

View

Online


Export
Citation

REVIEW ARTICLE |  MARCH 01 2024

Designing workflows for materials characterization 
Sergei V. Kalinin   ; Maxim Ziatdinov  ; Mahshid Ahmadi  ; Ayana Ghosh  ; Kevin Roccapriore  ;
Yongtao Liu  ; Rama K. Vasudevan

Appl. Phys. Rev. 11, 011314 (2024)
https://doi.org/10.1063/5.0169961

 15 April 2024 16:13:56

https://pubs.aip.org/aip/apr/article/11/1/011314/3268037/Designing-workflows-for-materials-characterization
https://pubs.aip.org/aip/apr/article/11/1/011314/3268037/Designing-workflows-for-materials-characterization?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0001-5354-6152
javascript:;
https://orcid.org/0000-0003-2570-4592
javascript:;
https://orcid.org/0000-0002-3268-7957
javascript:;
https://orcid.org/0000-0002-0432-3689
javascript:;
https://orcid.org/0000-0001-9907-6790
javascript:;
https://orcid.org/0000-0003-0152-1783
javascript:;
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0169961&domain=pdf&date_stamp=2024-03-01
https://doi.org/10.1063/5.0169961
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2372093&setID=592934&channelID=0&CID=872276&banID=521836457&PID=0&textadID=0&tc=1&scheduleID=2290763&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fapr%22%5D&mt=1713197636091789&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fapr%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0169961%2F19703921%2F011314_1_5.0169961.pdf&hc=2cc9b321cbf532692e781a80a6351adcb07cf94f&location=


Designing workflows for materials
characterization

Cite as: Appl. Phys. Rev. 11, 011314 (2024); doi: 10.1063/5.0169961
Submitted: 30 July 2023 . Accepted: 26 January 2024 .
Published Online: 1 March 2024

Sergei V. Kalinin,1,2,a) Maxim Ziatdinov,2,b) Mahshid Ahmadi,1 Ayana Ghosh,3 Kevin Roccapriore,4

Yongtao Liu,4 and Rama K. Vasudevan4,c)

AFFILIATIONS
1Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering,
University of Tennessee, Knoxville, Knoxville, Tennessee 37996, USA
2Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
3Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
4Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA

a)Author to whom correspondence should be addressed: sergei2@utk.edu
b)Electronic mail:maxim.ziatdinov@pnnl.gov
c)Electronic mail: vasudevanrk@ornl.gov

ABSTRACT

Experimental science is enabled by the combination of synthesis, imaging, and functional characterization organized into evolving discovery
loop. Synthesis of new material is typically followed by a set of characterization steps aiming to provide feedback for optimization or discover
fundamental mechanisms. However, the sequence of synthesis and characterization methods and their interpretation, or research workflow,
has traditionally been driven by human intuition and is highly domain specific. Here, we explore concepts of scientific workflows that emerge
at the interface between theory, characterization, and imaging. We discuss the criteria by which these workflows can be constructed for
special cases of multiresolution structural imaging and functional characterization, as a part of more general material synthesis workflows.
Some considerations for theory–experiment workflows are provided. We further pose that the emergence of user facilities and cloud labs
disrupts the classical progression from ideation, orchestration, and execution stages of workflow development. To accelerate this transition,
we propose the framework for workflow design, including universal hyperlanguages describing laboratory operation, ontological domain
matching, reward functions and their integration between domains, and policy development for workflow optimization. These tools will
enable knowledge-based workflow optimization; enable lateral instrumental networks, sequential and parallel orchestration of characteriza-
tion between dissimilar facilities; and empower distributed research.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0169961

I. INTRODUCTION

Scientific progress is inherently linked to the development and
utilization of progressively more complex methods for synthesis, imag-
ing, and functional characterization of materials, from simple human
eye-based examination and macroscopic property measurements to
bespoke electron1 and scanning probe microscopes (SPMs),2 scattering
facilities,3–5 and low-temperature quantum measurements.6–8 These
imaging and characterization techniques, in turn, provide feedback for
material synthesis optimization,7 enable refining of theoretical mod-
els,9 and often lead to serendipitous discoveries.10,11 The role of tool
development in science is reflected by the renowned quote by Freeman
Dyson, one of the leading physicists of the 20th century: “New direc-
tions in science are launched by new tools much more often than by new

concepts. The effect of a concept-driven revolution is to explain old
things in new ways. The effect of a tool-driven revolution is to discover
new things that have to be explained.”12

Present-day material discovery, design, and optimization are
based on a well-established centuries-old paradigm of serendipitous
findings of materials with useful functionalities, and long and time-
consuming sequential optimization of compositions and processing
conditions toward target functionalities. However, this approach tends
to be extremely inefficient in the systems with multiple functionalities
that achieve their optimal properties in different parts of multicompo-
nent phase diagrams or synthesis parameter space. One of the material
systems where these limitations are particularly important is the hybrid
perovskite for solar cells and other optoelectronic applications.13–17
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Similar challenges emerge for other multicomponent materials and
devices including Li-ion batteries,18 metallurgy,19 high-entropy
alloys,20 and many functional ceramics and glasses.21

The material synthesis and characterization workflows typically
emerge within specific domain areas, such as the epitaxial thin film
growth community,22 Li-ion batteries,23 hybrid perovskite solar
cells,16,24 crystal growth in condensed matter physics25 or radiation
detectors,26 andmany others. For many of these fields, these workflows
are inherently familiar to any practitioner in the field and often define
it. Once novel or improved characterization tools appear, the work-
flows adapt to balance the availability of new tools, perceived gains in
knowledge, potential for discovery, and costs in terms of time and
expenses. This balancing is almost invariably based on intuitive deci-
sion making and is constrained by the availability of characterization
tools, expected waiting times, and costs.

The new opportunity in the experimental domains is the rise of
automated experiments (AEs),27,28 where the artificial intelligence/
machine learning (AI/ML) methods are used both to enable automa-
tion to reduce latency (within a domain) and guide the discovery
workflow. The combination of these two concepts gives rise to the con-
cept of automated laboratories for the discovery of new materials for
pharmaceutical and biological science and energy applications includ-
ing solar cells. Despite some early demonstrations, this concept became
mainstream only in the last 5 years, as a result of the large-scale efforts
by Cronin et al.,29–31 Maruyama et al.,27,32–34 Aspuru-Guzik
et al.,33,35,36 Abolhasani et al.,37–39 and others17,40–56 as well as (less
advertised) efforts in big pharma industries. For the last 3 years, the
effort in small-scale laboratory-based automated experimentation
(AE) via solution synthesis robot resulted in advancement in high-
throughput and combinatorial studies of hybrid perovskite materials
by Ahmadi et al.,57–60 Brabec et al.,61,62 etc. However, simple acceler-
ation of material synthesis by typically reported �10 and even 2–4
orders of magnitude63–65 for individual steps is insufficient compared
to the vastness of the composition and processing spaces of multi-
component materials, necessitating development of workflows that
will efficiently guide the synthesis and experimental protocols based
on the results of previous experiments and general domain
knowledge.

