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ABSTRACT

The accurate modeling of energetic contributions to protein structure is a fundamental challenge
in computational approaches to protein analysis and design. We describe a general computational
method, EmCAST (Empirical Ca Stabilization), to score and optimize sequence to structure in
proteins. The method relies on an empirical potential derived from a database of the Co dihedral
angle preferences for all possible four-residue sequences using data available in the Protein Data
Bank. Our method produces stability predictions that naturally correlate one-to-one with
experimental results for solvent-exposed mutation sites. EmCAST predicted four mutations that
increased the stability of a three-helix bundle, UBA(1), from 2.4 to 4.8 kcal/mol by optimizing
residues in both helices and turns. For a set of eight variants, the predicted and experimental
stabilizations correlate very well (R? = 0.97) with a slope near 1 and with a 0.16 kcal/mol
standard error for EmCAST predictions. Tests against literature data for the stability effects of
surface-exposed mutations show that EmCAST outperforms existing stability prediction
methods. UBA(1) variants were crystallized to verify and analyze their structures at atomic
resolution. Thermodynamic and kinetic folding experiments were performed to determine the
magnitude and mechanism of stabilization. Our method has the potential to enable rapid, rational
optimization of natural proteins, expand analysis of the sequence/structure relationship, and

supplement existing protein design strategies.



INTRODUCTION

The identification of stabilizing residues is central to protein structure analysis, design, and
optimization. Enhancing protein stability provides key benefits to the shelf-life and
immunogenicity of protein-based pharmaceuticals,'? the development of efficacious
biocatalysts,’ the utility of protein-based scaffolds,** and the directed evolution of new protein
functions.®’ Current computational methods to predict the effect of mutations on stability have
standard errors that often exceed the magnitude of observed stabilization®® when applied to
literature data sets and struggle to identify stabilizing mutations due to their relative scarcity in
stability datasets.!0!2

When existing algorithms are used as tools to rationally stabilize proteins, the success rate of
creating stabilized variants is often only about 30%.'*> Mutations predicted to stabilize a protein
often turn out to be significantly destabilizing.®!*!> Mutations that do stabilize proteins also tend
to lower protein solubility.®!> Optimizing surface electrostatics of proteins has proven to be a
fruitful approach to stabilize proteins.'®!” However, like other stability prediction methods the
standard error of the prediction can be significant.'® Use of a multiple sequence alignment
(MSA) to generate a consensus sequence has proven to be an effective approach to significantly
stabilize proteins.*!®2 However, the MSA approach does not predict the magnitude of the
stabilization, it often requires a large number of mutations and because of sequence-context
effects on stability, it is difficult to discern if a small subset of the mutations could accomplish
the desired stabilization.?! Thus, there is a need for new methods that can accurately predict the
magnitude of stabilizing mutations so that proteins can be stabilized efficiently with a small

number of mutations.



To bridge this knowledge gap, we have developed a method to accurately predict stability
changes for mutations at solvent-exposed positions in proteins. Although, solvent-exposed sites
have traditionally been considered to be non-perturbing,?? recent studies show that surface
residues can be very effective at stabilizing proteins.?"?* Our strategy uses structures in the
RCSB PDB?* as our sole source of data on structural preferences of four-residue sequences and
naturally produces predictions in kcal/mol without the use of any fitted constants or black-box
machine learning techniques. We utilize our tool, EmCAST (Empirical Ca Stabilization), to
optimize sequence to structure in a small 3-helix bundle, UBA(1). The domain is one of two
UBA domains found in the human homolog of Saccharomyces cerevisiae Rad23, HHR23A,
DNA excision repair protein.”> We have previously characterized the stability, folding kinetics
and denatured state properties of wild type (WT) UBA(1) and determined its X-ray structure at a
resolution of 1.60 A.2%?” The domain is of modest stability (2.4 kcal/mol), providing a good
candidate for rational stabilization. Here we experimentally characterize the structure, stability,
and folding landscape of stabilized variants and compare the stabilizations of single and multi-

site variants to those predicted by EmCAST.

RESULTS

Visualizing the Sequence/Structure Relationship. EmCAST uses a fragment database
(FDB) to analyze the relationship between sequence and structure in proteins. Traditional
methods have used clustered structures and sequence motifs to model this relationship in a
structure-to-sequence approach.?®?° This cluster/motif strategy neglects two key pieces of
30-32

information: the context-dependent effects of amino acid identity on structural preferences

(sequence motifs only retain information on the relative probability of amino acids at each site of



a clustered structure) and the existence of multiple populated conformers for a given sequence.
EmCAST’s FDB takes a sequence-to-structure approach to preserve the sequence-context
dependence of structural preferences. The dihedral angle formed between 4 consecutive alpha-

carbons (1)*23?

is used to quantitatively represent all conformers for each four-residue sequence.
We note that the two bond angles, 01 and 0., for the three pseudobonds that define the Ca
dihedral angle T can vary from about 90 to 150 degrees. However, T and the values of 6; and 6>
are correlated. For a-helix, t is near 50° and 6, and 0 are near 95° and for -sheet, 1 is near -145
and 0, and 0 are near 125°.3? Thus, we have found it sufficient to use only 7 in developing
EmCAST. The t conformational distribution provides a continuous and finite scale that can
represent all possible fragment conformers for each four-residue sequence (tetrad) a feature
critical to the success of our energy calculations. Furthermore, our database of tetrad structural
preferences retains information about the structural preference of t for the tetrads that precede
and follow each tetrad (Supporting Experimental Procedures and Figure S2). The entire RCSB
PDB?* was used in our FDB rather than non-redundant representations to capture data from
natural and artificial protein variants. We did not use a resolution cut-off because we are only
using Ca coordinates, which are more reliable than side chains in lower resolution structures.
The database was built using a twelve residue sequence window to allow data from 4-residue
sequences with identical internal and flanking sequences to be averaged, preventing sampling
biases for protein structures with multiple entries in the PDB. As has been noted by the
Matthews lab,** solvent-exposed sites are expected to better reflect intrinsic structural
preferences because they are less likely to be affected by long-range tertiary contacts. Therefore,
we have weighted the statistics in our database of structural preferences by fragment solvent

