

Some refinements to the most recent simple time-dependent theory of tropical cyclone intensification and sensitivity

Yuqing Wang^{*}

International Pacific Research Center and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Zhe-Min Tan, and Yuanlong Li

School of Atmospheric Sciences, Nanjing University, Nanjing, China.

June 12, 2022 (submitted)

August 23, 2022 (revised)

September 27, 2022 (final)

Dateline

Submitted to ***Journal of the Atmospheric Sciences***

*Corresponding author: Prof. Yuqing Wang
Room 404A, IPRC/SOEST
University of Hawaii at Manoa
1680 East-West Road
Honolulu, HI 96822
Email: yuqing@hawaii.edu

19

Abstract

Several key issues in the simple time-dependent theories of tropical cyclone (TC) intensification developed in recent years remain, including the lacks of a closure for the pressure dependence of saturation enthalpy at sea surface temperature (SST) under the eyewall and the definition of environmental conditions, such as the boundary-layer enthalpy in TC environment and the TC outflow-layer temperature. In this study, some refinements to the most recent time-dependent theory of TC intensification have been accomplished to resolve those issues. The first is the construction of a functional relationship between the surface pressure under the eyewall and the TC intensity, which is derived using the cyclostrophic wind balance and calibrated using full-physics axisymmetric model simulations. The second is the definition of TC environment that explicitly includes the air-sea temperature difference. The third is the TC outflow-layer temperature parameterized as a linear function of SST based on global reanalysis data. With these refinements, the updated time-dependent theory becomes self-contained and can give both the intensity-dependent TC intensification rate (IR) and the maximum potential intensity (MPI) under given environmental thermodynamic conditions. It is shown that the pressure dependence of saturation enthalpy at SST can lead to an increase in the TC MPI and IR by about half of that induced by dissipative heating due to surface friction. Results also show that both MPI and IR increase with increasing SST, surface enthalpy exchange coefficient, environmental air-sea temperature difference, and decreasing environmental boundary-layer relative humidity, but the maximum IR is insensitive to surface drag coefficient.

Significance statement: A new advancement in the recent decade is the development of simple time-dependent theories of tropical cyclone (TC) intensification, which can provide quantitative understanding of TC intensity change. However, several key issues in these simple time-dependent theories remain, including the lacks of a closure for the pressure dependence of saturation enthalpy at sea surface temperature under the eyewall and the definition of environmental conditions. These are resolved in this study with several refinements, which make the most recent time-dependent theory of TC intensification self-contained and practical.

46 **1. Introduction**

47 The development of simple time-dependent theories of tropical cyclone (TC) intensification is
48 fundamental to the quantitative understanding of TC intensity change. Emanuel (2012) is the first
49 among others who have attempted to develop such a theory based on the boundary layer momentum
50 and entropy budget equations and the assumptions of an axisymmetric vortex in thermal wind
51 balance and neutral slantwise moist convection in the eyewall ascent in the free atmosphere above
52 the boundary layer. Ozawa and Shimokawa (2015) also constructed a time-dependent theory of TC
53 intensification by assuming a TC as a Carnot heat engine with the hypothesis that the TC intensifies
54 when the energy production rate associated with the sea surface enthalpy flux is greater than the
55 surface frictional dissipation rate. We can simply consider the former as a dynamically based theory
56 and the latter as an energetically based theory. Although both theories seem to capture the main
57 processes of TC intensification, they mathematically show the maximum intensification rate at the
58 incipient stage of a TC, which contrasts with observations as indicated by Xu and Wang (2015,
59 2018a), who found a maximum intensification rate at intermediate TC intensities (with the
60 maximum sustained 10-m wind speed around $35\text{--}40\text{ m s}^{-1}$) for TCs over the North Atlantic and the
61 western North Pacific.

62 To allow the realistic intensity dependence of intensification rate in the theoretical model as in
63 observations, Wang et al. (2021a) introduced a dynamical efficiency into the energetically based
64 theory of TC intensification, which is parameterized as the normalized inner-core inertial stability
65 of the TC. With the parameterized dynamical efficiency, the modified energetically based time-
66 dependent theory can reproduce the observed and numerically simulated intensity dependence of
67 TC intensification rate as found in observations by Xu and Wang (2015 and 2018a). This modified
68 energetically based theory also can quantitatively capture the intensity dependence of the possible
69 or potential intensification rate of real TCs as recently evaluated by Xu and Wang (2022). In a later
70 study, Wang et al. (2021b) derived a new simple time-dependent equation of TC intensification,
71 which is dynamically based as that developed by Emanuel (2012). In his theory, Emanuel (2012)
72 assumed that the moist isentropic surface and the absolute angular momentum surface are

73 congruent in the eyewall ascent, which is assumed to be moist neutral to convection. However,
 74 Peng et al. (2018) found that this assumption is satisfied in the later intensification stage but not in
 75 the early intensification stage when the TC is weak. In Wang et al. (2021b), the moist neutral
 76 condition in the eyewall ascent is relaxed by introducing an *ad-hoc* parameter to measure the extent
 77 to which the moist neutral condition of the eyewall ascent can be approximated.

78 Wang et al. (2021b) showed that although the *ad-hoc* parameter and the dynamical efficiency
 79 introduced in Wang et al. (2021a) were explained by different physical reasons, they share the same
 80 mathematical form and play a key role in limiting the TC intensification rate during the incipient
 81 and early intensification stages when the TC is weak. This suggests that the energetically based and
 82 the dynamically based approaches result in a unified time-dependent theory of TC intensification.
 83 In a more recent study, Wang et al. (2022) further considered the dissipative heating due to surface
 84 friction as an internal heating source in the slab boundary-layer entropy budget equation, with the
 85 latter being assumed to be in thermodynamic quasi-equilibrium, namely a quasi-balance between
 86 the radial advection of entropy and the surface entropy flux under the eyewall. They showed that
 87 with dissipative heating, the theory can better reproduce the observed shift of maximum
 88 intensification rate towards relatively higher TC intensity.

89 The latest version of the simple time-dependent equation of TC intensification including the
 90 effect of dissipative heating has the following form, namely Eq. (8) in Wang et al. (2022):

$$91 \quad \frac{\partial V_m}{\partial \tau} = \frac{\alpha C_D}{h} \left\{ A V_{MPI}^2 - \left[1 - \gamma A \varepsilon \left(1 - \frac{\delta C_k}{2 C_D} \right) \right] V_m^2 \right\}, \quad (1)$$

$$92 \quad V_{MPI}^2 = \frac{C_k}{C_D} \varepsilon (k_0^* - k_b) |_{r_m}, \quad (2)$$

93 where V_m is the maximum near-surface wind speed of the TC (namely the current TC intensity), τ
 94 is time, α is the reduction factor of the near-surface wind speed from the depth mean boundary layer
 95 wind speed at the radius of maximum wind (RMW, r_m), h (≈ 2000 m) is the depth of the slab
 96 boundary layer, $\varepsilon = \frac{T_s - T_o}{T_s}$ is the thermodynamic efficiency without considering the dissipative
 97 heating (Emanuel 1986), T_s and T_o are the sea surface temperature (SST) and outflow-layer air
 98 temperature, C_k and C_D are the surface exchange coefficient and the surface drag coefficient,

99 respectively, k_0^* and k_b are the sea surface saturation enthalpy at T_s and the enthalpy of the boundary
100 layer air at the RMW, respectively, γ ($1 \geq \gamma \geq 0$) is a parameter to control the percentage of
101 dissipative heating due to surface friction that is used to warm the atmospheric surface layer and
102 the remaining part ($1-\gamma$) is transferred to the ocean surface waves and ocean mixing layer, as
103 advocated by Kieu (2015), δ is a parameter (0 or 1) to track the possible effect of dissipative heating
104 on surface heat flux when dissipative heating is considered ($1 \geq \gamma > 0$) as recently advocated by
105 Edwards (2019), and lastly, the *ad-hoc* parameter A satisfies $0 \leq A \leq 1$, which measures the extent
106 to which the moist neutral condition of the eyewall ascent is satisfied (Wang et al. 2021b).

