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Abstract—High-speed, accurate RF propagation models are
essential for interference prediction between different spectrum
users. We propose a simple and effective regression-based estima-
tion method that can be used both for correcting errors in existing
propagation models, such as the Terrain Integrated Rough Earth
Model (TIREM), and also as a stand-alone empirical propaga-
tion model where no prior model is required. A neural network
regression model (NNRM) that is informed by real-world channel
and propagation characteristics is developed to obtain accurate
path loss predictions throughout a 2.9 km by 2.6 km map of the
University of Utah. The proposed NNRM is trained and tested
on three path loss measurement campaign data sets collected
across the campus, resulting in a 58% to 87% reduction in loss
difference variance when used to correct TIREM, and a 59% to
76% reduction in measured signal strength variance when used
as an empirical propagation model.

Index Terms—Propagation modeling, augmented modeling,
digital spectrum twin, regression, diffraction.

I. INTRODUCTION

DIGITAL Spectrum Twin (DST) is a regularly updated

digital representation of radio spectrum that observes
usage within a particular geographical area. It integrates
information about radio sources, regional geographical
information system (GIS) data, spectrum sensing measure-
ments, and propagation maps, to generate an estimate of
spectrum activity in frequency, space, and time. With near
real-time updates, DSTs are emerging tools for effective
spectrum management, including guiding spectrum users and
predicting future spectrum utilization [1], [2]. Additionally,
DSTs increase spectrum efficiency by enabling more sec-
ondary user activity in currently unused frequency bands
allocated to primary or incumbent users [1].

The creation of a DST for real-time use in wireless networks
requires hybrid propagation models which have accuracies
approaching deterministic modeling (e.g., ray tracing) and
the speed and simplicity of empirical models (e.g., path-loss
exponent). To arrive at such powerful models, we propose a
combination of modeling with an established, tried-and-true
broadband model (e.g., the Terrain Integrated Rough Earth
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Model or TIREM) augmented with a machine learning correc-
tion factor that allows for fast, custom-tuned, error-minimized
map production. These techniques lower standard deviation
error and, in many instances, extend existing models into a
wider range of applicable environments.

The performance of the models against radio measurements
are shown for 462.7 MHz (UHF Family Radio Service) and
3.55 GHz (Citizens Broadband Radio Service). In particular,
we are able to associate individual performance metrics to
specific modeling elements for one of the first times in propa-
gation modeling. For example, we find that the most important
element for both 462.7 MHz FRS and 3.55 GHz CBRS bands
is the shadowing angle of the mobile radio in the model aug-
mentation mode, and distance from the stationary radio in the
empirical mode.

A. Propagation Modeling Background

RF propagation modeling plays a critical role in analyz-
ing the feasibility of communication links between terminals
and potential interference with incumbent users, which are
essential for automating the spectrum sharing process and
maintaining the DST. Moreover, accurate propagation mod-
els can be useful in analyzing the link budgets of long-range
active UHF and SHF radio frequency identification (RFID)
systems [3]. There are three main categories of propagation
modeling approaches: empirical, ray-tracing, and theoretical
models.

Empirical propagation models use statistical methods to
generate a predictive fit using data collected within a
region, taking into account various factors such as frequency-
and distance-dependent attenuation, antenna heights, terrain
effects, and street orientation angle [4], [5], [6]. The propa-
gation environment is usually classified as urban, semi-urban,
or rural, with model parameters differing for each environ-
ment. However, the accuracy of empirical models is limited
to environments similar to the ones where the measurements
were taken. In dissimilar environments, changes in channel
and propagation characteristics may end up with inaccurate
predictions [7].

Ray-tracing models calculate path loss by considering a
3D terrain or building profile, and determining rays from a
source that take different paths to a terminal. These mod-
els are used in various scenarios including monitoring of
astronauts [8], assessment of lunar communication links [9],
and they use time of arrival information to account for
multipath and frequency-selectivity of channels, leading to
accurate predictions [10]. However, their complexity makes
them computationally expensive and memory intensive [11].
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Fig. 1. Knife-edge diffraction geometry for single knife-edge.

Theoretical models of wave propagation incorporate
physical phenomena such as free space path loss, reflection,
and diffraction. In the case of line-of-sight (LOS) paths, both
the direct wave between terminals and the ground-reflected
wave are considered when estimating signal strength. For non-
line-of-sight (NLOS) paths, on the other hand, diffraction
and reflected multipath components are the main contrib-
utors to signal strength. The absence of discreet, defined
multipath components in theoretical models sets them apart
from ray-tracing models. Diffraction becomes the most impor-
tant factor to consider for NLOS paths. To simplify the
diffraction problem, some of the theoretical models assume
that the diffracting terrain elements, such as buildings, are
infinitely long and perfectly conducting half-planes, referred
to as knife-edges (KEs), as depicted in Figure 1. Even though
theoretical models are more efficient than ray-tracing models
and more accurate than empirical models, their approxima-
tions and limited consideration of 3-dimensional propagation
factors, such as multipath, reduce their overall accuracy.

The Irregular Terrain Model (ITM), also known as the
Longley-Rice model, is a widely used theoretical propaga-
tion model optimized for irregular terrains, and is best suited
for frequencies ranging from 20 MHz to 20 GHz [12]. An
extended version of ITM, the Terrain Integrated Rough Earth
Model (TIREM), has been developed for a variety of terrains
and use cases, which is discussed thoroughly in Section II.

Augmented = Prior + Gyq(0) + LDpreq 1)
First Step  Second Step

The main objective of this work is to enhance an existing
propagation model (Prior) by taking into account the radiation
pattern of the stationary radio, and addressing its limitations
through the use of Equation (1), as described in Section IV.
The resulting model denoted as Augmented, provides better
performance in terms of the mean and standard deviation of
the loss difference. Moreover, the augmented modeling scheme
and the set of features developed for this purpose can also
be used as an independent empirical model, without requir-
ing a pre-existing theoretical model. For the testing of the
proposed model, three different measurement sets collected
from a college campus are compared to TIREM’s predictions
and a constant-power map, respectively.
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II. TERRAIN INTEGRATED ROUGH EARTH MODEL
A. Overview

The Terrain Integrated Rough Earth Model (TIREM) is
an RF propagation model that predicts path loss by con-
sidering parameters such as antenna characteristics, medium
of propagation, and the digital terrain profile between the
radios. To estimate path loss, TIREM first determines the mode
of propagation between the radios, based on the frequency
range. For the wide range of frequencies between 20 MHz
and 1 THz, it considers terrain irregularities and distinguishes
between line-of-sight (LOS) and non-line-of-sight (NLOS)
channels [13].

