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Abstract—Transmitter localization remains a challenging prob-
lem in large-scale outdoor environments, especially when trans-
mitters and receivers are allowed to be mobile. We consider
localization in the context of a Radio Dynamic Zone (RDZ), a
proposed experimental platform where researchers can deploy
experimental devices, waveforms, or wireless networks. Wireless
users outside an RDZ must be protected from harmful inter-
ference coming from sources inside the RDZ. In this setting,
localizing transmitters that are causing interference is critical.
One notable obstacle for developing data-driven methods for
localization is the lack of large-scale training datasets.

As our first contribution, we present a new dataset for localiza-
tion, captured at 462.7 MHz in a 4 sq. km outdoor area with 29
different receivers and over 4,500 unique transmitter locations.
Receivers are both mobile and stationary, and heterogeneous
in terms of hardware, placement, and gain settings. Next, we
propose a new machine learning-based localization method that
can handle inputs from uncalibrated, heterogeneous receivers.
Finally, we leverage our new dataset to study the robustness of our
technique and others against “out of distribution” (OOD) inputs
that are common in most real life applications. We show that our
technique, CUTL (Calibrated U-Net Transmitter Localization),
is 49% more accurate on in-distribution data, and more robust
than previous methods on OOD data.

Index Terms—transmitter localization, model robustness, RF
spectrum sensing

I. INTRODUCTION

Localization is a classic problem, fundamental to providing
ubiquitous mobile and wireless services. More recently, trans-
mitter localization has been used to identify sources of wireless
interference [1], [2]. As wireless spectrum becomes more and
more saturated, interference is an increasing problem, and
novel frameworks for spectrum sharing and management are
required to allow for effective spectrum use. One such frame-
work is a Radio Dynamic Zone (RDZ), recently proposed
by the National Science Foundation and discussed in recent
works [3], [4]. An RDZ is envisioned as a geographic area
with greater flexibility in spectrum allocation and usage than
currently exists in today’s licensed systems. These zones are
planned as experimental platforms where researchers deploy
experimental devices, waveforms, or wireless networks. As
a framework, RDZs will require a system that automatically
manages spectrum usage and protects outside users from
harmful interference. In this setting, localizing transmitters that
are causing interference is critical.
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Fig. 1. Locating a transmitter in a Radio Dynamic Zone is a critical part of
operating a spectrum sharing system.

Fig. 1 shows an example of localization in an RDZ setting.
One transmitter is causing interference to a user outside the
zone, so data from the “RDZ Sensors” must be used to
localize the interfering transmitter. In order to provide greater
coverage, the management system can crowdsource additional
measurements from experimental users to more accurately
locate a transmitter. In this setting, sensors may be fixed
or mobile, and we assume transmitters have full mobility.
Although we view transmitter localization in the context of
an RDZ, all of the techniques in this work broadly apply to
localization of mobile transmitters in other settings as well.

In this paper, we use received signal strength (RSS) values at
receivers for localization in an RDZ setting. The advantage of
this approach is its low overhead — RSS values can be easily
measured by any RF sensor. While localization techniques
based on angle-of-arrival or time-difference-of-arrival can be
more reliable and accurate than localization via RSS [5], these
techniques require specialized hardware for synchronization or
positioning, which can be unrealistic in a large scale RDZ.

Localization methods and their limitations. The classic
approach towards localization is based on triangulation using
the dynamics of wave propagation (see [5] for a survey).
However, adding or changing the position of receivers re-
quires (re-)solving an expensive inverse problem. Motivated by
this, researchers have recently proposed data-driven, machine
learning (ML) based approaches. Currently, the majority of
existing work on outdoor localization is based entirely on
synthetic data, or on very small datasets, both in terms of
the number of transmitter locations and the geographic area
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covered, typically a small area of less than 100 x 100 m.

Apart from requiring a large amount of training data, ML
methods are also notorious for their inability to handle “out
of distribution” (OOD) data, i.e., data dissimilar to those seen
during training [6], [7]. In applications of localization, it is
common to have significant differences between training and
test, due to changes in weather, differences in transmitter and
receiver types, varying channels or power levels, etc., and
thus being robust to OOD data is an important requirement.
Further, most known ML methods require carefully chosen
model architectures and manual parameter tuning in order to
achieve optimal results, leading to inductive biases and pos-
sibly overfitting to the dataset. To the best of our knowledge,
there is no systematic study on understanding the robustness of
localization models and the significance of parameter tuning.

