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ABSTRACT 

The accurate modeling of energetic contributions to protein structure is a fundamental challenge 

in computational approaches to protein analysis and design. We describe a general computational 

method, EmCAST (Empirical C Stabilization), to score and optimize sequence to structure in 

proteins. The method relies on an empirical potential derived from a database of the C dihedral 

angle preferences for all possible four-residue sequences using data available in the Protein Data 

Bank. Our method produces stability predictions that naturally correlate one-to-one with 

experimental results for solvent-exposed mutation sites. EmCAST predicted four mutations that 

increased the stability of a three-helix bundle, UBA(1), from 2.4 to 4.8 kcal/mol by optimizing 

residues in both helices and turns. For a set of eight variants, the predicted and experimental 

stabilizations correlate very well (R2 = 0.97) with a slope near 1 and with a 0.16 kcal/mol 

standard error for EmCAST predictions. Tests against literature data for the stability effects of 

surface-exposed mutations show that EmCAST outperforms existing stability prediction 

methods. UBA(1) variants were crystallized to verify and analyze their structures at atomic 

resolution. Thermodynamic and kinetic folding experiments were performed to determine the 

magnitude and mechanism of stabilization. Our method has the potential to enable rapid, rational 

optimization of natural proteins, expand analysis of the sequence/structure relationship, and 

supplement existing protein design strategies. 
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INTRODUCTION 

The identification of stabilizing residues is central to protein structure analysis, design, and 

optimization. Enhancing protein stability provides key benefits to the shelf-life and 

immunogenicity of protein-based pharmaceuticals,1,2 the development of efficacious 

biocatalysts,3 the utility of protein-based scaffolds,4,5 and the directed evolution of new protein 

functions.6,7 Current computational methods to predict the effect of mutations on stability have 

standard errors that often exceed the magnitude of observed stabilization8,9 when applied to 

literature data sets and struggle to identify stabilizing mutations due to their relative scarcity in 

stability datasets.10-12  

When existing algorithms are used as tools to rationally stabilize proteins, the success rate of 

creating stabilized variants is often only about 30%.13 Mutations predicted to stabilize a protein 

often turn out to be significantly destabilizing.8,14,15 Mutations that do stabilize proteins also tend 

to lower protein solubility.8,12 Optimizing surface electrostatics of proteins has proven to be a 

fruitful approach to stabilize proteins.16,17 However, like other stability prediction methods the 

standard error of the prediction can be significant.16  Use of a multiple sequence alignment 

(MSA) to generate a consensus sequence has proven to be an effective approach to significantly 

stabilize proteins.4,18-20 However, the MSA approach does not predict the magnitude of the 

stabilization, it often requires a large number of mutations and because of sequence-context 

effects on stability, it is difficult to discern if a small subset of the mutations could accomplish 

the desired stabilization.21 Thus, there is a need for new methods that can accurately predict the 

magnitude of stabilizing mutations so that proteins can be stabilized efficiently with a small 

number of mutations. 
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To bridge this knowledge gap, we have developed a method to accurately predict stability 

changes for mutations at solvent-exposed positions in proteins. Although, solvent-exposed sites 

have traditionally been considered to be non-perturbing,22 recent studies show that surface 

residues can be very effective at stabilizing proteins.21,23 Our strategy uses structures in the 

RCSB PDB24 as our sole source of data on structural preferences of four-residue sequences and 

naturally produces predictions in kcal/mol without the use of any fitted constants or black-box 

machine learning techniques. We utilize our tool, EmCAST (Empirical C Stabilization), to 

optimize sequence to structure in a small 3-helix bundle, UBA(1). The domain is one of two 

UBA domains found in the human homolog of Saccharomyces cerevisiae Rad23, HHR23A, 

DNA excision repair protein.25 We have previously characterized the stability, folding kinetics 

and denatured state properties of wild type (WT) UBA(1) and determined its X-ray structure at a 

resolution of 1.60 Å.26,27 The domain is of modest stability (2.4 kcal/mol), providing a good 

candidate for rational stabilization. Here we experimentally characterize the structure, stability, 

and folding landscape of stabilized variants and compare the stabilizations of single and multi-

site variants to those predicted by EmCAST. 

 

RESULTS 

Visualizing the Sequence/Structure Relationship. EmCAST uses a fragment database 

(FDB) to analyze the relationship between sequence and structure in proteins. Traditional 

methods have used clustered structures and sequence motifs to model this relationship in a 

structure-to-sequence approach.28,29 This cluster/motif strategy neglects two key pieces of 

information: the context-dependent effects of amino acid identity on structural preferences30-32 

(sequence motifs only retain information on the relative probability of amino acids at each site of 
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a clustered structure) and the existence of multiple populated conformers for a given sequence. 

EmCAST’s FDB takes a sequence-to-structure approach to preserve the sequence-context 

dependence of structural preferences. The dihedral angle formed between 4 consecutive alpha-

carbons ()32,33 is used to quantitatively represent all conformers for each four-residue sequence. 

We note that the two bond angles, 1 and 2, for the three pseudobonds that define the C 

dihedral angle  can vary from about 90 to 150 degrees. However,  and the values of 1 and 2 

are correlated. For -helix,  is near 50° and 1 and 2 are near 95° and for -sheet,  is near -145 

and 1 and 2 are near 125o.32 Thus, we have found it sufficient to use only  in developing 

EmCAST. The  conformational distribution provides a continuous and finite scale that can 

represent all possible fragment conformers for each four-residue sequence (tetrad) a feature 

critical to the success of our energy calculations. Furthermore, our database of tetrad structural 

preferences retains information about the structural preference of  for the tetrads that precede 

and follow each tetrad (Supporting Experimental Procedures and Figure S2). The entire RCSB 

PDB24 was used in our FDB rather than non-redundant representations to capture data from 

natural and artificial protein variants. We did not use a resolution cut-off because we are only 

using C coordinates, which are more reliable than side chains in lower resolution structures. 

The database was built using a twelve residue sequence window to allow data from 4-residue 

sequences with identical internal and flanking sequences to be averaged, preventing sampling 

biases for protein structures with multiple entries in the PDB. As has been noted by the 

Matthews lab,34 solvent-exposed sites are expected to better reflect intrinsic structural 

preferences because they are less likely to be affected by long-range tertiary contacts. Therefore, 

we have weighted the statistics in our database of structural preferences by fragment solvent 

accessibility (linearly from a weighting of 1 for fully exposed to 0 for fully buried) to bias data 
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towards the innate structural preferences of the underlying sequence (see Supporting 

Information). While membrane proteins were included in our database, weighting by solvent-

accessibility effectively removes data for transmembrane segments of membrane proteins. 