As an additional consideration, emergence of new tools gives rise
to new opportunities for workflow development. For scanning probe
microscopy, examples of this include the development of single-
molecule unfolding spectroscopy that has opened the pathway to study
the kinetics and thermodynamics of single-molecule reactions using
benchtop tools,66,67 piezoresponse force, and electrochemical strain
microscopies that have enabled quantitative studies of bias-induced
phase transitions and electrochemical reactions at the single defect
level,68–70 and scanning tunneling microscopy for exploring quantum
physics71,72 and chemical reactions73 on a single atom level and
enabling atomic fabrication.74 For electron beam methods, the exam-
ples will include cryo-electron microscopy75 that enabled mapping of
protein structures and hence accelerated drug discovery, and electron
diffraction76 that allowed acquisition diffraction data from very small
crystals for crystal structure determination. Examples abound in other
fields. It is also important to note that many imaging tools can be also
use for material synthesis, including the dip-pen lithography77 and
electron beam atomic manipulation.78–80 Similarly, local methods can
be seamlessly combined with well-established combinatorial spread

libraries81 to establish the characterization feedback and further inte-
grated with laboratory robotics.82

However, until now these developments have been largely ad hoc.
The workflows have been developed in individual fields83,84 and grow
and evolve as a result of multi-year community-wide processes. New
techniques give rise to fundamentally new scientific opportunities with
often rapid growth, but discovery of these opportunities is often a black
swan event rather than the result of long-term community-wide plan-
ning. Most importantly, in the everyday activity of research groups
across academia, government labs, and industry, the choice of the mea-
surements and characterization tools is determined by tradition far
more then planning or analysis of possible gains and costs.

The workflow development can be subdivided into several ele-
ments including ideation, orchestration, and implementation, as
defined in Table I. Traditionally, all three elements are human based,
and the progression of the scientific career starts with the implementa-
tion and progresses to the orchestration and ideation part. The rapid
emergence of networks of scientific user facilities and cloud laborato-
ries disrupts this progression, allowing the implementation of work-
flows via computerized orchestration agents for human and
automated equipment. The development of automated labs spurred
the growth of instrument-level drivers and enterprise-level software
ecosystems allowing for orchestrating the operation of multiple tools
and creation of software layers for data storage and analytics.85–88 The
key step now is developing systematic ways to design, implement, and
build the characterization workflows and determine the gains in terms
of materials and physical discovery.83 Ideally, we want to determine
the sequence of synthesis and measurements in an optimal way, bal-
ance the cost of the tools and required characterization times to the
knowledge or other gain, and use this to develop characterization
workflows. We further want to adapt the workflows to the emergence
of new characterization and synthesis tools, and therefore estimate the
potential benefits from their introduction.

Here, we describe the scientific workflows, analyze their ideation
and optimization for the specific case of the characterization methods,
and explore the combined workflows containing characterization and
synthesis components. We explore some elements of the workflow
building when synthesis, characterization, and theory components are
present. Finally, we analyze how these components can be used to
enable the next generation of scientific research, including orchestra-
tion of the geographically distributed synchronous multimodal charac-
terization workflows, lateral instrument networks, and the emergence
of distributed experimental workflows across enterprise-level and
community-level facilities. To accelerate the adoption of these tools by
the community, we propose the framework for the workflow design,
including the development of appropriate hyperlanguage and ontolog-
ical connections between the domains, identification of a specific hier-
archical reward functions, and policy development.

II. CLASSICAL SCIENTIFIC WORKFLOWS: IDEATION,
ORCHESTRATION, AND IMPLEMENTATION

To illustrate the general concept of a scientific workflow, and
some of the general principles of scientific workflow design, here we
discuss several examples from areas that the authors are familiar with.
However, similar elements and constructs can be identified across
multiple other domain areas.

Shown in Fig. 1 is the example of the workflow development for
the hybrid perovskite synthesis in the Ahmadi lab. Here, shown is the
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TABLE I. Definition of workflow elements.

Workflow The sequence of steps, processes, or operations performed by human or ML agent when working in the lab or running
the microscope to complete a specific task or achieve a particular goal. It outlines the sequence of tasks, their order, and

the inputs and outputs of each task
Ideation The process of generating and developing new ideas and approaches for workflow design and optimization. The goal of

workflow ideation is to produce innovative and effective workflow designs that can achieve target goal (reward) more
effectively

Orchestration Management and coordination of a series of interconnected tasks or processes defined within the workflow that needs
to be executed in a specific order to achieve a particular goal or outcome. It involves the automation and monitoring of

workflows, ensuring that each task is completed correctly, and that the overall workflow is running smoothly
Execution Performing specific steps or tasks in the workflow
Hyperlanguage The language expressing operations that can be performed in the lab or running the microscope that define actions to

be taken and their parameters. The hyperlanguage for ML agent needs to be expressed via API controlling the
instrument

Reward The perceived goal of the experiment. This can be discovery of material with specific functionality, optimization, or
deriving general knowledge. The workflow is designed to maximize the reward. Rewards in scientific workflows are often

hierarchical in nature.
Policy The set of rules that define the actions taken depending on the state of the system. The important aspect of policies is

the balance between exploration and exploitation, i.e., exploring new regions of parameter space or maximizing specific
reward.

Value As adapted from reinforcement learning, expected long-term reward or return that an agent can achieve by taking a par-
ticular action in a given state of the environment. The value of an action is calculated based on the expected sum of

future rewards that an agent can receive from that action and all subsequent actions that follow.

FIG. 1. Workflow design in the Ahmadi lab focusing on the hybrid perovskite synthesis. Similar reagents are used for the high-throughput synthesis and rapid photoluminescent
emission assessment of bandgap energy, stability and quantum yield, single-crystal growth, and thin film deposition. Depending on the final form, the materials can be used to
make devices and subsequent physical testing or explored by spatially resolved imaging techniques including cathodoluminescence and chemical imaging. The active devices,
in turn, can be characterized by spatially resolved versions of these methods, providing insight into electronic and ionic dynamics. This forms the backbone of the operational
workflow in the lab. The workflow ideation is based on multiple feedback steps where the results of the measurements of properties and functionalities inform the decision mak-
ing for selecting compositions and processing conditions, stability measurements inform sample selection for film deposition and device fabrication, etc. Most of these decisions
are made by human agent and are driven implicitly by combination of intuition on perceived reward, latency of measurement orchestration, and cost. (a) Reproduced with per-
mission from Musiienko et al., Energy Environ. Sci. 12, 1413–1425 (2019),89 Copyright 2019 The Royal Society of Chemistry. (b) Reproduced with permission from Yang et al.,
Adv. Energy Mater. 13(33), 2202880 (2022).90 Copyright 2022 John Wiley and Sons.
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material skeleton of the workflow, meaning the pathway the materials
follow during the experiment. Note that workflow can also be defined
in terms of the human or instrument time, depending on the specific
problem to be solved. The initial points of the workflow development
are the initial solutions and antisolvents. These can be used in a pipet-
ting robot to prepare combinatorial libraries spanning the composition
space of the hybrid perovskite, antisolvent compositions, etc. The opti-
cal bandgap energy, material stability, and quantum yield within the
libraries are, in turn, accessed by the time-evolution of photolumines-
cent and UV-Visible absorption spectroscopies. Based on the results,
the specific composition can be chosen for imaging studies with high
spatial resolution. Similar solutions can be used for the single-crystal
growth. The crystals can be fabricated into the devices for radiation
sensors, explored via photo-Hall effect spectroscopy, neutron scatter-
ing, or Mossbauer spectroscopy. The crystal-based devices can, in turn,
be visualized in operando via scanning probe microscopy or time-of-
flight mass spectrometry (ToF-SIMS). The same initial reagents can be
used to deposit thin films. The films, in turn, can be further fabricated
into the device structures that can undergo physical testing. The
microstructure of the films can be explored using cathodoluminescent
(CL) imaging, ToF-SIMs, and scanning probe microscopy. Finally,
devices can be characterized in operando using same techniques as
crystals.