107 In Eq. (2) the maximum potential intensity (MPI) without the inclusion of dissipative heating
108 is time-dependent because the sea surface saturation enthalpy at the RMW depends on the local
109 surface air pressure, which is a function of TC intensity. In addition, In Eq. (1), the *ad-hoc* parameter
110 is also a function of the time-dependent MPI and TC intensity (Wang et al. 2022, see discussion in
111 section 2 below). Although the replacement of the time-dependent MPI in Eq. (2) by the steady-
112 state MPI does not yield large errors (Wang et al. 2022), it is better to develop a closure to allow a
113 full consideration of the time-dependence of TC intensification theory, making it self-consistent.
114 Furthermore, the MPI in Eq. (2) is also a function of the environmental thermodynamic conditions,
115 which is given from independent calculations in our previous applications (Xu and Wang 2022;
116 Wang et al. 2022). Actually, the MPI is largely determined by the environmental parameters, such
117 as the boundary-layer relative humidity and air-sea difference in the TC environment (Bister and
118 Emanuel 2002; Xu et al. 2019a,b). As a closed theory, it is better to explicitly include the
119 environmental parameters as inputs, making the theory self-contained.

120 The main objective of the present study is to make the simple time-dependent theory of TC
121 intensification recently documented in Wang et al. (2022) self-consistent and self-contained with
122 some refinements. In addition to the introduction of some refinements, we will also address the
123 following two issues: given favorable environmental conditions, whether a potential intensification
124 rate (PIR), similar to the MPI, can be estimated with the updated theory; and how sensitive such a
125 PIR is to the environmental conditions and the model parameters? The rest of the paper is organized

126 as following. Section 2 introduces the new refinements to the simple time-dependent theory that we
127 have recently constructed (Wang et al. 2021b, 2022). In section 3, the sensitivities of the TC
128 intensification rate and the steady-state solution (MPI) to various assumptions and parameters are
129 discussed. Main conclusions are drawn in the last section.

130 **2. New refinements**

131 ***a. The assumed TC environment***

132 As we mentioned in section 1, the main objective of this study is to further develop the
133 dynamical system Eqs. (1) and (2), making it self-consistent and self-contained, so that the potential
134 intensification rate (PIR)¹ of a TC can be determined for given favorable environmental
135 thermodynamic conditions, similar to the commonly used theoretical MPI. The difference is in that
136 the PIR is dependent on the intensity of the TC itself. Therefore, we first define the environmental
137 parameters that are needed to close the dynamical system. Note that Eq. (1) can be used for both
138 the intensification stage and the steady-state stage. In the steady state, by definition, $\partial V_m / \partial \tau = 0$
139 and V_m should be equal to the theoretical MPI (Emanuel 1986, 1988). In deriving Eq. (1), the air-
140 sea enthalpy disequilibrium in Eq. (2) is defined locally under the eyewall. This means that the near
141 surface air enthalpy under the eyewall should be given to estimate the air-sea enthalpy
142 disequilibrium.

143 In Bister and Emanuel (2002), they assumed the inflow air spirals isothermally inward with a
144 constant relative humidity (80%) along the surface layer inflow. In this case, the surface layer air
145 enthalpy under the eyewall can be estimated using the TC environmental conditions and may is
146 slightly higher than the surface air enthalpy in the environment because specific humidity increases
147 slightly along the inflow as the surface air pressure decreases toward the eyewall. This can be also
148 explained by the increase in surface air enthalpy along the boundary-layer inflow due to surface

¹ We term the intensification rate a TC can reach at a given intensity under favorable environmental conditions as the “potential intensification rate” (PIR), which is a function of TC intensity. For each TC, there exists a maximum PIR, in short MPIR, which depends on the environmental thermodynamic conditions and the assumed parameters, such as the surface exchange and drag coefficients, and is very similar to TC MPI. Since no detrimental environmental effects are considered herein, the intensification rate means the PIR in this study.

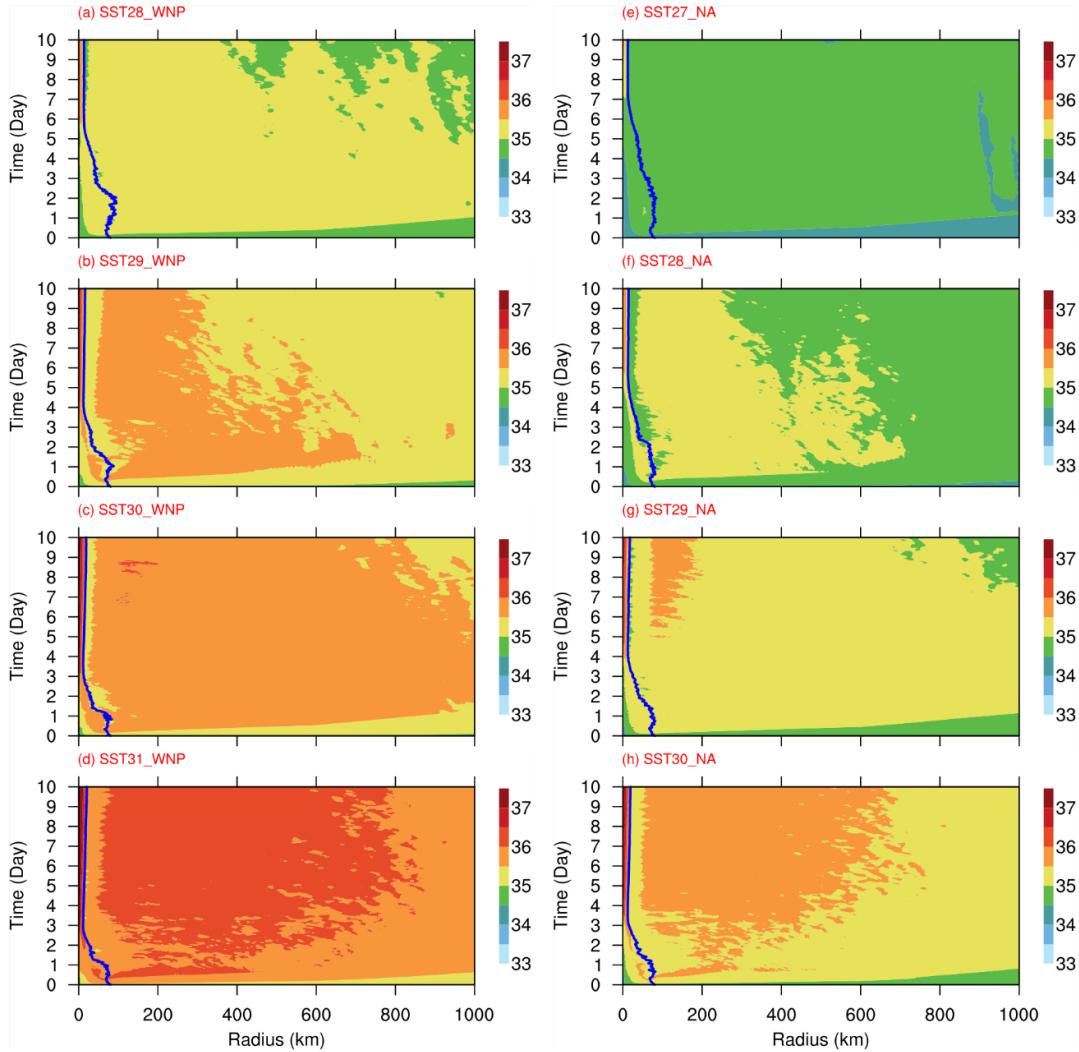
149 enthalpy flux. However, in reality, the downward flux of low entropy air is also common outside
150 the eyewall of a TC due to convective downdrafts in spiral rainbands or in the outwardly tilted
151 eyewall or convectively forced weak subsidence. This may largely offset the increase of surface air
152 enthalpy resulting from surface enthalpy flux. Therefore, it is not unacceptable to assume that the
153 surface air enthalpy under the eyewall is roughly equal to the surface air enthalpy in the TC
154 environment, namely, $\kappa_b|_{r_m} \approx \kappa_{b0}$ in Eq. (2), where κ_{b0} is the surface-layer air enthalpy in the TC
155 environment².

