DE GRUYTER Botanica Marina 2024; aop

Research Article

Paul W. Gabrielson*, Anna Claire Smith, John F. Bruno, Todd J. Vision and Margarita Brandt

Taxonomic assessment of blade-forming *Ulva* species (Ulvales, Chlorophyta) in the Galápagos Archipelago, Ecuador using DNA sequencing

https://doi.org/10.1515/bot-2023-0079 Received August 31, 2023; accepted January 9, 2024; published online February 19, 2024

Abstract: DNA sequences were obtained from 32 bladeforming *Ulva* specimens collected in 2018 and 2019 from four islands in the Galápagos Archipelago: Fernandina, Floreana, Isabela and San Cristóbal. The loci sequenced were nuclear encoded ITS and plastid encoded rbcL and tufA, all recognized as barcode markers for green algae. Four species were found, Ulva adhaerens, U. lactuca, U. ohnoi and U. tanneri, all of which have had their type specimens sequenced, ensuring the correct application of these names. Only one of these, *U. lactuca*, was reported historically from the archipelago. Ulva adhaerens was the species most commonly collected and widely distributed, occurring on all four islands. Previously known only from Japan and Korea, this is the first report of U. adhaerens from the southeast Pacific Ocean. Ulva ohnoi was collected on three islands, Isabela, Floreana, and San Cristóbal, and *U. lactuca* only on the last two. *Ulva tanneri* is a diminutive, 1–2 cm tall, high intertidal species that is easily overlooked, but likely far more common than the one specimen that was collected. This study of blade-forming Ulva species confirms that a concerted effort, using DNA

*Corresponding author: Paul W. Gabrielson, Department of Biology, University of North Carolina at Chapel Hill, Coker Hall CB 3280, 27599-3280 Chapel Hill, NC, USA, E-mail: drseaweed@hotmail.com. https://orcid.org/0000-0001-9416-1187

Anna Claire Smith, Department of Biology, University of North Carolina at Chapel Hill, Coker Hall CB 3280, 27599-3280 Chapel Hill, NC, USA. https://orcid.org/0000-0002-7884-169X

John F. Bruno and Todd J. Vision, Department of Biology, University of North Carolina at Chapel Hill, Coker Hall CB 3280, 27599-3280 Chapel Hill, NC, USA; and Galápagos Science Center GSC, Universidad San Francisco de Quito USFQ & University of North Carolina at Chapel Hill UNC, Puerto Baquerizo Moreno, Ecuador. https://orcid.org/0000-0003-2063-4185 (J.F. Bruno). https://orcid.org/0000-0002-6133-2581 (T.J. Vision)

Margarita Brandt, Galápagos Science Center GSC, Universidad San Francisco de Quito USFQ & University of North Carolina at Chapel Hill UNC, Puerto Baquerizo Moreno, Ecuador; and Colegio de Ciencias Biológicas & Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador. https://orcid.org/0000-0002-9786-0490

sequencing, is needed to document the seaweed flora of the Galápagos Archipelago.

Keywords: DNA barcoding; *tuf*A; *Ulva adhaerens*; *U. lactuca*; *U. ohnoi*; *U. tanneri*

1 Introduction

Our knowledge of the benthic marine algal flora of the Galápagos Archipelago is based primarily on one late 19th century collection and three early to mid-20th century collections, all published in the 20th century (Dawson 1963; Farlow 1902; Lemoine 1929; Taylor 1945). These published reports were compiled by Silva (1966) in a checklist of 311 species. Subsequent to Silva (1966) the main sources of information on the benthic marine algae, including the updating of name changes, have been the checklists, now online, assembled by the Charles Darwin Foundation, viz. Cyanobacteria (Chiriboga et al. 2014, last updated), Chlorophyta (Ruiz and Ziemmeck 2014, last updated), Phaeophyceae (Ruiz and Ziemmeck 2016a, last updated) and Rhodophyta (Ruiz and Ziemmeck 2016b, last updated). Only one genus of benthic marine algae from the Galápagos Archipelago has been treated in the 21st century, the siphonous green alga, Codium (Chacana et al. 2016), and likewise only one species of green algae, Caulerpa chemnitzia (Keith et al. 2022). All of these studies were based on the morpho-anatomical examinations of the algae.

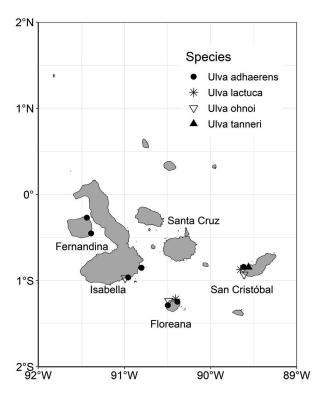
Only two studies (Anslan et al. 2021; Boo et al. 2016) used DNA sequencing to identify algae from the Galápagos. Boo et al. (2016) sequenced the mitogenomes of two herbarium specimens of the red alga genus *Gelidium* (Gelidiales), the holotypes of *G. isabelae* and *G. galapagense*, both collected by Taylor (1945) and housed in UC (herbarium acronyms follow Thiers 2024). Anslan et al. (2021) performed a metabarcode analysis of algal DNA in fecal samples from two subspecies of the endemic Galápagos marine iguana, *Amblyrhynchus cristatus* subsp. *mertensi* and *A. cristatus* subsp. *godzilla* on Isla San Cristóbal. They also sequenced a portion of the *rbc*L gene from field-collected marine macroalgal specimens on

Isla San Cristóbal from the same sites sampled for A. cristatus feces. The algal species were identified mainly by comparing BLASTn analyses of publicly available sequences in NCBI and BOLD.

Many species of marine macroalgae lack diagnostic morpho-anatomical characters (Gabrielson et al. 2018; Hind et al. 2015; Vieira et al. 2014) and/or are morphologically plastic (Gao et al. 2016; Hind et al. 2014; Lewis et al. 1987), so that accurate species identifications are fraught. Since the mid-2000s DNA barcoding has become the preferred method worldwide to identify marine macroalgae (Bartolo et al. 2020; McDevit and Saunders 2009; Saunders and Kucera 2010; Torrano-Silva et al. 2018; Vieira et al. 2021). DNA based species identifications have illuminated just how incorrect many of our identifications have been in the past and revealed a striking amount of cryptic diversity in all benthic marine algae, greens, browns and reds alike, from the tropics to the polar regions. The green macroalgal genus *Ulva* is an exemplar of these problems.

A major advance in the systematics of *Ulva* in recent decades has been the application of DNA sequencing to recent field collected specimens, first by Leskinen and Pamilo (1997, as Enteromorpha) and subsequently by many others (e.g., Coat et al. 1998, France (Atlantic); Hayden and Waaland 2004, Northeast Pacific; Heesch et al. 2009, New Zealand; Kirkendale et al. 2013, Kraft et al. 2010, Eastern Australia; O'Kelly et al. 2010; Hawai'i; Krupnik et al. 2018, Eastern Mediterranean; Chávez-Sánchez et al. 2019, Mexico (Gulf of California); Kang et al. 2019; Korea; Steinhagen et al. 2019, North and Baltic Seas; Xie et al. 2020, China; Dartois et al. 2021, Atlantic, France; Melton et al. 2021, Northeast Atlantic/Gulf of Mexico; Lagourgue et al. 2022, New Caledonia; Tran et al. 2023, Vietnam). While this approach has been very important to explore the diversity of *Ulva* species, it has not necessarily resulted in the correct application of names for these species. The reason for this is that specimens are placed into species based on DNA sequences, but the historical names applied to these species are based on morphoanatomical characters. We have known for decades (Papenfuss 1960) that these morpho-anatomical characters are difficult to apply to *Ulva* species, as the characters are few and the species themselves are morphologically highly variable (Gao et al. 2016).