The characteristic aspect of this workflow is the progression from
rapid, low cost, and high-throughput methods that provide limited
and low-fidelity information on specific functionalities, to the expen-
sive slow characterization methods for end materials or devices. In this
process, the orchestration of the workflow includes multiple decision
making and feedback steps on what composition to choose for com-
plex characterizations. Note that the decision making is often non-
linear and gives rise to multiple feedback cycles at different latencies
and degrees of analysis. For example, the results of the photolumines-
cence (PL) screening can be used for the composition selection for film
deposition, and the CL and ToF-SIMS imaging of films will be used
for composition selection for the robotic synthesis or the material
selection for the initial endmembers or solvents. This decision making
is further informed by the general information available to the
researchers and adjusted as a result of the interaction with the scientific
community via publications, conferences, social networks, interaction
with large language model (LLM) optimized for generating hypotheses
(a scientific version of ChatGPT), and private communications. We
note that very recently the first systems allowing for such development
have been introduced.91–93

The second example shown in Fig. 2 is workflow development in
imaging.83 Note that this workflow is hierarchical94 element of the
workflow in Fig. 2 and can apply to the cathodoluminescence,

FIG. 2. Workflow development in imaging. Here, the decision making includes the selection of specific regions for high-resolution studies and subsequently for the spectro-
scopic probing. This process is often iterative and includes multiple overview scans, zoom-in and zoom-out stages, and human-driven spectrum acquisition and hyperspectral
imaging. Note that for many instruments, the workflow will also include the repetitive tuning of instrument parameters for maximizing instrument performance. In this case, the
workflow skeleton represents that the sequence of operations performed by the microscope, and workflow orchestration is effectively a stochastic optimization process. The
nature of the reward function and values of individual steps are dependent on human operator.
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ToF-SIMS, or scanning probe microscopy. Here, the natural backbone
of the process is the series of operations performed by the microscope
based on the input from human operator and internal feedback. The
initial state of the system comprises the chosen sample and operator
knowledge. The instrument operation includes tuning of the imaging
conditions and overview scanning. Based on observations, the operator
makes a decision to zoom-in on specific regions to explore these in
detail, and potentially zoom-out and zoom-in on a different region
and perform spectroscopic measurements. We note that for the
unknown systems (for which there are no prior measurements or suffi-
cient literature data), the selection of zoom-in regions is usually based
on the educated guess of an operator and what he/she considers to
“look interesting.” Depending on the type of the measurement and
instrument configuration, the operator can perform spectroscopic
measurements on the grid (hyperspectral imaging). The process can
also include the additional microscope tuning steps, with the human
operator selecting the times to introduce them based on the operator
assessment of the observed data.

There are three pertinent elements of the described process. The
first is a clearly defined hyperlanguage that describes the human-
initiated high-level operations executed sequentially (Table I). This
language can differ between domain areas, but for most human-
operated tools the set of elementary commands are similar. The second
is the workflow orchestration based on the responses generated during
the experiment and evaluated by human operator, including the deci-
sions of what region to select for scanning and spectroscopy, and when
to tune the instrument. Note that instrument automation makes some
of these operations automatic, and often prompts the operator to per-
form them. The third and key element is the (scalar or multi-objective)
reward function. The operator interested in mechanical properties of
the material will be interested in different objects than the person
exploring the emergence of ultrahigh electromechanical responses.
Similarly, scientists interested in ferroelastic phenomena will choose
different objects for study than those interested in flexoelectric phe-
nomena at ferroelectric domain walls. This reward function, in turn,
determines the value of the individual steps for the operator and, in
this fashion, guides the workflow ideation. Finally, note that the scien-
tific workflows and rewards have a clear hierarchical character, obvious
given that example in Fig. 2 represents any of the imaging techniques
that are used as a part of workflow in Fig. 1.

The brief examination of the workflows for synthesis and charac-
terization illustrates several common elements. The first is the emer-
gence of the funnel character. All samples are explored using easy
characterization methods such as optical microscopy (and sometimes
just human eye) or low-resolution overview scans, and this informa-
tion is used to select locations for progressively more complex or
expensive methods for smaller number of samples or locations. The
second and less obvious component is the perceived reward of the
experiment. In some cases, this is purely curiosity-based selection. In
others, this is targeted exploration of specific aspects of microstructure
or material behavior. In this latter case, the exploration pathway is
driven by the specific interest of the experimentalist. The third implicit
component is reliance on prior knowledge in selection of objects of
interest, interpretation, and establishing the reward. Similarly, the dis-
coveries can update the knowledge base, while slow for characteriza-
tion experiments, this strongly affects material synthesis workflows
shown in Fig. 1.

The two examples above illustrate the workflow concept, organi-
zation of the workflows based on materials or instrument time, and
the complex hierarchical connections between the reward functions of
the individual elements and values of the specific steps and operations.
Below, we explore the principles based on which these workflows can
be designed and optimized—here, for the specific case of characteriza-
tion workflows as shown in Fig. 2. However, we emphasize that these
workflows are, in turn, defined only in the context of general synthesis
and characterization workflows shown in Fig. 1. In other words, mate-
rials first need to be synthesized—and the motivation for synthesis is
derived from combination of specific goal (material for photovoltaics)
and discovery. Characterization and microscopy aim to provide the
feedback to material synthesis workflow.

In discussing these workflows, we separate the components of
imaging, spectroscopy, and theory. Here, imaging is referred to the
process of the acquisition of spatially resolved structural and functional
information. Spectroscopy refers to the process of the detailed mea-
surement in a specific location that is assumed to provide desired
information on material functionality. Note that the process is hierar-
chical, in a sense that imaging can be performed via the acquisition of
spectra on the sample grid (hyperspectral imaging) if the spectroscopy
is nondestructive. Due to the difference in cost and latencies, this gives
rise to such standard tasks as pan-sharpening.95 Finally, the third com-
ponent is theoretical analysis, generally referring to the derivation of
the insight from observations and using these to modify the way work-
flow is ideated. First, we discuss the principles of workflow develop-
ment for pure imaging and spectroscopy scenarios and compare it to
the (well explored) ideation of theoretical workflows.