 

 

 

 

 

 

Figure 1. Fragment heatmap for WT UBA(1). The primary sequence of UBA(1) is represented 

as its sequence of overlapping tetrads (x-axis). The observed C dihedral angles (, y-axis) of 

UBA(1) (pdb: 6W2H)26 are shown on the plot as black or white open circles. The distribution of 

samples in our fragment database is rendered as heat (red = most populated, black, zero 

population). The secondary structure of UBA(1) is visualized at the top to aid interpretation. -

helices and -sheets have  values centered around 50° and 145°, respectively.32 The residues 

that are used for stabilizing mutations are colored red in each tetrad that contains them. 

 

The primary structure of a protein can be broken down into a series of overlapping tetrad 

segments. Each tetrad has a collection of conformers in our FDB that can be represented as a 

population distribution across the dihedral angle . For each tetrad in our model system, UBA(1), 

we can plot this population distribution as a heatmap to compare the observed Cα dihedral angles 

for the tertiary structure of our protein against the collection of conformers found in our FDB 

(Figure 1). Most of the observed dihedral angles in UBA(1) fall within the dominant population 

of our FDB’s corresponding tetrad fragments. This observation indicates that most of the primary 

structure of UBA(1) has local structural preferences that match its folded tertiary structure well. 

There are several exceptions, notably in the turn regions (T1 and T2, see Figure 1), suggesting 
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structure in these locations could be determined by non-local interactions to a significant extent. 

Alternatively, this observation indicates that the primary structure of UBA(1) in T1 and T2 could 

be rationally optimized to match and stabilize its tertiary structure. 

Optimizing Sequence to Structure. Given a target structure, differences in fragment  

population distributions can be used to calculate an energy difference between two sequences. 

For a select tetrad segment and its corresponding fragments in our FDB, the population of 

fragments with matching  (Pmatching) and the population of total fragments (Ptotal) are used to 

calculate G (Eq. 1). Examples of evaluations of Pmatching and Ptotal for wild type (WT) UBA(1) 

and the Y188G mutation for the tetrad SXNN (where X is Y or G) are shown in Figure S2. The 

G between WT and mutant sequences provides an experimentally testable prediction of 

protein stability (Eq. 2), given the assumption that the mutation does not affect the structure of 

the protein. 

Δ𝐺 = 𝑅𝑇 ⋅ ln⁡(
𝑃𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔

𝑃𝑡𝑜𝑡𝑎𝑙−𝑃𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔
) (Eq. 1) 

ΔΔ𝐺 = Δ𝐺𝑚𝑢𝑡𝑎𝑛𝑡 − Δ𝐺𝑤𝑖𝑙𝑑𝑡𝑦𝑝𝑒 (Eq. 2) 

The  distributions in Figure 1, are for isolated tetrads. However, because adjacent tetrads are 

expected to interact with each other, we use two 2D heatmaps for each tetrad to evaluate the 

effects of the preceding and following residues on the structural preferences of a given tetrad and 

then sum over all tetrads that contain the mutated residue (see Supporting Information for more 

details). Only interactions within 3 residues of the mutation site are modeled in this approach, 

leaving predictions at buried sites inherently unreliable. Our algorithm was prototyped and tested 

using surface mutations in the FF Domain from HYPA/FBP1135 (Figure S3, R2=0.63). After 

adapting the code for performance (see EmCAST Runtime Benchmarks in the SI), EmCAST was 
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used to predict ΔΔG values for 779 UBA(1) mutations (Figure 2) in less than 0.1 seconds 

(Tables S1 and S2).  

Four stabilizing UBA(1) mutations were selected for experimental verification: two turn 

mutations (E176T and Y188G) and two helical mutations (T168R and H192E). Each mutation 

optimizes the local  distribution to better match UBA(1)’s tertiary structure (Figure S4), 

producing a G heatmap (Figure S5) with considerably fewer stabilizing mutations (red 

squares). The selected mutations sites are free of interactions outside of EmCAST's i±3 

evaluation window, well represented within our fragment database, and are predicted to stabilize 

UBA(1) by at least 0.5 kcal/mol. We also used an MSA for UBA(1) with 43 sequences provided 

by Mueller and Feigon25 to look at the correlation between stabilizations in kcal/mol predicted by 

EmCAST and the fractional occurrence of an amino acid at the sequence position of the mutation 

in the MSA (Figure S6). The R2 values for the four correlation lines ranged from 0.01 to 0.67. 

For positions Y188 and H192, the mutations we chose based on EmCAST were the same 

mutations predicted by the MSA. There is notable disagreement at position 188; the MSA 

method predicted Y188G and Y188N to be equally viable while EmCAST predicts Y188N to be 

slightly destabilizing. Apart from Y188N, the most frequent MSA variants (T168E, E176D, 

E176P, Y188G, and H192E) were all predicted to be stabilizing by EmCAST. For positions 

T168 and E176, the mutations selected by EmCAST would not have been predicted as favorable 

from the MSA in Mueller and Feigon.25 
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Figure 2. Saturation mutagenesis heatmap for WT UBA(1). A scale bar that matches color to 

degree of stabilization (positive values) or destabilization (negative values) is provided on the 

right. Grey squares represent WT residues. Mutations with inadequate fragment sampling are 

black, which corresponds to the 2D heatmap (Figure S2) having a value of zero at a  pair for the 

mutation. 