Goals and contributions. Succinctly, the goal of our work
is to provide a large outdoor dataset for localization research
that can help evaluate the quality and robustness of data driven
techniques. We wish to identify ML architectures that can
work with varying numbers of uncalibrated receivers, and can
also perform well on natural OOD examples.

To this end, we collect a localization dataset using the
open-access POWDER testbed at the University of Utah [8],
an open-access wireless testbed [8] capable of over-the-air
transmission and reception with heterogeneous sensors. We
study deep learning-based techniques using RSS measure-
ments to localize transmitters. We compare different convolu-
tional neural network (CNN) architectures from recent works
[9]-[11], and study the effects of architecture and parameter
choices. More specifically, our contributions in this paper are
as follows:

e We present a new dataset for evaluating localization
methods, covering over 4 km? with over 4,500 unique
transmitter locations with RSS measurements from het-
erogeneous sensors. We also provide splits or partitions
of the data that allow us to quantify the robustness of
models.

o Using the OOD splits from our dataset, we evaluate the
robustness of several localization techniques to changes
in seasons, sensors, and mobility. We find that the ac-
curacy on these samples is significantly worse than in-
distribution samples, illustrating the brittleness of current
techniques to “natural” changes.

e We develop a learning-based pseudo-calibration tech-
nique for inputs from heterogeneous sensors. Our learned
calibration provides up to 18% improvement in accuracy
for our approach, and adding this as a pre-processing step
for other learning-based localization techniques such as
LLOCUS [12] improves results by up to 35%.

e We propose CUTL, Calibrated U-Net Transmitter
Localization, a U-Net-based ensemble model which
uses our learned pseudo-calibration. CUTL is 49%
more accurate than other localization techniques on in-
distribution data and has up to a 10% improvement on
the OOD splits in our dataset. In developing CUTL, we
study the effects of network parameters and architecture.

II. BACKGROUND AND RELATED WORK

In this work we only consider RSS-based localization due
to the ease of collecting measurements on any device. Addi-
tionally, RSS values do not require sensors to record signals,
alleviating a major privacy and storage concern. RSS-based
localization has been investigated for both single transmitter
[13] and multi-transmitter scenarios [5], [14]. Traditional
methods rely solely on calibrated RSS measurements and
an assumed RF propagation model. This makes them error-
prone when the propagation model cannot capture the complex
propagation characteristics of a real-world environment. To
alleviate this issue, recent localization techniques [10]-[12],
[15] use fingerprinting to train a machine learning model based
on data taken in a specific environment.

Deep Learning for Localization: Recent promising ap-
proaches for localization utilize deep learning techniques for
image processing. In general, there are two approaches for
deep learning-based localization using RSS values:

1) Directly predict transmitter coordinates, as in [15].
2) Produce a 2D map of probable transmitter locations, as
in [9]-[11].

These techniques have both been shown to be effective in
single or multi-transmitter scenarios [9], [10], [15]. However,
all of these techniques are evaluated on data either simulated
using propagation models [10], [15], using ray tracing in
simple virtual environments [11], or from small-scale datasets
of less than 100x 100 m [9], [10], [12], [14]. To our knowledge
the only existing city-scale localization datasets [16], [17] use
homogeneous receivers, contain few receivers within the area
of interest, and only report limited sets of RSS values.

In this work, we consider a crowdsourced localization
problem with heterogeneous sensors, and assume there is no
available calibration data. In order to locate rogue transmitters
in an RDZ, we cannot rely on techniques or data which
depend on specific infrastructure or technologies, such as WiFi
localization.

III. PROBLEM FORMULATION

We consider localization within a geographic area which
operates as an experimental RDZ. Users within this zone
rely on a central spectrum authority (SA) to guarantee users
protection from interference. If an offending transmitter must
be located, sensors take energy measurements and share these
measurements with the SA for localization.