III. HOMOGENEOUSWORKFLOWS

We define the homogeneous (or single element) multiresolution
workflow as those emerging within a single type of characterization or
theory connecting multiple length scales.96,97 Here, we consider the
well-known multiscale workflows in theory and expand these concepts
to characterization.

A. Multiscale workflows in theory

The concept of multiscale workflows is well developed in the the-
ory domain. Over the years, the development and implementation of
multiscale modeling98–105 workflows have paved their way into multi-
ple disciplines ranging from solid mechanics, fluid mechanics, materi-
als science, physics, mathematics, and biological to chemistry. Parallel
computing has only made it more feasible to solve more accurate and
precise algorithmic formulations, which is needed for these workflows.
In addition to being useful in academic research, such modeling capa-
bilities have been adapted in industry for its numerous advantages
such as cost-effective physics-based product design, assessment of
product quality, and performance. The primary requirement for any
multiscale workflow is to lay out strategies to bridge between different
length scales, going from atoms to automotives. We note that it differs
from the conventional point of view being followed in various disci-
plines where the focus remains on solving a particular challenge with
sole consideration of the pertinent length scale and associated
latencies.

Two of the most common approaches as followed in the multi-
scale paradigm are concurrent106,107 and hierarchical94,108 in nature.
Methods to bridge between length scales vary between the two. In
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concurrent techniques, the bridging methods depend on numerical
solutions, whereas hierarchical approaches rely on performing inde-
pendent numerical simulations at different length scales followed by
identifying relations between parameters relevant to integrate or recon-
struct material behavior at the corresponding higher layer in the ladder
of length scales. The hierarchical approach is top-down in nature.
Understanding microstructure–property relationships inferred from
the interplay of internal state variables existent in various scales with
thermodynamic constraints is a good illustration of such an approach.
One example where concurrent and hierarchical schemes are practiced
together101,109–111 is in connecting atomic scale simulations with elec-
tronics principle scale simulations. Density functional theory (DFT) sim-
ulations performed on metals are coupled with embedded atom method
(EAM) potentials within molecular dynamics (MD) environment to
model edge dislocations, with subsequent studies performed with quan-
tum models at disparate length scales. Here, the many-body interactions
are evaluated within the semiempirical formalisms of the potentials such
that the results from the electronic structure theory computations
become useful to reproduce physical properties of many metals, defects,
and impurities. In addition, it is also possible to conduct such multiscale
studies on-the-fly where the classical potential adapts to the local envi-
ronment via dynamic force matching. Several machine learning frame-
works have also proven to be useful to develop these potentials112–118

within an interactive suit bridging between the atomic, coarse-grained
descriptions with promises of connecting to the continuum theories.

Machine learning methods have significantly accelerated the
development of multiscale workflows for theory. Multiple approaches
to address it have been used, ranging from rare event samplings in
molecular dynamics (MD) simulations to machine learning-based
information compression schemes.119,120 Particularly over the last five
years, a number of machine learning approaches based on variational
autoencoders,121 generative adversarial networks, and diffusion models
have been suggested to bridge length and time scales in simulations,
establish statistically significant descriptors such as order parameters,
and determine their constitutive relations. It should be noted that
many of these methods have also been shown for the information
compression in experimental data such as electron and scanning probe
microscopy,122–124 albeit with the additional requirements to account
for the out-of-distribution shifts due to changes in imaging conditions
that are typically absent in modeling Fig. 3.

B. Multiresolution characterization workflows

The nature of the multiscale problem in experiment is opposite in
the sense of information flow. Multiscale characterization in experi-
ment requires solution of the inverse problem, namely, the optimal
hierarchical experiment design. For example, given the results of mac-
roscopic measurements or low-resolution imaging, we seek to identify
the potential object of interest to be explored via high-resolution imag-
ing probes in such way as to gain the maximal insight into the nature
and origins of observed macroscopic behaviors.

To set this problem in a more mathematical basis, we consider it
as one of optimizing a sequence of actions to maximize a cumulative
reward function (Fig. 4).125 The reward function can be defined in
multiple contexts from pure optimal structure discovery (we aim to
characterize the structure as detailed as possible via reduced multiscale
representations) to discovery based on prior knowledge (we know
what microstructural objects we are interested in). In the case of

information gain, one can simply seek to minimize uncertainty arising
from models at different length scales, by finding the sequence of mea-
surements that can best reduce the overall uncertainty across length
scales. Alternatively, a measurement sequence can be found that mini-
mizes the uncertainty at one desired length scale. To construct a reward
function for this can be as simple as taking the negative of the sum of
the uncertainty. In a reinforcement learning (RL) framework, the
actions consist of both the length scale to explore next in the workflow,
as well as parameters within the specific experiment. For simplicity, we
will ignore the latter component and consider that the only action is to
choose the appropriate length scale. The task is to find a policy that will
determine how best to select actions to maximize the cumulative
rewards. Additionally, it is known that measurements at one length
scale can be highly informative of measurements at other length scales.

For this scenario, the knowledge discovery process can be repre-
sented via a probabilistic machine learning (PML) framework based, for
example, on Gaussian process, Bayesian neural network, or deep kernel
learning (DKL), (Fig. 5), with the idea that the data can be mapped
from one length scale to another. Assume that we have training data X
captured at the nth level, Xn. We can generate predictions on the test
data Xn

� ,

Xn
� ! f�

n
; V Xn

�
� �

: (1)

As an example, we consider that we take a few optical images at
certain positions (Xn), and then want to predict the image at unseen
locations (Xn

� ). The predicted images are f�
n
, and the predictive uncer-

tainty is given by VðXn
� Þ. However, we can also setup models that

attempt to predict at the next (e.g., lower) length scale. By feeding in the
test data X1

� , we can train a PML model to predict the function value at,
e.g., the next level, i.e., X1

�
PMLð1Þ
����! f 2X1�� ,V

2ðX1
�Þ: In general, we have

Xm
�
PMLðmÞ����!f

k
Xm�
;Vk Xm

�
� �

; (2)

FIG. 3. Multiscale workflow depicting the integration of data from diverse time and
length scale simulations, accompanied by a representation of the underlying cause–
effect relations between structural parameters and material properties.