For LOS paths, it considers ground reflection, free space
loss, and molecular absorption at higher frequencies. For
NLOS paths, it makes use of a knife-edge diffraction (KED)
engine to estimate path loss, taking into account diffraction
losses associated with each knife edge. The KED engine is
especially useful when the wave gets depolarized in its path
or the polarization of the transmitter is unknown, as it provides
a solution that is the geometric mean of the perpendicular- and
parallel-polarized Sommerfeld diffraction solutions [14]. The
overall diffraction loss value is determined based on the num-
ber of knife edges and an empirically set threshold for the
average knife-edge loss [13].

The diffraction loss associated with a KE is calculated as
a function of the Fresnel-Kirchhoff diffraction parameter, v,
shown in Equation (2) [7].

2/1 1
=h|/—| — — ] =
v )L(d1+dg) ¢

where h, di, d, and ¢ (diffraction angle) are illustrated in
Figure 1. The ratio of received field strength, E, to the free
space field strength measured at the same location, Ey is

o0 ]
E_ M[ exp( Jmlt )d!
Ep 2 ), 2

These expressions are applicable only under certain condi-
tions where dj,dy > h, and dj,d> > X, or for relatively
small diffraction angles where the path difference between
LOS (T-A-B-R) and diffraction (T-K-R) paths contains many
wavelengths while remaining smaller than ¢ and d> [15]. It
has also been shown that the diffracted power obtained from
Sommerfeld-polarized solutions and the KED solution diverge
from one another in largely shadowed regions [14]. Moreover,
the KED approximations cause a distortion in the phase of the
diffracted wave specifically at largely shadowed regions.

The TIREM model does not consider the 3D geometry of
the propagation environment. It rather restricts its calculations
to 2D elevation profile between the two radios. Therefore, it
is unable to account for multipath components or frequency
selectivity of channels. It is mostly trained for long-range
links [13] and underpredicts the signal strength in micro-
cellular regions. It also assumes isotropic radiating elements
whereas realistic antennas have non-uniform radiation patterns.
Therefore, TIREM’s predictions in short-range microcellular
environments vary considerably from the reality.

2

F(v) =

3)
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Fig. 2. Digital terrain profile showing a combination of the digital ele-
vation map and the building layout in UTM zone 12. Map dimensions are
approximately 2.6 km by 2.9 km with a 0.5 m resolution.

% 10° Initial TIREM Predictions
4514 F — e

@ Stationary Radio

45135 °

4513

UT.\«‘IN [m]

4.5125 ¢

E
A
Received Signal Strength [dBW]

=100
4.512

-120

-140

4.295 43
UTM, [m]

4.29

4305
%10°

Fig. 3. TIREM’s predictions for a 35 dB power adjustment (transmit power
plus receiver amplifier gain for measurement system) at 462.7 MHz (FRS
band) for all mobile radio locations throughout the Salt Lake City, University
of Utah region. The region of radius 690 m where the measurements are taken
is illustrated within the black rectangle.

B. Map Generation

To generate path loss predictions for a region, a digital ter-
rain profile (DTP) is necessary. A DTP can be created by
merging digital elevation map (DEM) data with a building
layout containing building location and height information,
demonstrated in [16]. In this work, the DEM of the Salt
Lake Valley near Red Butte Canyon mouth is obtained from
a LiDAR survey from the State of Utah [17] and combined
with the university building layout to create the terrain profile
shown in Figure 2.

TIREM can now perform calculations using the 2-D raster,
treating each pixel as a possible pairing radio location from
a stationary endpoint pixel. Initial TIREM predictions in the
region are shown in Figure 3.

III. MEASUREMENTS

The proposed augmented modeling method is evaluated on
three real-world RSS datasets, taken on the University of
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Fig. 4. TIREM 462.7 MHz (FRS band) predictions with corrections for

enhanced terrain diffraction, radiation patterns, and roadway orientation. The
region of radius 690 m where the measurements are taken is illustrated within
the black rectangle.

Fig. 5.

Rooftop (left) and Mobile (right) radio placement in the testbed.

Utah campus using the open-access POWDER platform [18].
The testbed includes Ettus USRP X310 radios mounted on
buildings and B210 radios on mobile shuttles, shown in
Figure 5.

The first measurement set consists of a continuous-wave
transmission in the CBRS Band, f; = 3550.251 MHz, from a
single rooftop node, labeled USTAR in this work, with three
mobile shuttles collecting power measurements. Depicted in
Figure 5, the sensor antenna was mounted on the rear window
of the shuttles. The shuttles followed regular routes during
the collection phase, shown by the three different colors in
Figure 6. Although the antenna orientation varied during the
measurement campaign, samples in nearby locations also had
nearly identical antenna orientations.

This consistent antenna orientation is not the case in our
other evaluation datasets, taken from [19], where a portable
two-way radio (BaoFeng BF-F8HP) transmitted in the FRS
band (462.7 MHz) while two rooftop radios (USTAR and
Honors) were used to collect power measurements, shown in
Figure 7.