The second major advance in *Ulva* systematics has been to obtain DNA sequences from *Ulva* type specimens, either by Sanger sequencing a portion of the plastid encoded *rbc*L gene or by high-throughput sequencing to obtain mitochondrial and or plastid genomes (Hanyuda and Kawai 2018; Hughey et al. 2018, 2019, 2021, 2022, 2024). This enables DNA sequences from field-collected material to be directly compared to type sequences, thus ensuring the correct


application of names. Indeed, when Fort et al. (2020) compared type specimen sequences to contemporary Ulva DNA sequences in GenBank whose identities were determined using morpho-anatomy, many of the over 1000 named sequences of Ulva species in GenBank from localities around the world had been assigned incorrect names. The authors estimated that 21% of named Ulva sequences in GenBank were misidentified, and this ranged up to 65 % for U. lactuca L., the generitype species of *Ulva*. These misidentifications have profound consequences for our understanding of the physiology, ecology, biogeography, and even commercial utilization of *Ulva* species.

To correctly identify the blade-forming species of Ulva in the Galápagos Archipelago, we used targeted PCR methods to characterize field-collected specimens. Four bladeforming Ulva species were found, U. adhaerens Kaoru Matsumoto et S.Shimada, U. lactuca, U. ohnoi M.Hiraoka et S.Shimada, and *U. tanneri* H.S.Hayden *et* Waaland. These species were also found by Anslan et al. (2021) in their macroalgal sampling, although *U. adhaerens* was called *Ulva* sp. None of these species were found in the fecal samples of the marine iguanas (Anslan et al. 2021)

2 Materials and methods

Samples of Ulva were collected from four islands in the Galápagos Archipelago. Isla San Cristóbal was the island more intensively sampled for algae at four sites: La Lobería, Playa Baquerizo, Punta Carola and Tijeretas; then Isla Isabela at Concha y Perla, Cuatro Hermanos and Tintoreras; then Isla Floreana at Sur Tres Cuevitas and La Botella; while sampling at Isla Fernandina was more opportunistic and included two sites: Punta Espinosa and Punta Mangle (Figure 1). Specimens were collected by hand via snorkel or SCUBA. Voucher specimens were pressed in the field or at the Galápagos Science Center on Isla San Cristóbal. Fragments for DNA analysis were removed, patted dry and placed into silica gel desiccant. Duplicate voucher specimens were deposited in NCU and QUSF (herbarium acronyms follow Thiers 2024). See Supplementary Table S1 for collection data and GenBank accession numbers. Throughout this paper specific epithets of green algae whose type specimens have not been sequenced are indicated by single quotation marks.

Total genomic DNA was extracted and amplified from Galápagos field-collected specimens at the University of North Carolina, Chapel Hill using the method in Hughey et al. (2001). Plastid encoded rbcL from fieldcollected specimens was amplified in two amplicons using the primer pairs rbcL start/R750 and F650/rbcLend from Shimada et al. (2003), with the final sequences trimmed to 1355 base pairs (bp) to remove primer sequences; plastid encoded tufA was amplified using the primer pair tufG4/tufAR (Saunders and Kucera 2010), with the final sequence trimmed to 774 bp; nuclear encoded partial SSU, complete ITS1, complete 5.8S, complete ITS2, and partial LSU were sequenced using the primers ITS1 and ITS4 (Shimada et al. 2003), with sequences trimmed to 674 bp. Amplification protocols for all PCR reactions followed Hughey et al. (2001). PCR products were cleaned with the Qiagen PCR Purification Kit,

Figure 1: Map of the Galápagos Archipelago with major islands named and where *Ulva* specimens were collected.

cycle sequenced, and sent to the DNA Analysis Core Facility at the Marine Sciences Center, University of North Carolina, Wilmington for Sanger sequencing. Sequences were manually aligned and compiled using Sequencher 5.4.6 (Gene Codes Corp., Ann Arbor, Michigan, USA).

Three datasets were prepared, one for each of the sequenced loci, and all were compiled and aligned using MUSCLE (Edgar 2004) as implemented in Geneious Prime (2020.2.4, Biomatters, Auckland, New Zealand) and checked manually. Named sequences of Ulva were downloaded from GenBank to compare to sequences from Galápagos specimens, 50 of ITS ranging in length from 272 bp (ITS2 was available only for *U. 'sublitoralis'* Segawa) to 807 bp (depending what proportion of flanking SSU and LSU sequences were included); 50 of rbcL ranging in length from 626–1355 bp; 47 of tufA ranging in length from 680 to 774 bp. Not all of the same loci have been sequenced for all of the *Ulva* species used in the phylogenetic analyses - for some species only one of the markers is present in GenBank; for others only two are present (see Supplementary Table S1). Because the datasets did not contain the same taxa, each was analyzed separately. For all datasets three taxa from the family Ulvaceae were used as outgroups, Percursaria 'percursa' (C.Agardh) Rosenvinge, Ulvaria 'obscura var. blyttii' (Areschoug) Bliding and Umbraulva 'japonica' Bae et I.K.Lee. The application of these names to sequences in GenBank may or may not be correct.

Phylogenetic reconstructions with Maximum Likelihood (ML) and Bayesian Inference (BI) for all data sets were carried out using the RAXML (Stamatakis 2014) and MrBayes (Huelsenbeck and Ronquist 2001) plugins in Geneious Prime (2020.2.4, Biomatters, Auckland, New Zealand), respectively. The RAXML analyses were performed using the GTR + CAT + I model and rapid hill-climbing algorithm for 20 random trees to determine the best starting tree for determining node confidence. Node confidence was then assessed by 1000 bootstrap replicates

and search for best-scoring ML tree. Bayesian analyses were performed using the GTR + gamma + invariable sites model with four heated Monte-Carlo Markov Chains for 1,000,000 generations, sampling every 750 generations and with a burn-in period of 250,000 generations.

3 Results

For each of the three loci, the ML and BI phylograms were mostly congruent; only the BI phylograms (Figures 2, 3 and 4) are presented with ML bootstrap values shown at the nodes when ≥75 % and posterior probabilities when ≥0.8. The Galápagos species occurred in the same major clades within Ulva for all three loci (Figures 2, 3 and 4). Ulva adhaerens consistently occurred in a clade with *U. rigida* C.Agardh, and in rbcL was sister to U. piritoka Kuri, Heesch et W.A.Nelson for which only a *rbc*L sequence was generated (Figure 2). Ulva lactuca and U. ohnoi consistently occurred in a clade with U. conglobata Kjellman, U. dactylifera Setchell et N.L.Gardner, U. lacinulata (Kützing) Wittrock and U. taeniata (Setchell) Setchell et N.L.Gardner, with support ranging from moderate (ITS RAxML, Figure 3) to strong (rbcL RAxML, Figure 2) to full (rbcL BI, Figure 2 and tufA RAxML and BI, Figure 4). Sister taxon relationships among these species varied depending on the locus that was sequenced. *Ulva* tanneri occurred in a clade that was more variable with various combinations of U. californica Wille, U. clathratioides L.G.Kraft, Kraft et R.F.Waller, U. 'aragoënsis' (Bliding) Maggs and U. 'torta' (Mertens) Trevisan that lacked support from RAxML and with good to strong support from BI (Figures 2, 3 and 4). Note also that the correct application of the names *U. 'torta'* and *U. 'aragoënsis'* is uncertain, as type material has not been sequenced. Despite its equatorial location, none of the *Ulva* species found in the Galápagos occurs in the large and predominantly tropical to warm water clade (Figures 2, 3 and 4) of 14 species (U. arbuscula Lagourgue et Payri, U. batuffulosa Lagourgue et Payri, U. finissima Lagourgue et Payri, U. iliohaha H.L.Spalding et A.R.Sherwood, U. kraftiorum Huisman, U. meridionalis R.Horimoto et S.Shimada, U. pennata Lagourgue et Payri, U. planiramosa Lagourgue et Payri, U. pluriramosa Lagourgue et Payri, U. scolopendra Lagourgue et Payri, U. siganiphylla Lagourgue et Payri, U. spumosa Lagourgue et Payri, U. tentaculosa Lagourgue et Payri, U. tepida Masakiyo et S.Shimada, and *U. vietnamensis* L.Tran, Leliaert *et* De Clerck).