 

Guanidine hydrochloride (GdnHCl) unfolding experiments, monitored by circular dichroism 

(CD), were used to measure changes in protein stability (Figure 3A). Eight UBA(1) variants 

were tested and matched predicted stability changes exceptionally well (Table 1 and Figure 3B, 

slope ~ 1, R2 = 0.97) with a 0.16 kcal/mol standard error of the estimate. Stability enhancements 

notably were over-predicted for variants composed mainly of turn mutations (Figure 3B, blue 

and purple points). Combining these variants with stabilizing mutations in helices 1 and 3 (H1, 

H3) abolished the energy discrepancy (Figure 3B, pink points). This observation may indicate 

that local dynamics at the mutation site can negate a portion of the predicted stability.  
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Figure 3. UBA(1) experimental stability data. (A) Representative unfolding curves for 

progressively stabilized UBA(1) variants. Unfolding was induced by GdnHCl titration and 

monitored by CD at 222 nm using a 250 nm baseline. (B) Correlation plot between EmCAST 

predictions and stability data obtained from GdnHCl unfolding experiments. The line of best fit 

is shown as a solid black line. The dashed black line indicates where a perfect fit would lie. The 

red data points are single site mutations in helical regions and the blue data points are single or 

double mutations in turn regions. Pink data points have equal numbers of mutations in helical 

and turn regions. The purple data point has two turn mutations and one helical mutation. 
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Altogether, the four selected mutations double UBA(1)’s stability from 2.4 to 4.8 kcal/mol as 

predicted. The mechanism(s) behind stabilization are not revealed within EmCAST due to the 

empirical nature of our free energy potential. Structural and folding kinetics data are provided 

below to further elucidate the atomic interactions leading to stabilization. We note that if 

mutations derived from an MSA had been used to stabilize UBA(1), a similar increase in 

stability would likely have been achieved based on the predictions of EmCAST. However, it is 

important to note that the MSA approach does not provide quantitative predictions and would not 

have predicted that two of the mutations we made would stabilize UBA(1). 

 

 

Table 1. Parameters from GdnHCl Unfolding Experiments for UBA(1) Variants and 

Corresponding G Predictions from EmCAST.a 

Variant ΔGu
o'(H2O), 

kcal/mol 

m, 

kcal mol-1 M-1 

ΔΔG, 

kcal/mol 

EmCAST ΔΔG, 

kcal/mol 

WT 2.39 ± 0.05 1.16 ± 0.02 0 0 

T168R 2.95 ± 0.07 1.13 ± 0.03 0.56 ± 0.08 0.49 

E176T 2.89 ± 0.05 1.11 ± 0.01 0.50 ± 0.07 0.73 

Y188G 2.94 ± 0.08 1.13 ± 0.02 0.55 ± 0.10 0.77 

H192E 2.878 ± 0.003 1.145 ± 0.003 0.49 ± 0.05 0.44 

Y188G/H192E 3.60 ± 0.12 1.13 ± 0.03 1.21 ± 0.13 1.21 

Y188G/E176T 3.64 ± 0.04 1.11 ± 0.02 1.25 ± 0.06 1.5 

Y188G/E176T/T168R 4.21 ± 0.05 1.10 ± 0.01 1.82 ± 0.08 1.99 

Y188G/E176T/T168R/H192E 4.81 ± 0.16 1.18 ± 0.04 2.42 ± 0.17 2.43 

aEmCAST predictions were made using the crystal structure of WT UBA(1) (pdb: 6W2H).26  

bErrors in ΔGu
o’(H2O) and  m are the standard deviations of the parameters obtained from 

separate fits of Eq. 3 to three GdnHCl titrations for each protein. The error in G is obtained 

from standard propagation of the error in the ΔGu
o’(H2O) values. 
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Figure 4. X-ray structures of WT UBA(1) and turn variants. (A) Cartoon overlay of UBA(1) WT 

(grey, PDB file: 6W2H),26 Y188G (cobalt, PDB file: 6W2G), and E176T/Y188G (cyan, PDB 

file: 7TGP) X-ray structures. (B) UBA(1) WT turn 1, a potential electrostatic interaction between 

E176 and R179 side chains is highlighted. (C) UBA(1) E176T/Y188G turn 1, hydrogen bonding 

between T176's gamma-hydroxyl and R179's backbone-amide NH is observed. (D) Cartoon 

overlay of UBA(1) turn 2 for WT (grey) and the Y188G (cobalt) variant with the Y188 side 

chain rendered. 

 

Analyzing the Stabilizing Effects of Mutations to UBA(1). A critical assumption of 

EmCAST is that the mutations used to stabilize a protein do not affect the structure of the 

protein. We were able to crystallize and solve the structures of the Y188G and Y188G/E176T 

variants of UBA(1) using X-ray crystallography (Tables S3, S4 and S5). The structures 

confirmed that the two turn mutations E176T and Y188G were able to enhance stability without 

disturbing the tertiary structure of UBA(1) or the backbone conformation of the two turns 

(Figure 4). Residue E176 provides two stabilizing features that are lost upon mutation to Thr: 

stabilization of helix 2's macroscopic electrostatic dipole36 and a constructive electrostatic 

intrahelix (i, i+3) interaction37 with R179 (Figure 4B). The E176T mutation more than 

compensates for these lost features by introducing a favorable Ncap38 to helix 2 (H2), wherein 

T176's gamma-hydroxyl hydrogen bonds to R179's backbone-amide NH (Figure 4C). Other 

experimental39 and database38,40 analyses of proteins indicate that an E→T mutation at an -helix 
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Ncap should be stabilizing.  Residue Y188 has , angles that fall within the left-handed -helix 

region of the Ramachandran plot (Figure S7A). Glycine is more commonly found in this 

backbone geometry (Figure S7B), suggesting that Y188G stabilizes UBA(1) through backbone 

torsion angle optimization (Figure 4D). 

The two helical mutations, T168R and H192E, are both favored over WT residues on 

empirical helix propensity scales.41 H192E places a glutamate at the N2 position of helix 3, 

stabilizing the helix dipole.36 Experimental39 and database38,40 analyses are also consistent with 

stabilization by a  H→E mutation at the N2 position of an -helix. Beyond intrinsic helical 

propensity, the features involved in our most stabilizing mutation, T168R, remain elusive. 

Introducing the opposite charge with T168E is predicted to add a similar level of stabilization 

(Figure 2). The stabilizing mutagenic potential, predicted by EmCAST, for residues flanking this 

site drop after either mutation (Figure S8A-C). Conversely, introducing nearby mutations T165E 

and E169A in EmCAST (+0.408 kcal/mol) removes about 0.3 kcal/mol of stabilization from the 

T168R and T168E mutations (Figure S8D). Taken together, these predictions suggest sequence-

context-dependent effects play a significant role in the stabilization provided by T168R. 

Alterations to UBA(1)'s folding landscape were analyzed by stopped-flow experiments for 

several variants (Table 2, Figure S9). All variants exhibited decreases in unfolding rate 

consistent with the deliberate stabilization of the native state using EmCAST. The transition state 

was also stabilized in each variant as evidenced by enhanced folding rates. Optimizing the 

native-state backbone torsion angle preference of turn 2 (Y188G) provided only minor increases 

in the folding rate, suggesting that turn 2 plays a passive role in UBA(1)'s folding process. 