accessibility (linearly from a weighting of 1 for fully exposed to 0 for fully buried) to bias data



towards the innate structural preferences of the underlying sequence (see Supporting
Information). While membrane proteins were included in our database, weighting by solvent-

accessibility effectively removes data for transmembrane segments of membrane proteins.
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Figure 1. Fragment heatmap for WT UBA(1). The primary sequence of UBA(1) is represented
as its sequence of overlapping tetrads (x-axis). The observed Ca dihedral angles (t, y-axis) of
UBA(1) (pdb: 6W2H)?® are shown on the plot as black or white open circles. The distribution of
samples in our fragment database is rendered as heat (red = most populated, black, zero
population). The secondary structure of UBA(1) is visualized at the top to aid interpretation. a-
helices and B-sheets have T values centered around 50° and —145°, respectively.’? The residues
that are used for stabilizing mutations are colored red in each tetrad that contains them.

The primary structure of a protein can be broken down into a series of overlapping tetrad
segments. Each tetrad has a collection of conformers in our FDB that can be represented as a
population distribution across the dihedral angle t. For each tetrad in our model system, UBA(1),
we can plot this population distribution as a heatmap to compare the observed Ca dihedral angles
for the tertiary structure of our protein against the collection of conformers found in our FDB
(Figure 1). Most of the observed dihedral angles in UBA(1) fall within the dominant population
of our FDB’s corresponding tetrad fragments. This observation indicates that most of the primary

structure of UBA(1) has local structural preferences that match its folded tertiary structure well.

There are several exceptions, notably in the turn regions (T1 and T2, see Figure 1), suggesting



structure in these locations could be determined by non-local interactions to a significant extent.
Alternatively, this observation indicates that the primary structure of UBA(1) in T1 and T2 could
be rationally optimized to match and stabilize its tertiary structure.

Optimizing Sequence to Structure. Given a target structure, differences in fragment t
population distributions can be used to calculate an energy difference between two sequences.
For a select tetrad segment and its corresponding fragments in our FDB, the population of
fragments with matching T (Pmatching) and the population of total fragments (Piotar) are used to
calculate AG (Eq. 1). Examples of evaluations of Pmatching and Piotal for wild type (WT) UBA(1)
and the Y 188G mutation for the tetrad SXNN (where X is Y or G) are shown in Figure S2. The
AAG between WT and mutant sequences provides an experimentally testable prediction of
protein stability (Eq. 2), given the assumption that the mutation does not affect the structure of

the protein.

AG:RT—]n( Cmatching ) (Eq. 1)

total~Pmatching
AAG = AGpytant — AGwitatype (Eq. 2)

The 7 distributions in Figure 1, are for isolated tetrads. However, because adjacent tetrads are
expected to interact with each other, we use two 2D heatmaps for each tetrad to evaluate the
effects of the preceding and following residues on the structural preferences of a given tetrad and
then sum over all tetrads that contain the mutated residue (see Supporting Information for more
details). Only interactions within 3 residues of the mutation site are modeled in this approach,
leaving predictions at buried sites inherently unreliable. Our algorithm was prototyped and tested
using surface mutations in the FF Domain from HYPA/FBP11% (Figure S3, R>=0.63). After

adapting the code for performance (see EmCAST Runtime Benchmarks in the SI), EmCAST was



used to predict AAG values for 779 UBA(1) mutations (Figure 2) in less than 0.1 seconds
(Tables S1 and S2).

Four stabilizing UBA(1) mutations were selected for experimental verification: two turn
mutations (E176T and Y 188G) and two helical mutations (T168R and H192E). Each mutation
optimizes the local t distribution to better match UBA(1)’s tertiary structure (Figure S4),
producing a AAG heatmap (Figure S5) with considerably fewer stabilizing mutations (red
squares). The selected mutations sites are free of interactions outside of EmCAST's i£3
evaluation window, well represented within our fragment database, and are predicted to stabilize
UBAC(1) by at least 0.5 kcal/mol. We also used an MSA for UBA(1) with 43 sequences provided
by Mueller and Feigon® to look at the correlation between stabilizations in kcal/mol predicted by
EmCAST and the fractional occurrence of an amino acid at the sequence position of the mutation
in the MSA (Figure S6). The R? values for the four correlation lines ranged from 0.01 to 0.67.
For positions Y188 and H192, the mutations we chose based on EmCAST were the same
mutations predicted by the MSA. There is notable disagreement at position 188; the MSA
method predicted Y188G and Y 188N to be equally viable while EmCAST predicts Y188N to be
slightly destabilizing. Apart from Y 188N, the most frequent MSA variants (T168E, E176D,
E176P, Y188G, and H192E) were all predicted to be stabilizing by EmCAST. For positions
T168 and E176, the mutations selected by EmCAST would not have been predicted as favorable

from the MSA in Mueller and Feigon.?®
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Figure 2. Saturation mutagenesis heatmap for WT UBA(1). A scale bar that matches color to
degree of stabilization (positive values) or destabilization (negative values) is provided on the
right. Grey squares represent WT residues. Mutations with inadequate fragment sampling are
black, which corresponds to the 2D heatmap (Figure S2) having a value of zero at a t pair for the
mutation.