In the CBRS band, measurements were taken with mobile
receivers and a fixed transmitter, but in the FRS band, measure-
ments were taken with a mobile handheld transmitter and fixed
receivers. Consequently, an extra variable of error is embedded
in this set because the antenna is handheld without a gyro-
scope to keep the radiation pattern consistent across transmit
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Fig. 6. Data collection locations for the first dataset with 3550.25 MHz
(CBRS band) frequency. The single red dot shows the stationary radio’s
location and different shuttle routes are shown in different colors.
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Fig. 7. Data collection locations for the second and third datasets with
462.7 MHz (FRS band) frequency. The red and green dots show the two
stationary radio locations and the yellow dots are the mobile radio locations.

locations. Although the device has a whip antenna, considered
omni-directional in the horizontal plane, test data with a rotat-
ing antenna showed a power delta (maximum - minimum) of
11.5 dB, compared to only 2.8 dB for a stationary antenna.

Some FRS data was taken with the transmitter on a bicy-
cle, potentially introducing more drastic changes in radiation
patterns. With these unknown variables of antenna orientation
and transmit power, it is assumed that the two FRS datasets
pose a greater challenge for consistent propagation modeling.

The maximum ranges of samples from the stationary radio
that have received power values above the noise floor are listed
in Table I along with the number of samples considered.

As the distance between the terminals increases, the
received power values gradually decrease and ultimately fall
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TABLE I
PARAMETERS RELATED TO THE MEASUREMENT SETS

Frequency

Maximum

Set Name (MHz) Range (m) # Samples
CBRS USTAR 3550.251 350 1221
FRS USTAR 462.7 690 1614
FRS Honors 462.7 400 1050

to the noise floor. The maximum ranges up to which the signal
strength is above the noise floor are listed for each experiment
in Table I along with the number of samples considered.

IV. THEORY

This section presents our augmented modeling scheme for
improved path loss predictions, along with an explanation of
the working principles of the neural network regression model
(NNRM) and the features that are fed into it.

A. Augmented Modeling Scheme Overview

The overall augmentation approach includes generating
predictions per pixel using TIREM, as shown in Figure 3, and
producing corrections at the pixel level to be reintroduced and
improve the original predictions.

Previous efforts to generate corrections of this nature have
produced modest improvements, such as using simple mini-
mum mean squared error (MMSE) techniques to compensate
for pessimistic shadowing losses, or the integration of clutter
models to further categorize corrections of an environmental
nature, [16], [20]. However, these approaches only consider a
limited number of the factors which impact propagation, where
plenty other existing ones are left unaccounted for.

A two-step procedure is adopted to correct the prior prop-
agation model’s predictions, expressed in Equation (1). In the
first step of this procedure, the radiation pattern of radios is
accounted for, which is neglected by most of the existing
theoretical models including TIREM. Accordingly, the gain
pattern, Gy (), of the stationary radio is generated. Then the
sum of the prior model’s prediction and the stationary radio’s
gain is computed at each pixel’s elevation angle 8, and this
process is repeated for every pixel in the map. If the signal
is received from or transmitted to a non-line-of-sight mobile
radio, the corresponding observation angle is used instead of
the elevation angle.

The second step aims to compensate for other factors that
contribute to the path loss difference between the measure-
ments and the prior model’s predictions. These factors are
either imperfectly handled by the prior model or not consid-
ered at all. Features associated with these factors are designed
and fed into a fully connected neural network regression
model (NNRM) and pixel-level predictions of the loss dif-
ference are obtained, denoted as LDp4. Specifically, the
difference between the measurements and the prior model’s
signal strength, denoted as LD = Measurements — Prior, is
calculated and used as the target to be predicted in the NNRM.
The augmented predictions offering more accurate predictions
are then obtained by adding LD,.4 to the values obtained at
the end of the first step.
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Fig. 8. The neural network regression model.

B. Neural Network Regression Model

A fully connected neural network regression model as
shown in Figure 8 is used to predict the LD. This model
is chosen because it utilizes an activation function to iden-
tify non-linear relationships between features (predictors) and
the loss difference (target), thereby incorporating a non-linear
component, unlike linear models. Moreover, it doesn’t require
prior knowledge of the distribution of the data, unlike some
other nonlinear models such as the polynomial regression
model. In other words, it is able to learn the underlying pat-
terns and relationships in the data without making assumptions
about its distribution.

Once a value is predicted in the output layer as a result of
the forward pass, it is compared to the ground truth, i.e., LD,
through a cost function such as the Ridge (L2) regularized
mean squared error (MSE) function shown in Equation (4),
where N is the number of samples fed into the model, LD; is
the actual path loss difference between the measurement and
TIREM’s prediction for the sample s, 8 (X5) (which can also
be denoted as LDy, s) is the path loss difference predicted by
the model which is a function of model parameters, {b, w}
ﬁ, p is the regularization parameter, and M is the total number
of parameters constituting the model.

A 1 & 2 M
C(B.x.LD) = =3 (LD~ g3X0) + p B} @)
— Z_
Regularization

"

MSE

The regularization term in the cost function penalizes large
model parameters such that the negative effect of multi-
collinearity between different independent variables is min-
imized. The defined cost function is then minimized with
a backpropagation algorithm that adjusts model parameters
iteratively. The limited-memory Broyden-Fletcher-Goldfarb-
Shanno quasi-Newton algorithm (LBFGS) is used in this work
as a cost function minimization technique [21]. This is a tech-
nique requiring only a limited amount of memory whose main
driver is the gradient of the loss function with respect to model
parameters.

The comparison of several configurations of the model is
carried out with a cross-validation procedure. The dataset is
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divided into training, validation, and testing sets. The training
and validation sets were then used to determine the optimal
number of hidden layers (1 to 3), the number of nodes in each
hidden layer (from a range between 4 and 32), the activation
function (from either rectified linear unit (ReLU) or sigmoid),
and the regularization parameter, p (from a range between
10~% and 10~'). Once the optimal model configuration is
determined, the former two sets are combined into a single
training set and the trained model is tested on the testing set.
The resulting optimal hyperparameters and the corresponding
statistics are shared in Section V. The optimal NNRM model
is then used to make predictions about the LD throughout
the map including the pixels that have no measurements. The
corrected map is illustrated in Figure 4.

C. Features

The performance of the NNRM is highly dependent on the
quality of the features it’s fed. To address the factors that are
not considered by the Prior model, features that are correlated
with LD have been designed. This approach leads to a reduc-
tion in the mean and standard deviation of LD, improving the
overall predictions.