156 To justify the validity of the above assumption, we reexamined the full-physics axisymmetric
157 model simulations by the cloud model (CM1, Bryan and Fritsch 2002) performed in Li et al. (2020).
158 The ensemble simulations included different SSTs and atmospheric soundings sorted by SST over
159 the North Atlantic and the western North Pacific. The same dataset of the model output was used
160 to verify the theoretical time-dependent theories of TC intensification without the inclusion of
161 dissipative heating in Wang et al. (2021a,b). We show in Fig. 1 the time-radius cross-section of the
162 air enthalpy at the lowest model level (25 m above the sea surface) obtained from the ensemble
163 mean of each experiment. We can see that under a wide range of SST, the air enthalpy at the lowest
164 model level, which is used to calculate the thermodynamic disequilibrium in the numerical model,
165 does not change much along both the radius and time. In particular, the air enthalpy near the RMW
166 has similar values to that near the radius of 1000 km (TC environment). This indicates that the
167 above assumption is acceptable for the simple time-dependent theory.

168 With the assumed $\kappa_b|_{r_m} \approx \kappa_{b0}$, if the near-surface air temperature and water vapor mixing
169 ratio in the TC environment are T_a and q_{vao} , respectively, Eq. (2) can then be approximated as

² An alternative explanation of the assumption is to consider the global disequilibrium of the TC system. Namely, the enthalpy input from the underlying ocean to the TC system as a whole should include the enthalpy flux following the surface layer inflow all the way toward the eyewall. In that case, the enthalpy disequilibrium should be measured by the disequilibrium from the environment. This was arguably used to explain the existence of TC superintensity by Wang and Xu (2010), who argued that the surface enthalpy flux outside the eyewall may contribute to TC entropy budget in the eyewall and thus to partly balance the energy loss due to surface friction under the eyewall. However, in that case, the surface enthalpy flux should be estimated using the surface air pressure following the inflow air. This has not been considered in our simple theory since the surface air pressure under the eyewall is used. An equivalent assumption/approximation was also made in Emanuel (2017).

170


$$V_{MPI}^2 = \frac{c_k}{c_D} \varepsilon [c_p(T_s - T_a) + L_v(q_{vs}^*|_{r_m} - q_{vao})], \quad (3)$$

171 where c_p is the specific heat of dry air, L_v is latent heat of vaporization, and $q_{vs}^*|_{r_m}$ is the saturation
 172 water vapor mixing ratio at SST at r_m . The saturation water vapor mixing ratio for a given SST at
 173 r_m can be given as

174

$$q_{vs}^* = \frac{R_d}{R_v} \frac{e_{so}}{p_m - e_{so}} = q_{vs0}^* \left(\frac{p_e - e_{so}}{p_m - e_{so}} \right), \quad (4)$$

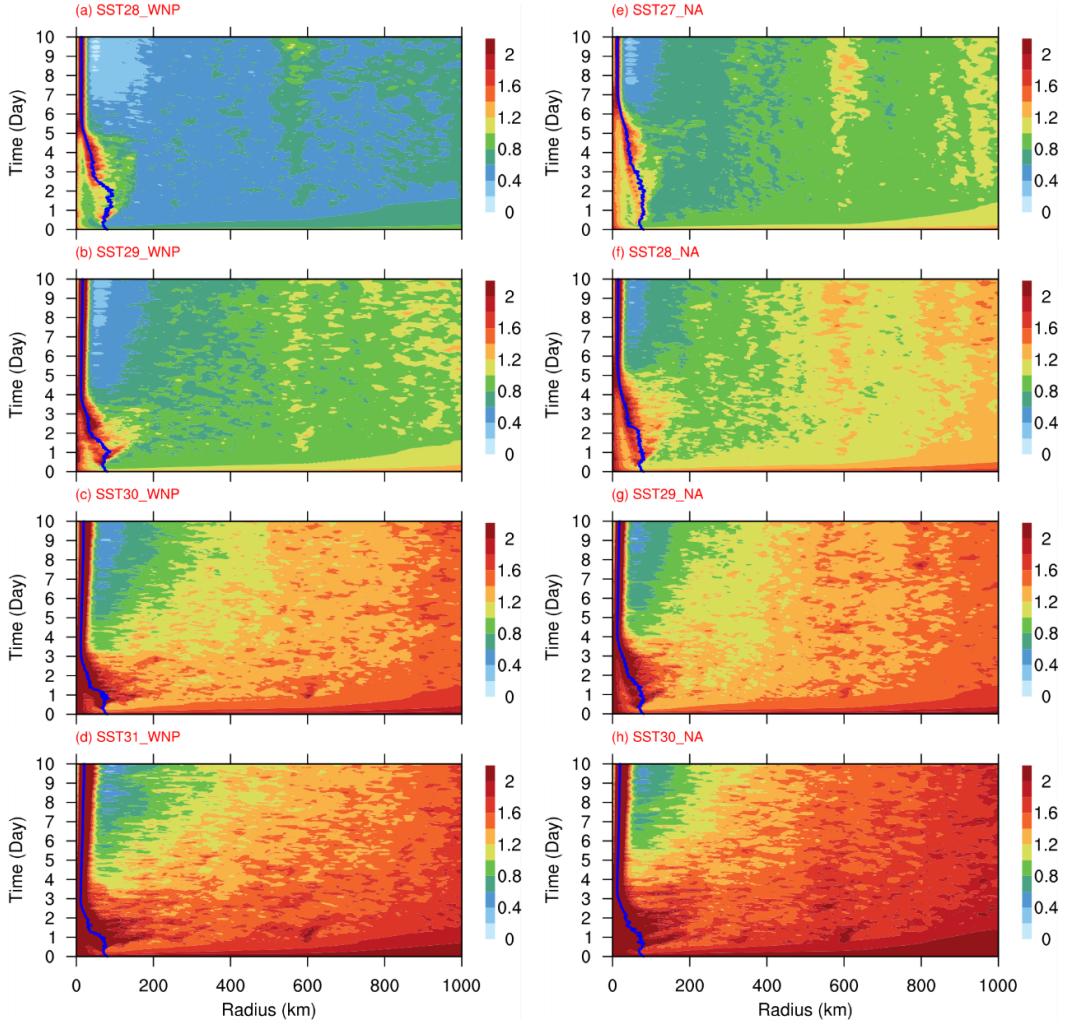
175 where R_d and R_v are the gas constants of dry air and water vapor, e_{so} is the surface saturation vapor
 176 pressure at SST, p_e is the unperturbed environmental surface air pressure, p_m is the surface air
 177 pressure at r_m , and q_{vs0}^* is the surface saturation vapor mixing ratio at SST and the environmental
 178 surface air pressure, namely $q_{vs0}^* = (R_d/R_v)e_{so}/(p_e - e_{so})$.