Guanidine hydrochloride (GdnHCI) unfolding experiments, monitored by circular dichroism
(CD), were used to measure changes in protein stability (Figure 3A). Eight UBA(1) variants
were tested and matched predicted stability changes exceptionally well (Table 1 and Figure 3B,
slope ~ 1, R =0.97) with a 0.16 kcal/mol standard error of the estimate. Stability enhancements
notably were over-predicted for variants composed mainly of turn mutations (Figure 3B, blue
and purple points). Combining these variants with stabilizing mutations in helices 1 and 3 (HI,

H3) abolished the energy discrepancy (Figure 3B, pink points). This observation may indicate

that local dynamics at the mutation site can negate a portion of the predicted stability.
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Figure 3. UBA(1) experimental stability data. (A) Representative unfolding curves for
progressively stabilized UBA(1) variants. Unfolding was induced by GdnHCl titration and
monitored by CD at 222 nm using a 250 nm baseline. (B) Correlation plot between EmCAST
predictions and stability data obtained from GdnHCI unfolding experiments. The line of best fit
is shown as a solid black line. The dashed black line indicates where a perfect fit would lie. The
red data points are single site mutations in helical regions and the blue data points are single or
double mutations in turn regions. Pink data points have equal numbers of mutations in helical
and turn regions. The purple data point has two turn mutations and one helical mutation.
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Table 1. Parameters from GdnHCI Unfolding Experiments for UBA(1) Variants and
Corresponding AAG Predictions from EmCAST.*

Variant AG"(H20), m, AAG, EmCAST AAG,
kcal/mol kcal mol! M kcal/mol kcal/mol
WT 239+£0.05 1.16+0.02 0 0
T168R 295+£0.07 1.13+0.03 0.56 +£0.08 0.49
E176T 289+0.05 1.11+0.01 0.50 £ 0.07 0.73
Y 188G 294+£0.08 1.13+0.02 0.55+0.10 0.77
H192E 2.878 £0.003 1.145+0.003 0.49 +£0.05 0.44
Y188G/H192E 3.60£0.12 1.13+£0.03 1.21+£0.13 1.21
Y188G/E176T 3.64+£0.04 1.11£0.02 1.25+0.06 1.5
Y188G/E176T/T168R 421+£0.05 1.10+0.01 1.82+0.08 1.99
Y188G/E176T/T168R/HI92E 4.81+£0.16 1.18+0.04 242+0.17 243

“EmCAST predictions were made using the crystal structure of WT UBA(1) (pdb: 6W2H).%¢
bErrors in AG,”’(H,0) and m are the standard deviations of the parameters obtained from
separate fits of Eq. 3 to three GdnHCl titrations for each protein. The error in AAG is obtained
from standard propagation of the error in the AG,*’(H20) values.

Altogether, the four selected mutations double UBA(1)’s stability from 2.4 to 4.8 kcal/mol as

predicted. The mechanism(s) behind stabilization are not revealed within EmCAST due to the

empirical nature of our free energy potential. Structural and folding kinetics data are provided

below to further elucidate the atomic interactions leading to stabilization. We note that if

mutations derived from an MSA had been used to stabilize UBA(1), a similar increase in

stability would likely have been achieved based on the predictions of EmCAST. However, it is

important to note that the MSA approach does not provide quantitative predictions and would not

have predicted that two of the mutations we made would stabilize UBA(1).
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Figure 4. X-ray structures of WT UBA(1) and turn variants. (A) Cartoon overlay of UBA(1) WT
(grey, PDB file: 6W2H),?® Y188G (cobalt, PDB file: 6W2G), and E176T/Y 188G (cyan, PDB
file: 7TGP) X-ray structures. (B) UBA(1) WT turn 1, a potential electrostatic interaction between
E176 and R179 side chains is highlighted. (C) UBA(1) E176T/Y 188G turn 1, hydrogen bonding
between T176's gamma-hydroxyl and R179's backbone-amide NH is observed. (D) Cartoon
overlay of UBA(1) turn 2 for WT (grey) and the Y 188G (cobalt) variant with the Y188 side
chain rendered.

Analyzing the Stabilizing Effects of Mutations to UBA(1). A critical assumption of
EmCAST is that the mutations used to stabilize a protein do not affect the structure of the
protein. We were able to crystallize and solve the structures of the Y188G and Y188G/E176T
variants of UBA(1) using X-ray crystallography (Tables S3, S4 and S5). The structures
confirmed that the two turn mutations E176T and Y 188G were able to enhance stability without
disturbing the tertiary structure of UBA(1) or the backbone conformation of the two turns
(Figure 4). Residue E176 provides two stabilizing features that are lost upon mutation to Thr:
stabilization of helix 2's macroscopic electrostatic dipole®® and a constructive electrostatic
intrahelix (i, i+3) interaction®’” with R179 (Figure 4B). The E176T mutation more than
compensates for these lost features by introducing a favorable Ncap?® to helix 2 (H2), wherein

T176's gamma-hydroxyl hydrogen bonds to R179's backbone-amide NH (Figure 4C). Other

139 38,40

experimental”” and database analyses of proteins indicate that an E—T mutation at an a-helix

12



Ncap should be stabilizing. Residue Y188 has ¢,y angles that fall within the left-handed a-helix
region of the Ramachandran plot (Figure S7A). Glycine is more commonly found in this
backbone geometry (Figure S7B), suggesting that Y 188G stabilizes UBA(1) through backbone
torsion angle optimization (Figure 4D).

The two helical mutations, TI68R and H192E, are both favored over WT residues on
empirical helix propensity scales.*! H192E places a glutamate at the N2 position of helix 3,

stabilizing the helix dipole.*® Experimental®® and database®3*

analyses are also consistent with
stabilization by a H—E mutation at the N2 position of an a-helix. Beyond intrinsic helical
propensity, the features involved in our most stabilizing mutation, TI168R, remain elusive.
Introducing the opposite charge with T168E is predicted to add a similar level of stabilization
(Figure 2). The stabilizing mutagenic potential, predicted by EmCAST, for residues flanking this
site drop after either mutation (Figure S8A-C). Conversely, introducing nearby mutations T165E
and E169A in EmCAST (+0.408 kcal/mol) removes about 0.3 kcal/mol of stabilization from the
T168R and T168E mutations (Figure S8D). Taken together, these predictions suggest sequence-
context-dependent effects play a significant role in the stabilization provided by T168R.

Alterations to UBA(1)'s folding landscape were analyzed by stopped-flow experiments for
several variants (Table 2, Figure S9). All variants exhibited decreases in unfolding rate
consistent with the deliberate stabilization of the native state using EmCAST. The transition state
was also stabilized in each variant as evidenced by enhanced folding rates. Optimizing the
native-state backbone torsion angle preference of turn 2 (Y 188G) provided only minor increases
in the folding rate, suggesting that turn 2 plays a passive role in UBA(1)'s folding process.