TIREM is designed mainly for long-range, macrocellular
links. Therefore, it tends to underpredict signal strength for
short-range microcellular links. Additionally, ground reflec-
tions in LOS paths only affect the propagation after a critical
distance, which changes the functional dependency of path loss
on distance [7]. Furthermore, the non-uniform radiation pattern
of mobile radios causes a distance-dependent loss difference,
whereas TIREM assumes isotropic radiation. The logarithmic
distance to the stationary radio is introduced as a feature to
eliminate variation caused by those factors.

Even though the radiation pattern of the stationary radio is
taken into account in the first step in the overall correction
scheme, the radiation pattern of the mobile radio is still incor-
rectly represented in TIREM as isotropic. One way to correct
that is to calculate elevation angles for the mobile radio and
use those angles as features in NNRM.

While the radiation pattern depends on both the elevation
and azimuth angles, it is important to note that the azimuthal
orientation of the mobile radio is highly variable while the
elevation angle remains fairly stationary across the pixels. In
other words, the radio is likely to rotate in a 2D horizontal
plane during measurements because of the random orientation
of roads with respect to the stationary radio. However, it is
expected to be stationary vertically most of the time. Hence,
the azimuth angle of the radio with respect to the stationary
radio does not provide a steady feature that can be used to
correct for the radiation while using the elevation angles can
serve as a reliable indicator of variations in signal strength due
to the radiation pattern. The elevation angles for all pixels in
the map with respect to a stationary endpoint are shown in
Figure 9.

TIREM’s predictions are based only on the 2D vertical
cross-section between the radios, disregarding the 3D nature
of signal propagation in real-world environments. As a result,
TIREM’s predictions may be significantly inaccurate when
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Fig. 9. Elevation angles for all pixels in the map with respect to a stationary
endpoint. The angles are calculated taking the positive z-axis as 0 degrees.
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Fig. 10. Logarithmic distance of a mobile radio to the closest building edge
around it.

signals propagate via alternative 3D paths that contribute sig-
nificantly to the overall signal strength. To solve this problem,
one approach is to providle NNRM with a measure of dis-
tance to the closest building edge, as shown in Figure 10. This
information can be useful in identifying less-varying, clear
channels in LOS scenarios and clutter density affecting the
expected number of multipath components in NLOS scenar-
ios. Despite its contribution to the prediction performance, it
should be noted that the generation of this feature is compu-
tationally challenging. This is one of the main reasons why a
theoretical model, like TIREM, is preferred over a ray-tracing
model.

TIREM predicts signal strength separately for the LOS and
NLOS paths, as discussed in Section II. The two cases have
different factors affecting path loss. The calculation of LOS
path loss is relatively simple and less prone to errors compared
to NLOS path loss, which requires additional approximations.
For example, obstacles are represented as semi-infinite half-
planes, and the expressions for field strength are only valid
for relatively small diffraction angles. These approximations
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Sight Between the Radios
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Fig. 11. Binary sight information between the stationary radio and all possible
pairing radio locations in the map. The darker blue pixels show line-of-sight,
and lighter blue pixels show non-line-of-sight links.
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Fig. 12. Diffraction parameter for the main knife edge having the largest
Fresnel zone path clearance ratio calculated for 462.7 MHz (FRS band)

frequency.

of the KED engine can result in the overprediction of path
loss for NLOS paths. To resolve this issue, the sight between
the radios is introduced as a feature to correct for LOS and
NLOS paths separately, as shown in Figure 11.

Another layer of correction can be applied for NLOS
paths by determining how deeply a radio is shadowed by a
building or terrain element. The fact that KED relative field
strength expression in Equation (3) is only valid for small
diffraction angles, or similarly for small Fresnel-Kirchhoff
diffraction parameters, v, means that TIREM’s predictions
for deeply shadowed regions are likely to be more erroneous
than less-shadowed regions. To solve this issue, the diffrac-
tion parameter, v, can be calculated for the main obstacle
(having the largest Fresnel zone path clearance ratio) blocking
the path between the radios, using Equation (2). The resulting
parameters are illustrated in Figure 12.

With a similar motivation, the shadowing angles (whose
geometry is shown in Figure 13) for the first and last KEs are
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Fig. 14. Shadowing angle for the first knife-edge along the path. The lighter
colors indicate larger shadowing.

Road Orientation

Radio Link
Orientation

Fig. 15. Road & radio link orientations.

calculated for all pixels in the map and the calculated shad-
owing angles at the vicinity of the mobile radio are illustrated
in Figure 14.

As the mobile antenna is significantly lower than most build-
ings, signals tend to propagate along the streets, leading to
clearer channels and stronger received signals for radio links
aligned with the primary road orientation at a given loca-
tion [6], [22], [23]. However, TIREM does not account for
this guiding effect, resulting in potential discrepancies between
predictions and measurements.

This problem is approached by using GIS and
OpenStreetMap (OSM) software to obtain a road map
of the University of Utah region. Principal component
analysis is then carried out in the neighborhood of each road
pixel to determine its primary road orientation. Finally, the
radio link orientation between a stationary radio and a radio
located at the road pixel is calculated and compared to the
road orientation, as shown in Figure 15.

The alignment between the road orientation and the radio
link direction is calculated by computing the absolute value
of the cosine of the angle between them, i.e., cos(a). The
resulting alignment map is presented in Figure 16, where roads
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Fig. 16. Alignment between radio link and road orientations. The redder

roads are more aligned with the radio link.
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Fig. 17. Number of blocking obstructions between the two radios. Different
colors represent different numbers of buildings obstructing the path.

that are more closely aligned with the radio link show larger
values.

TIREM’s diffraction loss calculation method includes
empirical thresholding based on the number of knife edges
and the mean loss due to these knife edges [13]. As the
number of blocking obstructions in the signal path increases,
multipath components might contribute more to the overall
signal strength, leading to greater discrepancies. The number
of blocking obstructions in the path between the two radios is
calculated, and the resulting map is shown in Figure 17.