180 Fig. 1. The radius-time cross-section of the air enthalpy (10^4 J Kg^{-1}) at the lowest model level (25 m above
 181 the sea surface) in all experiments conducted in Li et al. (2020) for different SSTs and the corresponding SST-
 182 sorted atmospheric soundings over the western North Pacific (left) and the North Atlantic (right). The blue line
 183 indicates the radial location of the radius of maximum wind (RMW) in the corresponding experiment.

184 We further assume a relative humidity, RH , of the environmental near-surface air, thus we have
 185 $q_{vao} \cong RH q_{vao}^*$, where $q_{vao}^* = (R_d/R_v)e_{sa}/(p_e - e_{sa})$ is the saturation vapor mixing ratio with
 186 e_{sa} being the saturation vapor pressure at the near-surface air temperature T_a . Note that in most
 187 previous theoretical studies, the effects of air-sea temperature difference on the TC intensification
 188 rate and MPI have not been explicitly discussed (e.g., Emanuel 1986, 1988; Bister and Emanuel
 189 2002). Using the Clausius–Clapeyron relation [$de/e = (L_v/R_v)dT/T$], we can have the following
 190 approximation

$$191 \quad q_{vao}^* = q_{vs0}^* \left[1 - \frac{L_v}{R_v T_s^2} (T_s - T_a) \right]. \quad (5)$$

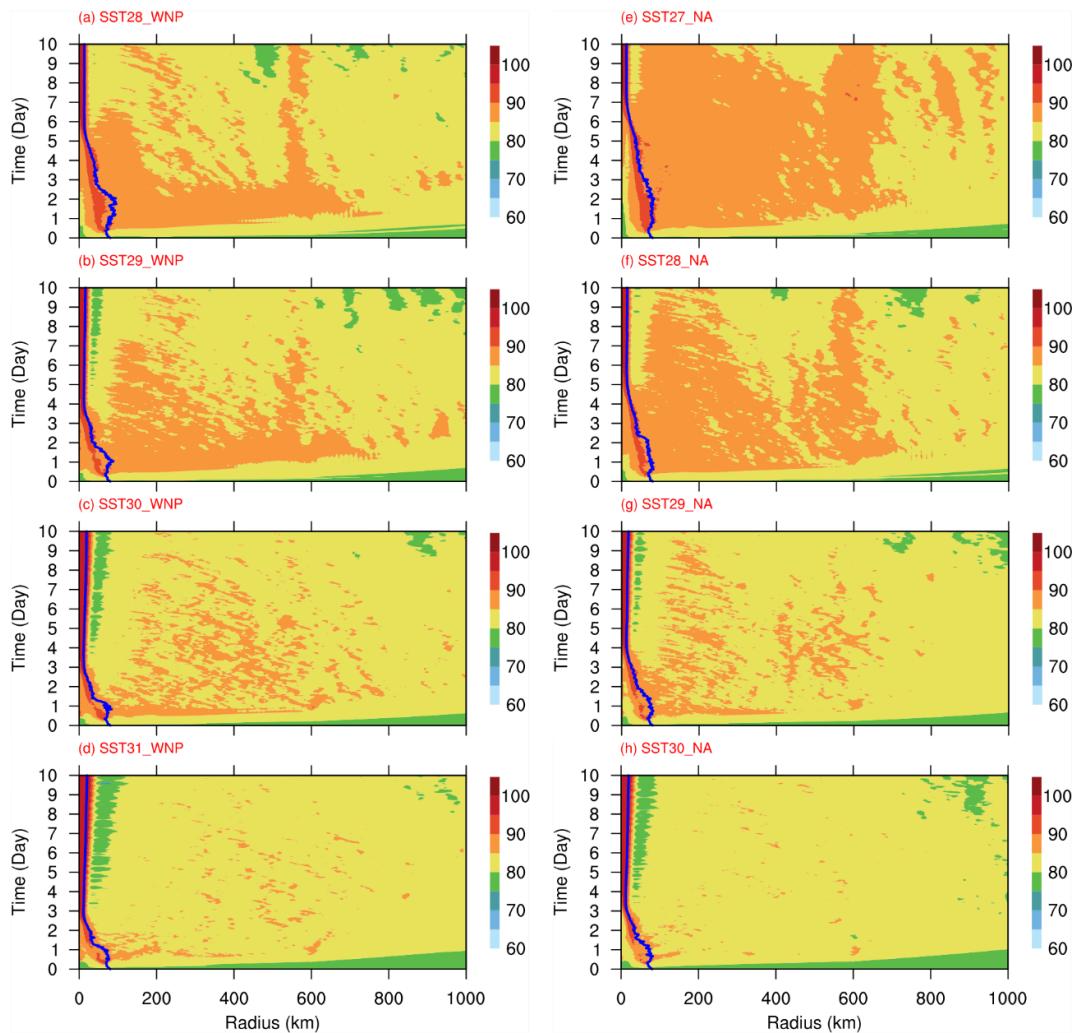
192 With the above assumptions and approximations and considering $(p_e - e_{so})/(p_m - e_{so}) \approx$
 193 p_e/p_m , Eq. (3) can be approximated as


$$194 \quad V_{MPI}^2 \approx V_{MPI0}^2 + \frac{c_k}{c_D} \varepsilon L_v q_{vs0}^* \left(\frac{p_e}{p_m} - 1 \right), \quad (6)$$

195 where

$$196 \quad V_{MPI0}^2 = \frac{c_k}{c_D} \varepsilon [c_p(1 + \mu)(T_s - T_a) + (1 - RH) L_v q_{vs0}^*], \quad (7)$$

197 with $\mu = \frac{RHL_v^2 q_{vs0}^*}{c_p R_v T_s^2}$. V_{MPI0} can be considered as the MPI without considering the pressure
 198 dependence of sea surface saturation enthalpy. Because the saturation water vapor pressure is
 199 independent of air pressure, the air-sea temperature difference does not affect the pressure
 200 dependence of sea surface saturation enthalpy. Namely, the second term on the right-hand side of
 201 Eq. (6) is independent of the air-sea temperature difference. We therefore can evaluate their
 202 individual contributions to TC PIR and steady-state intensity, namely MPI, using Eq. (1) together
 203 with Eqs. (6) and (7). As we can see from Eq. (7), the term related to the air-sea temperature
 204 difference can lead to an increase in the MPI. This increase is largely contributed by the increase
 205 in the difference in the saturation vapor pressure since μ is about 2–4 under the tropical
 206 atmospheric conditions. This also means that contribution by the direct surface sensible heat flux


207 is relatively small. This might be the reason why in most previous studies the contribution by
 208 surface sensible heat flux to TC MPI is generally considered much less important than that by
 209 surface latent heat flux.