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 11, 011314 (2024); doi: 10.1063/5.0169961 11, 011314-6

Published under an exclusive license by AIP Publishing

 15 April 2024 16:13:56

pubs.aip.org/aip/are


where the measurement at level m provides estimates of the function
value at level k along with uncertainty estimates at level k. The task is
to determine which measurement levelm (out of the n available levels)
to choose that will minimize the uncertainty in Vð�Þ, which could be
the uncertainty at one level, at all the levels, or at some combination of
levels, e.g., with a weighted sum. This means we need to know which
Vk or combinations thereof to use. Minimizing this uncertainty will be
the objective of the policy. After fixing the reward function, the work-
flow reduces to a simple reinforcement learning (RL) environment in
which the action is to decide which measurement (level) to capture,
which will then enable the appropriate PML(m) model to be updated.
The state fed back to the agent will then be the set of predicted means,
i.e., f

k
X�

for 1 � k � n. In the case where we do not know whichVk to
use, this can be reformulated as an RL problem, with the difference
being that the action now selects not only the measurement level, but

also, which uncertainty map level is used. Alternatively, one may also
consider some type of superpositions of the uncertainty from different
levels. Additionally, given that different experiments will likely greatly
differ in their actual cost per data point measured, this can also be fac-
tored into the reward function: penalties can be applied to actions or
action sequences that use “expensive” characterization tools, for
instance. Regardless, the optimization is straightforward once the
reward is defined, similar to our recent work with hypothesis
learning.46,126

As a practical example, we consider that we might have optical
images, SEM images with some chemical maps (e.g., from energy dis-
persive spectroscopy, EDS), and some scanning tunneling microscopy
images of a material system, such as a substrate with 2D flakes of vary-
ing chemical composition. This defines three levels, and the question is
which set of experiments will be most informative. In this case, optical

FIG. 4. The workflow for structural imaging. Here, the imaging studies are performed increasing the resolution of the microscope (and changing the imaging system). The deci-
sion making along the workflow includes selection of regions for detailed studies at progressively higher level of details. The decision making along the workflow can be purely
data driven (green lines), or incorporate decisions made with prior knowledge and informed by perceived reward.

FIG. 5. Single-step workflows based on (a) known criteria of interest and (b) active exploration, also known as (a) forward and (b) inverse experiments. In the case of (a), the
object of interest is known a priori and the role of AI algorithm is to identify them and perform specific measurements. In case (b), the scientist is interested in certain aspects of
the functional properties defined via scalarizer, and the AI algorithms learn what microstructural elements maximize or minimize them.
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microscopy of similar looking flakes is not likely to be highly correlated
with local electronic structure as imaged by STM, if these flakes are dif-
ferent in chemical composition and defect concentrations. On the
other hand, there will be a significant correlation with the EDS data on
the same flakes. As such, after initial correlations between STM, opti-
cal, and SEM/EDS data are found, minimizing total uncertainty may
hinge more on performing a few experiments with SEM/EDS and con-
firming them with STM. Our problem is in determining exactly which
of these measurements are most informative, and this can be done, in
principle, via the PML framework described above.

C. Beyond data driven discovery

The recent advances in imaging and characterization tools
including electron and scanning probe microscopy and associated
spectroscopies, atom probe tomography, focused x-ray scattering,
nanoindentation, optical microscopy and a gamut of electrical,
mechanical, and magnetic testing methods span the multitude of
length scales and functionalities. However, the gamut of available tech-
niques is belied by the dearth of the systematic workflows that allow
exploring the behaviors of interest in a systematic and unbiased way. It
is by now common to complement the macroscopic probing of the
piezoelectric, catalytic, and electric properties by the STEM or atomic
probe tomography studies of atomic structures, or correlate the photo-
voltaic performance of polycrystalline solar cells by the nanometer res-
olution cathodoluminescence and chemical imaging maps.

However, it is seldom that we can certainly say what specific type
of microstructural elements is most strongly associated with the func-
tionalities of interest. In the cases where such relationship was defined,
as for the role of step edges for catalysis, dislocation theory of plasticity,
or role of the domain wall dynamics on giant electromechanical
responses in piezoelectric ceramics, these discoveries required
community-wide effort involving multiple experiment and theory
development cycles. At the same time, it is these insights that are most
relevant toward understanding the underpinning mechanisms and
particularly establishing pathways for material optimization and
discovery. Only by understanding the fundamental origins of struc-
ture–property relationship can the strategies for the improving mate-
rial performance be formulated and tested.

For example, given the polycrystalline ferroelectric material, we
may seek to understand the origins of the high electromechanical
response or resistive switching. Given the hybrid perovskite solar cell,
we want to understand which microstructural elements are responsible
for chemical stability, current–voltage (IV) hysteresis, or the open cir-
cuit voltage (OCV) losses compared to the ideal values. The complexity
of such analysis stems from the fact that it may be different defect pop-
ulations that are ultimately responsible for these behaviors, and hence,
selection of the regions of interest for the detailed studies depends on
the specific goals. In this sense, this problem is poorly defined—we
seek to preferentially explore via detailed high-resolution studies
objects whose identity we do not know. Hence, we use hypotheses
formed based on the prior body of knowledge to guide the exploration
process, while maintaining the need for serendipitous discoveries.

D. Reward design

These considerations further bring us to the concept of reward
engineering. Here, methods such as reinforcement learning (RL) have

been shown to be highly effective in simulated environments such as
computer games or simulations.127–129 One of the key elements of RL
is a reward function that is made available for the algorithm during the
training. However, for many real-world problems, the reward func-
tions available in the end of experimental campaign (or after several
steps) are absent; rather, the experiments motivated by the long-term
objectives. Designing reward function that adequately represents real-
world objective and does not lead to reward hacking130,131 is a challenge.
Similarly, very often experimental results can contribute to multiple
objectives, with fundamental scientific research being the most notable
example of such activity.

As an example of such a problem, we consider climate change,
the problem motivating multi-billion-dollar investments over the
globe. Minimizing climate change is a very long-term objective. The
lower rank objectives are the development of solar and wind energy
and associated grid-level storage and effective energy transport meth-
ods, along with the technologies for direct carbon capture. The even
lower rank objectives are the development of cheap, environmentally
friendly, and stable chemistries for grid storage. None of these objec-
tives can be translated into a reward for an experimental campaign.
Rather, these objectives serve as a motivation for experiment plan-
ning—and reward is often a short-term battery performance or obser-
vation of specific mechanism in microscope that can suggest potential
ways to improve the battery materials.

We pose that discovery of the short-term rewards that can be
used for hypothesis making to guide experimental research, and as
rewards functions to guide and ascertain the success of experimental
campaigns is the missing link required to connect ML to real-world
applications. The potential pathways to address this challenge can
include literature mining toward building the DAGs connecting exper-
imental outcomes (rewards) and objectives (motivation), technoeco-
nomic analysis of past publications outcomes, and crowdsourcing to
the community of experts (aka “what would be the potential of high
temperature conductivity to change the world” to “how does the phase
separation in cuprates affects peak effect and losses”).

The key consideration for the reward-driven workflow design is
the capability to separate the specific objective into the probabilistic
graph of short-term reward functions that can guide experiment plan-
ning and establish measures of success. Naturally, these reward func-
tions will be probabilistic, and the value of real-world experiment can
affect (much) more than one objective. For example, mechanisms of
metal–air interactions can be used both for corrosion mitigation and
for design of metal–air batteries. The important element of this
approach is that humans are the part of the theory-experiment loop—
and hence, the structure of the rewards can be amended via human
feedback the observations (much like science works now).

Notably, the LLMs such as ChatGPT are often capable of making
the connection between high- and lower-level objectives (e.g., prompts
“what should I study with microscope to understand plasticity” gives
very plausible answers). Presumably, complementing LLMs with mod-
els trained on domain-specific literature can both allow systematic
developments of such workflows and their integration across multiple
domains following common rewards.