Stabilizing helix 2 through N-capping (E176T) or helix 3 through helix dipole optimization 

(H192E) yielded dramatic increases in folding rates. These observations are consistent with a 
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diffusion-collision model,26,42 wherein the helices form early in the folding process and 

subsequently dock onto each other. E176T, while nearly identical to H192E in terms of its effect 

on stability, provides a notably larger acceleration to the folding process. This difference may be 

attributed to the immediate availability of N-capping interactions by E176T, indicating that 

helix-capping interactions can promote efficient folding. Observations of helix capping residues 

promoting structure in the denatured state further support this interpretation.27 In contrast, 

macroscopic dipole optimization by H192E will only be available after the formation of helix 3. 

 

Modeling the energetic distribution of UBA(1) turn conformations provides additional 

insights into the folding kinetics of UBA(1) variants (see SI: Generating Protein Conformers). 

Briefly, combinations of likely dihedral angles from our heatmaps can be used to generate 

structures of the protein backbone for a given sequence in all accessible conformations. Each 

generated structure can then be scored by our energy equations. The set of possible 

conformations generates an energy landscape that resembles a folding funnel (Figure S10).43 The 

lowest energy conformation for WT UBA(1) T1 leads to a counter-productive helix-turn-helix 

Table 2. Folding Kinetics Parameters of UBA(1) Variants. 

Variant kf(H2O),  

s-1 

ku(H2O), 

s-1 

mTS-D,  

kcal mol-1 M-1  

mTS-N,  

kcal mol-1 M-1 

meq,  

kcal mol-1 M-1 

βT 

WT 13000 ± 2000 50 ± 6 0.97 ± 0.05 0.24 ± 0.01 1.21 ± 0.05 0.80 ± 0.01 

Y188G 15000 ± 2000 22 ± 2 0.97 ± 0.04 0.25 ± 0.01 1.21 ± 0.04 0.80 ± 0.01 

H192E 23000 ± 2000 30 ± 3 1.06 ± 0.03 0.237 ± 0.009 1.30 ± 0.03 0.818 ± 0.007 

Y188G/H192E 24000 ± 2000 13 ± 1 0.99 ± 0.02 0.24 ± 0.01 1.23 ± 0.02 0.801 ± 0.008 

Y188G/E176T 41000 ± 6000 16 ± 2 0.90 ± 0.03 0.25 ± 0.01 1.16 ± 0.03 0.78 ± 0.01 

aThe reported errors for kf(H2O), ku(H2O), mTS-D and mTS-N are the standard errors of the parameters 

obtained from fits of Eq. 4 to the Chevron plot data. The error in meq and βT are from standard 

propagation of the errors in mTS-D and mTS-N. 
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fold. This transient helical bundle would need to be disrupted before T1 can restructure to 

accommodate the tertiary structure of UBA(1) (Figure 5A). In contrast, our optimized T1 variant 

only needs to slightly bend T1 to position H1 to form the native state structure of UBA(1) 

(Figure 5B). Disfavoring the formation of counter-productive folding intermediates may be the 

underlying mechanism through which the E176T mutation drastically enhances folding rates for 

UBA(1). For comparison, the lowest energy conformers of both WT and optimized T2 variants 

position the helices such that they can directly swing into place (Figure S11). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Modeled folding mechanisms of UBA(1) turn 1 for (A) WT and (B) T168R/E176T 

variants. Available conformations for the H1-T1-H2 segment of UBA(1) are modeled and their 

relative energies scored by EmCAST. Select conformers (cobalt, magenta) are aligned to the 

crystal structure of UBA(1) (pdb: 6W2H, grey) using H2. Proposed movements to transition 

from local minima towards global minima are depicted. The energy state of each conformer, 

relative to the segment's local minimum, is included. 

 

Comparison to Existing Data and Methods. EmCAST provided high accuracy predictions 

of stabilizing mutations that led to substantial stabilization of UBA(1). To further test the 

generality of EmCAST to predict stabilizing mutations at surface-exposed sites, we searched the 

ProThermDB44 and the folding literature for mutation sets at surface-exposed sites. Data were 

limited to monomeric proteins with two-state unfolding and at least 10 surface mutations with 

isothermal stability measurements determined near physiological conditions. We felt it was 

important to have at least 10 mutations in each protein to determine if there were qualitative 
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difference between EmCAST’s predictive abilities for different types of proteins. Three proteins 

were found: B-Domain of Staphylococcal Protein A (74% helix, 26% loop), FF Domain (71% 

helix, 29% loop), and barnase (56% loop, 23% helix, 21% sheet). Although, the match between 

predicted and experimental changes in stability did not achieve the exceptional accuracy 

observed for the UBA(1) mutations, the EmCAST predictions for these other proteins correlated 

well with the experimental data (Figure 6A). The standard error in EmCAST’s prediction for the 

set of variants from the ProTherm database was 0.50 kcal/mol, a 3-fold increase relative to the 

standard error 0.16 kcal/mol in EmCAST’s predictions for the UBA(1) variants.  Unlike our 

engineered UBA(1) mutations, published surface mutations in other proteins were almost 

exclusively destabilizing. Our accuracy for destabilizing mutations may be affected by structural 

and/or statistical factors. Mutations that disfavor the native state structure may favor dynamic 

deviations from the native structure which are not accounted for by EmCAST because it assumes 

the structure is unaffected by mutation. Within EmCAST, destabilizing mutations have heatmaps 

that are less populated at the target geometry, leading to poorer statistical sampling/coverage. 

These factors likely limit prediction accuracy for destabilizing mutations and conversely may 

explain the high accuracy achieved for the stabilizing mutations made to UBA(1). 

This dataset was also used to compare EmCAST against 7 other stability prediction methods 

(see SI Appendix). Ranking by prediction correlation was as follows: EmCAST (R2 = 0.79, Fig. 

6A), PopMuSiC11,45 (R2 = 0.56, Figure 6B), INPS-3D46 (R2 = 0.46, Figure 6C), Rosetta-ddG47 

(R2 = 0.38, Figure S12A), SDM48 (R2 = 0.37, Figure S12B), FoldX49 (R2 = 0.36, Figure S12C), 

DUET50 (R2 = 0.33, Figure S12D), and mCSM51 (R2 = 0.02, Figure S12E). Many of the methods 

tested struggled to predict our UBA(1) mutations as stabilizing. Only EmCAST, PopMuSiC, 

SDM, and FoldX predicted stabilizing ΔΔG values for the majority of the UBA(1) mutations. 
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Although EmCAST does not perform as well for the mutations extracted from the ProTherm 

database, it still significantly outperforms the other methods even when the stabilizing UBA(1) 

variants are not included in the correlation (Figure S13). It is the only method that produces a 

slope of 1 with the data from the ProTherm database and it has the largest squared correlation 

coefficient (0.65) and the lowest standard error of the prediction among the methods tested 

(Table S6). EmCAST also has the smallest standard deviation of the average error of its 

predictions indicating that there are fewer large outliers in its predictions than most of the other 

methods.  

