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Abstract

Wide-area dynamic studies are of paramount impor-

tance to ensure the stability and reliability of power

grids. This paper puts forth a comprehensive framework

for inferring the dynamic responses in the small-signal

regime using ubiquitous fast-rate ambient data collected

during normal grid operations. We have shown that the

impulse response between any pair of locations can be

recovered in a model-free fashion by cross-correlating

angle and power flow data streams collected only at

these two locations, going beyond previous work based

on frequency data only. The result has been estab-

lished via model-based analysis of linearized second-

order swing dynamics under certain conditions. Numer-

ical validations demonstrate its applicability to realistic

power system models including nonlinear, higher-order

dynamics. In particular, the case study using synthetic

PMU data on a synthetic Texas Interconnection (TI)

system strongly corroborates the benefit of using angle

PMU data over frequency data for real-world power

system dynamic modeling.

1. Introduction

Power system dynamic studies are critical for

achieving stability and security in control center opera-

tions [1, Ch. 1]. Poorly damped or forced oscillations

can notoriously affect the operation of interconnected

systems; see [2±6]. Thus, enhancing the modeling and

analysis of dynamic responses is of imperative needs.

Recently, high-rate synchrophasor data have pro-

vided unprecedented visibility of grid transients. Using

synchrophasor data, data-driven approaches have been

developed for estimating dynamical models; e.g., [7, 8].

However, most of them are limited to post-event anal-

ysis, due to the dependence on large faults for trig-

gering noticeable transient responses. By considering

the small-signal analysis in power system dynamics [1,

Ch. 12], ambient synchrophasor data have been popu-

larly used for estimating individual oscillation modes;

see for example [9±11] and references therein. To

recover the full system’s dynamic responses1, the sta-

tistical information of ambient data has been utilized

to estimate the dynamic state Jacobian matrix [13, 14].

However, these approaches to estimate the Jacobian

matrix require the availability of state measurements at a

majority of grid locations and cannot cope with limited

PMU deployments thus far.

Our goal is to develop a general recovery frame-

work for inertia-based dynamic responses in the small-

signal regime by using ambient synchrophasor data.

We propose a cross-correlation-based approach to pro-

cess ambient synchrophasor data and utilize a synthetic

Texas Interconnection (TI) system to demonstrate its

effectiveness and advantages. The proposed approach

is quite general and flexible in data types or PMU loca-

tions, as it can incorporate any frequency, angle, or line

flow data streams from any pair of bus locations. Target-

ing at the small-signal regime, we first study the second-

order swing dynamics to establish the theoretical under-

pinnings of the proposed data-driven approach. While

this analytical result requires homogeneous damping

among key inter-area modes, such condition is reason-

able for wide-area interconnection [15] and corrobo-

rated by numerical case studies as well. An ambi-

ent data-driven algorithm is accordingly developed to

recover the dynamic responses to a disturbance from

any input location. Going beyond the theoretical anal-

ysis, the proposed approach is numerically validated on

a synthetic TI system that includes realistic nonlinear

higher-order dynamics. The case study results strongly

support the effectiveness of our approach in recovering

dynamic responses and its advantage of incorporating

general types of synchrophasor data.

The present work extends a prior work [16] on

ambient frequency data analytics to comprehensively

encompass ambient data of angles and line flows.

This extension is valuable for real-world applications,

1In this paper, the frequency, angle, or line flow response refers
to the respective impulse response of frequency, angle, or line flow in
the time domain. This terminology is consistent with the generator
frequency response in power system dynamics [12], which is different
from frequency-domain analysis of signals and systems.
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as PMUs are typically installed at buses or branches

instead of measuring generators directly. Additionally,

angle/power data are known to have higher accuracy

than frequency data, as the high-pass filtering for PMUs

to generate frequency data [17] can adversely affect data

quality as corroborated by our synthetic TI system stud-

ies later on. Another related work [18, 19] has recently

proposed a Gaussian process (GP)-based approach for

inferring data streams at multiple locations assuming the

system model is known.

The main contribution of this work is two-fold.

First, we establish the equivalence between model-based

dynamic responses and the cross-correlation of vari-

ous ambient data. This equivalence builds upon the

second-order swing dynamics and considers reasonable

assumptions for wide-area interconnections. Second, we

develop a fully data-driven algorithm to recover system

responses that can incorporate all types of data at min-

imal PMU deployment. The proposed recovery algo-

rithm requires no knowledge of the actual system model

or parameters and is applicable to synchrophasor data

streams from any pair of grid locations.