The DNA sequencing results for all of the markers identified unequivocally the Galápagos *Ulva* specimens to be one of four species, *U. adhaerens*, *U. lactuca*, *U. ohnoi* or *U. tanneri* (Figures 2, 3 and 4). 20 specimens of *U. adhaerens* (Supplementary Figures S1 and S2) were collected from sites on all four islands, and 15 were sequenced for *rbc*L with 11

Figure 2: Phylogram of Ulva species based on rbcL sequences. RAxML and Bayesian analyses yielded the same topology. Branch lengths are from ML analysis. The topology is rooted with outgroups Percursaria 'percursa', Ulvaria 'obscura var. blyttii' and Umbraulva 'japonica' (family Ulvaceae). Galápagos sequences in bold; species names in single quotation marks have not had their type specimens sequenced. Support values at each node are shown as bootstrap percentage/Bayesian posterior probability. Bootstrap percentages (nreps = 1000) are shown when ≥75 %; Bayesian posterior probabilities are shown when ≥0.8, and *indicates full support. The single letters at ends of some localities indicate: H, holotype; I, isotype; L, lectotype; t, topotype. Numbers at end of Galápagos sequences indicate total number of identical sequences.

identical to the holotype sequence from Japan and four differing by 1–2 bp; 15 were sequenced for *tufA*, eight were identical and seven differed by 1–2 bp; 10 were sequenced for ITS and varied by 2–5 bp from the holotype sequences from Japan. For *U. lactuca* six specimens (Supplementary Figure S3) were collected from three sites on Isla San Cristóbal and one site on Isla Floreana. All six *rbcL* sequences were identical to each other and to a sequence from the Mediterranean Sea that is linked to the lectotype sequence of *U. lactuca*, and likewise for *tufA*, except for two ambiguous bp in one Galápagos sequence. Three ITS sequences were

obtained and differed from each other by 1–3 bp with one sequence identical to a *U. lactuca* sequence from Chile. Five specimens of *U. ohnoi* (Supplementary Figure S4) were collected from three sites on Isla San Cristóbal and one each from Isla Isabela and Isla Floreana, and the *rbcL* sequences from these were identical to the *rbcL* holotype sequence from Japan. Likewise, the five *tufA* sequences were identical to a *U. ohnoi tufA* sequence from a specimen from Queensland Australia that can be linked to the *U. ohnoi* holotype specimen. The three Galápagos ITS sequences were identical to the ITS sequence from the holotype specimen. Only one

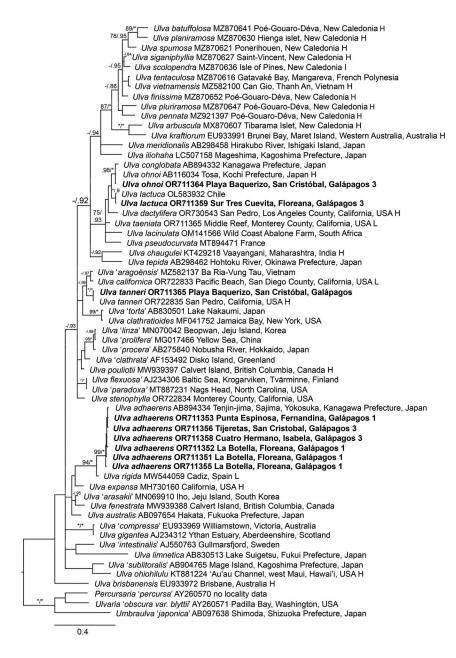


Figure 3: Phylogram of *Ulva* species based on ITS sequences. RAxML and Bayesian analyses yielded the same topology. Branch lengths are from ML analysis. The topology is rooted with outgroups Percursaria 'percursa', Ulvaria 'obscura var. blyttii' and Umbraulva 'japonica' (family Ulvaceae). Galápagos sequences in bold; species names in single quotation marks have not had their type specimens sequenced. Support values at each node are shown as bootstrap percentage/Bayesian posterior probability. Bootstrap percentages (nreps = 1000) are shown when ≥75 %; Bayesian posterior probabilities are shown when ≥0.8, and *indicates full support. The single letters at ends of some localities indicate: H, holotype; I, isotype; L, lectotype. Numbers at end of Galápagos sequences indicate total number of identical sequences.

specimen of *U. tanneri* was collected from Playa Baquerizo, Isla San Cristóbal (Supplementary Figure S5), and its *rbcL*, *tufA* and ITS sequences were identical to these same sequences from the holotype specimen of *U. tanneri* (=*Chloropelta caespitosa* Tanner).

4 Discussion

As a preface to the discussion, what is evident is that all blade-forming *Ulva* species worldwide are cryptic due to their simple construction as a two-cell layered blade and their morphological plasticity. It is very difficult to

confidently identify *Ulva* species based on morpho-anatomy, either macroscopically (e.g., size and shape of blades, presence/absence of marginal teeth on blade) or microscopically (e.g., cell size, cell shape, number of pyrenoids/cell). All of these characters have been used historically to identify *Ulva* specimens to species. An example of the difficulty of identifying *Ulva* specimens using morpho-anatomy are the studies by Chávez-Sánchez et al. (2017, 2019) in the Gulf of California. In the first paper (Chávez-Sánchez et al. 2017), eight *Ulva* species were identified by morpho-anatomy: *U. 'acanthophora'* (Kützing) H.S.Hayden, Blomster, Maggs, P.C.Silva, Stanhope *et* Waaland, *U. 'clathrata'* (Roth) C.Agardh, *U. 'intestinalis'* L., *U. 'flexuosa'* Wulfen, *U. lactuca*,

Figure 4: Phylogram of *Ulva* species based on *tuf*A sequences. RAXML and Bayesian analyses yielded the same topology. Branch lengths are from ML analysis. The topology is rooted with outgroups *Percursaria 'percursa'*, *Ulvaria 'obscura* var. *blyttii'* and *Umbraulva 'japonica'* (family Ulvaceae). Galápagos sequences in bold; species names in single quotation marks have not had their type specimens sequenced. Other details as in Figure 3 legend.

U. lobata (Kützing) Harvey, U. nematoidea Bory and U. rigida. Subsequently these same specimens were sequenced using the barcoding markers rbcL, tufA and ITS2 (Chávez-Sánchez et al. 2019). Specimens previously identified by morpho-anatomy as U. lactuca and U. rigida were U. ohnoi by DNA sequencing; U. 'intestinalis' was U. 'tepida'; U. 'clathrata' and U. 'flexuosa' were U. 'torta'; U. 'acanthophora' matched no sequenced Ulva specimens in publicly available databases; and U. lobata and U. nematoidea specimens failed to amplify. Thus, none of the

specimens that could be sequenced had been correctly identified by morpho-anatomical characters.