IV. MULTIRESOLUTION STRUCTURE–PROPERTY
CHARACTERIZATION WORKFLOWS

It is well recognized that understanding structure–property rela-
tionships in materials requires exploring properties and functionalities
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on all length scales, from the atomic scale structures to mesoscale to
the global properties of the material or device. Multiresolution analysis
workflows are used when, for each characterization method, we have
access to image–spectroscopy pairs, and the spectroscopic data pro-
vides information that is predictive of the functionality of interest.
Here, we define as the image the high spatial resolution/low informa-
tion density imaging including structural STEM image, SPM images,
etc. The spectroscopy refers to the information-rich local measure-
ments that are associated with larger measurement times or lead to the
irreversible changes in material structure, and therefore can be per-
formed only in a limited number of locations. However, we implicitly
assume that the spectroscopic measurements are correlated with the
macroscopic functionality of interest.

A. Single-step direct workflow

Here, first we illustrate these concepts for the single structure–
property mapping step. In this case, we can define forward and inverse
experiment. The forward experiment relies on the a priori defined
objects of interest that can be recognized in real time, e.g., using deep
convolutional networks. Here, the emergence of the ensemble and iter-
ative training methods allowed to partially address the inevitable out-
of-distribution effects (i.e., capability of the trained network recognize
object of interest if microscope parameters have changed). Recently, a
deep residual learning framework with holistically nested edge detec-
tion (ResHedNet) was ensembled to minimize the out-of-distribution
drift effects in real-time SPM measurement.132 The ensembled
ResHedNet was implemented on an operating SPM, where it con-
verted the real-time SPM data stream to segmented objects of interest,
e.g., ferroelastic domain wall or polycrystal grain boundary images.
Then, a pre-defined workflow used the coordinates of the discovered
objects for spectroscopic measurements. In doing so, the approach
allowed a thorough of interested objects of interest (virtually all loca-
tions at objects of interest) in an automated manner; in contrast, tradi-
tional manual operation only allows us to investigate a limited number
of locations at domain walls. Using this approach, alternating

high- and low-polarization dynamic ferroelastic domain walls in a
PbTiO3 thin film was observed52 and the behavior of grain boundary
junction points in metal halide perovskites was discovered.133

B. Single-step inverse workflow

In the inverse experiment, the operator defines the characteristics
that make spectrum “interesting,” e.g., intensity of a specific feature,
specific aspect of spectrum shape, or even maximal variability of spec-
tra within the image. In other words, each collected spectrum can be
associated with a single number defining how interesting it is, either in
absolute sense or as compared to previously acquired spectrum. The
deep kernel learning (DKL) algorithm learns what elements of the
material structure maximize this reward and guides the exploration of
material surface accordingly. This DKL algorithm was recently imple-
mented in SPM to investigate the relationship between ferroelectric
domain structure and polarization dynamics,54,134 and in STEM to
explore bulk and edge plasmonic modes. As shown in Fig. 2, the DKL
exploration process identifies the domain walls as objects of interest
and the DKL predictions indicate the high polarization dynamic of
180� domain walls. Although these are expected by ferroelectric
experts, the DKL itself did not have any prior physical knowledge and
learned all that information during the experiment.

C. Multiple-step workflows

The multiple-step imaging and characterization workflows can be
represented as the direct extension of single-step workflows as shown
in Fig. 6. Here, the structural imaging at the low resolution yields the
library of possible microstructural elements. We assume that the
microscopic measurements, e.g., using the micropatterned contact
arrays and current–voltage (IV) measurements via SPM, are represen-
tative of the macroscopic properties of the systems (even though the
exact physical mechanisms can be different due to changes in contact
conditions, confinement effects, etc.). These elements can be sampled
in statistically balanced way, e.g., based on the distributions in the
latent space of the system, to give the initial information on the

FIG. 6. Multiple-level imaging and characterization workflow. Here, we assume that the material functionality of interest probed on the macroscopic level is controlled by the
hierarchy of structural elements from macroscopic to atomic scale and that the available functional probing methods are representative of the material functionality. For exam-
ple, on the mesoscale, this can be realized using the microelectrodes and the SPM-based IV measurements.
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structure–property relationships in the system. With these, the process
can be iterated balancing the structural learning and learning struc-
ture–property relationships on multiple length scales. For the cases
when the spectroscopic measurements provide information that is a
proxy to the macroscopic functionalities but does not directly repro-
duce it, the definition of the workflows becomes more complex and
requires incorporation of the multiresolution multifidelity measure-
ments. For example, this can include the use of the easy to measure sig-
nals such as micro-Raman to identify preferential locations for
expensive measurements such as scanning probe microscopy or scan-
ning transmission electron microscopy, as has recently been explored
by Kusne.48

The key emerging aspect135–137 will be the integration of work-
flows across diverse domains, including different characterization
methods and synthesis. This, in turn, necessitates the employment of
consistent ontologies, a critical factor for ensuring effective inter-
domain communication and data interoperability. Within multi-
disciplinary landscapes, each field typically develops its own unique
lexicon, data structures, and conceptual frameworks, which can lead to
significant challenges in cross-domain interactions. The disparate
nature of these elements often impedes the seamless exchange and
accurate interpretation of information, posing a barrier to the cohesive
integration of workflows. Consistent ontologies should offer a stan-
dardized, unified schema for representing and understanding diverse
data sets and inferential biases, enabling disparate systems to interact
synergistically. This standardization is imperative for the accurate
mapping of concepts and terminologies across different fields, ensur-
ing not just data exchange but also its meaningful contextualization
and utilization. Furthermore, the adoption of consistent ontologies
facilitates scalability and adaptability within integrated systems, allow-
ing for the incorporation of emerging knowledge and technologies.

V. SOME CONSIDERATIONS ON THEORY–
EXPERIMENT–CHARACTERIZATION WORKFLOWS

The particularly interesting problems emerge at the interface
between the theory and experiment. The conflux of parallel comput-
ing, experimental capabilities along with theoretical simulations is nec-
essary to develop and implement end-to-end theory–experiment–
characterization workflows. It is safe to say that within materials sci-
ence challenges spanning over various applications, the primary goal is
to leverage existing structure–property relationships138 to propel both
design and discovery. These relations could be formulated at the atom-
istic level where electronic structure of systems plays the key role to
determine the energetics and stability. For mesoscale to continuum
scale, we tend to map the evolutions of microstructures with physical
properties such as plasticity, damage, or failure. The standalone inves-
tigations139–148 based on data from theoretical simulations149–154 are
well capable of elucidating the fundamental mechanisms responsible
for materials characteristics with applications in energy, catalysis, and
photovoltaics, drug design, to name a few.118,155–171 However, the ulti-
mate validations of such proposed mechanisms always rely on experi-
mental observables. Hence, to fully realize the potential of
workflows161,165,168,172–176 bridging instruments and theory,174,177–191

we must move toward theory-assisted experiments from the standard
perspective of matching final outcomes from experiments and simula-
tions. It becomes important to consider how causal structure–property
relations192–194 may hold true at different length scales while establish-
ing connections between experimentally controllable parameters with

theoretical variables. Here, we consider this interaction only in the
more limited context of imaging and characterization methods, but
even in this case, the complexity of possible interactions is immense.