The rest of paper is organized as follows. Section

2 introduces the problem and the synthetic TI system.

Section 3 establishes the equivalence between small-

signal dynamic responses and the cross-correlation of

ambient data, which enables Section 4 to develop the

proposed data-driven algorithm. Section 5 demonstrates

its validity and advantages on the 2000-bus synthetic TI

systems with realistic dynamic modeling and PMU data

generation. The work is concluded in Section 6.

2. Problem Statement

We aim to develop a data-driven framework to infer

the dynamic responses of the power system using ambi-

ent synchrophasor data. First, we provide a brief review

of small-signal dynamic modeling. The approximate

swing equation [20, Ch. 9] for a power system with N
generators is given by

δ̇ = ω (1)

Mω̇ = −Kδ −Dω + u (2)

where states δ,ω ∈ R
N are the rotor angle and speed

(frequency) vectors, respectively. The diagonal matrices

M and D contain respectively the generator inertia and

damping constants, while K stands for the power flow

Jacobian matrix evaluated at the given operating point.

The swing dynamics in (2) is a linearized approximation

of the actual power system dynamics, which are nonlin-

ear and contain higher-order components (e.g., gover-

nors and exciters) to be discussed later.

Model (2) can also be written in an equivalent

second-order form

Mδ̈ +Dδ̇ +Kδ = u. (3)

Note that all state variables in the linear time-invariant

(LTI) system (3) are represented by the deviations from

their steady-state values. For simplicity, the term devia-

tions will be dropped henceforth.

Under this LTI approximation, the system’s

dynamic response to a power deviation input u is

fully characterized through the impulse response. Let

Tuk,δℓ(τ) denote the impulse response of the target rotor

angle δℓ from input source at uk. Similar notations

will used for other target variables; for example, the

impulse response of frequency ωℓ from input source uk

is denoted by Tuk,ωℓ
(τ). Leveraging the unique prop-

erties of the swing dynamics, we show that the afore-

said impulse responses between grid locations (k, ℓ) can

be recovered by simply cross-correlating synchrophasor

data collected only at (k, ell) under ambient conditions.

Such methodology does not require to know the system

model or probe the system with any particular inputs.

The term ambient conditions here refers to random per-

turbations of active power injections (due to load or gen-

eration variations) giving rise to a ªwhite-noiseº type of

input u(t) = ν(t) satisfying [11, 13]

E [ν(t)] = 0

E
[

ν(t)ν⊤(t− τ)
]

= Σ∆(τ) (4)

where ∆(t) is the Dirac delta function. Under the input

in (4), the corresponding ambient state/output will be

denoted by hatted symbols, such as δ̂ℓ(t) and ω̂ℓ(t). The

cross-correlation of ambient angle signals is defined as

C
δ̂k δ̂ℓ

(τ) ≜ lim
T→∞

1

2T

∫ T

−T

δ̂k(t)δ̂ℓ(t− τ)dt

= E

[

δ̂k(t)δ̂ℓ(t− τ)
]

(5)

where the second equality is due to the stationary input

process [cf. (4)], as detailed in [21, Ch. 9]. The same

equivalence holds for other types of cross-correlations

to be discussed later on. Note that PMUs are installed

at terminal buses, and thus, do not directly measure the

internal generator states δ̂ℓ or ω̂ℓ. Nevertheless, the ter-

minal angle θ̂n(t) and frequency
dθ̂n(t)

dt
measured at gen-

erator bus n are excellent surrogates of their internal

counterparts [22].

This work will utilize a synthetic TI system to

showcase the effectiveness of the proposed data-driven

method. As a large-scale test case, the synthetic TI sys-

tem is of high interest for numerical studies with inter-

area modes in the range of [0.62, 0.73] Hz [6]. To over-

come the issue of actual synchrophasor data access, we

Page 2652



Figure 1: The topology of the 2000-bus synthetic Texas
Interconnection (TI) system [23, 24]. There are a total
of 99 PMUs placed in the system, all at 345kV buses
indicated by the red-colored high-voltage edges, while
gray-colored edges represent the 115kV lines. Synthetic
PMU data at the four marked buses will be used later.

use the dynamic data generated on a 2000-bus synthetic

TI system [23], as illustrated in Fig. 1. As a realistic

representation, this synthetic TI system has 1500 sub-

stations, 500 generators, approximately 50 GW of peak

load, and 3206 transmission lines. The dynamic compo-

nents including generators and loads have been modeled

based on the actual Texas system, while the dynamic

responses have been validated with the actual data [24].