V. RESULTS & ANALYSIS

Path loss values obtained from collected measurements are

used for two different modeling approaches:

« Model Correction: to correct initial TIREM predictions
throughout the map (Prior in Equation (1) is TIREM’s
predictions).

« Empirical: to make predictions when no prior model is
available (Prior in Equation (1) is some constant power
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TABLE II

PEARSON CORRELATION COEFFICIENTS BETWEEN FEATURES, AND LOS

S DIFFERENCE (LD), LINE-OF-SIGHT LOSS DIFFERENCE (LOS LD), AND

NON-LINE-OF-SIGHT LOSS DIFFERENCE (NLOS LD). THE BLUE VALUES ON THE LEFT-HAND SIDE REPRESENT TIREM LD CORRECTION
RESULTS WHEREAS THE RED VALUES ON THE RIGHT-HAND SIDE REPRESENT EMPIRICAL RESULTS, WHICH ARE OBTAINED
DIRECTLY FROM OBSERVATIONS WITHOUT RELYING ON A PRIOR MODEL

3.55 GHz (CBRS) USTAR 362.7 MHz (FRS) USTAR 462.7 MHz (FRS) Honors
LOS NLOS LOS NLOS LOS NLOS
Feature Name LD LD LD LD LD LD LD LD LD
LOS / NLOS 0.75 0,31 N/A [N/A N/A N/A 0.62 [-0.43 N/A [N/A N/A N/A 0.63 F0.43 N/A IN/A NJ/A N/A
Logarithmic Distance 1/, 131 05 | 009003 | —031] 015 || —001| 020 | 0.17]0.21 002p14 || 015|020 | o021p21 | —012] 014
to the Closest Edge
Logarithmic Distance
(o the Stationary Radio || —001 [082 | 065083 | 0421076 || 0151067 | ~022[-0.66 | ~0291-073 || 023 1-0.67 | ~039 0.6 | ~044 073
Elevation Angle 040 |0.66 | —0.651082 | =049055 || 043|041 | =054|-054 | =037 056 || —0.36/-041 | =047 [0.54 | —0.34 [0.56
for the Mobile Radio
Roa‘ST_Rad“’ Link 004|002 | 00103 | —0.04|000 || —0.08[0.09 | 026007 | —0.04 007 || 016000 | —0.14 |0.07 | —0.11 F0.07
Number of o - | an | <o ”
Blocking Obstructions 0.72 H0.37 N/A [N/A 0.27 H0.31 0.50 -0.52 N/A [NJA 0.13 F0.42 0.67 F0.52 N/A NFA 0.41 .42
Logarithmic
Shadowing Angle 054 028 | nua A 0.34 |-0.23 0.50 |-0.41 N/A [N/A 0.14 |-0.19 0.68 |-0.41 N/A [N/A 0.42 [o.19
for the First KE
Logarithmic
Shadowing Angle 0.45 .24 N/A N/A 0.34 -0.20 0.58 -0.27 N/A [N/A 030013 0.76 027 N/A [NFA 0.66 |).13
for the Last KE
Logarithmic
Fresnel-Kirchhoff 076034 | A A 0261025 || 062}045 | A A 0121028 || 065F045 | A va 043 [-0.28
Diffraction Parameter
for the Main KE
TABLE 111

INDIVIDUAL FEATURE CONTRIBUTIONS TO THE MODEL PERFORMANCE CALCULATED FROM THE INITIAL STANDARD DEVIATION OF LD, AND THE
REDUCED STANDARD DEVIATION WHEN THE RELEVANT FEATURE ALONE IS FED INTO THE NNRM. AN AVERAGE OF 20 RANDOM SEEDS.
LARGER VALUES INDICATE GREATER CONTRIBUTION. THE BLUE VALUES ON THE UPPER SIDE OF THE SLASH REPRESENT TIREM LD
CORRECTION RESULTS WHEREAS THE RED VALUES ON THE LOWER SIDE OF THE SLASH REPRESENT EMPIRICAL RESULTS, WHICH
ARE OBTAINED DIRECTLY FROM OBSERVATIONS WITHOUT RELYING ON A PRIOR MODEL

3.55 GHz (CBRS) USTAR || 462.7 MHz (FRS) USTAR || 462.7 MHz (FRS) Honors
Tinit Tinit Tinit
13.56 12.65 14.18
11.08 10.27 12.47
Individual Feature Contributions
Feature Name (‘\/a—?nif. - g?nit+feature]
10.67 7.71 8.21
LOS /NLOS 277 5.02 458
Logarithmic Distance to 2.33 0.00 1.44
the Closest Edge 2.07 3.33 2.80
Logarithmic Distance to 4.74 2.47 1.90
the Stationary Radio 9.60 6.03 9.26
Elevation Angle 9.55 7.31 5.10
for the Mobile Radio 8.80 4.11 8.09
Road-Radio Link 0.38 1.49 0.44
Alignment 0.00 0.98 0.00
Number of 10.76 7.78 932
Blocking Obstructions 3.66 5.51 4.66
Logarithmic Shadowing Angle 10.85 7.1 9.03
for the First KE 3.60 471 431
Logarithmic Shadowing Angle 10.20 8.05 10.48
for the Last KE 3.80 4.99 7.37
Logarithmic Fresnel-Kirchhoff 10.80 7.76 9.19
Diffraction Parameter for the Main KE 3.68 5.32 4.72

corresponding to transmit power plus receiver amplifier
gain for measurement system).

The blue values in Tables II, III, IV, and V correspond to
the results obtained from the first modeling approach, i.e., the
model correction mode, while the red values denote the results
obtained from the second approach, i.e., the empirical mode.