Named *Ulva* specimens in herbaria that have not been sequenced may or may not be correctly identified. Sequences in GenBank of species whose type specimens have not been sequenced to apply names correctly also may not be correctly identified. If specimens in a local flora have been sequenced, such that one understands the habitat and seasonality of each *Ulva* species present, then it may be possible to identify these species based on morpho-anatomical

characters. But, to our knowledge, this comprehensive sequencing has not been done for any local *Ulva* flora anywhere in the world. Moreover, if a species of *Ulva* is subsequently introduced to a flora, it may not be recognized.

For the Galápagos Archipelago, the green algal checklist compiled by Ruiz and Ziemmeck (2014) listed the following *Ulva* species that had been identified historically using morpho-anatomy: *U. fasciata* Delile (type locality: Alexandria, Egypt) that was first reported by Farlow (1902), *U. lactuca* (type locality: unknown, but possibly the Indo-Pacific), *U. lobata* (type locality: Chile), and *U. taeniata* (type locality: Monterey, California, USA), all reported by Taylor (1945), the last as *U. dactylifera*. However, based on DNA sequencing of type specimens, Hughey et al. (2019) showed that the names *U. fasciata* and *U. lobata* are junior, heterotypic synonyms of *U. lactuca*, thereby reducing the *Ulva* species recognized by morpho-anantomy in the Galápagos Archipelago to two species, *U. lactuca* and *U. dactylifera*.

In contrast, DNA sequences from field-collected, bladeforming, Ulva specimens in the Galápagos Archipelago are identical to or highly similar (>99.5 %) to sequences from the type specimens of *U. adhaerens*, *U. lactuca*, *U. ohnoi* and *U. tanneri*, conclusively documenting their presence. It is indeed fortunate that type specimens of each of these species have been sequenced, particularly for *U. lactuca* and *U. tan*neri that were described before the advent of DNA sequencing to identify seaweed species. Linnaeus (1753) described *U. lactuca*, the generitype of *Ulva*, and Tanner (1980) described U. tanneri (as Chloropelta caespitosa). The rbcL sequence of the lectotype of U. lactuca was made available in a public database (GenBank) and reported in Hughey et al. (2019), and the rbcL, tufA and ITS sequences from the holotype of *U. tanneri* (=*C. caespitosa*) were recently published (Hughey et al. 2024). Anslan et al. (2021) found these same species, although they used the designation 'Ulva sp.' for U. adhaerens.

Ulva adhaerens was originally described in 2015 from Tenjin-jima, Kanagwa Prefecture, Japan (Matsumoto and Shimada 2015). The study was undertaken to examine small sized (2–4 cm tall) Ulva specimens that, when sequenced for ITS and rbcL, comprised four different species: Ulva sp. 1, later shown by Hughey et al. (2021) to be U. conglobata; U. pertusa Kjellman (=U. australis Areschoug); U. tanneri; and Ulva sp. 2 that was named U. adhaerens due to the presence of rhizoids linking adjacent blades. Ulva adhaerens was known only from its type locality until some sequences were recently deposited in GenBank from Munseom Island, Korea (rbcL MT978111-MT978113 and tufA MT978120-MT978122). Thus, it was surprising, not only to find U. adhaerens in the Galápagos, but also that it was the Ulva species that we found most commonly (20 samples) and was

the only species that occurred on all four islands where we collected, namely Isla Fernandina, Isla Floreana, Isla Isabela, and Isla San Cristóbal (Supplementary Table S1). All of the *U. adhaerens* specimens that were collected were small in size ranging from 1 to 4 cm tall (Supplementary Figures S1 and S2), although this size range was typical for nearly all of *Ulva* species collected.

The two *rbc*L sequences from the holotype collection of U. adhaerens both have a large (2521 bp) Group II intron within the gene. Interestingly, this intron was not found in any of the 17 rbcL sequences that we obtained from Galápagos specimens. We used the rbcL primer pairs designed by Shimada et al. (2003) to sequence this gene from all Ulva specimens that we collected. If this intron had been present, we would not have been able to sequence the rbcL gene due to the size of the intron. Thirteen of our U. adhaerens specimens had rbcL sequences identical to U. adhaerens from Japan when the intron is removed. Two of four specimens from one site, La Botella, on the west coast of Isla Floreana, differed by the same SNP (single nucleotide polymorphism), and the specimen from Cuatro Hermanos, on Isla Isabela differed by two other SNPs, one shared with one of the specimens from Tijeretas, on Isla San Cristóbal. All rbcL sequences from *U. adhaerens* in the Galápagos differed from each other at most by 2 bp.

Ulva piritoka from New Zealand was proposed by Heesch et al. (2021) based only on a *rbc*L sequence, and is sister to *U. adhaerens*. It differs over its 1355 bp *rbc*L sequence by 5 bp from *U. adhaerens*, and none of these basepair differences are found in any of the various haplotypes of *U. adhaerens*. Given that *U. lactuca* and *U. ohnoi* typically differ by 3 bp over the same length of *rbc*L, *U. piritoka* is recognized as a distinct species from *U. adhaerens*.

Ulva lactuca, first reported for Galápagos Archipelago by Taylor (1945), is present, based on our DNA sequencing, on two of the four islands, Isla San Cristóbal and Isla Floreana (Supplementary Figure S3), where blade-forming Ulva species were collected. Whether historical specimens in MICH or CDS (herbarium acronyms follow Thiers 2024) are indeed U. lactuca needs to be confirmed by DNA sequencing. However, this may not be possible with Taylor's specimens as they were preserved in formaldehyde before being pressed. DNA from specimens preserved in this manner has been very difficult to amplify. Ulva lactuca occurs in Chile and Perú based on DNA sequenced specimens, so its presence in the archipelago is not surprising.

Another species that was found by both the present study and Anslan et al. (2021) was *U. ohnoi. Ulva ohnoi* (type locality: Tosa Bay, Tosa, Kochi Prefecture, Japan) was described by Hiraoka et al. (2003). Previously, Ohno (1988), while studying a "green tide" (a bloom of one or more *Ulva*

species that are free-floating) of *U. australis* (as *U. pertusa*) in southeastern Japan, proposed that another species, "Ulva sp.," was present based on temporal and physiological differences. Hiraoka et al. (2003) then performed crossing experiments between the two species and observed that the gametes did not cross, supporting Ohno's hypothesis. They then described *Ulva* sp. as a new species, *U. ohnoi*, based on ITS and rbcL sequences from field-collected and cultured specimens that were attached at Tosa Bay and unattached at Naminoue Beach (Okinawa Prefecture, Japan). Subsequently, U. ohnoi has been reported from the Northwest Pacific Ocean: Japan (Suzuki et al. 2018) and South Korea (Kang et al. 2019), attached and unattached; North Central Pacific Ocean: Hawai'i, USA (O'Kelly et al. 2010, attached); Northeast Pacific Ocean: Gulf of California, Mexico (Chávez-Sánchez et al. 2019, attached); Southwest Pacific Ocean: temperate Australia (Kirkendale et al. 2013, habitat not reported); Northwest Indian Ocean: Gujarat and Maharastra States, India (Kazi et al. 2016, attached) and Persian Gulf, Iran (Pirian et al. 2016, attached); Northwest Atlantic Ocean: Florida, USA (Melton et al. 2016a, attached and unattached); Gulf of Mexico: Alabama and Texas, USA (Melton et al. 2016a, attached and unattached); Caribbean Sea: Venezuela (Melton et al. 2016b, attached); Mediterranean Sea: Italy, Tunisia (Miladi et al. 2018) and Israel (Krupnik et al. 2018), all attached.