3. Ambient Data Analytics

Our goal is to establish the theoretical equivalence

between the actual system responses and the cross-

correlation of phasor data collected under ambient grid

conditions based on analyzing the swing equation (3).

To this end, the following simplifying assumptions are

posed to decouple the system into independent modes:

AS1. The generator inertia and damping constants are

homogeneous; namely D = γM for a constant γ > 0.

AS2. The power flow Jacobian K is a symmetric Lapla-

cian, and hence, positive semidefinite (PSD) matrix.

Assumption (AS1) holds if damping and inertia

parameters scale proportionally for each generator. This

assumption has been frequently adopted for approximat-

ing power system dynamics [16, 18, 25]. As for (AS2),

if transmission lines are all purely inductive (lossless)

and loads are of constant power outputs in (2), matrix K

becomes symmetric and (AS2) would hold. Certain load

models (such as constant-current ones [26]) could affect

the dynamic models, but may have minimal impact on

the symmetry of K. This is because under small-signal

analysis, the system voltages tend to be steady, thus

leading to minimal load power changes. Assumptions

(AS1)±(AS2) are adopted only to establish the analytical

results, but will be waived during our numerical tests;

see Remark 1 for further discussions on generalizability.

Under (AS1)-(AS2), the multi-input multi-output

(MIMO) LTI system in (3) decouples into N single-

input single-output (SISO) systems. This is achieved

upon linearly transforming system states as δ = Vz,

where matrix V is specified by the generalized eigen-

value problem KV = MVΛ and diagonal matrix Λ

carries the N eigenvalues λi ≥ 0. Matrix V is M-

orthonormal and satisfies [27, Sec. 5.2]:

V
⊤
MV = I and V

⊤
KV = Λ. (6)

Substituting (6) into (3) and utilizing (AS1) lead to a

completely decoupled second-order system, given by

z̈+ γż+Λz = V
⊤
u. (7)

Solving for each independent mode zi in (7) gives rise

to the impulse responses [16]

Tuk,ωℓ
(τ) =

N
∑

i=1

VkiVℓi ηi
(

cie
ciτ − die

diτ
)

(8)

Tuk,δℓ(τ) =

N
∑

i=1

VkiVℓi ηi
(

eciτ − ediτ
)

(9)

where Vki is the (k, i)-th entry of matrix V, and with the

mode-associated complex-valued parameters

ci =
−γ +

√

γ2 − 4λi

2
, di =

−γ −
√

γ2 − 4λi

2

and ηi =
1

√

γ2 − 4λi

for i = 1, . . . , N . Upon obtaining the impulse responses

in (8)±(9), we will exploit the structure therein for ambi-

ent data processing. Ambient conditions are formally

defined as:

AS3. Ambient data during nominal operations are gen-

erated by random noise ν(t) satisfying (4) with variance

proportional to inertia as Σ = αM with a constant

α > 0.

Assumption (AS3) is introduced to guarantee that

all modes in (7) are equally and independently excited,

thanks to the diagonalization V
⊤
ΣV = αI [cf. (6)].

Note that real-world power systems may not perfectly

balance generation inertia with load variability, as most

types of generation are placed based upon resource

availability. However, for a large interconnection (AS3)

could hold broadly over all control areas, instead of at

every location. Furthermore, to deal with lowering iner-

tia in current power systems, the placement of virtual

synchronous generators [28] and virtual inertia [29] tend
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to account for load variability. To sum up, even though

(AS3) may not hold perfectly for actual grids, it aims to

ensure homogeneous damping among significant inter-

area modes, which is reasonable for a wide-area system

as shown by actual synchrophasor data analysis in [15].

Reference [16] established that under (AS1)±(AS3)

the frequency response between any pair of buses (k, ℓ)
can be recovered up to a scalar uncertainty in a model-

agnostic fashion by simply cross-correlating frequency

data collected during ambient conditions.