In addition to outperforming all of the 7 tested methods in both speed and accuracy, several 

other features of EmCAST's design make it unique. Our stability predictions are free of any 

fitted constants, not based on experimentally determined stability values, and intrinsically 

antisymmetric with respect to the direction of a mutation. In other words, EmCAST will give 

G for the T168R variant of UBA(1) that is equal in magnitude, but opposite in sign, to the 

reverse mutation back to the WT sequence, R168T, for the T168R variant of UBA(1). 

 

Figure 6. Surface mutation prediction correlations for the top three performing methods tested. 

The best predictors tested are (A) EmCAST, (B) PopMuSiC, and (C) INPS-3D. Proteins 

included are UBA(1) (red, pdb: 6W2H), B-Domain of Staphylococcal Protein A52 (green, pdb: 

1SS1), FF Domain35 (teal, pdb: 2KZG), and barnase39,53-57 (purple, pdb: 1BNI). The line of best 

fit is shown as a solid black line. The dashed black line indicates where a perfect fit would lie. 
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Application to Helical Propensity in Proteins and Peptides. The extensive studies on 

helical propensity enable assessment of EmCAST in specific sequence contexts for different 

mutations and experimental conditions.34,58-64 Studies using helical peptides, which are not 

supported by long range tertiary interactions, enable structures to be relaxed according to our 

sequence-local energy calculations, as described above (see SI: Generating Protein Conformers). 

Previous work tested saturation mutations at surface position A21 of the RNase T1 helix in both 

peptide and protein models.62,63 The A21P variant, which inhibited expression of RNase T1 

protein, was the only mutation that caused the helix to distort in our peptide model based on the 

lowest energy conformer predicted by the EmCAST database (Figure S14). Accounting for this 

distortion reduced our error for the A21P variant in the RNase T1 peptide from 0.31 kcal/mol to 

0.01 kcal/mol (Figure 7A, Figure S15A). Calculations for the other A21 variants were not 

significantly influenced by structural relaxation based on the structural preferences for the 

sequences from the EmCAST database. Overall stability predictions for RNase T1 peptide were 

reasonable at pH 7.0 (R2 = 0.70, Figure 7A) and unreliable for the RNase T1 protein and peptide 

at pH 2.5 (R2 = 0.04 and 0.58, respectively, Figure S15). Prediction of stability changes in 

helices from T4 Lysozyme produced inconsistent correlations at pH 3.0 (R2 = 0.35 and 0.82, 

Figure S16). The presence of acidic/basic residues within EmCAST’s i±3 interaction window 

may influence the consistency of correlations at non-neutral pH. The data from barnase in Figure 

6 and Figure S12 include a set of A32X variants at a surface position in an -helix.61 These data 

were obtained in the presence of 50 mM MES buffer pH 6.3, conditions near neutral pH that are 

more favorable for predictions by EmCAST (most proteins are crystallized near pH 7). A slope 

of 0.9 and a R2 of 0.59 are obtained with this set of mutations at the A32 helical site (Figure 

S16).     
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Figure 7. EmCAST stability predictions for helical sites. (A) Correlation plot for RNase T1 

Peptide (30 mM MOPS, pH 7.0, 0°C). (B) Correlation plot for polyalanine peptide (1 M NaCl, 

pH 7.0, 0°C).60 In panel A, the data points for the Ile, Lys and Glu variants overlap and are 

marked with the symbol . In panel B, the Gln and Met data points overlap and are designated 

with the symbol . All energies are relative to Ala, using the lowest energy structure predicted 

by the EmCAST database. Relaxing the RNase T1 peptide to the lowest energy structure 

predicted by EmCAST only significantly affected G for proline. The G for the unrelaxed 

structure predicted by EmCAST for the proline mutation in panel A is marked with an asterisk. 

 

Information on sequence-to-structure relationships for residues at the i-4 and i+4 positions, 

which are known to affect helix stability,65-68 is only retained at the level of sequence wild cards 

in the database used by EmCAST. Given that sequence information on these medium-range helix 

interactions is only partially cataloged in the EmCAST database, we tested the ability of 

EmCAST to predict changes in stability for host-guest studies in a polyalanine helix (Ac-

YGG(KAAAA)3K-CONH2)
60 where i,i±4 interactions are minimal. The dataset produces a 

stronger correlation at pH 7.0 (R2 = 0.79, Figure 7B) than that observed for RNase T1. 

Regarding the correlation between EmCAST predictions and observed changes in stability at 

helical sites in proteins, we note that there is no obvious relationship between the method of 

denaturation and the quality of the correlation. The best and worst R2 values are for the heat 

denaturation data for T4 lysozyme at positions 131 and 44, respectively. A better correlation is 
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observed for the urea denaturation data of barnase than for the GdnHCl denaturation data of 

RNase T1, while we observed excellent correlations for GdnHCl denaturation data for UBA(1). 

The average error of the EmCAST predictions were 0.12 kcal/mol for the V131X variants of T4 

lysozyme, similar to what we observe for UBA(1). For the other datasets, the average error of the 

EmCAST predictions were larger than observed for the EmCAST predictions for UBA(1) 

(barnase, 0.26 kcal/mol, S44X variants of T4 lysozyme, 0.27 kcal/mol; RNase T1, 0.35 

kcal/mol). 

There are multiple structures for WT* (C54T, C97A) lysozyme. We used each of four 

different structures (1L63, 1.75 Å;69 219L, 1.66 Å;70 1LW9, 1.45 Å;71 5KHZ, 1.49 Å72) to 

predict the changes in stability for the S44X variants of T4 lysozyme using EmCAST. For each 

of the S44X mutations, the predicted change in stability was essentially independent of which of 

the four structures was used by EmCAST to predict the change in stability. For each of the 19 

mutations, we calculated the average and standard deviation of the four predicted changes in 

stability. For the S44P mutation, the standard deviation of the predicted change in stability was 

largest (G = -1.251 ± 0.014 kcal/mol, range of the prediction, -1.239 to -1.264 kcal/mol). For 

all other S44X mutations, the standard deviation of the EmCAST prediction was less than 0.006 

kcal/mol. Thus, when multiple structures exist, the choice of the structure does not strongly 

affect the predicted change in stability if all are high quality structures. 