The Galápagos Archipelago U. ohnoi specimens were collected from the islands of Floreana, Isabela and San Cristóbal, all the islands from which samples were obtained except for Fernandina. All specimens were epilithic and found from the low intertidal to the subtidal (5 m maximum depth). These specimens were also small in size ranging up to 2-3 cm tall (Supplementary Figure S4). Based on the tufA marker, Melton et al. (2016a,b) identified three haplotypes in U. ohnoi. All of the Galápagos specimens belong to haplotype 2, which also contains the holotype specimen from Tosa Bay, Japan whose plastid genome (Suzuki et al. 2018) is publicly available in GenBank (AP018696) and from which we extracted the tufA sequence. This haplotype is also found in the Northwest Atlantic (Biscayne Bay, Florida, USA), Gulf of Mexico (Florida, Texas, USA; Yucatan, Mexico, Melton et al. 2016a,b) and the Southwest Pacific (New South Wales, Australia; GenBank JN029329, Kirkendale et al. 2013). Haplotype 1 is also found in the Gulf of Mexico and in Australia, whereas haplotype 3 is only found in Australia (Melton et al. 2016a,b).

Melton et al. (2016a,b) hypothesized that *U. ohnoi* was non-native to Atlantic Florida and the Gulf of Mexico due to the low genetic diversity found in the *tuf*A and ITS1 markers compared to the global genetic diversity. We observed a similar low genetic diversity for the Galápagos specimens of U. ohnoi, but collecting was limited to four islands, and a sample size of five is far too low to support any hypothesis about the origins of this species in the archipelago. What is needed, and would be helpful in understanding how long this species has been in the Galápagos in recent historical time, is to sequence *Ulva* herbarium specimens collected in the 20th Century to see if any of those specimens is *U. ohnoi*, as well as a greater sampling effort throughout the archipelago.

All specimens of *U. ohnoi* in the Galápagos were attached. This species has been reported to cause green tides (blooms of unattached specimens) in bays in Japan, South Korea and the USA, but in all other countries the species grows attached. No green tides of *U. ohnoi*, nor of any other species of *Ulva*, have been reported from the Galápagos Archipelago.

Ulva tanneri was originally described as Chloropelta caespitosa Tanner (1980) from epilithic specimens in the upper littoral zone from San Pedro, Los Angeles County, California, USA. It was established as a monotypic genus based on a different developmental pattern from other *Ulva* species to form the characteristic distromatic blade. Tanner (1980) characterized C. caespitosa as forming dense tufts with orbicular, peltate or split thalli ranging in size from a few mm to 60 mm. He also cited specimens from Los Angeles, Laguna, La Jolla and Pacific Beach, California. Stewart (1991) included C. caespitosa in her survey of the marine algae and seagrasses of San Diego County, California based on morphoanatomy. Joska and Bolton (1992) examined and cultured thalli from Dalebrook, South Africa, and concluded they represented C. caespitosa. Using morphology and culture studies, Lima and Fukusumi (1996) reported C. caespitosa from Japan.

Based on phylogenetic analyses using ITS sequences and rbcL gene sequences of C. caespitosa from Kobe, Japan, Hayden et al. (2003) concluded that Chloropelta should not be recognized as a separate genus. They proposed the new combination, Ulva tanneri H.S.Hayden et Waaland, the currently accepted name. Additional molecular studies have supported the transfer, including the analysis of specimens from Monterey, California, USA (Hayden and Waaland 2004), Brisbane, Australia (Kraft et al. 2010) and North Island, New Zealand (Nelson et al. 2021). Based on morpho-anatomy. Wysor (2004) included *U. tanneri* (as *C. caespitosa*) in his annotated list of marine Chlorophyta from Panamá, and Huisman et al. (2007) also recorded *U. tanneri* from Hawai'i, USA. Fernández-García et al. (2011) also reported *U. tanneri* from Costa Rica.

DNA sequences generated from the holotype specimen of *U. tanneri* (Hughey et al. 2024) are the same as those named U. tanneri in GenBank, showing that they were correctly identified. The phylogenetic analyses published by Hayden et al. (2003) using ITS and *rbc*L DNA sequences placed *U. tanneri* sister in position to *U. californica* and *Enteromorpha* sp. 1. A following study (Hayden and Waaland 2004), using the same two genetic markers, resolved *U. tanneri* in a clade sister to *U. californica* and *U. 'prolifera*' O.F.Müller. Kraft et al. (2010), in an investigation of *Ulva* from southern Australia also using ITS and *rbc*L sequences, found that their new species *U. clathratioides* and *U. tanneri* were closely related, and sister to *U. californica*. More recent analyses using *rbc*L sequences (Hughey et al. 2019, 2021, 2022) are consistent with these previous results as well as the findings reported herein. They show that *U. tanneri* occupies a strong (BI) to unsupported (RAxML) sister taxon relationship to *U. clathratioides* in the *rbc*L and *tuf*A phylograms, also unsupported in ITS.

In addition to previously published DNA sequences of U. tanneri from California, USA, Japan, and eastern Australia and New Zealand, the data herein confirm that *U. tanneri* is present in the Galápagos Archipelago. The specimens are small (<1 cm tall, Supplementary Figure S5), but this is typical for species found in high intertidal habitats. This and Anslan's et al. (2021) finding of *U. tanneri* on Isla San Cristóbal should not be used to infer that *U. tanneri* is a recent introduction to the Galápagos Archipelago. Rather, it is likely that this species has been present historically, but has been misidentified in collections by using morpho-anatomy or, more likely, is not represented in historical collections. High intertidal macroalgae frequently are overlooked entirely or not collected in surveys as they are assumed to be depauperate specimens of species found lower in the intertidal. Still, historical voucher specimens of Ulva species in herbaria should be sequenced to determine their correct identities and to test hypotheses about how long U. adhaerens, U. ohnoi and U. tanneri have been present in the Galápagos Archipelago.

Despite its historical biological importance and the uniqueness of the terrestrial flora and fauna of the Galápagos Archipelago, the seaweed flora is very poorly known. Only one of the blade-forming *Ulva* species, *U. lactuca*, previously reported for the archipelago based on morphoanatomical characters, is confirmed with DNA sequencing. This study and Anslan et al. (2021) have demonstrated for the first time the presence of *U. adhaerens*, *U. ohnoi* and *U. tanneri* not only from the Galápagos Archipelago, but from the entire southeast Pacific Ocean. A concerted effort is needed to document, with DNA sequencing, the seaweed flora of this treasured and unique archipelago.

Acknowledgments: We thank Ana Eguiguren for pressing the specimens; Isabel Silva-Romero and Esteban Agudo-Adriani for their help collecting some of the samples; Salome

Jaramillo Gil for help in making the map; and Haley Capone for helping to prepare Supplementary Table S1. Collection and exportation of samples were provided by the Ecuadorean Minister of Environment Water and Ecological Transition, under permit number MAE-DNB- CM-2016-0041.

Research ethics: Procedures are/were in accordance with national laws.

Author contributions: Paul W. Gabrielson: concept, field collections, DNA sequencing, phylogenetic analyses, writing; Anna Claire Smith: field collections, DNA sequencing, writing; John F. Bruno: concept, field collections, writing; Todd J. Vision: concept, writing; Margarita Brandt: concept, field-collections, writing.

Competing interests: The authors state no conflict of interest

Research funding: This work was funded in part by two National Science Foundation grants to JFB (OCE 1737071 and 2128592). JFB and PWG thank the Office of the Vice Chancellor for Research at UNC, Chapel Hill for a UNC Idea Grant and TJV thanks the UNC Center for Galapagos Studies for a Seed Grant that both helped fund the DNA sequencing of the collected specimens.