Lemma 1. (Frequency Response [16]) Under (AS1)-

(AS3), the cross-correlation of ambient frequency ω̂k

and ω̂ℓ is related to the frequency response as

Tuk,ωℓ
(τ) = −

2γ

α
Cω̂k,ω̂ℓ

(τ). (10)

This is an interesting result as it does not hold for a

general LTI system. Surprisingly, it does hold for swing

dynamics because (3) decouples into N scalar systems

under (AS1)±(AS2), while (AS3) guarantees the the-

oretical equivalence. Thanks to this unique property,

one can recover pairwise frequency responses without

knowing the system model by simply cross-correlating

frequency datastreams. Nonetheless, in practice syn-

chronized frequency data are not as accurate as angle

and line flow measurements because of the PMU inter-

nal low-pass filtering [17]. To this end, we generalize

this previous result by incorporating general types of

PMU measurements, such as bus angle and line flow

readings. Heed that the extension is technically chal-

lenging, as states at buses are not explicitly reflected in

(3). Furthermore, it is also of high practical value as

PMUs are typically installed at buses or branches rather

than measuring generator states directly.

To generalize Lemma 1, we propose new

approaches for directly processing ambient angle and

power measurements provided by PMUs, as follows.

Proposition 1. (Angle Response) Under (AS1)-(AS3),

the cross-correlation of ambient angles δ̂k and δ̂ℓ is

related to the angle response as

Tuk,δℓ(τ) = −
2γ

α

d

dτ
C

δ̂k,δ̂ℓ
(τ) = −

2γ

α
C

ω̂k,δ̂ℓ
(τ).

(11)

Proof: The ambient angle is the convolution of input

noise ν(t) and the impulse response in (9). Hence, we

can define the vector hk(t) =
[

Vkiηi
(

ecit − edit
)]

N×1

and show that

C
δ̂k,δ̂ℓ

(τ) =

∫ ∞

0

dt1

∫ ∞

τ

dt2

· hk(t1)
⊤
V

⊤
E
[

ν(t− t1)ν(t− τ − t2)
⊤
]

Vhℓ(t2)

=− α

N
∑

i=1

VkiVℓiη
2
i

·

[(

1

2ci
+

1

γ

)

eciτ +

(

1

2di
+

1

γ

)

ediτ

]

where the second equality uses the white-noise property

and the diagonalization V
⊤
ΣV = αI in (AS3). Tak-

ing its derivative and utilizing the relations among ci, di
and ηi lead to the equivalence between d

dτ
C

δ̂k,δ̂ℓ
(τ) and

Tuk,δℓ(τ) as in (9). To obtain the result for C
ω̂k,δ̂ℓ

(τ),

one can use the fact that ω̂k(t) = d
dt
δ̂k(t) to show the

relation between the two cross-correlations.

Proposition 1 leads to a corollary on recovering the

frequency response due to its relation to angle response

as in (8)-(9).

Corollary 1. (Frequency Response) Under (AS1)-

(AS3), the cross-correlation of ambient angle δ̂k and δ̂ℓ
is related to the frequency response as

Tuk,ωℓ
(τ) = −

2γ

α

d2

dτ2
C

δ̂k,δ̂ℓ
(τ) = −

2γ

α

d

dτ
C

ω̂k,δ̂ℓ
(τ).

(12)

Proposition 1 and Corollary 1 neatly extend the

ambient frequency data analysis to that for angle data.

The key difference is the differentiation needed for

achieving the original model coefficients in (8)±(9).

As in (10), there exists a scaling difference between

the cross-correlation and the dynamic response, which

could be estimated based on past event analysis [30].

As mentioned in Section 2, PMUs actually mea-

sure bus- or branch-related quantities, instead of gener-

ator internal states. Hence, we will generalize the cross-

correlation equivalence to include bus angle θn and line

power flow pnm from bus n to m. Recall that in small-

signal analysis, the linearized power flow equation in (2)

admits that the output bus angle is linearly related to the

state as

θn(t) = a
⊤

n δ(t) =
∑N

ℓ=1 anℓδℓ(t), (13)

and similarly for line flow pnm(t). This linearity

is instrumental for extending the analysis to cross-

correlating ambient angle θ̂n(t), as the corresponding

dynamic response and cross-correlation also follow this

linear transformation; that is,

Tuk,θn(τ) =
∑N

ℓ=1 anℓTuk,δℓ(τ), (14)

C
ω̂k,θ̂n

(τ) =
∑N

ℓ=1 anℓCω̂k,δ̂ℓ
(τ). (15)
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Observe that the generator bus frequency or equivalently

the derivative of generator bus angle, can accurately

approximate the connected rotor speed, as discussed in

Section 2. For brevity, we use θ̂k(t) as the observed

angle at the bus closest to input uk and establish the

following result using the observed ambient angle (fre-

quency).