For n receivers monitoring the spectrum, each measurement
sk received by the SA consists of an RSS measurement and
the receiver coordinates: sy = [rg, Tk, yx),1 < k < n. This
set of measurements S = [s1, 82, ..., S, is the input to the
localization algorithm. We assume that every measurement
S, may contain error in both the RSS measurement and the
coordinates. Let the set of active transmitter locations be ().
The objective of a localization algorithm is to learn some
function L that approximates @, denoted L(S) = Q.

In our setting, we assume that there is only one active
transmitter per sample (|Q| = 1), except for a special test
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TABLE I
DEVICE SPECIFICATIONS FOR TESTBED SENSORS
Category | SDR Antenna Count
Mobile B210 Taoglas MA244.LBIC.002 8
Rooftop | X310 | CommScope VVSSP-360S-F 6
Dense B210 | CommScope VVSSP-360S-F 5
Fixed B210 Taoglas GSA.8841 10

case discussed later. Although other works [9], [10], [15] focus
on the multiple transmitter setting, the single transmitter case
remains a difficult problem, particularly for OOD data.

IV. DATA MEASUREMENT

A large contribution of this work is our large-scale mea-
surement campaign of a mobile transmitter. We recorded over
4,500 unique transmitter locations in a 2 x 2 km area with
between 9 and 25 simultaneous receivers collecting RSS val-
ues. These measurements were taken using 29 unique sensors,
with four different device and antenna configurations. In this
section we describe our method of data collection, hardware
details, and unique train-test separations and special test-cases
that we use for evaluating localization accuracy.

A. Data Collection

In order to capture a large localization dataset, we utilized
the POWDER platform at the University of Utah, an open-
access wireless testbed with software defined radios (SDR)
distributed across campus. We use a tool from [18] to take
simultaneous RSS measurements at available receivers in the
testbed.

We collect measurements in the Family Radio Ser-
vice/General Mobile Radio Service (FRS/GMRS) band, which
allows for 2-way voice communications. Though not used for
broadband communications in most regions, the FRS band
is of considerable interest due to its proximity to LoRa fre-
quencies in Asia (433 MHz) and TV white-space and mobile
broadband bands in the US and UK (ranging from 400-800
MHz). Obviously, experimental transmissions are prohibited in
most bands, and unlicensed ISM bands contain far too much
interference to accurately measure signal strength.

A BaoFeng BF-F8HP portable FM radio was used to
transmit a narrowband audio signal in the FRS band at 462.7
MHz while walking, cycling, and riding in a vehicle with
speed of less than 13 m/s (30 mph). GPS measurements of
the transmitter location were taken once per second using
Motorola G5 Plus and Google Pixel 2XL. smartphones, which
typically have error less than 10 m, but error can occasionally
exceed 40 meters [19].

1) Radio Details: Each of the testbed devices belongs to
one of four categories, based on the device placement and
hardware specifications. These categories are Mobile sensors
mounted in shuttles, Rooftop sensors on campus buildings,
Dense sensors on 8 m tall street-poles, and Fixed sensors
mounted on the side of buildings at ground level. Hardware
details are shown in Table I.
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Fig. 2. A map of radio sensors in the testbed that were used for collecting
signal strength measurements.

A map of receivers, including mobile shuttle routes, is
shown in Fig. 2. This map illustrates that our dataset has
an extremely low sensor density (at most 4 Mobile sensors
were active at a single time). There were between 9 and 24
active sensors in any given sample, giving a sensor density
between 2.25-4.0 sensors’km?. For comparison, the sensor
densities used in [10], [15] are between 100-400 sensors/km?
in simulated data and 18 sensors in the small 0.001 km?
testbed in [10]. The extremely low sensor density in our dataset
provides a significantly more difficult localization problem
than in other works.

The dataset was collected over the course of four days, with
the first day in late April, and other measurements taken in
early July. Each measurement consists of 10,000 IQ samples
recorded at a sample rate of 2 MHz. After collection, a 6 kHz
bandpass filter was applied to the samples. As is standard, the
signal power was calculated as the average sum of absolute
squares. The gain of each receiver was set to 35 dB, though
this can represent either a medium or high gain depending
on the device. For example, the B210 radios had a maximum
gain of 76 dB, and the X310 radios had a maximum RX gain
of 37.5 dB. Without calibration between these radios, it is
unknown how the gain settings of different sensors relate.