Stabilizing helix 2 through N-capping (E176T) or helix 3 through helix dipole optimization

(H192E) yielded dramatic increases in folding rates. These observations are consistent with a
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diffusion-collision model,?**? wherein the helices form early in the folding process and
subsequently dock onto each other. E176T, while nearly identical to H192E in terms of its effect
on stability, provides a notably larger acceleration to the folding process. This difference may be
attributed to the immediate availability of N-capping interactions by E176T, indicating that
helix-capping interactions can promote efficient folding. Observations of helix capping residues
promoting structure in the denatured state further support this interpretation.?’ In contrast,

macroscopic dipole optimization by H192E will only be available after the formation of helix 3.

Table 2. Folding Kinetics Parameters of UBA(1) Variants.

Variant ki(H20), ku(H20), mts-p, MTS-N, Megq, Br

s! st kcal mol™! M! kcal mol! M kcal mol! M!
WT 13000 +2000 506 0.97+0.05 0.24 £0.01 1.21+0.05 0.80+0.01
Y188G 15000 £2000 22 +£2 0.97+£0.04 0.25=+0.01 1.21+0.04 0.80+0.01
H192E 23000 £2000 30+3 1.06+0.03 0.237+0.009 1.30+0.03 0.818+£0.007

Y188G/H192E 24000 +2000 13+1 0.99+0.02 0.24+0.01 1.23+£0.02  0.801 +£0.008
Y188G/E176T 41000+ 6000 16+2 0.90+0.03 0.25+0.01 1.16+£0.03 0.78+0.01

“The reported errors for k(H20), ku(H20), mts.p and mrs.n are the standard errors of the parameters
obtained from fits of Eq. 4 to the Chevron plot data. The error in meq and Br are from standard
propagation of the errors in mrs-p and mrs-N.

Modeling the energetic distribution of UBA(1) turn conformations provides additional
insights into the folding kinetics of UBA(1) variants (see SI: Generating Protein Conformers).
Briefly, combinations of likely dihedral angles from our heatmaps can be used to generate
structures of the protein backbone for a given sequence in all accessible conformations. Each
generated structure can then be scored by our energy equations. The set of possible
conformations generates an energy landscape that resembles a folding funnel (Figure S10).* The

lowest energy conformation for WT UBA(1) T1 leads to a counter-productive helix-turn-helix
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fold. This transient helical bundle would need to be disrupted before T1 can restructure to
accommodate the tertiary structure of UBA(1) (Figure 5A). In contrast, our optimized T1 variant
only needs to slightly bend T1 to position H1 to form the native state structure of UBA(1)
(Figure 5B). Disfavoring the formation of counter-productive folding intermediates may be the
underlying mechanism through which the E176T mutation drastically enhances folding rates for
UBAC(1). For comparison, the lowest energy conformers of both WT and optimized T2 variants

position the helices such that they can directly swing into place (Figure S11).
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Figure 5. Modeled folding mechanisms of UBA(1) turn 1 for (A) WT and (B) T168R/E176T
variants. Available conformations for the H1-T1-H2 segment of UBA(1) are modeled and their
relative energies scored by EmCAST. Select conformers (cobalt, magenta) are aligned to the
crystal structure of UBA(1) (pdb: 6W2H, grey) using H2. Proposed movements to transition
from local minima towards global minima are depicted. The energy state of each conformer,
relative to the segment's local minimum, is included.

Comparison to Existing Data and Methods. EmCAST provided high accuracy predictions
of stabilizing mutations that led to substantial stabilization of UBA(1). To further test the
generality of EmCAST to predict stabilizing mutations at surface-exposed sites, we searched the
ProThermDB* and the folding literature for mutation sets at surface-exposed sites. Data were
limited to monomeric proteins with two-state unfolding and at least 10 surface mutations with

isothermal stability measurements determined near physiological conditions. We felt it was

important to have at least 10 mutations in each protein to determine if there were qualitative
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difference between EmCAST’s predictive abilities for different types of proteins. Three proteins
were found: B-Domain of Staphylococcal Protein A (74% helix, 26% loop), FF Domain (71%
helix, 29% loop), and barnase (56% loop, 23% helix, 21% sheet). Although, the match between
predicted and experimental changes in stability did not achieve the exceptional accuracy
observed for the UBA(1) mutations, the EmCAST predictions for these other proteins correlated
well with the experimental data (Figure 6A). The standard error in EmCAST’s prediction for the
set of variants from the ProTherm database was 0.50 kcal/mol, a 3-fold increase relative to the
standard error 0.16 kcal/mol in EmCAST’s predictions for the UBA(1) variants. Unlike our
engineered UBA(1) mutations, published surface mutations in other proteins were almost
exclusively destabilizing. Our accuracy for destabilizing mutations may be affected by structural
and/or statistical factors. Mutations that disfavor the native state structure may favor dynamic
deviations from the native structure which are not accounted for by EmCAST because it assumes
the structure is unaffected by mutation. Within EmCAST, destabilizing mutations have heatmaps
that are less populated at the target geometry, leading to poorer statistical sampling/coverage.
These factors likely limit prediction accuracy for destabilizing mutations and conversely may
explain the high accuracy achieved for the stabilizing mutations made to UBA(1).

This dataset was also used to compare EmCAST against 7 other stability prediction methods
(see SI Appendix). Ranking by prediction correlation was as follows: EmCAST (R? = 0.79, Fig.
6A), PopMuSiC!!* (R? = 0.56, Figure 6B), INPS-3D* (R? = 0.46, Figure 6C), Rosetta-ddG*’
(R?=0.38, Figure S12A), SDM* (R? = 0.37, Figure S12B), FoldX*’ (R? = 0.36, Figure S12C),
DUET?* (R? = 0.33, Figure S12D), and mCSM>! (R? = 0.02, Figure S12E). Many of the methods
tested struggled to predict our UBA(1) mutations as stabilizing. Only EmCAST, PopMuSiC,

SDM, and FoldX predicted stabilizing AAG values for the majority of the UBA(1) mutations.
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Although EmCAST does not perform as well for the mutations extracted from the ProTherm
database, it still significantly outperforms the other methods even when the stabilizing UBA(1)
variants are not included in the correlation (Figure S13). It is the only method that produces a
slope of 1 with the data from the ProTherm database and it has the largest squared correlation
coefficient (0.65) and the lowest standard error of the prediction among the methods tested
(Table S6). EmCAST also has the smallest standard deviation of the average error of its
predictions indicating that there are fewer large outliers in its predictions than most of the other
methods.