Proposition 2. (Bus Angle Response) Under (AS1)-

(AS3), the cross-correlation of ambient bus angle data

θ̂k and θ̂n is related to the bus angle response as

Tuk,θn(τ) = −
2γ

α

d

dτ
C

θ̂k,θ̂n
(τ) = −

2γ

α
C

ω̂k,θ̂n
(τ).

(16)

Similar to bus angle, the ambient line flow mea-

surements can be used to recover its response as well.

Proposition 3. (Line Flow Response) Under (AS1)-

(AS3), the cross-correlation of ambient line flow p̂nm
and angle θ̂k is related to the line flow response as

Tuk,pnm
(τ) = −

2γ

α

d

dτ
C

θ̂k,p̂nm
(τ) = −

2γ

α
Cω̂k,p̂nm

(τ).

(17)

Remark 1. (Generalizability) Although assumptions

(AS1)±(AS3) are necessary for the analytical equiva-

lence, they can be well relaxed to match real-world

grid conditions. A key premise for our analysis is

that under (AS3) the modes are equally and indepen-

dently excited, such that the cross-correlation output

would maintain the same coefficients for all modes. In

practice, inter-area modes are more evident than local

intra-area modes in a wide-area interconnection [31,

Ch. 10]. As long as the dominant inter-area modes

are equally excited, the equivalence results should hold

as well. Our numerical studies have demonstrated the

cross-correlation outputs can approximately recover the

dynamic responses even when (AS1)-(AS3) are violated,

including using higher-order generator dynamics and

perturbing load demands instead of generator inputs for

ambient conditions.

4. The Recovery Algorithm

Using the equivalence results, we next describe the

algorithm for recovering dynamic responses. The imple-

mentation is flexible in the types or locations of data.

Typically, PMUs are installed at critical substations with

large generation or power flow within each control area.

As shown by the cross-correlation equivalence results,

the PMU data streams from any two locations can be

used for recovering the dynamic responses, including

measurements from PMUs not located at generators.

Motivated by the idea, we propose the following five-

step dynamics recovery algorithm illustrated in Fig. 2.

Figure 2: The proposed 5-step algorithm to recover the
dynamic responses using ambient synchrophasor data
at any two locations (source and target).

[S1] (Data selection) For recovering response Tk,ℓ(τ),
select the raw data at any source (xk) and any target

(xℓ) locations, from the closest PMUs in terms of

electrical distance [32]. For input generator k, this

could be frequency/angle data from the substation

directly connected to it. For the target location, it

can be system-level outputs, such as bus frequency,

bus angle, or line flows.

[S2] (Preprocessing) Preprocess the raw data to obtain

the proper ambient response signals. We use a

bandpass filter to find the detrended signals x̂k and

x̂ℓ. As inter-area oscillation modes are of high

interest, the recommended passband of the filter is

between [0.1, 0.8]Hz [6].

[S3] (Cross-correlation) With a sampling period Ts

and thus a total of M = ⌊T/Ts⌉ samples, compute

the discrete-time version of the cross-correlation as

Ck,ℓ[τ ] =
1

M

M
∑

m=1

x̂k[m]x̂ℓ[m− τ ].

[S4] (Differentiation) Take the numerical difference

of Ck,ℓ[τ ] depending on the type of dynamic

responses of interest, e.g., recovering the frequency

response from ambient angle data (cf. Corollary 1).

[S5] (Scaling) If the frequency nadir point is known,

one can scale the cross-correlation output to match

it. Otherwise, the recovered responses will be used

for evaluating the propagation time.

The proposed algorithm can directly be applied to

infer the dynamic response from any source to another

target from the ambient measurements at both locations.

It is also computationally efficient. For M samples, the

computation is mainly due to [S3] at O(M2).

4.1 Validation on the WSCC 9-Bus System

To demonstrate the effectiveness of the proposed

algorithm, we first use the small WSCC 9-Bus System.2

2All codes, and results are available at:
https://github.com/ShaohuiLiu/dy_resp_pkg_new.
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Figure 3: Comparison of model-based and data-driven dynamic responses for the WSCC 9-bus test case under the
sixth-order generator model, non-uniform damping, and random load perturbations. The disturbance input is set to be
u2 at generator bus 2, while the responses are compared for frequency (left) rotor angle (middle) at generator 1, as well
as line flow (right) between bus 7 and 8.

