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M Check for updates

Automated experiments with integrated
characterization techniques greatly accelerate
materials synthesis and provide data to be used
by machine learning algorithms. We reflect
onthe current use of data-driven automated
experimentation in materials synthesis and
consider the future of this approach.

Inrecent years, automated experiments have revolutionized the way
scientists study materials. Advancesinrobotic systems have enabled the
use of automation in chemical synthesis and materials processing, which
hasboosted therate,accuracy, scope, and reproducibility of experiments
carried outinalaboratory. When combined with rapid and precise char-
acterizationtechniques, thisgreatly increases research throughput and
accelerates overall research sequences while minimizing human efforts.
Now, researchers can quickly, efficiently, and comprehensively assess
the products from the various experimental batches in synthesis and
compositional space. This high-throughput automated experimenta-
tionsubsequently provides massive amounts of the multi-dimensional

Dataset of final products

Characterizing properties
and functionalities

dataset associated with the physical and chemical properties, aswell as
functionalities of the materials, allowing for a collective and comprehen-
sive exploration of physical and chemical phenomena'™.

Thanks to the rapid development of artificial intelligence, the
implementation of machine learning (ML) algorithms opens a new
avenue in materials exploration®¢. The ML-integrated experimental
workflow interprets the vast dataset generated from automated experi-
ments using the present algorithms, which would require a herculean
effort for humans. Next, the ML probabilistically suggests plausible
solutions to address the problems in the designed experiments (for
example, to propose interesting points to be further explored and
reveal latencies associated with parametric space)**”. This benefits the
decision-making process in the autonomous experimental sequence,
thereby realizing the data-driven autonomous experimental work-
flow>*. The closed-loop operation of this experimental cycle sub-
stantially accelerates the high-throughput explorations of materials,
enabling us to further understand the comprehensive mechanistic
insights based on physical and chemical principles, or efficiently opti-
mize the synthesis parameters of materials with desired functionalities®.
Autonomous experimental workflows have been performed to a
high standard in organic chemistry, biochemistry, and pharmaceuti-
cal research in the past decade®®. Recently, the advancements have
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Fig.1|Operation workflow of data-driven automated experiments.

A conventional workflow of automated experiments (left). The robotic platform
produces a complete dataset of final products. From the dataset, ML algorithms
make decisions to further drive the experiments. A hypothesis-driven automated
experimental workflow (right). In-situ characterizations provide information
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about the reaction. Subsequently, ML algorithms hypothesize plausible physical
and chemical models, such as i) changes in interatomic interaction, ii) nucleation
with different crystal structures resulting in different shapes, and iii) changes

in the thermodynamic barrier for reaction, in order to direct the robotics to
performselected batches suggested by the models.
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extended to complicated materials systems, such as photocatalysts,
perovskites, and colloidal nanocrystals**®. These approaches have con-
tributed to the understanding of structure-property relationships, pro-
vided fundamentalinsights associated with the synthesisreactions, and
realized bespoke tailoring of the target functionalities via on-demand
synthesis designs. Indeed, data-driven automated experiments are now
revolutionizing the research workflow to be more efficient and effective.

A recent Review by Abolhasani and Kumacheva describes the
significance and status quo of self-driving labs (SDLs) and provides
guidelines and actions to encourage scientists to establish their own
SDLs, in particular, encouraging collaborations between researchers
in academia and industry?. In addition, limitations and bottlenecks
of the current automated experimental platforms are identified. For
example, in terms of robotics, there are substantial financial barriers
to constructing automated experimental systems in order to explore
user-designed tasks. Particularly, this may discourage early-career
researchers eager to establish reliable and reproducible automated
experimental systems to explore emerging and fascinating subjectsin
various material spaces. The use of open-source robotics modules for
automated experiments or cloud labs can be a solution to notably miti-
gatesuchadesire-reality gap*. Here, standardization of hardware and
the development of stable sample-transfer technologies will further
relieve theresearchers’ concerns, stemming from the spatial discrete-
ness between the synthesis, characterization, and processing modules
in the alternative networked systems. In this regard, worldwide con-
sensus as well as active collaborations are urgently recommended. In
addition, a considerable understanding of mechanics, fluidics, and
roboticsis practically required for troubleshooting during operations,
which is not trivial for scientists who majored in other disciplines,
such as chemistry or materials science. The robotic systems should
therefore provide user-friendly interfaces and guidelines so thateven
non-experts can easily work with laboratory workflows.