Here, we assume that we have access to microstructure (M) at a
single length scale, global property measurements (G), local property
measurement (L), and theoretical model (T). We further assume that
M and G are available from the beginning of the experiment and are
not updated. Comparatively, T is available in the form of analytical or
numerical model and can contain partially unknown parameters that
can be updated during the experiment, and L can be performed
sequentially within known M. With this, we can define the static learn-
ing problem, meaning establishing the relationships between G, M,
and T after the measurements, and active learning problems, meaning
the workflow design for active experiments within M. Here, we will
use arrow! to define establishing a relationship given full batch data,
and" to define active learning workflow.

A. Static problems

With these building blocks, we can combinatorically define three
static analysis problems. Here, MT ! G is a direct calculation prob-
lem. In this case, we assume that the microstructure is known and the
theory is correct, and aim to calculate the global properties of the sys-
tem. The example of such approach will be the finite element calcula-
tion of the mechanical properties of the composite material, estimation
of the effective transport properties of the microstructure mapped via
the x-ray tomography, etc.

The inverse problem will be MG! T. Here, given known micro-
structure and global properties, we aim to refine theory that governs
structure–property relationships in the system. Finally, GT ! M
defines the design problem. Given the property of interest and theory,
we aim to design microstructure satisfying the given properties. These
problems are static in nature, i.e., we do not have iterative/active learn-
ing component. Of course, these problems become active when a part
of the synthesis or manufacturing workflow. Similar workflows emerge
in the context of local property measurements.

B. Active learning problems

With these simple examples, we can define several classes of
active learning problems. As mentioned above, defining active learning
workflows necessitates introduction of the reward, R, defining the dis-
covery target. For example, M(R)"L is the direct imaging problem,
where we choose locations for sampling local microstructure L given
what is interesting about M. In our experience for human-driven
exploration, the reward function often changes during the experiment.
For example, initial measurements are done with the target of micro-
scope performance optimization, proceed to get the overview image,
explore the most statistically prevalent regions within the image, and
then proceed to explore the regions that are believed to be interesting
based on the prior knowledge and beliefs. For example, it is natural to
target dislocations for mechanical properties, or ferroelastic domain
walls for understanding of the origins of the ultrahigh electromechani-
cal responses.

Comparatively, the L(R) " M is the DKL problem, where we
aim to discover locations for L given what is interesting about L and
perceived reward R. We can also envision more complex workflows,
for example, ML " T, meaning how to learn the theoretical model in
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an efficient manner given microstructure and local measurements. The
more complex scenarios include M G(R)"L, M T(R)" L, and M GT
(R) " L, meaning that we aim to discover locations for L given what
we know about microstructure and theory and perceived benefit for
global properties, theory, or both. As defined earlier, the reward can be
optimization of some characteristic, or simply, information gain as
represented by reduction in uncertainty of DKL (or other relevant)
surrogate models.

For multilevel problems, actively learning theory at the same time
will induce additional nonstationary characteristics to the objective,
further increasing the complexity of the problem. In fact, even the sim-
ple case of the co-navigation of theoretical and experimental domain
requires detailed analysis balancing the uncertainties between the
domains.195 Similar to single domain workflows, the development of
consistent ontologies for description of objects (and even search
spaces) is a key part of these developments.

VI. IMPLICATIONS

Finally, we analyze how the design and optimization of synthesis
and characterization workflows can affect the structural organization
of the research process. Specifically, we consider both the driving forces
such as increase in the throughput and costs of many imaging and
characterization tools, and emergence of the cloud infrastructure and
edge computing that allow information processing and feedback from
the cloud.

A. User facilities and lateral instrumental networks

From the historical perspective, the first big changes in the scien-
tific workflow in condensed matter physics, materials science, and biol-
ogy were brought about by the emergence of the large tools such as
synchrotrons and nuclear reactors.196,197 At that time, the concept of
user facility included developing the instruments, instrument scientists
operating them, and user scientists that physically visit for day-week
long experiments on their specific materials has become a norm.

The second big change has been emergence of the user facilities,
as exemplified by the Department of Energy Nanoscale Science
Research Centers, and user facilities at universities. This trend is associ-
ated with the emergence of the microfabrication labs as a part of
exploratory research, and rapid growth of throughput and costs of
characterization tools such as electron microscopes, scanning probes,
and chemical imaging. Correspondingly, integration of these tools
within the same geographically localized facilities that maintain the
instrument, offer the sample preparation facilities often shared
between multiple instruments, and maintain the highly trained scien-
tists capable of operating and using them greatly increases the effi-
ciency of use.

However, despite the drastic changes on the operational side, the
mode of use of the instruments in user facilities and individual labs has
been remaining largely the same. In all cases, the scientist run the
instrument manually, generating the large volumes of data during the
experiment. The data are typically analyzed after the experiment, in
the process that often takes weeks and months, and is subsequently
shared with the scientific community via publications. The latter pro-
cess is typically associated with extremely large latencies of the order of
months and often years, hindering the research process.
Correspondingly, until 10–15 years ago, scientific conferences were the
primary means for rapid information sharing. Over the last decade,

rapid growth of popularity of the preprint servers such as arxiv, chem-
rxiv, and biorxiv, as well as social networks greatly accelerated infor-
mation sharing. Similarly, code and data sharing via platforms such as
GitHub, Zenodo, and Google Colab are rapidly becoming a part of sci-
entific culture in many domain areas.

The rapid increase in ease of use of cloud technologies suggests
that the field is now poised to the next transition, where the operation
of the tools is largely remote and the information is either directly
streamed to the cloud storage, streamed after the acquisition based on
the upload speed constraints, or following the point-of-generation
compression. In addition to obvious advantages in terms of data acces-
sibility and security, this allows the formation of the lateral instrument
networks as illustrated in Fig. 7. Here, multiple instruments of the
same kind store the data within a community-accessible cloud space.
The latter also supports the computational capabilities and code eco-
systems that allow data analysis and, in turn, can be further harnessed
for the decision making and automation of workflow on individual
instruments, significantly accelerating the scientific process. It should
be noted that very likely data permissions will be dependent on the
study; most likely, data will not be shared universally without an
embargo period or something of the sort.

B. Sequential and parallel experiment orchestration

The development of cloud connectivity for characterization tools
establishes a set of novel opportunities for experimental workflows
across multiple facilities. The particularly important case for the par-
allel experiment orchestration198 is when multiple copies of the same
sample are available, e.g., combinatorial spread libraries. In these, the
local concentrations and functionalities are rigidly encoded in posi-
tional descriptor, allowing matching the regions between different
tools. For these structures, only a few characterization methods such
as optical hyperspectral imaging or photoluminescence can be per-
formed in parallel. For techniques such as structural characterization
via focused x ray, chemical characterization via ToF-SIM, cathodolu-
minescence, and scanning probe microscopy, the measurements can
be performed sequentially. At the same time, these techniques often
give complementary information on structure, properties, and chemi-
cal composition. Correspondingly, running the automated experiment
on same object and multiple systems allows to explore the material
composition space combining information from multiple sources
(Fig. 8).