Application to / and All- Folds. The proteins that we evaluated from the ProTherm 

database were primarily helical or the mutations at surface-exposed sites were primarily at 

helical positions. To extend the validation of our method, we looked at three additional proteins 

with extensive mutational datasets and folds with more diverse secondary structure. As with the 

dataset from the ProTherm database, we limited analysis to sites with SASA of 50% or higher. A 



21 
 

large dataset comprising 18 mutations at surface-exposed sites measured with GdnHCl as 

denaturant is available for the src SH3 domain. SH3 is primarily composed of -sheet secondary 

structure and large loops and the mutations in the dataset occur within both -sheet and loop 

structures (Figure S17A).73 We also analyzed surface mutations from two / folds CI2 (18 

variants, GdnHCl denaturation, Figure S17B),74 and NTL9 (13 variants, urea denaturation, 

Figure S17C).75 The latter domain provides a test of our ability to predict stabilizing mutations 

for a protein known to have thermodynamically significant residual structure in the denatured 

state.76-80    

 

 

 

 

 

 

 

 

 

Figure 8. Plots of experimental G versus EmCAST predictions for G for the src SH3 

domain, CI2 and NTL9. The data for UBA(1) are plotted for comparison. The blue solid line is 

the correlation between the src SH3 domain data and the EmCAST predictions. The equation for 

this correlation and squared correlation coefficient, R2, is shown in the upper left corner. The 

dashed black line is for a prefect correlation.  

 

Figure 8 shows the correlation plots for these three proteins. EmCAST provides excellent 

predictions for the SH3 data at solvent exposed sites (R2 of 0.74 and a slope somewhat below 1). 

The standard error of the prediction is 0.31 kcal/mol. To test the importance of SASA we looked 
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at data with SASA from 40 – 49%, too. The standard error of the EmCAST prediction rose to 

0.84 kcal/mol. The correlation line for the src SH3 data also would predict the G values for 

the UBA(1) domain well. This result indicates that EmCAST can predict changes is stability well 

for mutations in both -sheet and long loop structures.  

The correlations are considerably poorer for CI2 and NTL9 (Figure S18, R2 near 0.09 for 

both). The standard error of the prediction by EmCAST for CI2 is 0.51 kcal/mol and it is 0.56 

kcal/mol for NTL9. As with the src SH3 domain, the standard error of EmCAST’s predictions 

was also much larger for variants with SASA from 40 – 49% (1.1 kcal/mol for CI2 and 1.1 

kcal/mol for NTL9). Thus, EmCAST’s ability to predict stability changes drops off rapidly for 

residues with SASA less than 50%. For CI2 the two largest outliers are the P25A and P33A 

mutations with prediction errors of 1.2 and 0.9 kcal/mol, respectively. This result may indicate 

that EmCAST has difficulty predicting G for proline mutations. The I37A mutation in the 

large loop is also a strong outlier (0.86 kcal/mol prediction error). This large loop is supported by 

hydrogen bonds to two buried arginines from the central -sheet (Figure S17B). It is possible 

that the large errors in the P33A mutation and the I37A mutation result from small changes in the 

conformation of the loop that affect the hydrogen bonds to the arginines. Long-range interactions 

will not be predicted well by EmCAST and it will likely be important to look for effects on 

possible long-range interactions when designing stabilizing mutations. The poor results with 

NTL9 are not surprising. The stability of NTL9 is significantly affected by interactions in the 

denatured state.76-80 EmCAST’s predictions are based on stabilizing the native state structure. 

Similar poor results were obtained with Staphylococcal nuclease, another protein where 

mutations are known to affect the denatured state (Figure S19).81  
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We also note that the denatured state effects for NTL9 are due to electrostatic interactions. 

EmCAST predicts stability based on the conformation of the native state. EmCAST does not 

explicitly account for electrostatic interactions. Because of its i,i±3 window, it may implicitly 

capture some local electrostatic interactions. NTL9 stability was measure in urea, which unlike 

GdnHCl does not shield electrostatic interactions.82 Thus, electrostatic interactions in both the 

native and the denatured state of NTL9 could be a component of the poor performance of 

EmCAST with respect to NTL9. Further experiments are necessary to probe EmCAST’s ability 

to implicitly capture the effects of electrostatics when predicting stability changes.       

Application of EmCAST to Vaccine Development. Analysis of the immunogenic 

mutations engineered into the SARS-CoV2 vaccines provides a promising demonstration of 

EmCAST's utility. A variant of the spike protein with two proline mutations (S-2P) has been 

previously shown to trap the SARS-CoV spike protein in its pre-fusion conformation and block 

post-fusion conformations, boosting its efficacy as an immunogen.83 An analogous variant was 

used for the vaccines against Sars-CoV2.84,85 EmCAST predicts the S-2P mutations to be mildly 

stabilizing to the pre-fusion conformer and severely destabilizing in the post-fusion conformer 

for both SARS-CoV and SARS-CoV2 spike proteins (Figure S20, Table S7). The net 

destabilization of the post-fusion conformer is 7.3 and 7.5 kcal/mol relative to the pre-fusion 

conformer for SARS-CoV and SARS-CoV2 spike proteins, respectively. This shows that the 

shift in spike protein conformational preference occurs not through stiffening of the pre-fusion 

conformer, but almost entirely through the destabilization of the post-fusion conformer.86 A 

major strength of our method lies in our ability to predict mutations using only the coordinates of 

backbone C atoms. This property of EmCAST means that similar engineering strategies could 
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be implemented rapidly to generate useful vaccine components for use against emerging 

pathogens even if only low-resolution structures are available. 