Unlike other localization datasets [10], [12], [13], [16], our
dataset consists of measurements from heterogeneous devices.
The radios used are high-end Ettus SDRs, but variation in gain
settings, antenna placement, and antenna radiation pattern all
provide a varying set of sensors which makes localization an
even more challenging problem.

B. Train-Test Separations

To our knowledge, this is the largest scale localization
dataset with heterogeneous sensors existing in the literature.
In order to fully explore data captured in this complex envi-
ronment, we create several divisions of our dataset intended
to assess the robustness of localization techniques.

The first and most obvious split is a random 80/20%
separation of a train and test set, which we refer to as the
Random split. The other splits of our dataset are meant to
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Fig. 3. Maps of transmitter locations for each dataset split. L-R, top-bottom: Random, Grid, Driving, Seasonal, Indoor, Off Campus, and 2-Tx.

approximate realistic deployment challenges. These are shown
in the top row of Fig. 3.

e Grid: We divide campus into a 10 x 10 grid, where
20 rectangles are randomly assigned to the test set, and
the remaining 80 are assigned to the training set. The
Grid split is used to demonstrate the performance of
localization techniques in unseen regions.

o Driving/Pedestrian: The transmitters used in this dataset
were carried either while walking, cycling, or riding in a
car. The Pedestrian set includes cylcing.

e April/July: We separate this data based on the date of
collection, with one day in April and three in July. We
use this data split to observe generalization over time.

We also consider three special cases which are meant to
evaluate localization techniques on data that is significantly
different from the training distribution, shown in the bottom
row of Fig. 3. Similar to how computer vision researchers
introduced ImageNet-C [6] to measure a model’s robustness
to OOD data, we evaluate models trained on the Random data
split on these special cases to measure model robustness.

o Indoor: A small set of samples with an indoor transmitter
near windows.

o Off-campus: A small set of samples were taken far
outside the campus boundaries far from most receivers.

e 2-Tx: A small set of samples taken with two active
transmitters at a time.

We make this dataset and the train/test splits outlined here
publicly available [20]. We hope that this data will become
standard for evaluating future localization techniques on un-
calibrated, heterogeneous sensors, since our results show that
current localization techniques are generally not robust to
OOD data.

V. METHODOLOGY

We use deep learning to avoid making any assumptions
about the environment or transmitter characteristics, instead
learning directly from sensor data without interpolation or
estimation, at the risk of biasing a model based on our data.
‘We test variants of the U-Net architecture [21] for localization,
In the rest of this section, we detail our localization technique,
including network architectures, sensor calibration, and the
training and evaluation process.

A. Localization via Image Transformation

We view localization as a computer vision task, where the
set of receiver measurements S is represented as an image,
and the objective is to either (1) directly predict the transmitter
coordinates, or (2) generate a corresponding image that shows
the position of active transmitters. This image setting captures
the spatial relationship between receivers. To form an input
image X, the pixel corresponding to each sensor measurement
s € S is set to the normalized RSS value, and all pixels
without a sensor value are set to 0. We follow a similar process
to form a the target image Y. All pixels are set to 0 except
for a 3 x 3 square with a center value of 1 and exterior values
of 0.5. This image-to-image localization process is shown on
the left side of Fig. 4, where the measurements and locations
are converted into input and target images X and Y.

This process requires discretizing the coordinate space, in
terms of meters per pixel. As the meters per pixel decreases,
the processing time increases quadratically, and accuracy can
suffer if the network architecture is not designed for a large
input image. On the other hand, if the meters per pixel is
high, then the loss of precision can harm localization accuracy.
An exploration of results with varying meters per pixel is
presented in our results.

1) Architecture and Optimization : Our U-Net model con-
sists of a series of downsample and upsample blocks, which
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Fig. 4. The CNN image training pipeline. Sensor and transmitter data S and @ are made into the input and target images X and Y, which are used to train
the CNN. The CNN is trained to output either a direct prediction @, or an image prediction Q.
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Fig. 5. Our variant of the U-Net architecture

use convolutional layers to encode feature channels, along
with residual connections between layers to preserve the
high-resolution information from early layers. This network
architecture is shown in Fig. 5.