In addition to outperforming all of the 7 tested methods in both speed and accuracy, several
other features of EmCAST's design make it unique. Our stability predictions are free of any
fitted constants, not based on experimentally determined stability values, and intrinsically
antisymmetric with respect to the direction of a mutation. In other words, EmCAST will give
AAG for the T168R variant of UBA(1) that is equal in magnitude, but opposite in sign, to the

reverse mutation back to the WT sequence, R168T, for the T168R variant of UBA(1).

c y =1.38x + 0.20
R2=0.46
n=78

B y-103x+-023
R = 0.56
n=78

A y=102x+-015
R2=0.79
n=78

Experimental AAG, kcal/mol

EmCAST AAG, kcal/mol PopMuSiC AAG, kcal/mol INPS-3D AAG, kcal/mol

Figure 6. Surface mutation prediction correlations for the top three performing methods tested.
The best predictors tested are (A) EmCAST, (B) PopMuSiC, and (C) INPS-3D. Proteins
included are UBA(1) (red, pdb: 6W2H), B-Domain of Staphylococcal Protein A3? (green, pdb:
1SS1), FF Domain® (teal, pdb: 2KZG), and barnase**>*-*’ (purple, pdb: 1BNI). The line of best
fit is shown as a solid black line. The dashed black line indicates where a perfect fit would lie.
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Application to Helical Propensity in Proteins and Peptides. The extensive studies on
helical propensity enable assessment of EmCAST in specific sequence contexts for different
mutations and experimental conditions.***3-** Studies using helical peptides, which are not
supported by long range tertiary interactions, enable structures to be relaxed according to our
sequence-local energy calculations, as described above (see SI: Generating Protein Conformers).
Previous work tested saturation mutations at surface position A21 of the RNase T1 helix in both
peptide and protein models.®>%* The A21P variant, which inhibited expression of RNase T1
protein, was the only mutation that caused the helix to distort in our peptide model based on the
lowest energy conformer predicted by the EmCAST database (Figure S14). Accounting for this
distortion reduced our error for the A21P variant in the RNase T1 peptide from 0.31 kcal/mol to
0.01 kcal/mol (Figure 7A, Figure S15A). Calculations for the other A21 variants were not
significantly influenced by structural relaxation based on the structural preferences for the
sequences from the EmCAST database. Overall stability predictions for RNase T1 peptide were
reasonable at pH 7.0 (R*> = 0.70, Figure 7A) and unreliable for the RNase T1 protein and peptide
at pH 2.5 (R? = 0.04 and 0.58, respectively, Figure S15). Prediction of stability changes in
helices from T4 Lysozyme produced inconsistent correlations at pH 3.0 (R? = 0.35 and 0.82,
Figure S16). The presence of acidic/basic residues within EmCAST’s i+3 interaction window
may influence the consistency of correlations at non-neutral pH. The data from barnase in Figure
6 and Figure S12 include a set of A32X variants at a surface position in an a-helix.®! These data
were obtained in the presence of 50 mM MES buffer pH 6.3, conditions near neutral pH that are
more favorable for predictions by EmCAST (most proteins are crystallized near pH 7). A slope
of 0.9 and a R? of 0.59 are obtained with this set of mutations at the A32 helical site (Figure

S16).
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Figure 7. EmCAST stability predictions for helical sites. (A) Correlation plot for RNase T1
Peptide (30 mM MOPS, pH 7.0, 0°C). (B) Correlation plot for polyalanine peptide (1 M NacCl,
pH 7.0, 0°C).% In panel A, the data points for the Ile, Lys and Glu variants overlap and are
marked with the symbol Q. In panel B, the Gln and Met data points overlap and are designated
with the symbol Q. All energies are relative to Ala, using the lowest energy structure predicted
by the EmCAST database. Relaxing the RNase T1 peptide to the lowest energy structure
predicted by EmCAST only significantly affected AAG for proline. The AAG for the unrelaxed
structure predicted by EmCAST for the proline mutation in panel A is marked with an asterisk.
Information on sequence-to-structure relationships for residues at the i-4 and i+4 positions,
which are known to affect helix stability,®>® is only retained at the level of sequence wild cards
in the database used by EmCAST. Given that sequence information on these medium-range helix
interactions is only partially cataloged in the EmCAST database, we tested the ability of
EmCAST to predict changes in stability for host-guest studies in a polyalanine helix (Ac-
YGG(KAAAA);K-CONH,)% where i,i+4 interactions are minimal. The dataset produces a
stronger correlation at pH 7.0 (R? = 0.79, Figure 7B) than that observed for RNase T1.
Regarding the correlation between EmCAST predictions and observed changes in stability at
helical sites in proteins, we note that there is no obvious relationship between the method of

denaturation and the quality of the correlation. The best and worst R? values are for the heat

denaturation data for T4 lysozyme at positions 131 and 44, respectively. A better correlation is

19



observed for the urea denaturation data of barnase than for the GdnHCI denaturation data of
RNase T1, while we observed excellent correlations for GdnHCI denaturation data for UBA(1).
The average error of the EmCAST predictions were 0.12 kcal/mol for the V131X variants of T4
lysozyme, similar to what we observe for UBA(1). For the other datasets, the average error of the
EmCAST predictions were larger than observed for the EmCAST predictions for UBA(1)
(barnase, 0.26 kcal/mol, S44X variants of T4 lysozyme, 0.27 kcal/mol; RNase T1, 0.35
kcal/mol).