Data availability: The raw data can be obtained on request from the corresponding author.

References

Anslan, S., Dalgo, D., Reinhardt, T., Peñafiel, N., Guayasamin, J., Páez-Rosas, D., Vences, M., and Steinfartz, S. (2021). DNA metabarcoding reveals fine scale geographical differences of consumed algae in the Galápagos marine iguanas (*Amblyrhynchus cristatus*). *Amphibia-Reptilia* 42: 471–480.

Bartolo, A.G., Zammit, G., Peters, A.F., and Küpper, F.C. (2020). The current state of DNA barcoding of macroalgae in the Mediterranean Sea: presently lacking but urgently required. *Bot. Mar.* 63: 253–272.

Boo, G.H., Hughey, J.R., Miller, K.A., and Boo, S.M. (2016). Mitogenes from type specimens, a genomic tool for morphologically simple species: ten genomes of agar-producing red algae. *Sci. Rep.* 6: 35337.

Chacana, M.E., Silva, P.C., Pedroche, F.F., and Miller, K.A. (2016). *Codium* (Chlorophyta) species presented in the Galápagos islands. *Hidrobiológica* 26: 151–159.

Chávez-Sánchez, T., Piñón-Gimate, A., Melton, J.T., López-Bautista, J.M., and Casas-Valdez, M. (2019). First report, along with nomenclature adjustments, of *Ulva ohnoi, U. tepida* and *U. torta* (Ulvaceae, Ulvales, Chlorophyta) from northwestern Mexico. *Bot. Mar.* 62: 113–123.

Chávez-Sánchez, T., Piñón-Gimate, A., Serviere-Zaragoza, E., Sánchez-González, A., Hernández-Carmona, G., and Casas-Valdez, M. (2017). Recruitment in *Ulva* blooms in relation to temperature, salinity and nutrients in a subtropical bay of the Gulf of California. *Bot. Mar.* 60: 257–270.

Chiriboga, A., Ruiz, D. and Banks, S. (2014). CDF checklist of Galápagos Cyanobacteria – FCD lista de especies de Cianobacterias Galápagos, Available at: http://www.darwinfoundation.org/dataxone/checklists/ algae/cyanobacteria/ (Last updated 28 Jan 2014).

- Coat, G., Dion, P., Noailles, M.-C., De Reviers, B., Fontaine, J.-M., Berger-Perrot, Y., and Loiseaux-De Goér, S. (1998). Ulva armoricana (Ulvales, Chlorophyta) from the coasts of Brittany (France). II. Nuclear rDNA ITS sequence analysis. Eur. J. Phycol. 33: 81–86.
- Dartois, M., Pante, E., Viricel, A., Becquet, V. and Sauriau, P. (2021). Molecular genetic diversity of seaweeds morphologically related to *Ulva rigida* at three sites along the French Atlantic coast. Peerl 9: e11966.
- Dawson, E.Y. (1963). New records of marine algae from the Galápagos Islands. Pac. Nat. 4: 3-23.
- Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic. Acids. Res. 32: 1792-1797.
- Farlow, W.G. (1902). Algae. Proc. Am. Acad. Arts Sci. 38: 89–99.
- Fernández-García, C., Riosmena-Rodríguez, R., Wysor, B., Tejada, O.L., and Cortéz, J. (2011). Checklist of the Pacific marine macroalgae of Central America. Bot. Mar. 54: 53-73.
- Fort, A., McHale, M., Cascella, K., Potin, P., Perrineau, M.-M., Kerrison, P.D., Costa, E., Calado, R., Rosário Domingues, M., Azevedo, I.C., et al. (2020). Exhaustive reanalysis of barcode sequences from public repositories highlights ongoing misidentifications and impacts taxa diversity and distribution: a case study of the Sea Lettuce. Mol. Ecol. Resour. 22: 86-101.
- Gabrielson, P.W., Hughey, J.R., and Diaz-Pulido, G. (2018). Genomics reveals abundant speciation in the coral reef building alga Porolithon onkodes (Corallinales, Rhodophyta). J. Phycol. 54: 429-434.
- Gao, G., Zhong, Z., Zhou, X., and Xu, J. (2016). Changes in morphological plasticity of *Ulva prolifera* under different environmental conditions: a laboratory experiment. Harmful Algae 59: 51-58.
- Hanyuda, T. and Kawai, H. (2018). Genetic examination of the type specimen of *Ulva australis* suggests that it was introduced to Australia. *Phycol.* Res. 66: 238-241.
- Hayden, H.S., Blomster, J., Maggs, C.A., Silva, P.C., Stanhope, M.J., and Waaland, R. (2003). Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur. J. Phycol. 38: 277–294.
- Hayden, H.S. and Waaland, J.R. (2004). A molecular systematic study of Ulva (Ulvaceae, Ulvales) from the northeast Pacific. Phycologia 43: 364–382.
- Heesch, S., Broom, J.E.S., Neill, K.F., Farr, T.J., Dalen, J.L., and Nelson, W.A. (2009). Ulva, Umbraulva and Gemina: genetic survey of New Zealand taxa reveals diversity and introduced species. Eur. J. Phycol. 44: 143-154.
- Heesch, S., Sutherland, J.E., Ringham, S., and Nelson, W.A. (2021). Ulva L. (Ulvales, Chlorophyta) from Manawatāwhi/Three Kings Islands, New Zealand: Ulva piritoka Ngāti Kuri, Heesch & W.A. Nelson, sp. nov. and records of two non-native species, U. compressa and U. rigida. Cryptogam. Algol. 42: 129-140.
- Hind, K.R., Gabrielson, P.W., Lindstrom, S.C., and Martone, P.T. (2014). Misleading morphologies and the importance of sequencing type specimens for resolving coralline taxonomy (Corallinales, Rhodophyta): Pachyarthron cretaceum is Corallina officinalis. J. Phycol. 50: 760-764.
- Hind, K.R., Miller, K.A., Young, M., Jensen, C., Gabrielson, P.W., and Martone, P.T. (2015). Resolving cryptic species of Bossiella (Corallinales, Rhodophyta) using contemporary and historical DNA. Amer. J. Bot. 102: 1-19.
- Hiraoka, M., Shimada, S., Uenosono, M., and Masuda, M. (2003). A new green-tide-forming alga, Ulva ohnoi Hiraoka et Shimada sp. nov. (Ulvales, Ulvophyceae) from Japan. Phycol. Res. 51: 17-29.
- Huelsenbeck, J.P. and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
- Hughey, J.R., Gabrielson, P.W., Maggs, C.A., and Mineur, F. (2022). Genomic analysis of the lectotype specimens of European Ulva rigida and Ulva lacinulata (Ulvaceae, Chlorophyta) reveals the ongoing misapplication of names. Eur. J. Phycol. 47: 143-153.
- Hughey, J.R., Gabrielson, P.W., Maggs, C.A., Mineur, F., and Miller, K.A. (2021). Taxonomic revisions based on genetic analysis of type