We explored several variants of U-Net in our study, in-
cluding deeper and shallower networks, larger convolutional
kernels, no residual connections, and a downsampling-only
version with additional linear layers for output. All these mod-
els performed similar to or worse than our chosen architecture.

We consider both direct coordinate prediction where the
error in the (z,y) coordinate predictions is minimized, and
image-to-image prediction where the difference between the
target image Y and predicted output Y is minimized. As
will be shown in our results, both techniques are effective
at localization, which we find somewhat surprising, since in
the image-to-image setting a prediction with 5 pixels of error
receives the same penalty as a 50 pixel error. In spite of this,
our most accurate model is trained using this technique.

It may be noted that the Wasserstein or earth-mover’s
distance (EMD) is an ideal loss function for the image-to-
image prediction, since it would penalize a 50 pixel error
more. However, EMD is a non-trivial objective to compute
(requiring solving a matching problem), and to our knowledge
no efficient implementations of EMD-approximations exist for
2-dimensional distributions.

2) Training and Evaluation: We use the training and test
splits outlined in Section IV-B, randomly selecting a subset
of the training samples as validation data. This validation set
is used to select model hyperparameters such as pixel scale
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Fig. 6. Violin plot of the RSS measurements, without normalization (top), and
with sensor-specific normalization (bottom). Each vertical shape represents the
distribution of the RSS values for each sensor.

and training epochs. We train five different models for cross-
validation with random validation sets, then train and evaluate
a model using the full training set and the chosen parameters.

We also consider a bagged ensemble of the five cross-
validation models models, as in Breiman’s classic work [22],
where we calculate a weighted average of predictions from
each of the five models. This weighted average enables a more
precise sub-pixel prediction.

B. Signal Strength Calibration

Without calibration data available, we normalize and learn
to calibrate our sensors. In Fig. 6, we show the distribution of
RSS values for the different sensors in our dataset, with the
sensor category shown by the color. The RSS values before
normalization are shown in the top plot. Note that the Mobile
sensors on the left have wide variation in the RSS distributions,
particularly in the noise-floor.

We normalize the RSS values before they are input to
the model. Each sensor has a unique noise floor, so the
RSS value is normalized on a per-sensor basis based on the
measured noise floor and the maximum observed RSS value.
After normalization, Fig. 6 (bottom) shows that there is still
large variation in the RSS distributions, due to environmental
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diferences such as line-of-sight, obstacles such as buildings,
and low coverage of the edges of campus.

In order to compensate for the lack of calibration between
different radios, we scale the RSS values in order to improve
localization performance. Simply, we apply a weight w; and
bias b; to scale the RSS value from each sensor,

T = w;ri + b;

We use gradient descent to learn these two values during the
localization training process, with unique parameters either for
each sensor, or for each of the four categories of sensors.
Adding a constant bias b; is the standard method of calibrating
device power in dB [23]. we also include a multiplicative
weight to scale the importance of each sensor.

We found that in certain cases calibration made modest
improvements to the accuracy of our model as well as other
localization techniques. The impact of this calibration is dis-
cussed fully in Section VI

VI. EVALUATION AND RESULTS

In this section we evaluate localization methods on our data.
We train and evaluate various CNN architectures. We consider
different pixel scales and pseudo-calibration techniques and
show their impact on accuracy. We also explore how models
perform on OOD data by evaluating CNNs on the train/test
splits outlined in Section IV-B.

In our evaluation, we reference the median error rather than
mean when evaluating localization techniques. In our results,
the mean is 1.2-1.65x greater than the median. We find that
median provides a more clear estimate of typical error.

A. Architecture Evaluation

In Fig. 7, we compare the median error of different network
architectures on the Random split of our data. We compare the
following models:

e U-Net: The 19-layer downsample-upsample CNN shown

in Section V, using the image-to-image loss function.

e U-Net+Linear: The same U-Net architecture with three

linear layers for direct coordinate prediction.

e DeepTxFinder [15]: A direct coordinate prediction tech-

nique with four convolutional layers and one linear layer.

e DeepMTL [10]: An image-to-image prediction technique

using four convolutional layers. The authors use a highly
complex sub-pixel prediction technique using object de-
tection that was not implemented for this work.