There are multiple structures for WT* (C54T, C97A) lysozyme. We used each of four
different structures (1L63, 1.75 A;%° 219L, 1.66 A;° 1LW9, 1.45 A;7' 5SKHZ, 1.49 A7) to
predict the changes in stability for the S44X variants of T4 lysozyme using EmCAST. For each
of the S44X mutations, the predicted change in stability was essentially independent of which of
the four structures was used by EmCAST to predict the change in stability. For each of the 19
mutations, we calculated the average and standard deviation of the four predicted changes in
stability. For the S44P mutation, the standard deviation of the predicted change in stability was
largest (AAG =-1.251 £ 0.014 kcal/mol, range of the prediction, -1.239 to -1.264 kcal/mol). For
all other S44X mutations, the standard deviation of the EmCAST prediction was less than 0.006
kcal/mol. Thus, when multiple structures exist, the choice of the structure does not strongly
affect the predicted change in stability if all are high quality structures.

Application to a/f and All- Folds. The proteins that we evaluated from the ProTherm
database were primarily helical or the mutations at surface-exposed sites were primarily at
helical positions. To extend the validation of our method, we looked at three additional proteins
with extensive mutational datasets and folds with more diverse secondary structure. As with the

dataset from the ProTherm database, we limited analysis to sites with SASA of 50% or higher. A
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large dataset comprising 18 mutations at surface-exposed sites measured with GdnHCI as
denaturant is available for the src SH3 domain. SH3 is primarily composed of 3-sheet secondary

structure and large loops and the mutations in the dataset occur within both B-sheet and loop

structures (Figure S17A).7

We also analyzed surface mutations from two o/ folds CI2 (18
variants, GdnHCI denaturation, Figure S17B),”* and NTL9 (13 variants, urea denaturation,
Figure S17C).” The latter domain provides a test of our ability to predict stabilizing mutations
for a protein known to have thermodynamically significant residual structure in the denatured

state.’6-30

y=0.85x - 0.12 P
R?=0.74 L

Experimental AAG, kcal/mol

3 2 1 0 1 2 3
EmCAST AAG, kcal/mol

Figure 8. Plots of experimental AAG versus EmCAST predictions for AAG for the src SH3
domain, CI2 and NTL9. The data for UBA(1) are plotted for comparison. The blue solid line is
the correlation between the src SH3 domain data and the EmCAST predictions. The equation for
this correlation and squared correlation coefficient, R?, is shown in the upper left corner. The
dashed black line is for a prefect correlation.

Figure 8 shows the correlation plots for these three proteins. EmCAST provides excellent

predictions for the SH3 data at solvent exposed sites (R? of 0.74 and a slope somewhat below 1).

The standard error of the prediction is 0.31 kcal/mol. To test the importance of SASA we looked
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at data with SASA from 40 — 49%, too. The standard error of the EmCAST prediction rose to
0.84 kcal/mol. The correlation line for the src SH3 data also would predict the AAG values for
the UBA(1) domain well. This result indicates that EmCAST can predict changes is stability well
for mutations in both B-sheet and long loop structures.

The correlations are considerably poorer for CI2 and NTL9 (Figure S18, R? near 0.09 for
both). The standard error of the prediction by EmCAST for CI2 is 0.51 kcal/mol and it is 0.56
kcal/mol for NTL9. As with the src SH3 domain, the standard error of EmCAST’s predictions
was also much larger for variants with SASA from 40 — 49% (1.1 kcal/mol for CI2 and 1.1
kcal/mol for NTL9). Thus, EmCAST’s ability to predict stability changes drops off rapidly for
residues with SASA less than 50%. For CI2 the two largest outliers are the P25A and P33A
mutations with prediction errors of 1.2 and 0.9 kcal/mol, respectively. This result may indicate
that EmCAST has difficulty predicting AAG for proline mutations. The I37A mutation in the
large loop is also a strong outlier (0.86 kcal/mol prediction error). This large loop is supported by
hydrogen bonds to two buried arginines from the central B-sheet (Figure S17B). It is possible
that the large errors in the P33 A mutation and the I37A mutation result from small changes in the
conformation of the loop that affect the hydrogen bonds to the arginines. Long-range interactions
will not be predicted well by EmCAST and it will likely be important to look for effects on
possible long-range interactions when designing stabilizing mutations. The poor results with
NTL9 are not surprising. The stability of NTL9 is significantly affected by interactions in the
denatured state.”**® EmCAST’s predictions are based on stabilizing the native state structure.
Similar poor results were obtained with Staphylococcal nuclease, another protein where

mutations are known to affect the denatured state (Figure S19).%!

22



We also note that the denatured state effects for NTL9 are due to electrostatic interactions.
EmCAST predicts stability based on the conformation of the native state. EmCAST does not
explicitly account for electrostatic interactions. Because of its 1,i+3 window, it may implicitly
capture some local electrostatic interactions. NTL9 stability was measure in urea, which unlike
GdnHCI does not shield electrostatic interactions.®? Thus, electrostatic interactions in both the
native and the denatured state of NTL9 could be a component of the poor performance of
EmCAST with respect to NTL9. Further experiments are necessary to probe EmCAST’s ability
to implicitly capture the effects of electrostatics when predicting stability changes.

Application of EmCAST to Vaccine Development. Analysis of the immunogenic
mutations engineered into the SARS-CoV2 vaccines provides a promising demonstration of
EmCAST's utility. A variant of the spike protein with two proline mutations (S-2P) has been
previously shown to trap the SARS-CoV spike protein in its pre-fusion conformation and block
post-fusion conformations, boosting its efficacy as an immunogen.®® An analogous variant was
used for the vaccines against Sars-CoV2.5+85 EmCAST predicts the S-2P mutations to be mildly
stabilizing to the pre-fusion conformer and severely destabilizing in the post-fusion conformer
for both SARS-CoV and SARS-CoV2 spike proteins (Figure S20, Table S7). The net
destabilization of the post-fusion conformer is 7.3 and 7.5 kcal/mol relative to the pre-fusion
conformer for SARS-CoV and SARS-CoV2 spike proteins, respectively. This shows that the
shift in spike protein conformational preference occurs not through stiffening of the pre-fusion
conformer, but almost entirely through the destabilization of the post-fusion conformer.®® A
major strength of our method lies in our ability to predict mutations using only the coordinates of

backbone Ca atoms. This property of EmCAST means that similar engineering strategies could
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be implemented rapidly to generate useful vaccine components for use against emerging

pathogens even if only low-resolution structures are available.

