental batches in synthesis and 
compositional space. This high-throughput automated experimenta-
tion subsequently provides massive amounts of the multi-dimensional 

dataset associated with the physical and chemical properties, as well as 
functionalities of the materials, allowing for a collective and comprehen-
sive exploration of physical and chemical phenomena1–4.

Thanks to the rapid development of artificial intelligence, the 
implementation of machine learning (ML) algorithms opens a new 
avenue in materials exploration5,6. The ML-integrated experimental 
workflow interprets the vast dataset generated from automated experi-
ments using the present algorithms, which would require a herculean 
effort for humans. Next, the ML probabilistically suggests plausible 
solutions to address the problems in the designed experiments (for 
example, to propose interesting points to be further explored and 
reveal latencies associated with parametric space)2–4,7. This benefits the 
decision-making process in the autonomous experimental sequence, 
thereby realizing the data-driven autonomous experimental work-
flow2,4. The closed-loop operation of this experimental cycle sub-
stantially accelerates the high-throughput explorations of materials, 
enabling us to further understand the comprehensive mechanistic 
insights based on physical and chemical principles, or efficiently opti-
mize the synthesis parameters of materials with desired functionalities8.  
Autonomous experimental workflows have been performed to a 
high standard in organic chemistry, biochemistry, and pharmaceuti-
cal research in the past decade2,8. Recently, the advancements have 
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Fig. 1 | Operation workflow of data-driven automated experiments.  
A conventional workflow of automated experiments (left). The robotic platform 
produces a complete dataset of final products. From the dataset, ML algorithms 
make decisions to further drive the experiments. A hypothesis-driven automated 
experimental workflow (right). In-situ characterizations provide information 

about the reaction. Subsequently, ML algorithms hypothesize plausible physical 
and chemical models, such as i) changes in interatomic interaction, ii) nucleation 
with different crystal structures resulting in different shapes, and iii) changes 
in the thermodynamic barrier for reaction, in order to direct the robotics to 
perform selected batches suggested by the models.
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— a leading class of materials that can provide groundbreaking perfor-
mances in optoelectronics — are not only strongly dependent on the 
details of processing parameters and compositional and chemical 
engineering, but also entangled with each parameter. So far, the ML 
algorithms can statistically predict the optimal conditions in fabrica-
tion or synthesis processes that realize the best performances as well as 
pursue figures of merit at the final stage (more specifically, device-level 
or product materials), based on the collected device assessment data-
sets. However, it remains challenging for the ML algorithms to predict 
the optimal conditions, particularly based on the considerations of 
the chemical and physical models and other phenomena associated 
with the materials — analogous to how humans drive the experiments. 
Attaining data- and physics-informed autonomous experimentation 
will be the next step for ML development2 which can greatly impact the 
design of SDLs and accelerate materials discovery.

It should be noted that ML algorithms mimicking hypothesis- 
driven automated experiments, using a probabilistic approach to 
each plausible physical model, have been already implemented in 
characterization techniques10. However, for the synthesis of functional 
materials or multi-step device fabrication processing, it is extremely 
difficult to enumerate the physical and chemical models or predict 
plausible mechanisms. This is because multiple physical and chemi-
cal actions — taking place from the atomic and molecular level to the 
device level — are complicatedly entangled. As a possible strategy to 
overcome these complexities and realize advanced ML algorithms in 
materials synthesis, it is desirable to actively integrate fundamental, 
in-situ characterization techniques targeting the principle parameters 
in physics and chemistry with the SDL workflow. The resultant dataset 
associated with fundamental principles will subsequently allow us to 
formulate new ML algorithms with physio–chemical intuitions, scaling 
down the experimental batches with more feasible and necessary can-
didates. This in turn can realize a powerful SDL that wisely exploits the 
precious datasets obtained via data-driven automated experiments, 
thereby accelerating chemistry and materials science discoveries.
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extended to complicated materials systems, such as photocatalysts, 
perovskites, and colloidal nanocrystals3,4,9. These approaches have con-
tributed to the understanding of structure–property relationships, pro-
vided fundamental insights associated with the synthesis reactions, and 
realized bespoke tailoring of the target functionalities via on-demand 
synthesis designs. Indeed, data-driven automated experiments are now 
revolutionizing the research workflow to be more efficient and effective.

A recent Review by Abolhasani and Kumacheva describes the 
significance and status quo of self-driving labs (SDLs) and provides 
guidelines and actions to encourage scientists to establish their own 
SDLs, in particular, encouraging collaborations between researchers 
in academia and industry2. In addition, limitations and bottlenecks 
of the current automated experimental platforms are identified. For 
example, in terms of robotics, there are substantial financial barriers 
to constructing automated experimental systems in order to explore 
user-designed tasks. Particularly, this may discourage early-career 
researchers eager to establish reliable and reproducible automated 
experimental systems to explore emerging and fascinating subjects in 
various material spaces. The use of open-source robotics modules for 
automated experiments or cloud labs can be a solution to notably miti-
gate such a desire–reality gap2. Here, standardization of hardware and 
the development of stable sample-transfer technologies will further 
relieve the researchers’ concerns, stemming from the spatial discrete-
ness between the synthesis, characterization, and processing modules 
in the alternative networked systems. In this regard, worldwide con-
sensus as well as active collaborations are urgently recommended. In 
addition, a considerable understanding of mechanics, fluidics, and 
robotics is practically required for troubleshooting during operations, 
which is not trivial for scientists who majored in other disciplines, 
such as chemistry or materials science. The robotic systems should 
therefore provide user-friendly interfaces and guidelines so that even 
non-experts can easily work with laboratory workflows.

From the ML perspective, most ML algorithms implemented in the 
automated experimental workflow are highly specific to the paramet-
ric optimizations of the materials synthesis or processing sequence. 
As already mentioned, from a massive dataset collected via online, 
high-throughput characterizations, the ML algorithms can figure out 
the latencies that have not been identified or propose new experimental 
conditions as the next step to minimize the uncertainties associated with 
the chemical reactions, material processing, and so on. Then, the robotic 
experimental platforms self-operate based on the suggestions of ML 
algorithms in a closed loop. As a result, the ML models can provide com-
prehensive information regarding the parametric space of the subjects, 
revealing optimal conditions for the synthesis that manifest the best 
functionalities or performances of the materials or final devices (Fig. 1)7. 
These state-of-the-art ML algorithms and their combination with SDLs 
are unambiguously powerful in overall research workflows, enabling sci-
entists to be free from time-consuming repetitive tasks and focus more 
on solving scientific questions2. However, the present ML algorithms do 
not directly provide fundamental principles or any scientific rationaliza-
tion for the obtained results; they do not have any physical or chemical 
intuitions. Hence, SDLs can perform unnecessary tasks to produce data, 
which is beyond the minimum required to optimize parameters, discover 
functionalities, or disentangle scientific curiosities.

Lots of physical and chemical properties of precursors are inde-
pendently and harmoniously associated with the chemical reaction for 
the materials synthesis. Therefore, subtle changes during the synthesis 
and processing can largely alter the functionalities of the resulting 
materials. For example, the functionalities of metal halide perovskites 
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	Fig. 1 Operation workflow of data-driven automated experiments.