We pose that these experiments can be also performed in the sta-
tistical sense, in which the information from multiple tools is com-
bined via partially similar channels. For example, for hybrid perovskite
samples in Fig. 1, the statistical properties of the microstructures can
be explored via correlating the chemical or CL signals referenced to
grain boundaries or other key point objects that can be identified in
both methods.

C. Automated laboratories vs user facilities

It is important to distinguish between cloud laboratories and user
facilities, as they serve different needs. The former is generally a repli-
cation of what would be found in an individual lab at a university,
though with APIs to enable automated experimentation and data col-
lection, and the possibility of enabling autonomous workflows, given
the presence of these APIs. This means that individual researchers can
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rapidly test ideas without the need for setting up their own lab, which
can dramatically improve efficiency and reduce redundancy, as indi-
viduals need not invest in their own laboratories for the purpose of
completing a synthesis. This should result in a significant reduction in
overall time to discovery, as it removes a significant activation barrier
(lab setup).

In contrast, user facilities, especially those run by the government
sponsors (e.g., light sources, synchrotrons, and NSRCs), provide capa-
bilities that are not generally available to most individual PIs. Efforts to
implement autonomous capabilities are nascent but developing. Still,
the fact that skilled instrument scientists are at these facilities enables
automation of different aspects of the facility, due to in-house technical

knowledge that would be difficult to acquire externally, and can realis-
tically only be shared through these outlets.

Regardless, the development of automated facilities is a pre-
requisite for the development of autonomous workflows where the
whole setup can be optimized. It should further be noted that the opti-
mization, e.g., of synthesis, is not always equitable with a quantitative
efficiency gain. For many, if not most experimental workflows, the bot-
tleneck lies not in time taken to perform a single measurement or
experiment, but in other points (such as model generation). However,
this is not to say, the automated synthesis is not valuable. Rather, it
enables rapid iterations to converge on higher-quality solutions that
can be found with human expertise alone.199,200

FIG. 7. Transition from single tool to lateral instrumental networks enabled by cloud technologies and data analysis ecosystem. Traditional scientific research often relied on
individual, isolated instruments. Each instrument was operated independently, and the interaction between different instruments was performed in the phase of post-experiment
data analysis by human. The transition here is to move from this isolated setup to a network of instruments that are interconnected, which allows for lateral communication and
interaction between various instruments, enabling various instruments work in conjunction and share information seamlessly in real time. Cloud technology plays a role in
enabling real-time data sharing and processing, scientists can access data remotely, collaborate remotely, and utilize computational resources analyze complex datasets. The
cartoon scientist is generated by DALLE3.
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VII. REQUIREMENTS FOR IMPLEMENTATION
OF WORKFLOW

The analysis above allows us to summarize the requirements for
broad implementation of scientific workflow design for automated and
traditional laboratories. These include the following:

(1) Development of the labs capable of orchestrating pre-defined
workflows based on human and robotic agents. These can be
purely human-operated lab, purely robotic lab, or human–robot
lab where humans perform technical tasks. The associated need
is the hyperlanguage that summarizes possible operations and
provides access to control parameters. This also includes pro-
cess monitoring on multiple levels—sample locations, collection
of proxy signals during processing, environment monitoring,
etc. Here, it is important to have access to full experimental
data including both positive and negative outcomes, since
purely positive data are often insufficient for optimal ML.

(2) Workflow design based on AI and human decision making,
meaning specific series of synthesis and characterization steps
based in hyperlanguage. Since physical objects that can be only
in one place in one time, workflow will have a directed graph
structure (but can form quasi loops when folded on material
axis, e.g., for optimization). Note that currently humans both
plan workflows and execute them, but these functions can be
separated. Key aspect here will be the development of consistent
ontologies operating across disparate workflow elements.

(3) Defining domain-specific reward functions that guide workflow
development. Why are we running experiments? Is the reward
scientific discovery, optimization, or something else (curiosity
or empowerment)? Ultimately, we should be able to quantify
(in the style of Bellman equation for reinforcement learning)201

what is the benefit of the specific step in the workflow, and how
does it accomplish or affects exploration and exploitation goals.

(4) Integration of reward functions from dissimilar domains, since
almost in all cases total reward function will be compounded
from multiple intermediate rewards. For example, how does
better microscope help us learn physics of specific material?
Why would the specific DFT calculation help us understand
experimental data?

(5) Creating experimentally falsifiable hypothesis from the domain-
specific body of knowledge that can be incorporated in the
exploratory part of automated workflows. This is required
because workflow design should ideally include a discovery
component, and not only optimization. Discovery is effectively
extrapolation into unknown domain, and given very high
dimensionality, the full space of possible experiments is intrac-
table. Hypotheses provide a way to constrain the space to
explore. Note that updating hypotheses based on experimental
data is a well-defined problem in Bayesian sense.

(6) Hypothesis generation. In many cases, this is an extrapolation
problem and will likely be human-driven (and potentially AI
assisted) for the foreseeable future. However, it will be

FIG. 8. Graphic representation of the geographically distributed multimodal characterization experiment where the identical combinatorial library is simultaneously imaged via
focused x ray at Argonne, nanoindentation at UT Knoxville, and SPM IV at ORNL and the experimental pathways are updated based on results from all three systems.
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interesting to explore whether combination of interpolative
capabilities of models such as ChatGPT combined with their
ability to work with the full volume of text and other data avail-
able to mankind will be sufficient for hypothesis generation.

VIII. SUMMARY

Scientific research and discovery are typically organized around
workflows, or sequences of the specific actions and experiments target-
ing specific outcomes. Until now, the workflow design has been highly
domain-specific and once established, the workflows remain constant
over decades. The disruption of the existing workflows or the introduc-
tion of the new ones is typically associated with the emergence of the
novel experimental tools. Traditionally, ideation, orchestration, and
implementation of the workflows are human-based. The advent of
machine learning tools over the last three years has facilitated optimi-
zation of human-built workflows, but yet has not led to beyond-
human experimentation.

Here, we introduce simple workflows for structural characteriza-
tion and show that these can be based only on the discovery or
weighted by prior knowledge. We suggest several possible strategies for
the characterization workflow design. We discuss the increase in com-
plexity for combined imaging-characterization workflows and illus-
trate the direct and inverse step for design of such workflow.

Finally, we argue that a similar approach can be extended to com-
bined synthesis—imaging-characterization workflows and workflows
containing theory in the loop. The workflow design in this case
becomes extremely complex and will weigh the latencies, costs, and
expected benefits of all steps. We believe that the design of such work-
flows will require careful analysis of the rewards and the analysis of the
value of individual steps. However, the emergence of automated
experiments and labs necessitates these developments. Overall, these
tools will enable knowledge-based workflow optimization; enable lat-
eral instrumental networks, sequential and parallel orchestration of
characterization between dissimilar facilities; and empower distributed
research.
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