1) Pixel Scale: More than any other parameter, the meters-
per-pixel drastically affects localization accuracy. We consider
pixel scales between 5 and 140 m per pixel, shown in Fig. 7.
The U-Net model outperforms all others at 30 m per pixel,
with the most accurate pixel scales for DeepTxFinder and
DeepMTL at 100-110 m. The U-Net+Linear performs well
with less dependence on a specific pixel scale.

Fig. 7 only shows the results for the Random split of data.
In the other splits, discussed later, U-Net performs better with
a larger pixel scale of 60 to 80 m. Because of the better
performance on OOD data and in order to provide a simpler
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Fig. 7. Comparison of CNNs with varying pixel scale.

Fig. 8. U-Net prediction with pixel scale of 10 m (left) and 60 m (right).

practical model, we use a constant pixel scale for each model:
60 m for U-Net and U-Net+Linear, 100 m for DeepMTL, and
110 m for DeepTxFinder.

The poor performance at low meters-per-pixel was surpris-
ing. This seems to be due to the difficulty of training a loss
function at high resolution. One example output of models
trained at 10 m and 60 m pixel scale is shown in Fig. 8. With
predicted values between 0 and 1, we interpret each pixel value
as a “confidence” that a transmitter exists in that location. The
10-m prediction (left) has a max confidence of 0.03 and an
error of 154 m, compared with the 60-m prediction on the
right, with a confidence of 0.82 and an error of 17 m. The
10-m prediction has several clusters of relatively high-valued
predictions which are centered around sensors, but the 60-m
prediction has only one confident prediction.

We conjecture that poor performance at low pixel scale is
due to the limited depth of CNNs. The number of pixels be-
tween transmitters and receivers is significantly larger at high
resolution, making it difficult to learn a function representing
the relationship between transmitter and receiver.

2) Bagging : In Fig. 9, we compare the performance of the
bagged models (5-ensemble) with models trained on all of the
training data. The importance of each of the five predictions is
scaled by the model confidence for the prediction, rather than
just taking the average of the five predictions. This weighted
average is a type of sub-pixel prediction, so it provides a
greater improvement in mean error for the image-to-image
predictions (U-Net and DeepMTL) compared to the direct
coordinate prediction (U-Net+Linear and DeepTxFinder).

3) Model Confidence and Error : An important question
for evaluating a machine learning model is identifying cases
where the model fails to perform well. We expected that the
highest localization error would be for transmitters that were
far from the nearest receiver. However, Fig. 10 shows only a
weak correlation between the distance between a transmitter
and the nearest receiver and the localization error (R = 0.16).
Some outliers have been removed to show the scale more
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clearly. Overall, this result is very surprising: the distance
between a transmitter and receiver does not have a strong
effect on the localization error. We conjecture that these high-
distance points may have a unique fingerprint that is more
easily identified by our model.

B. Out-of-Distribution Performance

In order to evaluate how CNN-based localization generalizes
to cases that are outside the distribution of training data,
we train separate models on the train/test splits described in
Section IV-B. We report full results for the boosted U-Net
model at 60 m per pixel in Table II, including training and
test set details and the median error on each test set. In the
rightmost two columns, we also report the prediction error and
the percentage of the test set which have confidence over 0.5.

TABLE 11
THE MEDIAN LOCALIZATION ERROR FOR THE U-NET MODEL FOR ALL
TEST SETS DESCRIBED IN SECTION IV-B. THE RIGHTMOST TWO
COLUMNS CONTAIN RESULTS WHERE ONLY PREDICTIONS WITH
CONFIDENCE ABOVE 0.5 ARE CONSIDERED.