The Pearson correlation coefficients between the features
and LD as well as the LOS/NLOS components of the LD for

the three measurement sets are presented in Table II. Most
of the features are either correlated with the LOS compo-
nent of LD, NLOS component of LD, or both. Note that
some features such as the diffraction parameter and shadowing
angle or LOS/NLOS and the number of blocking obstructions
are correlated with each other to a certain degree. However, the
regularization term in the cost function reduces the negative
effects of multicollinearity between features. Features having
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TABLE IV
MMSE AND NNRM Lo0SS DIFFERENCE STATISTICS, AN AVERAGE OF 20 RANDOM SEEDS. THE BLUE VALUES ON THE UPPER SIDE OF THE SLASH
REPRESENT TIREM LD CORRECTION RESULTS WHEREAS THE RED VALUES ON THE LOWER SIDE OF THE SLASH REPRESENT EMPIRICAL
RESULTS, WHICH ARE OBTAINED DIRECTLY FROM OBSERVATIONS WITHOUT RELYING ON A PRIOR MODEL

Loss Difference Statistics
Set Name M4 — MNNRM a4 OMMSE ONNRM | O0da — ONNRM (_".‘i—_":.%duau_)
3.55 GHz (CBRS) USTAR -0.06 -~ 13.56 s 6.98 _t 4.94 e 8.62 0 86.73% o
4627 MHz (FRS) USTAR =0.35 o 12.65 T 9.19 Ton 8.23 o 442 o 57.67% s
4627 MHz (FRS) Honors | 0 0.66 - 12.47 o 7.07 - 7.01 o0 5.46 o 68.40%
TABLE V

NNRM OPTIMAL HYPERPARAMETERS OBTAINED AS A RESULT OF CROSS-VALIDATION. THE BLUE VALUES ON THE UPPER SIDE OF THE SLASH
REPRESENT TIREM LD CORRECTION RESULTS WHEREAS THE RED VALUES ON THE LOWER SIDE OF THE SLASH REPRESENT EMPIRICAL
RESULTS, WHICH ARE OBTAINED DIRECTLY FROM OBSERVATIONS WITHOUT RELYING ON A PRIOR MODEL

Optimal Hyperparameters
e | | M|
3.55 GHz (CBRS) USTAR % % L1077 ot %
462.7 MHz (FRS) USTAR % % L1077 T 10-1 %
462.7 MHz (FRS) Honors % % 1x107 o %

large correlations with LOS LD such as elevation angles,
and distance to the stationary radio are the main factors of
correction in LOS paths. Features having large correlations
with NLOS LD such as shadowing angles, and the diffraction
parameters are the main factors of correction in NLOS paths.
For each measurement set, the features with the largest corre-
lations are in bold. The results show that the elevation angle,
distance to the stationary radio, shadowing angle, diffraction
parameter for the main hill, and sight between the radios are
among the most correlated features.

The individual contributions of features to the correction
performance are presented in Table IIl. As expected, fea-
tures with the largest correlations tend to contribute the
most. Specifically, in model correction mode, the diffraction-
related features dominate performance, while in empirical
mode, the distance and elevation angle features are the main
contributors. The effect of distance to the closest edge fea-
ture on performance is moderate, while the contribution of
road-radio link alignment is less clear due to relatively low
correlations.

However, as the maximum range of the experiment increases
(e.g., FRS USTAR set), the contribution of the road-radio link
alignment feature becomes more visible. This is because the
effect of road and radio link alignment on signal strength
can only be observed when there are enough roads with
varied alignments in the measurement area and there are
enough measurements taken along those roads. At apprecia-
ble distances, roads and their clearings can act loosely as
waveguides, allowing more signal to reach further regions eas-
ier than TIREM might predict due to immediate, direct path
obstacles.

The two correction techniques, namely MMSE and NNRM,
are subsequently compared. Table IV lists the initial and cor-
rected LD statistics for each technique. The testing results
show that NNRM outperforms MMSE by up to 2.04 dB in
terms of corrected LD standard deviation as it can consider
nonlinear feature-target relations and interactions between dif-
ferent features. It is numerically more stable compared to
MMSE since no matrix inversion is required. Notably, the
newly suggested augmented modeling scheme and techniques
can reduce LD variance by up to 86.73% in the correction
mode and by up to 75.72% in the empirical mode.

The reason that CBRS USTAR measurement showed the
best correction performance is that the mobile radio used in
the campaign was a higher-grade device and relatively sta-
ble in the elevation plane. Additionally, the relatively short
maximum range considered during the CBRS USTAR mea-
surement is the region where the features such as elevation
angles and shadowing angles are correlated the most with the
LD. The highly nonisotropic transmitter antenna used in the
FRS measurement campaign in the azimuth plane as well as
the arbitrary orientation of the antenna during measurements
cause unrecoverable variations in the signal strength further
contributing to the variance of the predictions in FRS sets.

Hyperparameters leading to the reported LD statistics are
listed in Table V. Best performances are obtained with 1 hid-
den layer and 8 nodes within the hidden layer for all three
sets but with varying regularization parameters.

The corrected TIREM predictions throughout the map for
the FRS USTAR experiment are illustrated in Figure 4. The
region where measurements are taken is bounded by the black
rectangle. In the corrected map, the average overall signal
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strength is increased by an amount approximately equal to
the original average of LD. Other immediately noticeable
changes in the corrected map are that in LOS paths sig-
nal strength predictions become smaller whereas in NLOS
paths they become larger, eliminating the abrupt change in
signal strength around obstacles. It is important to note that
the confidence in the corrected values is greater within the
black rectangle compared to the outside of the measurement
region. This is mainly because the samples taken in a region
reflect the propagation and channel characteristics of that par-
ticular region. There is no guarantee that the distribution of
the LD is going to be similar for a given feature inside
and outside of the measurement region. However, the extrap-
olated LD predictions provide an initial correction for the
signal strength outside of the region if common features are
determinable.

The resulting statistics illustrate the change in standard devi-
ation when the transmit power and the receiver amplifier gain
are known and taken into account. However, the same correc-
tion scheme can be applied even when these parameters are
unknown. In other words, the model can predict the LD with
an unknown power bias, likely with degraded performance
compared to the case where the parameters are known.