Table 1: Normalized MSE of recovering different dynamic
responses for the WSCC 9-bus test case.

2nd unif. 6th non-unif.

Frequency 0.25 0.26

Angle 0.12 0.10

Flow 0.20 0.37

This system has 3 generators, 3 loads, and 9 transmis-

sion lines. Impulse responses as well as ambient data

have been generated in MATLAB using PSAT [33]. To

emulate realistic grid operations, we set the disturbance

location at one generator bus and use load perturbations

for ambient data generation. For the impulse response,

we have run time-domain simulation based on the non-

linear models with a very short ªimpulseº-like input u2

at the generator bus 2. To generate ambient signals, all

loads have been perturbed by random white noise gen-

erated by MATLAB’s function randn to mimic (AS3).

The sampling rate is set to 100Hz using the simulation

time-step of dt = 0.01s. Estimation accuracy is quanti-

fied by the normalized mean squared error (MSE)

∥Tuk,xn
− Ck,n∥2

∥Tuk,xn
∥2

(18)

where T or C here stand for the model-based or data-

driven response, respectively, normalized by its maxi-

mum absolute value.

We first validated the proposed algorithm under

the classical second-order generator model and uniform

damping condition (γ = 0.2) following (AS1). Note

that the power flow Jacobian K is not perfectly sym-

metric as needed in (AS2), as transmission lines are

not purely inductive. Despite this slight violation of

(AS2), we have observed that the recovered dynamic

responses match well with the model-based ones, as

shown in Table 1 by averaging over all system locations.

The small estimation error is attributed primarily to lin-

earization and the asymmetry of matrix K.

Table 2: Comparison of dynamic parameters of oscilla-
tion frequency and damping coefficient estimated by the
model-based and data-driven approaches for the WSCC
9-bus test case under the sixth-order generator model,
non-uniform damping, and random load perturbations.

Frequency Damping

data model data model

ω1 0.642 0.634 0.290 0.315

ω2 0.645 0.638 0.309 0.353

ω3 0.653 0.655 0.436 0.406

We further considered the original setting with the

sixth-order generator model that includes controllers

like governor, exciter, and power system stabilizer. We

have also changed the damping to be non-uniform (γ ∈
[0.1, 0.3]). All these settings reflect realistic power sys-

tem dynamics with nonlinearity and ambient conditions.

Figure 3 compares the responses for frequency, angle,

and line flow outputs at selected locations. The MSE

values between model-based and data-driven dynamic

responses as given in Table 1 confirm the effectiveness

of our novel algorithm, despite that this test has signifi-

cantly departed from assumptions (AS1)-(AS2).

We also compared the recovery performance by

comparing the corresponding oscillation frequency and

damping coefficient, both estimated by using the log-

arithmic decrement method [34, Ch. 2]. Table 2 lists

these estimated parameters for the data- and model-

based approaches alike, confirming the effectiveness of

our proposed solution in terms of recovering dynamic

parameters. Therefore, relaxing our analytical assump-

tions to more realistic grid conditions has led to mini-

mal effect on the recovery performance. To sum up, the

proposed framework can well recover different types of

system responses based on simulated tests on the small

9-bus system.
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5. Synthetic TI Case Study

This section presents the case study results for the

synthetic TI system presented in Section 2. The case

study uses synthetically generated ambient synchropha-

sor data, which can demonstrate the importance of using

angle/line flow data over frequency data in real-world

grid conditions. Ambient dynamics were simulated as

follows: i) Periodic variations at 5s- and 7s-intervals

have been set up for loads and generators, respectively;

ii) A simulation time step of one-quarter cycles, with

power flow result storage every 8 time steps, is used

by the solver specification, close to PMU data rates of

30 samples per second. For ambient data, we consider

a total duration of 10min data with a sampling rate of

30Hz. The simulated ambient data have been further

processed to produce synthetic synchrophasor data, by

adding 0.002% random measurement noise to all data

streams. In addition, frequency data are further fil-

tered based on the actual PMU processing method as

described in [24], to mimic the statistics of actual fre-

quency data. This filtering step for synthetic frequency

data has made it less reliable for recovering dynamic

responses, as detailed soon.