- specimens of Ulva conalobata, U. laetevirens, U. pertusa and U. spathulata (Ulvales, Chlorophyta). Phycol. Res. 69: 148-153.
- Hughey, J.R., Gabrielson, P.W., and Miller, K.A. (2024). Genetic analysis of Ulva (Ulvaceae, Chlorophyta) type specimens resolves Northeast Pacific blade-forming species. Bot. Mar. 67, ahead of print, https://doi. org/10.1515/bot-2023-0072.
- Hughey, J.R., Maggs, C.A., Mineur, F., Gabrielson, P.W., Miller, K.A., and Shabaka, S.H. (2019). Genetic analysis of the Linnaean Ulva lactuca (Ulvales, Chlorophyta) holotype and related type specimens reveals name misapplications, unexpected origins, and new synonomies. J. Phycol. 55: 503-508.
- Hughey, J.R., Miller, K.A., and Gabrielson, P.W. (2018). Mitogenome analysis of a green tide forming *Ulva* from California, USA confirms its identity as Ulva expansa (Ulvaceae, Chlorophyta). Mitochondrial DNA Part B: Res. 3: 1302-1303.
- Hughey, J.R., Silva, P.C., and Hommersand, M. (2001). Solving taxonomic and nomenclatural problems in Pacific Gigartinaceae (Rhodophyta) using DNA from type material. J. Phycol. 37: 1091-1109.
- Huisman, J.M., Abbott, I.A., and Smith, C.M. (2007). Hawaiian reef plants. University of Hawai'i Sea Grant College Program, Honolulu.
- Joska, M.A.P. and Bolton, J.J. (1992). Chloropelta caespitosa Tanner 1980, an unusual chlorophyte, newly reported for South Africa. S. Afr. J. Bot. 58:
- Kang, J.H., Jang, J.E., Kim, J.H., Byeon, S.Y., Kim, S., Choi, S.K., Kang, Y.H., Park, S.R. and Lee, H.J. (2019). Species composition, diversity and distribution of the genus Ulva along the Coast of Juju Island, Korea based on molecular phylogenetic analysis. PLoS One 14: e0219958.
- Kazi, M.A., Kavale, M.G., and Singh, V.V. (2016). Morphological and molecular characterization of Ulva chaugulii sp. nov., U. lactuca and *U. ohnoi* (Ulvophyceae, Chlorophyta) from India. *Phycologia* 55: 45–54.
- Keith, I., Bensted-Smith, W., Banks, S., Suarez, J. and Riegl, B. (2022). Caulerpa chemnitzia in Darwin threatening Galapagos coral reefs. PLoS One. 17: e0272581.
- Kirkendale, L., Saunders, G.W., and Winberg, P. (2013). A molecular survey of Ulva (Chlorophyta) in temperate Australia. J. Phycol. 49: 69-81.
- Kraft, L.G.K., Kraft, G.T., and Waller, R.F. (2010). Investigations into southern Australian Ulva (Ulvophyaceae, Chlorophyta) taxonomy and molecular phylogeny indicate both cosmopolitanism and endemic cryptic species. J. Phycol. 46: 1257-1277.
- Krupnik, N., Rinkevich, B., Paz, G., Douek, J., Lewinsohn, E., Israel, A., Carmel, N., Mineur, F., and Maggs, C.A. (2018). Native, invasive and cryptogenic Ulva species from the Israeli Mediterranean Sea: risk and potential. Med. Mar. Sci. 19: 132-146.
- Lagourgue, L., Gobin, S., Brisset, M., Vandenberghe, S., Bonneville, C., Jauffrais, T., Van Wynsberge, S., and Payri, C.E. (2022). Ten new species of Ulva (Ulvophyceae, Chlorophyta) discovered in New Caledonia: genetic and morphological diversity, and bloom potential. Eur. J. Phycol. 57: 458–478.
- Lemoine, M. (1929). Les Corallinacées de l'Archipel des Galápagos et du Golfe de Panama. Arch. Mus. Nat. d'His. Natur. Paris, Série 6: 37-88 + IV Plates.
- Leskinen, E. and Pamilo, P. (1997). Evolution of the ITS sequences of ribosomal DNA in Enteromorpha (Chlorophyceae). Hereditas 126: 17-23.
- Lewis, S.M., Norris, J.N., and Searles, R.B. (1987). The regulation of morphological plasticity in tropical reef algae by herbivory. Ecology 68:
- Lima, M. and Fukusumi, K. (1996). First report of Chloropelta caespitosa (Ulvaceae, Ulvales, Ulvophyceae) in Japan. Phycol. Res. 44: 167-171.
- Linnaeus, C. (1753). Species plantarum, exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas,

- Vol. 2. Impensis Laurentii Salvii, Holmiae [Stockholm], pp. [i], 561-1200, [1-30, index], [i, err.].
- Matsumoto, K. and Shimada, S. (2015). Systematics of green algae resembling *Ulva conglobata*, with a description of *Ulva adhaerens* (Ulvales, Ulvophyceae). Eur. J. Phycol. 50: 100-111.
- McDevit, D.C. and Saunders, G.W. (2009). On the utility of DNA barcoding for species differentiation among brown macroalgae (Phaeophyceae) including a novel extraction protoocol. *Phycol. Res.* 57: 131–141.
- Melton, J.T., III, Collado-Vides, L., and López-Bautista, J. (2016a). Molecular identification and nutrient analysis of the green tide species *Ulva ohnoi* M. Hiraoka & S. Shimada, 2004 (Ulvophyceae, Chlorophyta), a new report and likely nonnative species in the Gulf of Mexica and Atlantic Florida, USA. Aquat. Invasions. 11: 225-237.
- Melton, J.T., III, García-Soto, G.C., and López-Bautista, J. (2016b). A new record of the bloom-forming green algal species *Ulva ohnoi* (Ulvales, Chlorophyta) in the Caribbean Sea. Algas 51: 62-64.
- Melton, J.T., III and López-Bautista, J. (2021). Diversity of the green macroalgal genus Ulva (Ulvophyceae, Chlorophyta) from the east and gulf coast of the United States based on molecular data. J. Phycol. 57: 551-568.
- Miladi, R., Manghisi, A., Armeli Minicante, S., Genovese, G., Abdelkafi, S., and Morabito, M. (2018). A DNA barcoding survey of Ulva (Chlorophyta) in Tunisia and Italy reveals the presence of the overlooked alien *U. ohnoi*. Cryptogam. Algol. 39: 85-107.
- Nelson, W.A., D'Archino, R., Neill, K.F., and Robinson, N.M. (2021). Introduced marine macroalgae: new perspectives on species recognition and distribution in New Zealand. Bot. Mar. 64: 1-15.
- Ohno, M. (1988). Seasonal changes of the growth of green algae, *Ulva* sp. in Tosa Bay, Southern Japan. Mar. Fouling. 7: 13-17, (in Japanese).
- O'Kelly, C.J., Kuihara, A., Shipley, T.C., and Sherwood, A.R. (2010). Molecular assessment of *Ulva* spp. (Ulvophyceae, Chlorophyta) in the Hawaiian Islands. J. Phycol. 46: 728-735.
- Papenfuss, G.F. (1960). On the genera of the Ulvales and the status of the order. Bot. J. Linn. Soc. 56: 303-318.
- Pirian, K., Piri, K., Sohrabipour, J., Jahromi, S.T., and Blomster, J. (2016). Molecular and morphological characterisation of Ulva chaugulii, U. paschima and U. ohnoi (Ulvophyceae) from the Persian gulf, Iran. Bot. Mar. 59: 147–158.
- Ruiz, D. and Ziemmeck, F. (2014). CDF checklist of Galápagos green algae -FCD lista de especies de Algas verdes Galápagos. Available at: http:// www.darwinfoundation.org/dataxone/checklists/algae/ chlorolphyta/ (Last updated 21 Jan 2014).
- Ruiz, D. and Ziemmeck, F. (2016a). CDF checklist of Galápagos Heterokonts -FCD lista de especies de Heterokonta: Algas pardas y grupos relacionados Galápagos, Available at: http://www.darwinfoundation.org/dataxone/ checklists/algae/ochrophyta/ (Last updated: 01 Oct 2016).
- Ruiz, D. and Ziemmeck, F. (2016b). CDF checklist of Galápagos Red Algae -FCD lista de especies de Algas rojas Galápagos. Available at: http:// www.darwinfoundation.org/dataxone/checklists/algae/rhodophyta/ (Last updated: 05 Oct 2016).
- Saunders, G.W. and Kucera, H. (2010). An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae. Cryptogam. Algol. 31: 487-528.
- Shimada, S., Hiraoka, M., Nabata, S., Iima, M., and Masuda, M. (2003). Molecular phylogenetic analyses of the Japanese Ulva and Enteromorpha (Ulvales, Ulvophyceae), with special reference to the free-floating Ulva. Phycol. Res. 51: 99-108.
- Silva, P.C. (1966) Status of our knowledge of the Galápagos benthic marine algal flora prior to the Galápagos International Scientific Project. In: Bowman, R.I. (Ed.). The Galápagos Islands Symposium of the Galápagos International Scientific Project. University of California Press, Berkeley, pp. 149-156.