 

DISCUSSION  

EmCAST utilizes a simple empirical energy potential that encapsulates all of the complex 

sequence-local interactions involved in structuring a protein. The work presented demonstrates 

accurate free energy calculations for UBA(1) mutations involving backbone torsional strain 

(Y188G), helix capping (E176T), helix dipoles (E176T, H192E), and context-dependent effects 

(T168R). Although not enumerated by EmCAST, multiple counteracting forces were correctly 

represented and scored in the E176T mutation. Our method also offers key insights on the nature 

of protein folding and stability. The four surface mutations engineered into UBA(1) increased its 

stability from 2.4 to 4.8 kcal/mol. The free energy of folding includes contributions from many 

weak forces (hydrogen bonds, van der Waals interactions, backbone angle preferences, 

electrostatic interactions and hydrophobic interactions) that are counterbalanced by chain entropy 

such that net protein stability is small (5 – 15 kcal/mol).87 Because of this balance against chain 

entropy, our results with EmCAST show that it is possible to have a significant effect on net 

stability by optimizing local interactions. By focusing on surface accessible sites, where the 

impact of other weak forces is diminished because of exposure to water, EmCAST is able to 

make very accurate predictions of mutation-induced changes in stability.  

Our results show that optimizing the local interactions of surface residues can be as effective 

and perhaps a more accurate approach than trying to optimize the hydrophobic core.14,15 

EmCAST compares the native state energies between two 7-residue target fragments to predict 

G, limiting evaluation of the free energy contributions to the aforementioned native-state 
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fragments. Accurately isolating these contributions to free energy may both enhance our 

interpretation of stability changes and aid the development of more accurate residue-residue 

interaction potentials. 

Surface mutations found in several other proteins with diverse folds demonstrated the general 

applicability of our calculations, albeit with potentially somewhat lower accuracy for 

destabilizing mutations. Our results with large sets of mutations at the surface-exposed sites in 

helical proteins shows that even with the ability of EmCAST to include sequence context 

information out to three residues from the site of mutation, additional sequence context 

information may be necessary to better reproduce changes in stability even at surface sites. This 

issue also is evident when the experimental changes in stability at surface-exposed sites are 

compared between different proteins. The correlation between the G values for the two 

mutation sites in T4 lysozyme is strong34 (Figure S21A, R2 = 0.69 ). However, the squared 

correlation coefficients, R2, between G values at the four surface-exposed sites studied in 

barnase, RNase T1 and T4 lysozyme range from 0.18 to 0.69 (Figure S21 and Table S8) 

indicating that there is significant context dependence even at surface-exposed site of helices in 

proteins. The R2 values range from 0.35 to 0.82 for the correlations between observed G 

values and EmCAST’s predictions for these four surface-exposed sites, better than those between 

the four experimental datasets (Table S8). This observation indicates that EmCAST captures 

some, but not all, of the context dependence of G at these surface-exposed helical sites.  

Our results with CI2 and NTL9 demonstrate some limitations that must be accounted for 

when using EmCAST to design mutations. CI2 provides an example where long-range 

interactions  may affect changes in stability predicted by EmCAST based on local 

conformational preferences. NTL9 and related results with Staphylococcal nuclease show that 
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EmCAST may not predict changes in stability reliably for proteins that have significant residual 

structure in the denatured state that is affected by mutations.  

Finally, analysis of the S-2P mutations in coronavirus spike proteins suggest EmCAST may 

help researchers isolate specific conformers of proteins for experimental or immunogenic 

purposes. Given the relationship between structural dynamics and function,88,89 use of EmCAST 

to selectively stabilize a particular conformer of a protein could be a useful means to manipulate 

protein function.  

To share our work with a broad range of protein scientists we have designed a fast and easy 

to use web interface for EmCAST. The online version of our tool (www.emcast.org) is freely 

available to the research community. 

 

EXPERIMENTAL PROCEDURES 

Preparation of Site-directed Mutations. The pGEX-2T(TEV) plasmid containing the 

UBA(1) gene was used as a template for site-directed mutagenesis.26  Site-directed mutagenesis 

was carried out using the QuikChange Lightning PCR-based mutagenesis kit (Agilent). Primers 

for mutagenesis were obtained from Invitrogen (Table S9). DNA isolated from transformed XL-

10 Gold Escherichia coli using the QIAprep Spin Miniprep Kit (QIAGEN) was sequenced to 

confirm mutations (Eurofins Genomics). 

Protein Expression and Purification. The pGEX-2T(TEV) plasmid26 containing the WT or 

mutant UBA(1) gene fused to Glutathione-S-transferase (GST) was used to transform 

BL21(DE3) E. coli cells (New England Biolabs) followed by selection on ampicillin plates. A 

single colony was used to inoculate 5 mL of LB media containing 500 g of ampicillin and 

grown for 16 hours with shaking (150 rpm) at 37 °C. The 5 mL cultures were used to inoculate 
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Fernbach flasks holding 1 L of sterile LB media containing 100 mg of ampicillin. The 1 L 

cultures were grown with shaking (150 rpm) at 37 °C until reaching an OD550 of 0.8. Protein 

expression was induced using IPTG at a final concentration of 1 mM. Incubation temperature 

was lowered to 30 °C and the cultures were allowed to grow for an additional 3 hours. Cultures 

were harvested and cell pellets were frozen at -80 °C.  

WT and variant forms of UBA(1) were extracted from E. coli cell pellets with BugBuster 

Protein Extraction Reagent (EMD Millipore) using 5 mL of reagent per 1 g of cells. RNase and 

DNase were added to degrade RNA and DNA. 100 mM PMSF was added (50 L per gram of 

cells) to the lysis solution to inhibit serine proteases. The clarified lysate was purified by GST 

affinity chromatography as previously described.26 The fusion protein was cleaved using 30 g 

of TEV protease per mg of protein. The GST-UBA(1) and TEV solution was gently shaken 

overnight at 4 °C. The cleaved sample was concentrated to 1-2 mL by centrifuge ultrafiltration 

using a 3,000 molecular weight cut off (MWCO) membrane (EMD Millipore). UBA(1) released 

from the GST fusion protein was separated from GST and TEV protease by size exclusion 

chromatography using a Superdex Peptide 10/300 GL high performance column (GE Healthcare) 

coupled to an AKTA FPLC (GE Healthcare), as previously described.26 Separate but partially 

overlapping peaks were observed for GST and UBA(1). Fractions for UBA(1) were repeatedly 

collected, concentrated, and re-injected until the GST peak ceased to overlap with the UBA(1) 

peak. The purity of the UBA(1) fractions was confirmed by SDS-PAGE and the identity of the 

UBA(1) variants confirmed by MALDI-ToF mass spectrometry.  