210
 211 Fig. 2. As in Fig. 1 but for air-sea temperature difference (K).

212 To elucidate the importance of partitioning the environmental surface air enthalpy into two
 213 components, respectively, related to the air-sea temperature difference and RH , we show in Figs. 2
 214 and 3 the radius-time cross-sections of air-sea temperature difference ($T_s - T_a$) and RH at the
 215 lowest model level from all ensemble numerical experiments, corresponding to the surface air
 216 enthalpy shown in Fig. 1. We can see that $(T_s - T_a)$ in the TC environment (Fig. 2) shows an
 217 overall increase with increasing SST, roughly from ~ 0.5 K at SST=28°C to ~ 1.5 K at SST=31°C
 218 over the western North Pacific and from ~ 1 K from SST=27°C to ~ 1.5 K at SST=30°C over the

219 North Atlantic. The increase in $(T_s - T_a)$ with SST can be understood by convective activity over
 220 high SSTs where convectively unstable surface layer may produce deep well-mixed atmospheric
 221 boundary layer and ventilate the surface layer air, leading to a relatively large $(T_s - T_a)$. In contrast,
 222 over the low SSTs, the surface layer is relatively stable and air in the surface layer may keep in
 223 touch with the sea surface and less ventilated. As a result, $(T_s - T_a)$ would be relatively small over
 224 low SSTs. Different from $(T_s - T_a)$, the RH in the surface layer varies from 75% to 85%, which
 225 shows little dependence on SST (Fig. 3). As a result, the use of 80% is a good option as in previous
 226 studies (e.g., Bister and Emanuel 2002). Our results thus strongly suggest that attention needs to
 227 be given to the environmental $(T_s - T_a)$ in understanding the variability of TC MPI and
 228 intensification because the saturation air vapor pressure is a function of surface air temperature.

229
 230 Fig. 3. As in Fig. 1 but for relative humidity (RH, %).

231 **b. The isothermal expansion effect**

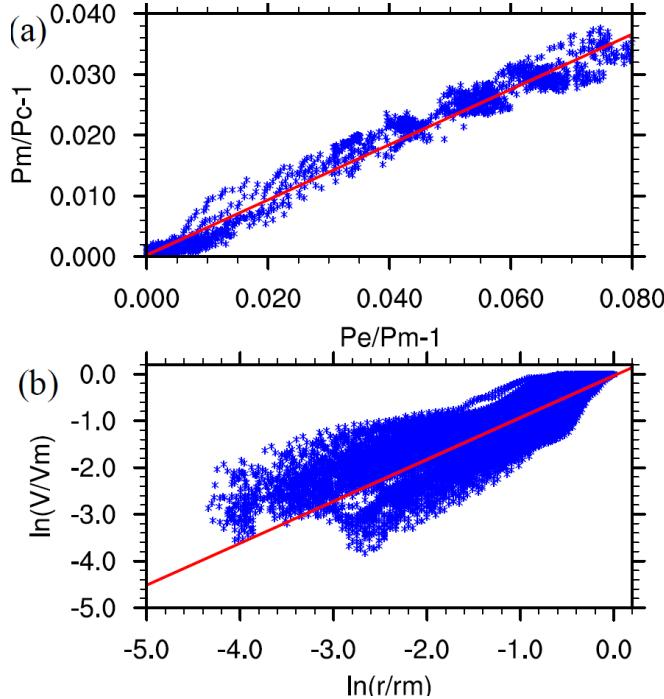
232 Equation (1) is not closed since the surface air pressure at r_m in Eq. (6) depends on real-time
 233 TC intensity (namely V_m). Such a dependence is often termed “isothermal expansion effect”. To
 234 include this effect, we first assume that the tangential wind (V) inside the RMW follows the
 235 cyclostrophic wind balance, namely

236
$$\alpha_d \frac{\partial p}{\partial r} = \frac{V^2}{r}, \quad (8)$$

237 where p is air pressure, $\alpha_d = R_d T_s / p$ is specific volume of dry air. We further assume that the
 238 tangential wind inside the RMW follows the following radial distribution (see also Emanuel 1995)

239
$$V = V_m \left(\frac{r}{r_m} \right)^b, \quad (9)$$

240 where $b (> 0)$ is an empirical constant determining the radial distribution of tangential wind inside
 241 the RMW. If $b = 1$, the motion inside the RMW will be in solid-body rotation. Substituting Eq. (9)
 242 into Eq. (8) and integrating the resultant cyclostrophic wind equation from $r = 0$ to $r = r_m$, we get


243
$$\ln \left(\frac{p_m}{p_c} \right) = \frac{V_m^2}{2bR_d T_s}, \quad (10)$$

244 where p_c is the surface air pressure at the TC center. Since $(p_m - p_c) \ll p_c$, Eq. (10) can be
 245 approximated as

246
$$\frac{p_m}{p_c} - 1 \approx \frac{V_m^2}{2bR_d T_s}. \quad (11)$$

247 Although p_c and p_m are both unknown, they are not independent of each other. To find out an
 248 approximate relationship between p_c and p_m , we reanalyzed the results from the ensemble
 249 simulations by Li et al. (2020). Figure 4a shows the scatter plots of $p_e/p_m - 1$ against $p_m/p_c - 1$
 250 from all ensemble simulations. From Fig. 4a, we can find a nearly linear relationship between the
 251 two quantities given below.

252
$$\frac{p_e}{p_m} - 1 \cong c' \left(\frac{p_m}{p_c} - 1 \right), \quad (12)$$

253
254
255
256
257

Fig. 4. The scatter plots of (a) $p_e/p_m - 1$ against $p_m/p_c - 1$ and (b) $\ln(r/r_m)$ against $\ln(V/V_m)$ based on results from the ensemble simulations using the axisymmetric full-physics cloud model CM1 with different SSTs and atmospheric soundings sorted by SST under TC conditions over the North Atlantic and the western North Pacific (see Li et al. 2020 for details of the model simulations). The red line indicates the best linear fitting.

258 where c' is a nondimensional parameter, which is ~ 2.0 as we can see from Fig. 4a. Note that c' may
259 be subject to some variability if different initial vortex structures are used in model simulations or
260 with different model simulations or different environmental conditions. Our preliminary results
261 indicate that c' varies mostly between 1.5–2.0 (not shown), and thus we consider it as an empirical
262 parameter with some small uncertainties. With Eqs. (11) and (12), Eq. (6) can be reduced to

$$263 \quad V_{MPI}^2 \approx V_{MPI0}^2 + \kappa V_m^2, \quad (13)$$

264 where

$$265 \quad \kappa = \frac{c_k}{C_D} \varepsilon \frac{c L_v q_{vs0}^*}{2 R_d T_s}, \quad (14)$$

266 with $c = c'/b$. Note that c' and b are often not independent, while the parameter c can be
267 considered as an empirical parameter independent of the TC intensity. Our diagnostics based on the
268 ensemble simulations shows that b is around 0.9 (Fig. 4b). Therefore, in the calculations below, we
269 subjectively assume $c = 2.0$. From Eq. (14), assuming $\kappa = 0.0$ is equivalent to ignoring the

270 pressure dependence of surface saturation enthalpy. In that case, the second term on the right-hand
 271 side of Eq. (6) or Eq. (13) becomes zero.