VI. CoNCLUSION & FUTURE WORK

The work presented here considers the channel and propaga-
tion characteristics of radio waves and attempts to correct for
enhanced terrain diffraction, radiation patterns, sight, distance,
shadowing, roadway orientation, and multipath effects. It is
based on a fully connected neural network regression model
that outperforms the traditionally used MMSE technique as it
is able to consider nonlinear feature-target relations, and inter-
actions between different features. Moreover, it is numerically
more stable compared to MMSE. Although the corrections
are designed for and applied to a specific propagation model,
namely TIREM, in the model correction mode, this approach
can be adapted to any model facing similar limitations.

The suggested augmented modeling approach reduces test
LD variance by up to 86.73% in the correction mode and by up
to 75.72% in the empirical mode. Two correction techniques,
namely MMSE and NNRM, are compared in terms of standard
deviation reduction performance. The results show that NNRM
outperforms MMSE by up to 2 dB in terms of corrected LD
standard deviation.

Once the desired features and initial predictions are gen-
erated for a given transmitter in the region of interest, the
augmentation process takes no longer than a few minutes as
the NNRM model is a simple 2-layer architecture requiring a
limited amount of computation. The time required in the initial
process of generating features and Prior predictions depends
heavily on the map size and resolution, and the Prior model.
Generating the initial TIREM predictions and features except
for the distance to the closest edge feature throughout a map
of size 2.9 km by 2.6 km with 0.5 m resolution takes approxi-
mately 7 hours in MATLAB on a 12th Gen Intel(R) Core(TM)
i7-12700H computer. However, since the initial predictions
and most of the features at a pixel are independent of those at
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other pixels, the computation is parallelizable among multiple
machines.

While the current work has made significant progress in
augmenting single-transmitter propagation models, there is a
potential for testing the designed features at larger distances
with a larger and more diverse set of samples observing the
generalizability of the proposed method and the correction
performance. Another path that is worthwhile to pursue is to
design new features and generalize the tuning process for the
case where multiple transmitters are operating simultaneously
across the region, a process called macro-tuning.

An area for potential future research is to use alternative
models that can achieve satisfactory performance, even when
the number of available samples is insufficient. In that case,
a semi-supervised regression model may be used to learn a
function that maps predictors to the target [24], [25]. The idea
behind semi-supervised learning is to use the labeled (mea-
sured) data to train a supervised regression model, then use
the learned function to make predictions for the unlabeled data.
The predicted values for the unlabeled data are then used to
improve the accuracy of the regression model. This iterative
process that leverages the unlabeled data along with the labeled
ones may lead to improved performance even when the amount
of data is insufficient.

REFERENCES

[11 G. D. Durgin, M. A. Varner, N. Patwari, S. K. Kasera, and
J. Van der Merwe, “Digital spectrum twinning for next-generation
spectrum management and metering,” in Proc. IEEE 2nd Int. Conf. Digit.
Twins Parallel Intell. (DTPI), 2022, pp. 1-6.

[2] G. D. Durgin et al., “Digital spectrum twinning and the role of RFID
and backscatter communications in spectral sensing,” in Proc. IEEE Int.
Conf. RFID Technol. Appl. (RFID-TA), 2021, pp. 89-92.

[3] 1. B. Shirokov, “Increasing of operation range of system of RFID
and positioning,” IEEE J. Radio Freq. Identification, vol. 4, no. 4,
pp. 444451, Dec. 2020.

[4] M. Hata, “Empirical formula for propagation loss in land mobile radio
services,” IEEE Trans. Veh. Technol., vol. 29, no. 3, pp. 317-325,
Aug. 1980.

[5] Y. Okumura, E. Ohmori, T. Kawano, and K. Fukuda, “Field strength and
its variability in VHF and UHF land-mobile radio service,” Rev. Electr.
Commun. Lab., vol. 16, pp. 825-873, Jan. 1968.

[6] J. Walfisch and H. Bertoni, “A theoretical model of UHF propagation
in urban environments,” IEEE Trans. Antennas Propag., vol. 36, no. 12,
pp. 1788-1796, Dec. 1988.

[7]1 T. Rappaport, Wireless Communications: Principles and Practice.
Hoboken, NJ, USA: Prentice Hall, 1996.

[8] N. Panunzio, C. Occhiuzzi, and G. Marrocco, “Propagation modeling
inside the international space station for the automatic monitoring of
astronauts by means of epidermal UHF-RFID sensors,” IEEE J. Radio
Freq. Identification, vol. 5, no. 2, pp. 174-181, Jun. 2021.

[9] R.C. Toonen, S. L. Booth, B. W. Welch, and M. J. Zemba, “Optimizing

lunar map partitioning for multipath fade loss analyses,” JEEE J. Radio

Freq. Identification, vol. 6, pp. 284-291, Mar. 2022.

K. Schaubach, N. Davis, and T. Rappaport, “A ray tracing method for

predicting path loss and delay spread in microcellular environments,” in

Proc. Veh. Technol. Soc. 42nd VIS Conf. Front. Technol., vol. 2, 1992,

pp. 932-935.

[11] Z. Yun and M. F. Iskander, “Ray tracing for radio propagation modeling:

Principles and applications,” IEEE Access, vol. 3, pp. 1089-1100, 2015.
[12] G. A. Hufford, A. G. Longley, and W. A. Kissick, “A guide to the use
of the ITS irregular terrain model in the area prediction mode,” U.S.
Dept. Commer., Nat. Telecommun. Inf. Admin., Washington, DC, USA,
NTIA Rep. 82-100, Apr. 1982.

[13] D. Eppink and W. Kuebler, TIREM/SEM Handbook. Chicago, IL, USA:
IIT Res. Inst., Sep. 1986.

[10]

Authonzed licensed use limited to: Northeastern University. Downloaded on April 15,2024 at 22:10:57 UTC from IEEE Xplore. Restrictions apply.



TADIK et al.: AUGMENTED RF PROPAGATION MODELING

[14] G. D. Durgin, “The practical behavior of various edge-diffraction
formulas,” IEEE Antennas Propag. Mag., vol. 51, no. 3, pp. 24-35,
Jun. 2009.