Guanidine Hydrochloride Denaturation. An Applied Photophysics Chirascan Circular 

Dichroism (CD) Spectrophotometer interfaced with a Hamilton Microlab 500 Titrator was used 

to carry out GdnHCl titrations at 25 oC in the presence of CD buffer (20 mM MES, 40 mM 
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NaCl, pH 6.5). Protein concentration was evaluated using absorbance at 280 nm and extinction 

coefficients determined by the Expasy ProtParam tool.90 A "Native UBA(1)" sample was 

prepared by diluting UBA(1) into CD buffer to a final concentration of 5 M. 7 M guanidine 

hydrochloride (GdnHCl) in CD buffer was used as chemical denaturant. A "Denatured UBA(1)" 

sample was prepared by diluting UBA(1) into 7 M GdnHCl CD Buffer to a final concentration of 

5 M. Refractive indices of the CD buffer and the "Denatured UBA(1)" sample were measured 

using a refractometer (Fisher Scientific). The Nozaki equation for the dependence of refractive 

index on GdnHCl concentration91 was used to determine the final concentration of GdnHCl in 

the "Denatured UBA(1)" sample. A volume of 2 mL of the "Native UBA(1)" sample was loaded 

into a 1 cm fluorescence cuvette (Hellma, Art. No. 101-10-40) in an Applied Photophysics 

Chirascan CD Spectrophotometer with temperature controlled at 25 oC. The "Denatured 

UBA(1)" sample was titrated into the "Native UBA(1)" sample using the Hamilton Microlab 500 

Titrator. Ellipticity was measured at 222 nm using 250 nm as background (222). Eq. 3 was fit to 

plots of 222 vs. [GdnHCl]92,93 to obtain the parameters, m, the rate of change of ΔGu with respect 

to GdnHCl concentration and ΔGu
o'(H2O), the free energy of unfolding extrapolated to 0 M 

GdnHCl. In Eq. 3, θN and mN are the intercept and slope of the native state baseline, θD and mD 

θ222 =
(θN+mN⋅[𝐺𝑑𝑛𝐻𝐶𝑙])+(θD+mD⋅[𝐺𝑑𝑛𝐻𝐶𝑙])⋅𝑒

(
𝑚⋅[𝐺𝑑𝑛𝐻𝐶𝑙]−Δ𝐺𝑢

∘′(𝐻2𝑂)
𝑅𝑇

)

1+𝑒
(
𝑚⋅[𝐺𝑑𝑛𝐻𝐶𝑙]−Δ𝐺𝑢

∘′(𝐻2𝑂)

𝑅𝑇
)

 (Eq. 3) 

are the intercept and slope of the denatured state baseline. Reported parameters are the average 

and standard deviation of at least three technical repeats.  

Folding kinetics. Purified UBA(1) (220 M) in CD buffer with or without GdnHCl (7.0 M) 

was mixed 1:10 with CD buffer containing various concentrations of GdnHCl using an Applied 

Photophysics SX20 stopped-flow spectrophotometer. Folding and unfolding reactions were 
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monitored at 4 oC through changes in UBA(1) tyrosine fluorescence. Excitation was at 280 nm 

with total fluorescence measured at 90° using a PM tube after passage through a 295 nm cut-off 

filter. Five kinetic traces were collected for each final GdnHCl concentration. To account for the 

deadtime (1.62 ± 0.06 ms), 1.6 ms was added to all time points before a single exponential 

function was fit to the fluorescence versus time data to obtain observed rates constants, kobs.  Eq. 

4 was fit to Chevron plots of the natural log of kobs versus the final GdnHCl concentration to 

ln(𝑘𝑜𝑏𝑠) = ln (𝑘𝑓(𝐻2𝑂) ⋅ 𝑒
(
−𝑚TS−D⋅[𝐺𝑑𝑛𝐻𝐶𝑙]

𝑅𝑇
)
+ 𝑘𝑢(𝐻2𝑂) ⋅ 𝑒

(
𝑚TS−N⋅[𝐺𝑑𝑛𝐻𝐶𝑙]

𝑅𝑇
)
) (Eq. 4) 

determine folding and unfolding rate constants in the absence of denaturant, kf(H2O) and 

ku(H2O), respectively and mTS-D and mTS-N, the m-values for the denatured and native states with 

respect to the transition state, respectively. ΔGu
o'(H2O) (Eq. 5), m (Eq. 6) and the Tanford -

value (T, Eq. 7) were calculated for each variant. 

Δ𝐺𝑢
𝑜′(𝐻2𝑂) = 𝑅𝑇 ⋅ ln (

𝑘𝑓(𝐻2𝑂)

𝑘𝑢(𝐻2𝑂)
)      (Eq. 5) 

𝑚𝑒𝑞 = (𝑚TS−D +𝑚TS−N)      (Eq. 6) 

𝛽𝑇 =
𝑚TS−D

(𝑚TS−D+𝑚TS−N)
       (Eq. 7) 

 

X-ray Crystallography. UBA(1) variants were purified as described above and concentrated 

to 20 mg/mL in 50 mM HEPES, 150 mM NaCl, pH 8.0. Commercially available screening kits 

were used in conjunction with a GRYPHON liquid-handling crystallization robot (Art Robbins 

Instruments). Crystals were obtained by vapor diffusion at 20 °C from a sitting drop containing a 

1:1 mixture of protein and reservoir solution (Y188G, 0.1 M phosphate-citrate pH 4.2, 0.2 M 

ammonium sulfate, 40%(v/v) ethylene glycol for PDB file 6W2G and 2.0 M ammonium sulfate 

for PDB file 6W2I; E176T/Y188G, 4.0 M sodium formate). X-ray diffraction data were collected 

at the Stanford Synchotron Radiation Lightsource beamline 9-2 or 12-1 with a DECTRIS 



30 
 

PILATUS 6M detector. The data were indexed, integrated, and scaled using XDS94 and 

Aimless.95 The 1.45 Å Y188G structure (6W2I) was solved by sulfur single-wavelength 

anomalous diffraction (SAD) phasing. The other two structures were solved by molecular 

replacement using PHENIX/PHASER96 with 6W2I (1.10 Å Y188G structure; 6W2G) or 6W2G 

(E176T/Y188G structure, 7TGP) as the search model. Model building was accomplished in 

PHENIX96 and the structures were refined through iterative cycles of manual adjustment in 

Coot97 and refinement of atomic positions, real space, occupancy, and thermal parameters in 

PHENIX.96 Statistics for the Y188G crystal structures are provided in Tables S3 and S4, and for 

the E176T/Y188G crystal structure in Table S5. Structures have been deposited in the PDB. 
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mutations from the ProTherm database; EmCAST predictions of stability changes caused by 
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