272 An alternative approach to the derivation of an approximate relationship between the surface
 273 air pressure under the eyewall and the maximum wind speed can be found in Emanuel (2017). He
 274 assumed the boundary layer flow being steady and frictionless and integrated the Bernoulli equation
 275 from the environment, where $p = p_e$ and $V = 0$, to r_m , where $p = p_m$ and $V = V_m$

$$276 \int_e^{r_m} \frac{dp}{\rho} = \int_e^{r_m} R_d T_s d(lnp) = R_d T_s \ln\left(\frac{p_m}{p_e}\right) = -\frac{1}{2} V_m^2. \quad (15)$$

277 An approximate relationship between V_m and surface air pressure at r_m from Eq. (15) can be given
 278 below

$$279 \frac{p_e}{p_m} - 1 \cong \frac{1}{2} \frac{V_m^2}{R_d T_s}. \quad (16)$$

280 With the above approximation, the parameter κ in Eq. (14) will be replaced by k' given below

$$281 k' = \frac{C_k}{C_D} \varepsilon \frac{L_v q_{vs0}^*}{2 R_d T_s}. \quad (17)$$

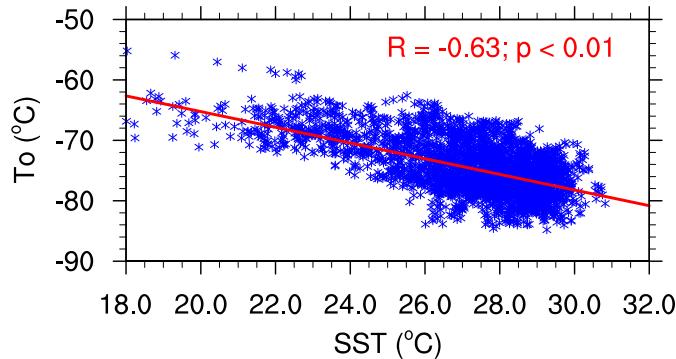
282 The difference between Eq. (17) with Eq. (14) lies in a factor of c in the former. Since $c \approx 2.0$, we
 283 can see that the use of Eq. (17) may underestimate the isothermal expansion effect by 50% on the
 284 MPI and thus Eq. (17) can only give a conservative estimation of the isothermal expansion effect.
 285 Note also that Eq. (17) is based on the Bernoulli principle with the assumptions of steady and
 286 frictionless flow. However, the boundary layer in an intensifying TC is not steady and with strong
 287 surface friction.

288 With the approximation Eq. (14), Eq. (1) can be rewritten as

$$289 \frac{\partial V_m}{\partial \tau} = \frac{\alpha C_D}{h} \left\{ A V_{MPI0}^2 - \left[1 - A \kappa - \gamma A \varepsilon \left(1 - \frac{\delta C_k}{2 C_D} \right) \right] V_m^2 \right\}. \quad (18)$$

290 As in Wang et al. (2022), we take the parameter A to be a function of the relative intensity given
 291 below

$$292 A = \left(\frac{V_m}{V_{maxt}} \right)^{3/2}, \quad (19)$$


293 where V_{maxt} can be considered as the time-dependent MPI with the effect of dissipative heating at
 294 the current TC intensity (Wang et al. 2022) and is defined below

295
$$V_{maxt} = \sqrt{V_{MPI0}^2 + A \left[\kappa + \gamma \varepsilon \left(1 - \frac{\delta c_k}{2c_D} \right) \right] V_m^2}. \quad (20)$$

296 Since V_{maxt} is a function of A for a given V_m , Eqs. (19) and (20) can be solved iteratively to get A
 297 (often three iterations are accurate enough). We can see from Eq. (20) that V_{maxt} is close to V_{MPI0} at
 298 the weak stage of the TC because both the isothermal expansion effect and dissipative heating are
 299 relatively small when the TC is weak, but it increases as the TC intensifies. Once the TC reaches
 300 its steady state, A approaches 1.0. Note that the parameter A can be modified to partially depend
 301 on the TC inner-core size via the inertial stability (Wang et al., 2021a). In that case, the functional
 302 relationship between A and the relative intensity should be modified (Wang et al. 2021a,b).
 303 Nevertheless, in our latest version of the theoretical model, no explicit TC structure parameter is
 304 included. This can be explained by the fact that part of the structure dependence of TC
 305 intensification can be reflected in the TC intensity dependence as advocated by Wang et al. (2021b).

306 ***c. The outflow temperature***

307 Given the SST, the boundary-layer RH and air-sea temperature difference in the TC
 308 environment, the assumed constant c , and the ratio of exchange and drag coefficients, we still need
 309 to know the outflow-layer air temperature T_o to estimate the thermodynamic efficiency ε . Although
 310 T_o varies with the TC intensification (Emanuel 2012), it is largely determined by the environmental
 311 atmospheric sounding for the corresponding SST. Previous studies show that the outflow-layer air
 312 temperature is not independent of the corresponding SST (e.g., Zeng et al. 2008). Following Zeng
 313 et al. (2008), we approximate T_o as the air temperature near the tropopause, namely the minimum
 314 temperature where the lapse rate changes from negative to positive value with height. To establish
 315 a relationship between T_o and T_s , we estimated T_o for all TC cases during 1999–2019 over the
 316 North Atlantic based on the interim reanalysis data from the European Centre for Medium-Range
 317 Weather Forecasting (ERA-Interim; Dee et al. 2011). The extended best-track (EBT) dataset
 318 (Demuth et al. 2006) at 6-h interval is used to track all TCs with maximum sustained wind speed
 319 greater than 18 m s^{-1} . The dataset was updated in March 2021 (version 3.0.0) using all data available
 320 in the National Hurricane Center Best Track Data (HURDAT2, Landsea and Franklin 2013).

321
322
323
324

Fig. 5. Scatter plots of the outflow-layer air temperature (T_o , $^{\circ}\text{C}$) against SST ($^{\circ}\text{C}$) and the fitted curve (red) for all TC cases during 1999–2019 over the North Atlantic based on the ERA-Interim data. R is the linear correlation coefficient with p -value less than 0.01, namely significant at 99% confidence level.