Fromthe ML perspective, most ML algorithmsimplementedinthe
automated experimental workflow are highly specific to the paramet-
ric optimizations of the materials synthesis or processing sequence.
As already mentioned, from a massive dataset collected via online,
high-throughput characterizations, the ML algorithms can figure out
thelatencies that have notbeenidentified or propose new experimental
conditions as the next step to minimize the uncertainties associated with
the chemical reactions, material processing, and so on. Then, therobotic
experimental platforms self-operate based on the suggestions of ML
algorithmsinaclosedloop. Asaresult, the ML models can provide com-
prehensiveinformation regarding the parametric space of the subjects,
revealing optimal conditions for the synthesis that manifest the best
functionalities or performances of the materials or final devices (Fig.1)".
These state-of-the-art ML algorithms and their combination with SDLs
areunambiguously powerful in overall research workflows, enabling sci-
entists to be free from time-consuming repetitive tasks and focus more
onsolvingscientific questions’. However, the present ML algorithms do
notdirectly provide fundamental principles or any scientific rationaliza-
tion for the obtained results; they do not have any physical or chemical
intuitions. Hence, SDLs can performunnecessary tasks to produce data,
whichisbeyond the minimum required to optimize parameters, discover
functionalities, or disentangle scientific curiosities.

Lots of physical and chemical properties of precursors are inde-
pendently and harmoniously associated with the chemical reaction for
the materials synthesis. Therefore, subtle changes during the synthesis
and processing can largely alter the functionalities of the resulting
materials. For example, the functionalities of metal halide perovskites

—aleadingclass of materials that can provide groundbreaking perfor-
mances in optoelectronics — are not only strongly dependent on the
details of processing parameters and compositional and chemical
engineering, but also entangled with each parameter. So far, the ML
algorithms can statistically predict the optimal conditions in fabrica-
tion or synthesis processes that realize the best performances as well as
pursue figures of merit at the final stage (more specifically, device-level
or product materials), based on the collected device assessment data-
sets. However, it remains challenging for the ML algorithms to predict
the optimal conditions, particularly based on the considerations of
the chemical and physical models and other phenomena associated
with the materials — analogous to how humans drive the experiments.
Attaining data- and physics-informed autonomous experimentation
will be the next step for ML development?which cangreatly impact the
design of SDLs and accelerate materials discovery.

It should be noted that ML algorithms mimicking hypothesis-
driven automated experiments, using a probabilistic approach to
each plausible physical model, have been already implemented in
characterization techniques™. However, for the synthesis of functional
materials or multi-step device fabrication processing, it is extremely
difficult to enumerate the physical and chemical models or predict
plausible mechanisms. This is because multiple physical and chemi-
cal actions — taking place from the atomic and molecular level to the
device level — are complicatedly entangled. As a possible strategy to
overcome these complexities and realize advanced ML algorithms in
materials synthesis, it is desirable to actively integrate fundamental,
in-situ characterization techniques targeting the principle parameters
inphysics and chemistry with the SDL workflow. The resultant dataset
associated with fundamental principles will subsequently allow us to
formulate new ML algorithms with physio—chemical intuitions, scaling
down the experimental batches with more feasible and necessary can-
didates. Thisin turn canrealize apowerful SDL that wisely exploits the
precious datasets obtained via data-driven automated experiments,
thereby accelerating chemistry and materials science discoveries.
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