DISCUSSION

EmCAST utilizes a simple empirical energy potential that encapsulates all of the complex
sequence-local interactions involved in structuring a protein. The work presented demonstrates
accurate free energy calculations for UBA(1) mutations involving backbone torsional strain
(Y188G), helix capping (E176T), helix dipoles (E176T, H192E), and context-dependent effects
(T168R). Although not enumerated by EmCAST, multiple counteracting forces were correctly
represented and scored in the E176T mutation. Our method also offers key insights on the nature
of protein folding and stability. The four surface mutations engineered into UBA(1) increased its
stability from 2.4 to 4.8 kcal/mol. The free energy of folding includes contributions from many
weak forces (hydrogen bonds, van der Waals interactions, backbone angle preferences,
electrostatic interactions and hydrophobic interactions) that are counterbalanced by chain entropy
such that net protein stability is small (5 — 15 kcal/mol).}” Because of this balance against chain
entropy, our results with EmCAST show that it is possible to have a significant effect on net
stability by optimizing local interactions. By focusing on surface accessible sites, where the
impact of other weak forces is diminished because of exposure to water, EmCAST is able to
make very accurate predictions of mutation-induced changes in stability.

Our results show that optimizing the local interactions of surface residues can be as effective
and perhaps a more accurate approach than trying to optimize the hydrophobic core.!*!?

EmCAST compares the native state energies between two 7-residue target fragments to predict

AAG, limiting evaluation of the free energy contributions to the aforementioned native-state
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fragments. Accurately isolating these contributions to free energy may both enhance our
interpretation of stability changes and aid the development of more accurate residue-residue
interaction potentials.

Surface mutations found in several other proteins with diverse folds demonstrated the general
applicability of our calculations, albeit with potentially somewhat lower accuracy for
destabilizing mutations. Our results with large sets of mutations at the surface-exposed sites in
helical proteins shows that even with the ability of EmCAST to include sequence context
information out to three residues from the site of mutation, additional sequence context
information may be necessary to better reproduce changes in stability even at surface sites. This
issue also is evident when the experimental changes in stability at surface-exposed sites are
compared between different proteins. The correlation between the AAG values for the two
mutation sites in T4 lysozyme is strong®* (Figure S21A, R? = 0.69 ). However, the squared
correlation coefficients, R%, between AAG values at the four surface-exposed sites studied in
barnase, RNase T1 and T4 lysozyme range from 0.18 to 0.69 (Figure S21 and Table S8)
indicating that there is significant context dependence even at surface-exposed site of helices in
proteins. The R? values range from 0.35 to 0.82 for the correlations between observed AAG
values and EmCAST’s predictions for these four surface-exposed sites, better than those between
the four experimental datasets (Table S8). This observation indicates that EmCAST captures
some, but not all, of the context dependence of AAG at these surface-exposed helical sites.

Our results with CI2 and NTL9 demonstrate some limitations that must be accounted for
when using EmCAST to design mutations. CI2 provides an example where long-range
interactions may affect changes in stability predicted by EmCAST based on local

conformational preferences. NTL9 and related results with Staphylococcal nuclease show that

25



EmCAST may not predict changes in stability reliably for proteins that have significant residual
structure in the denatured state that is affected by mutations.

Finally, analysis of the S-2P mutations in coronavirus spike proteins suggest EmCAST may
help researchers isolate specific conformers of proteins for experimental or immunogenic
purposes. Given the relationship between structural dynamics and function,*®® use of EmCAST
to selectively stabilize a particular conformer of a protein could be a useful means to manipulate
protein function.

To share our work with a broad range of protein scientists we have designed a fast and easy
to use web interface for EmCAST. The online version of our tool (www.emcast.org) is freely

available to the research community.

EXPERIMENTAL PROCEDURES

Preparation of Site-directed Mutations. The pGEX-2T(TEV) plasmid containing the
UBA(1) gene was used as a template for site-directed mutagenesis.?® Site-directed mutagenesis
was carried out using the QuikChange Lightning PCR-based mutagenesis kit (Agilent). Primers
for mutagenesis were obtained from Invitrogen (Table S9). DNA isolated from transformed XL-
10 Gold Escherichia coli using the QIAprep Spin Miniprep Kit (QIAGEN) was sequenced to
confirm mutations (Eurofins Genomics).

Protein Expression and Purification. The pPGEX-2T(TEV) plasmid®® containing the WT or
mutant UBA(1) gene fused to Glutathione-S-transferase (GST) was used to transform
BL21(DE3) E. coli cells (New England Biolabs) followed by selection on ampicillin plates. A
single colony was used to inoculate 5 mL of LB media containing 500 pg of ampicillin and

grown for 16 hours with shaking (150 rpm) at 37 °C. The 5 mL cultures were used to inoculate
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Fernbach flasks holding 1 L of sterile LB media containing 100 mg of ampicillin. The 1 L
cultures were grown with shaking (150 rpm) at 37 °C until reaching an ODsso of 0.8. Protein
expression was induced using IPTG at a final concentration of 1 mM. Incubation temperature
was lowered to 30 °C and the cultures were allowed to grow for an additional 3 hours. Cultures
were harvested and cell pellets were frozen at -80 °C.

WT and variant forms of UBA(1) were extracted from E. coli cell pellets with BugBuster
Protein Extraction Reagent (EMD Millipore) using 5 mL of reagent per 1 g of cells. RNase and
DNase were added to degrade RNA and DNA. 100 mM PMSF was added (50 pL per gram of
cells) to the lysis solution to inhibit serine proteases. The clarified lysate was purified by GST
affinity chromatography as previously described.?® The fusion protein was cleaved using 30 pg
of TEV protease per mg of protein. The GST-UBA(1) and TEV solution was gently shaken
overnight at 4 °C. The cleaved sample was concentrated to 1-2 mL by centrifuge ultrafiltration
using a 3,000 molecular weight cut off (MWCO) membrane (EMD Millipore). UBA(1) released
from the GST fusion protein was separated from GST and TEV protease by size exclusion
chromatography using a Superdex Peptide 10/300 GL high performance column (GE Healthcare)
coupled to an AKTA FPLC (GE Healthcare), as previously described.?® Separate but partially
overlapping peaks were observed for GST and UBA(1). Fractions for UBA(1) were repeatedly
collected, concentrated, and re-injected until the GST peak ceased to overlap with the UBA(1)
peak. The purity of the UBA(1) fractions was confirmed by SDS-PAGE and the identity of the
UBA(1) variants confirmed by MALDI-ToF mass spectrometry.