[15] G. Millington, R. Hewitt, and F. Immirzi, “Double knife-edge diffraction
in field-strength predictions,” Proc. IEE-Part C Monographs, vol. 109,
pp. 419429, Sep. 1962.

[16] M. A. Varner, F. Mitchell, J. Wang, K. Webb, and G. D. Durgin,
“Enhanced RF modeling accuracy using simple minimum mean-squared
error correction factors,” in Proc. IEEE 2nd Int. Conf. Digit. Twins
Parallel Intell. (DTPI), 2022, pp. 1-5.

[17] “State of utah acquired lidar data - wasatch front,” in Utah Automated
Geographic Reference Center and Utah Geological Survey, Distributed
by OpenTopography, New Delhi, India, UAGRC and UGS: Jan. 2015.

[18] J. Breen et al, “Powder: Platform for open wireless data-driven
experimental research,” in Proc. I4th Int. Workshop Wireless Netw.
Testbeds Exp. Eval. AMP Characterization, New York, NY, USA,
2020, pp. 17-24. [Online]. Available: https:/doi.org/10.1145/3411276.
3412204

[19] F. Mitchell, A. Baset, S. K. Kasera, and A. Bhaskara. “A dataset
of outdoor RSS measurements for localization.” Oct. 2022. [Online].
Available: https://doi.org/10.5281/zenodo.7259895

[20] C. R. Anderson, “An integrated terrain and clutter propagation model
for 1.7 GHz and 3.5 GHz spectrum sharing,” IEEE Trans. Antennas
Propag., vol. 70, no. 7, pp. 58045818, Jul. 2022.

[21] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York,
NY, USA: Springer, 2006.

[22] G. D. Durgin, “Electro-magnetic propagation modeling,” U.S. Patent 7
433 652 B2, Oct. 7, 2008.

[23] F. Ikegami, T. Takeuchi, and S. Yoshida, *“Theoretical prediction of mean
field strength for urban mobile radio,” IEEE Trans. Antennas Propag.,
vol. 39, no. 3, pp. 299-302, Mar. 1991.

[24] C. Cortes and M. Mohri, “On transductive regression,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 19, 2006, pp. 305-312.

[25] M. Timilsina, A. Figueroa, M. d’Aquin, and H. Yang, “Semi-supervised
regression using diffusion on graphs.,” Appl. Soft Comput., vol. 104,
Jun. 2021, Art. no. 107188.

Serhat Tadik (Graduate Student Member, IEEE)
received the B.S. degree in electrical engineering
and physics from Bogazic¢i University in 2022. He is
currently pursuing the Ph.D. degree in electrical and
computer engineering with the Georgia Institute of
Technology. His research interests include the appli-
cation of machine learning techniques in propagation
modeling, spectrum allocation, and data science
specifically focusing on graph analysis.

Michael A. Varner (Member, IEEE) received the
B.S.EEE. degree from the Rose-Hulman Institute
of Technology in 2015 and the M.S.E.E. degree
from Georgia Tech in 2017, where he is currently
pursuing the Ph.D. degree with the Propagation
Group under the supervision of Prof. G. D. Durgin.
He joined the School of Electrical and Computer
Engineering, Georgia Institute of Technology in
2015. His previous research areas include the devel-
opment of next-gen electromagnetic compatibility
methods and devices, novel antenna and microwave
structure design, and digital spectrum twins and augmented propagation
models. His current primary research is in ambient scatter communications,
the focus of his doctoral dissertation, for the creation of spectrum agile and
RF power recycling networks. He is a previous recipient of the Georgia Tech
Presential Fellowship.

221

Frost Mitchell received the B.S. degree in computer
engineering from Utah State University in 2018. He
is currently pursuing the Ph.D. degree in computer
science from the University of Utah. His research
interests include high-performance machine learning
and ML applications for localization, propagation,
and spectrum allocation.

Prof. Gregory D. Durgin (Senior Member,
IEEE) received the B.S.E.E., M.S.E.E., and Ph.D.
degrees from Virginia Polytechnic Institute and
State University in 1996, 1998, and 2000, respec-
tively. He joined the faculty of the School of
Electrical and Computer Engineering, Georgia Tech
in Fall 2003, where he serves as a Professor. In
2001, he was awarded the Japanese Society for
the Promotion of Science Postdoctoral Fellowship
and spent one year as a Visiting Researcher with
the Morinaga Laboratory, Osaka University. He has
authored Space-Time Wireless Channels in 2002, the first textbook in the
field of space-time channel modeling which has influenced multiple gen-
erations of commercial cellular technologies. He founded the Propagation
Group (http://fwww.propagation.gatech.edu) with Georgia Tech, a research
group that studies radiolocation, radio measurement, RFID-related technology,
and applied electromagnetics. He has received best paper awards for arti-
cles coauthored in the IEEE TRANSACTIONS ON COMMUNICATIONS (1998
Stephen O. Rice Prize), IEEE Microwave Magazine in 2014, and IEEE RFID
Conference in 2016, 2018, and 2019 as well as the 3rd Place 2020 Nokia
Bell Labs Prize for “Hyper-RFID: A Revolution for the Future of RFID.”
He is a winner of the NSF CAREER Award as well as numerous teaching
awards, including the Class of 1940 Howard Ector Outstanding Classroom
Teacher Award at Georgia Tech in 2007. He has served on the editorial staff
for IEEE RFID VIRTUAL JOURNAL, IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS, and IEEE JOURNAL ON RFID. He also serves as the
President Elect for the IEEE Council of RFID (CRFID). He served as an
IEEE CRFID Distinguished Lecturer from 2015 to 2018 and IEEE CRFID
VP of Conferences from 2020 to 2021, and as the general/executive chair
of many IEEE conferences. His educational channel #profdurgin on YouTube
instructs viewers on engineering electromagnetics and RFID-related topics,
having drawn over 13 000 subscribers and over 1 million views. He is a fre-
quent consultant to industry, advising numerous multinational corporations on
wireless technology.

Authonzed licensed use limited to: Northeastern University. Downloaded on April 15,2024 at 22:10:57 UTC from IEEE Xplore. Restrictions apply.