325 Figure 5 shows the scatter plots of the estimated outflow-layer air temperature against the
326 corresponding SST for all TC cases during 1999–2019 over the North Atlantic. Similar to the
327 results of Zeng et al. (2008), the outflow-layer air temperature obtained in such a way decreases
328 with increasing SST. This implies that the thermodynamic efficiency increases as SST increases
329 (see also Fig. 2b in Zeng et al. 2008). The best fitted curve for the dependence of T_o on T_s for all
330 data points shows a linear relationship given below

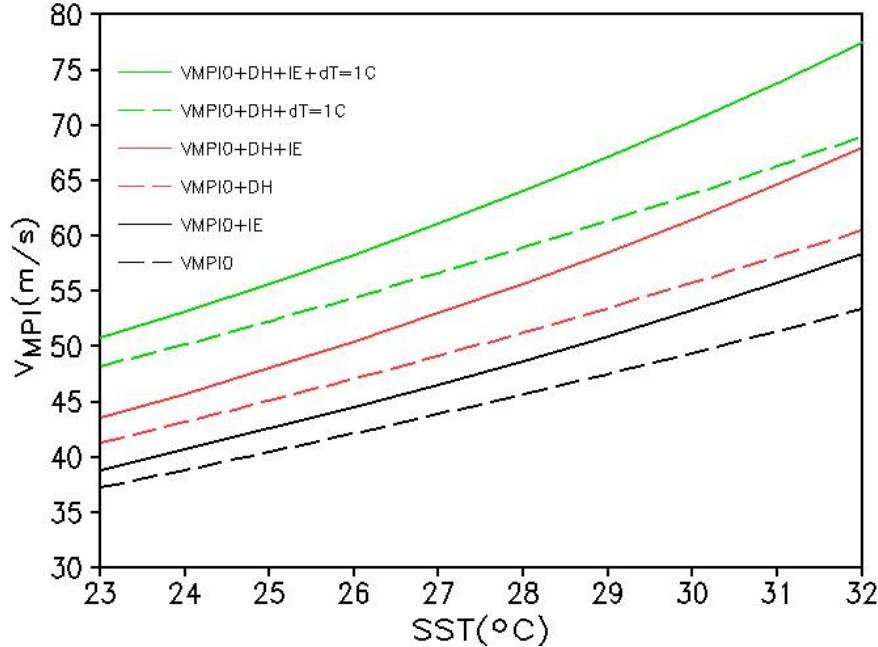
331
$$T_o = 233.9 - 1.3 \times (T_s - 273.15). \quad (21)$$

332 Although considerable variability for any given SST exists, over 85% of the outflow-layer air
333 temperatures vary between -5 K and +5 K about the fitted line. The effect of such variability on the
334 calculated ε and thus the MPI are generally moderate (not shown), indicating weak dependence of
335 ε on the outflow-layer air temperature. We note that although the use of the lower outflow-layer
336 temperature for a given SST may give the higher potential intensification rate and steady-state
337 intensity, the difference between those calculated using the best-fitted and the lowest outflow-layer
338 temperature for a given SST is generally in several percentages (not shown). Because of the
339 simplicity of the theoretical model, the small change due to the outflow-layer temperature
340 uncertainty is acceptable. It should be mentioned that the relationship Eq. (21) is fitted based on
341 current climate. The extrapolation of T_o to higher SST, for example, that induced by global
342 warming should be with caution. Nevertheless, it is possible to construct a new relationship
343 between T_o and T_s for future climate based on projections from high-resolution climate simulations,

344 which is beyond the scope of this work but is a good topic for a future study.

345 The time-dependent Eq. (18) with Eqs. (19)–(21) can then be used to evaluate contributions of
346 the pressure dependence of surface saturation enthalpy (namely the isothermal expansion effect),
347 the air-sea temperature difference, and the boundary layer relative humidity in the TC environment
348 on both the TC PIR and the steady-state intensity (MPI) with and without the inclusion of
349 dissipative heating for a given SST. It can also be used to examine the sensitivity of the
350 corresponding TC PIR and MPI to various parameters, such as the surface exchange and drag
351 coefficients. These will be discussed in the next section.

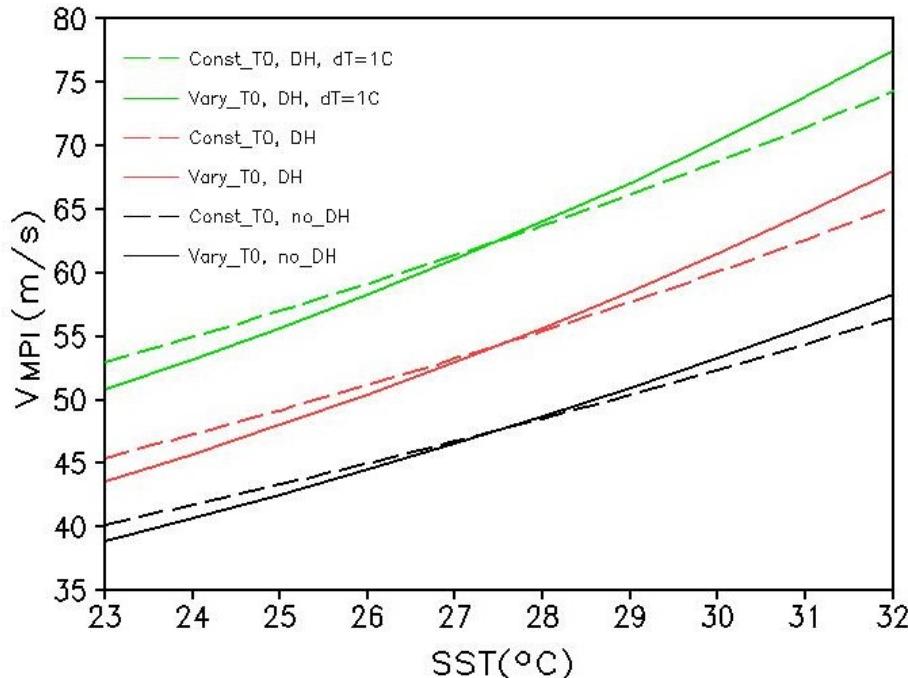
352 **3. The model sensitivity**


353 ***a. The steady- state solution***

354 We first discuss the steady-state solution of Eq. (18), namely the MPI. In this case, we have

355 $\frac{\partial V_m}{\partial \tau} = 0$ and $A = 1.0$, the MPI from Eq. (18) can be expressed as

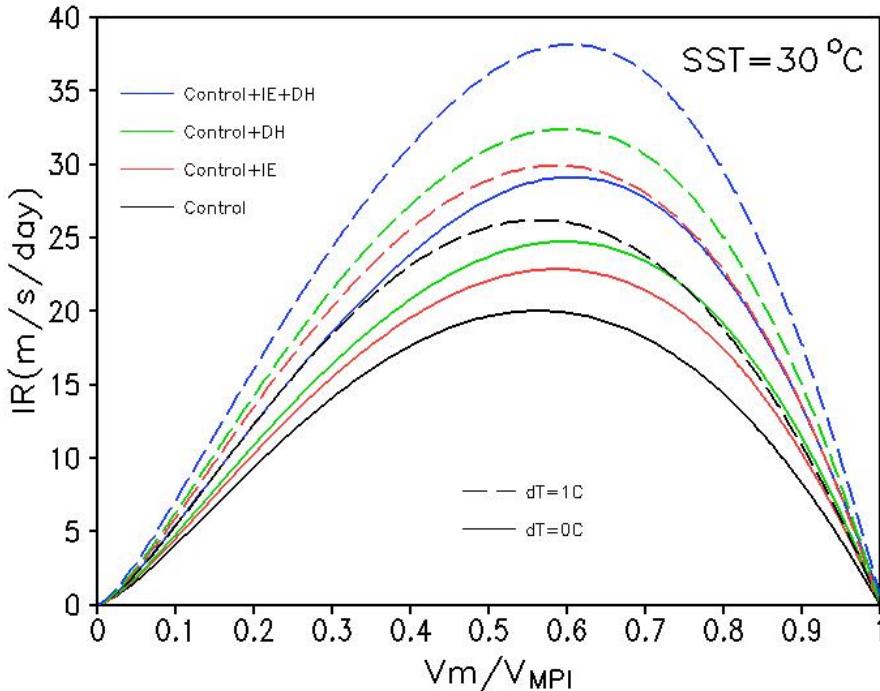
$$356 \quad V_{MPI}^2 = \frac{V_{MPI0}^2}{1 - \kappa - \gamma \varepsilon \left(1 - \frac{\delta C_k}{2 C_D}\right)}. \quad (22)$$