Guanidine Hydrochloride Denaturation. An Applied Photophysics Chirascan Circular
Dichroism (CD) Spectrophotometer interfaced with a Hamilton Microlab 500 Titrator was used

to carry out GdnHCl titrations at 25 °C in the presence of CD buffer (20 mM MES, 40 mM
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NaCl, pH 6.5). Protein concentration was evaluated using absorbance at 280 nm and extinction
coefficients determined by the Expasy ProtParam tool.”® A "Native UBA(1)" sample was
prepared by diluting UBA(1) into CD buffer to a final concentration of 5 uM. 7 M guanidine
hydrochloride (GdnHCI) in CD buffer was used as chemical denaturant. A "Denatured UBA(1)"
sample was prepared by diluting UBA(1) into 7 M GdnHCI CD Buffer to a final concentration of
5 uM. Refractive indices of the CD buffer and the "Denatured UBA(1)" sample were measured
using a refractometer (Fisher Scientific). The Nozaki equation for the dependence of refractive
index on GdnHCl concentration®! was used to determine the final concentration of GdnHCl in
the "Denatured UBA(1)" sample. A volume of 2 mL of the "Native UBA(1)" sample was loaded
into a 1 cm fluorescence cuvette (Hellma, Art. No. 101-10-40) in an Applied Photophysics
Chirascan CD Spectrophotometer with temperature controlled at 25 °C. The "Denatured
UBA(1)" sample was titrated into the "Native UBA(1)" sample using the Hamilton Microlab 500
Titrator. Ellipticity was measured at 222 nm using 250 nm as background (0222). Eq. 3 was fit to
plots of 022, vs. [GdnHCI]*> to obtain the parameters, m, the rate of change of AG, with respect
to GdnHCI concentration and AGy°'(H20), the free energy of unfolding extrapolated to 0 M

GdnHCI. In Eq. 3, On and mn are the intercept and slope of the native state baseline, 6p and mp

m-[GAnHCI-AG}, (H,0)
RT

_ (GN+mN-[GdnHCl])+(6D+mD-[GdnHCl])-e(

0 =
222 (m»[GdnHCl]—AG;’; (HZO))
RT
1+e

(Eq. 3)

are the intercept and slope of the denatured state baseline. Reported parameters are the average
and standard deviation of at least three technical repeats.

Folding kinetics. Purified UBA(1) (220 uM) in CD buffer with or without GdnHCI (7.0 M)
was mixed 1:10 with CD buffer containing various concentrations of GdnHCl using an Applied

Photophysics SX20 stopped-flow spectrophotometer. Folding and unfolding reactions were
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monitored at 4 °C through changes in UBA(1) tyrosine fluorescence. Excitation was at 280 nm
with total fluorescence measured at 90° using a PM tube after passage through a 295 nm cut-off
filter. Five kinetic traces were collected for each final GAnHCI concentration. To account for the
deadtime (1.62 + 0.06 ms), 1.6 ms was added to all time points before a single exponential
function was fit to the fluorescence versus time data to obtain observed rates constants, kobs. Eq.
4 was fit to Chevron plots of the natural log of kobs versus the final GAnHCI concentration to

(Eq. 4)

—-mrs_p-[GAnHCI] mTS_N-[GdnHCl]))

In(k,ps) = In (kf(HZO) T 4k, (1,0) - B
determine folding and unfolding rate constants in the absence of denaturant, k(H>O) and
ku(H20), respectively and mts.p and ms-n, the m-values for the denatured and native states with
respect to the transition state, respectively. AG,*'(H20) (Eq. 5), m (Eq. 6) and the Tanford [3-

value (Bt, Eq. 7) were calculated for each variant.

, k¢(Hy0
AGY'(H,0) = RT - In (ki EH2O§) (Eq. 5)
Meq = (Mrs—p + Mrs_N) (Eq. 6)
Br = —D (Eq. 7)

(mts-p+mrs-n)

X-ray Crystallography. UBA(1) variants were purified as described above and concentrated
to 20 mg/mL in 50 mM HEPES, 150 mM NaCl, pH 8.0. Commercially available screening kits
were used in conjunction with a GRYPHON liquid-handling crystallization robot (Art Robbins
Instruments). Crystals were obtained by vapor diffusion at 20 °C from a sitting drop containing a
1:1 mixture of protein and reservoir solution (Y 188G, 0.1 M phosphate-citrate pH 4.2, 0.2 M
ammonium sulfate, 40%(v/v) ethylene glycol for PDB file 6W2G and 2.0 M ammonium sulfate
for PDB file 6W2I; E176T/Y 188G, 4.0 M sodium formate). X-ray diffraction data were collected

at the Stanford Synchotron Radiation Lightsource beamline 9-2 or 12-1 with a DECTRIS
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PILATUS 6M detector. The data were indexed, integrated, and scaled using XDS** and
Aimless.” The 1.45 A Y188G structure (6W2I) was solved by sulfur single-wavelength
anomalous diffraction (SAD) phasing. The other two structures were solved by molecular
replacement using PHENIX/PHASER® with 6W2I (1.10 A Y 188G structure; 6W2G) or 6W2G
(E176T/Y 188G structure, 7TGP) as the search model. Model building was accomplished in
PHENIX®® and the structures were refined through iterative cycles of manual adjustment in

t97

Coot”" and refinement of atomic positions, real space, occupancy, and thermal parameters in

PHENIX.? Statistics for the Y188G crystal structures are provided in Tables S3 and S4, and for

the E176T/Y 188G crystal structure in Table S5. Structures have been deposited in the PDB.
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proline mutations for the pre- and post-fusion conformer of the Sars-CoV and Sars-CoV?2 spike
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protein; correlation coefficients for observed stability changes cause by mutations in a-helices of
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and a T16R variant of barnase.
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