As illustrated in Fig. 1, we pick 4 buses in differ-

ent regions of TI. The distance between the north-region

Bus 2011 and south-region Bus 4196 is around 670

miles, while the distance from north- to coastal region

Bus 7061 is about 450 miles. The frequency responses

are very similar within the TI system due to system size

and frequency control designs [35, Ch. 10]. To com-

pare responses, we selected Bus 2011 in the north region

as the input/source location, and the three other buses

(3001, 4196, and 7061) as the output/target locations.

We first compared the recovered frequency

responses obtained by both ambient frequency data and

angle data, as plotted in Fig. 4. To process ambient

data, we have set the filter passbands in [S2] to be

[0.3, 0.75]Hz to include inter-area modes. As for the

ambient angle data, we also need to compute a refer-

ence angle by taking the average over all recorded angle

data, as discussed in [S1]. This reference angle is sub-

tracted from the ambient angle data prior to bandpass

filtering. The simulated frequency data have been used

as the benchmark for evaluating synthetic angle and fre-

quency data. Using the simulated frequency data, the

proposed cross-correlation outputs show very similar

frequency responses at all locations, except for some

minor time lags among the first nadir points, as shown

by Fig. 4(a). The time of frequency nadir points as esti-

mated by our proposed algorithm is listed in Table 3. A

closer look at the time lags confirms with the nominal

speed for electromechanical wave propagation, which

is around 200-1,000 mi/sec for typical systems [36].

Table 3: The time of nadir points and their lags at the
four locations in the 2000-bus synthetic TI system along
with the propagation speed, as estimated by the pro-
posed cross-correlation approach using simulated fre-
quency data.

Bus Index 2011 3001 7061 4196

Distance/mi 0 370 535 670

Time/s 0.93 1.17 1.37 1.43

Lag/s 0 0.24 0.44 0.50

The synthetic angle data produce very similar frequency

responses in Fig. 4(b), corroborating the effectiveness of

the proposed framework. However, due to PMUs’ sig-

nal processing step in filtering frequency data, the syn-

thetic frequency data have led to highly inaccurate fre-

quency responses which clearly lack in synchronization,

as shown in Fig. 4(c). This comparison speaks for the

importance of the proposed extension over the frequency

data only approach of [16].

We further evaluated the angle response recovery

from synthetic angle data, as plotted in Fig. 5. Sim-

ilar to frequency responses, the underlying oscillation

modes in all angle responses are very similar among all

locations. Nonetheless, the time shifts among them are

visible, consistent with the fact that their relative dis-

tances to the source of input are different. Thus, the

proposed data-driven algorithm has achieved accurate

and consistent recovery of grid dynamics from ambient

PMU data that have been realistically generated. Thanks

to the higher accuracy of ambient angle data over fre-

quency data, our proposed work exhibits enhanced prac-

tical value than the previous frequency-based method

with improved performance and reliability.

6. Conclusions

This paper develops a general data-driven frame-

work for recovering small-signal dynamic responses

from various types of ambient synchrophasor data. We

have proposed a cross-correlation approach to pro-

cess ambient data from any two locations of interest.

Using the second-order swing dynamics, we have estab-

lished analytically the equivalence between the pro-

posed cross-correlation and the inertia-based dynamic

responses under mild assumptions that hold for large-

scale power systems. This equivalence allows to develop

a general algorithm to process ambient frequency, angle,

and line flow data, that is flexible in both location and

type of PMU data. The effectiveness of the proposed

algorithm under realistic, higher-order, and nonlinear

dynamics has been validated on the WSCC 9-bus case.

The case study on the synthetic TI system with real-

istically generated synchrophasor data further confirms

the benefit of using angle data over frequency data, and
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(a) Simulated frequency data

(b) Synthetic angle data

(c) Synthetic frequency data

Figure 4: Comparison between recovered frequency
responses from (a) simulated frequency data; (b) syn-
thetic angle data (with zoom-in view of the nadir points);
and (c) synthetic frequency data at four bus locations,
with input disturbance at Bus 2011 in the north region.

Figure 5: Recovered angle responses from ambient
angle data (with zoom-in view of the nadir points) at four
bus locations with input disturbance from Bus 2011 in the
north region.

the applicability to large system implementation. Thus,

our proposed data-driven algorithm is attractive in terms

of being flexible with the types of synchrophasor data

while not requiring any grid modeling information.

Exciting future research directions include the inte-

gration with dynamic model estimation for system

parameters, and the consideration of high-dimensional

data analytics that utilize system-wide data. Further-

more, we are actively exploring new applications for

the proposed framework in localizing forced oscillation

modes and evaluating advanced control designs.
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