- Stamatakis, A. (2014). RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313.
- Steinhagen, S., Karez, R., and Weinberger, F. (2019). Cryptic, alien, and lost species: molecular diversity of *Ulva sensu lato* along the German coasts of the North and Baltic Seas. Eur. J. Phycol. 54: 466-483.
- Stewart, J.G. (1991). Marine algae and seagrasses of San Diego County. California Sea Grant College, La Jolla.
- Suzuki, S., Yamaguchi, H., Hiraoka, M., and Kawachi, M. (2018). Mitochondrial and chloroplast genome sequences of *Ulva ohnoi*, a green-tide-forming macroalga in the Southern coastal regions of Japan. Mitochondrial DNA B. Resour. 3: 765-767.
- Tanner, C.E. (1980). Chloropelta gen. nov., an ulvaceous green alga with a different type of development. J. Phycol. 16: 128-137.
- Taylor, W.R. (1945). Pacific marine algae of the Allan Hancock expeditions to the Galapagos islands. Allan Hancock Pac. Exped. 12: 1-528.
- Thiers, B. (2024). Index herbariorum: a global directory of public herbaria and associated staff. Available at: http://sweetgum.nybg.org/ih/ (Accessed 23 August 2023).
- Torrano-Silva, B.N., Vieira, B.R., Riosmena-Rodríguez, R., and Oliveira, M.C. (2018). Guidelines for DNA barcoding of coralline algae, focusing on Lithophylloideae (Corallinales) from Brazil. Bot. Mar. 61: 127-140.
- Tran, L.-A.T., Leliaert, F., Vieira, C., Tran, T.V., Nguyen, T.V., Dam, T.D., and De Clerck, O. (2023). Molecular assessment of Ulva (Ulvales, Chlorophyta) diversity in Vietnam including the new species U. vietnamensis. Phycol. Res. 71: 13-24.
- Vieira, C., D'Hondt, S., De Clerck, O., and Payri, C.E. (2014). Toward an inordinate fondness for stars, beetles and Lobophora? Species diversity of the genus Lobophora (Dictyotales, Phaeophyceae) in New Caledonia. J. Phycol. 50: 1101-1119.
- Vieira, C., N'Yeurt, A., Rasoamanendirka, F.A., D'Hondt, A., Thi Thram, L.-A., Van de Spiegel, S., Kawai, H., and De Clerck, O. (2021). Marine macroalgal biodiversity of northern Madagascar: morpho-genetic systematics and implications of anthropic impacts for conservation. Biodivers. Conserv. 30: 1501-1546.
- Wysor, B. (2004). An annotated list of marine Chlorophyta from the Pacific Coast of the Republic of Panama with a comparison to Caribbean Panama species. Nova Hedwigia 78: 209-241.
- Xie, W.F., Wu, C.H., Zhao, J., Lin, X.Y., and Jiang, P. (2020). New records of *Ulva* spp. (Ulvophyceae, Chlorophyta) in China, with special reference to an unusual morphology of *U. meridionalis* forming green tides. *Eur.* J. Phycol. 55: 412-425.

Supplementary Material: This article contains supplementary material (https://doi.org/10.1515/bot-2023-0079).

Bionotes

Paul W. Gabrielson Department of Biology, University of North Carolina at Chapel Hill, Coker Hall CB 3280, 27599-3280 Chapel Hill, NC, USA

drseaweed@hotmail.com https://orcid.org/0000-0001-9416-1187

Paul W. Gabrielson is an algal systematist. He obtained his PhD at the University of North Carolina, Chapel Hill with Max Hommersand and was a post-doc with Gerald T. Kraft and the late Robert F. Scagel. He retooled from morpho-anatomy to DNA sequencing while teaching at a small, liberal arts college for nine years, before returning to UNC, Chapel Hill. He collaborates with phycologists worldwide sequencing contemporary field-collected specimens, as well as type specimens of seaweeds from the eighteenth, nineteenth and early twentieth centuries.

Anna Claire Smith

Department of Biology, University of North Carolina at Chapel Hill, Coker Hall CB 3280, 27599-3280 Chapel Hill, NC, USA

https://orcid.org/0000-0002-7884-169X

Anna Claire Smith was a research technician in the Bruno lab at UNC-Chapel Hill with Dr. Paul Gabrielson from 2018–2020. Her research interests include algal systematics and coral thermal tolerance, as well as environmental justice, especially relating to climate change. She is currently pursuing an MSW at UNC-Chapel Hill.

John F. Bruno

Department of Biology, University of North Carolina at Chapel Hill, Coker Hall CB 3280, 27599-3280 Chapel Hill, NC, USA

Galápagos Science Center GSC, Universidad San Francisco de Quito USFQ & University of North Carolina at Chapel Hill UNC, Puerto Baquerizo Moreno, Ecuador

https://orcid.org/0000-0003-2063-4185

John F. Bruno is a marine ecologist and Professor in the Department of Biology at The University of North Carolina at Chapel Hill, USA. His research is focused on marine biodiversity, particularly the impacts of climate change on marine ecosystems. The Bruno lab works in the Caribbean and Galápagos on understanding how human activities alter the marine food

web and what local conservation strategies are effective in mitigating these impacts. At UNC he teaches Marine Ecology, Seafood Forensics, and the Future of Food.

Todd J. Vision

Department of Biology, University of North Carolina at Chapel Hill, Coker Hall CB 3280, 27599-3280 Chapel Hill, NC, USA

Galápagos Science Center GSC, Universidad San Francisco de Quito USFQ & University of North Carolina at Chapel Hill UNC, Puerto Baquerizo Moreno, Ecuador

https://orcid.org/0000-0002-6133-2581

Todd J. Vision is an evolutionary biologist and computational biologist. He earned his PhD in Ecology & Evolution at Princeton University and was a postdoctoral researcher at Cornell University and a bioinformatics researcher with the US Department of Agriculture prior to joining UNC. Among his interests is the application of evolutionary genetics to contemporary challenges in conservation and sustainability.

Margarita Brandt

Galápagos Science Center GSC, Universidad San Francisco de Quito USFQ & University of North Carolina at Chapel Hill UNC, Puerto Baquerizo Moreno, Ecuador

Colegio de Ciencias Biológicas & Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador

https://orcid.org/0000-0002-9786-0490

Margarita Brandt is a Marine Ecology Professor at USFQ. She earned her PhD in 2012 under Dr. Jon D. Witman at Brown University, Providence, RI. She is also a former Fulbright Scholar. She studies community ecology in marine ecosystems. Her studies focus on determining the ability of marine species to acclimatize to climate change and other human induced pressures. Dr. Brandt has authored investigations on the ecology of marine invertebrates, especially of sea urchins.