Train Train All Samples Conf. > 0.5
Test Set Set Size Err. [m] Size | Err. [m] | % of Test
Rand. Rand. 3399 40.1 828 39.2 98%
Grid Grid 3536 117.6 691 111.9 92%
Pedest. Drive 925 181.5 3302 142.4 53%
Drive Pedest. | 3391 264.9 836 244.4 83%
July April 811 207.4 3416 164.5 27%
April July 3416 335.8 811 255.0 45%
2-Tx 1% Rand. 3399 160.6 346 148.4 89%
2-Tx 2™ | Rand. 3399 466.4 346 457.1 3%
Indoor Rand. 3399 126.3 89 91.5 90%
OffCamp | Rand. 3399 566.1 156 439.0 63%

—

1.501 WM Category I

| Sensor

Median Err. (Norm

April

Random

Grid Pedestrian Driving  July

Fig. 11. Effect of learned calibration applied to each Category or each unique
Sensor, normalized by error with no calibration.

1) Train-Test Splits : As expected, localization on data from
outside the training distribution results in poor accuracy. Of
these OOD cases, the most accurate model was trained on the
Grid split, which has a median error of nearly 3x the Random
split error. In the worst case, the Off-Campus test set has an
error of 566.1 m, over 14x the Random split error.

Table II shows that a larger training set does not indicate
better performance. Models evaluated on the Pedestrian and
July test sets were each trained on less than 1000 training
samples and evaluated on over 3000 samples, yet they both
have a median error 80-130 m less than when training and test
sets are reversed. Increasing the size of the training set seems
to help accuracy only if the distribution of test data is similar.
Otherwise overfitting is likely.

One interesting case is the 2-Tx test set, which had two
active transmitters. For the first prediction (i.e., the maximum
peak in the array), the median error is 160.6 m, lower than
many of the OOD data splits. The second prediction had a
median error of 466.4 m, with only 3% of these predictions
having a confidence over 0.5. This indicates that with two
transmitters active, a model trained on single-transmitter data
may still perform well for finding one transmitter.

2) Signal Strength Calibration : Since our sensors provide
uncalibrated RSS values, we can apply a pseudo-calibration
technique using learned calibration parameters. We consider
two different calibration techniques: learn linear parameters
for each category of sensors, or learn linear parameters for
each individual sensor. In Fig. 11, we show the effectiveness
of these techniques on each of our six dataset splits using
the bagged U-Net model, normalized by the error with no
calibration applied.

We see a notable improvement of up to 18% in the Random
split using category-specific calibration, and minor improve-
ment in the Grid split, but no improvement using the other
techniques. This illustrates an important point: for data that is
significantly different than the training distribution, allowing
the model to learn an extra parameter for calibration actually
just enables overfitting. Sensor-specific calibration allows an
even greater degree of overfitting.

The learned calibration parameters provide an interesting
insight into how valuable a model finds data from different
sensors. Fig. 12 shows the RSS distributions of each sensor
after calibration. The most obvious effect of calibration is
shifting the Mobile RSS values downward by 0.26, decreasing
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Fig. 12. Device RSS distributions after normalization and category-specific
calibration.
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Fig. 13. Comparison of localization techniques across all dataset splits.

their impact. In our observations, the Mobile sensors were
often noisy, potentially due to moving closer to interference
sources as well as electrical noise on the shuttles.

3) Non-CNN Localization: We compare against two RSS-
based localization techniques which do not use deep learning:

e LLOCUS [12]: Interpolate sensor data to a set of fixed
locations, then train a simple ML model (k-nearest-
neighbors or radial basis function) forr localization.

e SPLOT [14]: Use matrix-inversion with a path-loss model
to estimate the transmit power field over the space, where
the maximum field value is the predicted location.

The localization algorithms used in LLOCUS and SPLOT
both explicitly require that input values are a calibrated power
measurement, which may not be available. In such a case, our
learned pseudo-calibration can improve accuracy. We applied
our learned-calibration function to LLOCUS and SPLOT.
Using category-specific calibration parameters from a trained
U-Net model improved the median accuracy for LLOCUS
between 10-35%. Unlike in Fig. 11, calibration improved
LLOCUS accuracy for all dataset splits. Results for SPLOT
are much more modest, improving by only 1% on average.

4) Results on All Splits: Fig. 13 shows the results of all
tested localization techniques on the six train-test splits, with
ideal pixel scale applied for the deep-learning models, and
sensor-category psuedo-calibration applied to LLOCUS. U-
Net outperforms previous techniques by 49% on the Random
split, as well as better accuracy on the majority of dataset
splits, with one exception of the Driving test set where
DeepMTL achieves a 39 m advantage.

No technique achieves sub-100 m accuracy (roughly 5% of
the width of campus) in any of the OOD test splits, but we note
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Fig. 14. Plots of predictions, ground truth, and training data for the Random
(left) and Driving (right) sets. Error-vector lines connect ground truth and
predicted locations.

that this is an expected outcome. Due to the complexity of the
campus environment, noise in RSS and GPS measurements,
the difficulty of learning to perform on unseen distributions of
data, and the extremely low sensor density, we conjecture that
no existing localization technique can perform significantly
better in these OOD circumstances without either additional
information about the environment or other mechanisms to
correct bias.

5) Detailed Error Analysis : Statistics such as the mean and
median offer a good understanding of the typical behavior of
a localization technique, but they do not provide a complete
picture. In Fig. 14, we show maps illustrating prediction error
for the Random and Driving test sets using the bagged U-Net
model at 60 m per pixel. Faint orange dots represent locations
in the training set. Locations in the test set are shown by larger
circles, where the circle color indicates the error of our model
predictions. Each model prediction is shown by a colored "X,
with a thin line drawn between each prediction and the ground
truth. This error vector line can be helpful in illustrating any
trends in our prediction error.

For the Random data (top), the predictions are generally
very accurate, with just a few notable predictions with high
error. On the other hand the Driving test set has much higher
error; the error also has a clear structure. By looking at the
blue error lines between ground truth and predictions, we can
observe there are some clear clusters of predictions in the
image. These clusters indicate a bias in the model predictions.
This may be due to bias in the training data, which was taken
on foot, allowing for a much greater density of training points
in certain locations.

C. Discussion

One of the greatest challenges in this localization setting
is the extremely low sensor density, orders of magnitude
lower than other localization techniques were designed for. In
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light of this, it becomes apparent that evaluating localization
techniques on simulated data with impossibly high sensor
densities is not representative of the expected performance of
these techniques in real-world scenarios. This is why over-
the-air experimental datasets such as the one provided with
this paper are crucial to evaluating transmitter localization
techniques.

Our proposed U-Net model outperforms all other evaluated
techniques, though all models have significantly lower accu-
racy on OOD data compared to the Random split. Generalizing
to completely unseen data is the paramount challenge of
machine learning, and our deeper network provides a signifi-
cantly more accurate model in both the in-distribution Random
cases as well as most of the OOD splits. When we restrict
predictions to those with high confidence (> 0.5), we have
even more accurate predictions. Our results also highlight the
importance of choosing an appropriate pixel scale.

Our learned pseudo-calibration is a simple, effective method
that allows for heterogeneous sensors to be used for localiza-
tion, and can even be applied to other techniques which require
calibration. The ability to learn parameters that calibrate an
entire category of sensors is extremely useful. If parameters
have been learned for an existing sensor category, then adding
a new sensor of the same type becomes trivial.

As a result of these experiments, we propose CUTL, or
Calibrated U-Net Transmitter Localization as a new localiza-
tion technique. CUTL uses learned psuedo-calibration to scale
RSS inputs and predicts locations using a bagged ensemble of
U-Net models.

VII. CONCLUSION

With very few large outdoor datasets for localization avail-
able, we contribute a large dataset for localization containing
over 4,500 unique transmitter locations and heterogeneous sen-
sors. We make our dataset publicly available for research and
evaluation, including non-random splits of our dataset used
to evaluate localization performance on OOD data. Without
evaluation on such challenging cases, localization techniques
cannot be shown to be robust to realistic changes in seasons,
sensors, or areas of interest.

We have used CNNs to localize a single transmitter in
our outdoor dataset using RSS measurements, including com-
parison of direct coordinate prediction and image-to-image
models for localization. Our CUTL technique outperforms
previous methods through the use of a deeper network, ensem-
ble models, and pseudo-calibration which scales inputs from
heterogeneous devices. Our future work will focus on using
context about the environment to further improve accuracy and
robustness.
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