357 Figure 6 shows the dependence of the calculated MPI on SST in three different cases. The first
358 (black) is the control with ($V_{MPI0} + IE$, solid) and without (V_{MPI0} , dashed) considering the pressure
359 dependence of sea surface saturation enthalpy (namely the isothermal expansion effect). The
360 second (red) is the same as the control but with dissipative heating included (DH). In both the first
361 and second cases, a zero environmental air-sea temperature difference is assumed ($T_a = SST$). The
362 third (green) is the same as the second case but with 1°C air-sea temperature difference
363 ($V_{MPI0} + DH + dT = 1C$). In these calculations, we assumed $c = 2.0$ (Figs. 4a,b), $C_k = 1.2 \times 10^{-3}$,
364 $C_D = 2.4 \times 10^{-3}$, $\delta = 1.0$, the environmental sea surface pressure $p_e = 1010 \text{ hPa}$, and a
365 boundary layer $RH = 80\%$ in the TC environment. In addition, we used $\gamma = 0.8$ in Eq. (22) for
366 the case including dissipative heating due to surface friction, which is based on the theoretical
367 consideration by Kieu (2015) and the recent evaluation of the same framework using observations
368 in Wang et al. (2022).

369
 370 Fig. 6. The MPIs (V_{MPI} , $m s^{-1}$) as a function of SST ($^{\circ}C$) for three cases: without considering dissipative
 371 heating (black, $\gamma = 0$), with dissipative heating (red, $\gamma = 0.8$), and with $1^{\circ}C$ of air-sea temperature difference
 372 ($dT=1^{\circ}C$, green). The solid curves correspond to solutions with the isothermal expansion (IE) effect included
 373 while the dashed curves correspond to solutions without the isothermal expansion effect ($\kappa = 0$). In these
 374 calculations, $c = 2.0$, $C_k = 1.2 \times 10^{-3}$, $C_D = 2.4 \times 10^{-3}$, $\delta = 1.0$, $p_e = 1010 \text{ hPa}$, and $RH = 80\%$ are used.

375 We can see several interesting features from Fig. 6. First, the MPI increases with increasing
 376 SST in all three cases. Second, the dependence of MPI on the isothermal expansion increases with
 377 increasing SST and the increase in the MPI itself. Third, the increase in MPI due to dissipative
 378 heating is about twice as large as that induced by the isothermal expansion effect and also increases
 379 with increasing SST or the MPI as the isothermal expansion effect. This is mainly because both the
 380 sea saturation enthalpy and dissipative heating increase with increasing SST (and MPI). Fourth,
 381 the air-sea temperature difference can lead to an increase in the MPI comparable to the effect of
 382 dissipative heating, which is almost independent of SST or the MPI itself. Surprisingly, the increase
 383 in the MPI due to the increase of $1^{\circ}C$ in the air-sea temperature difference is comparable to that
 384 induced by $3^{\circ}C$ increase in SST. Note that most previous studies indicate the importance of
 385 environmental relative humidity and SST to the MPI (e.g., Emanuel 1988). Our results demonstrate
 386 that the air-sea temperature difference is another important environmental factor that can greatly
 387 contribute to TC MPI. This large effect is mainly due to the reduced saturation vapor pressure of

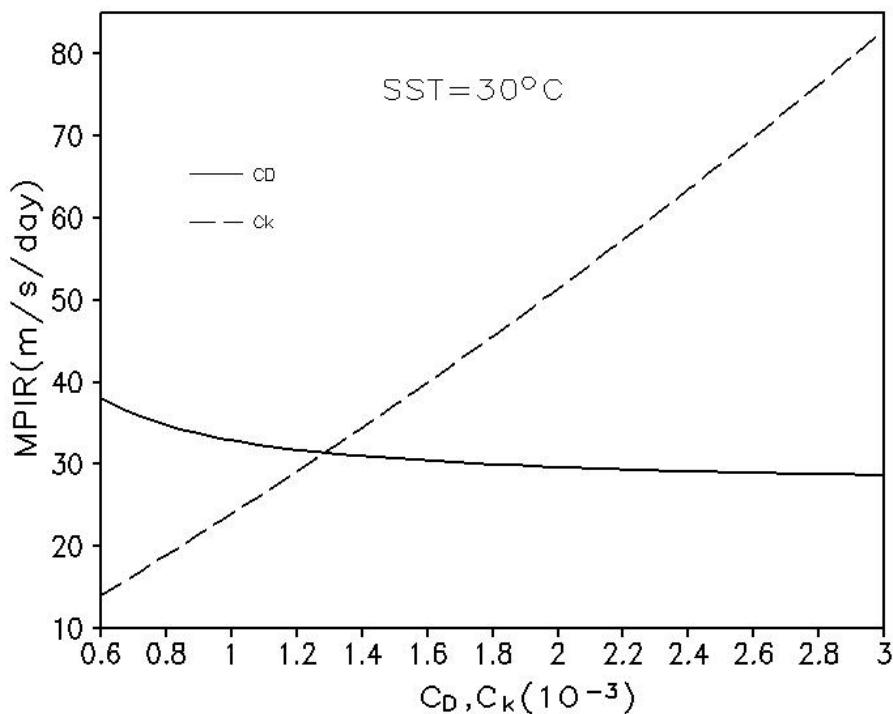
388 surface air and thus the increased moisture disequilibrium at the air-sea interface for a given
 389 boundary-layer relative humidity in the TC environment.


390
 391 Fig. 7. The solid curves are the same as those in Fig. 6 and the dashed curves correspond to the results with
 392 the outflow-layer air temperature independent of SST and equals to the corresponding value at SST=27.5°C.

393 Since large variability exists in the outflow-layer air temperature (Fig. 5), it is our interest to
 394 further examine how sensitive the MPI is to the change in the outflow-layer air temperature. For
 395 this purpose, we compare in Fig. 7 the MPIs for three cases with the isothermal expansion effect
 396 (solid, as shown in Fig. 6) and those with the outflow-layer air temperature fixed at the value
 397 corresponding to SST=27.5°C (dashed). As expected, the lower outflow-layer air temperature
 398 contributes positively to the MPI. This effect increases slightly with the increase in the MPI itself
 399 because of the increasing effect of dissipative heating. Nevertheless, changes due to the
 400 increase/decrease in the outflow-layer air temperature are often moderate compared with the
 401 isothermal expansion effect, the effect of dissipative heating, and the environmental air-sea
 402 temperature difference. This suggests that the fitted dependence of the outflow-layer air
 403 temperature as a function of SST given in Eq. (21) can be used to estimate the outflow-layer air
 404 temperature as a good approximation and thus the MPI. We noticed that in a recent theoretical

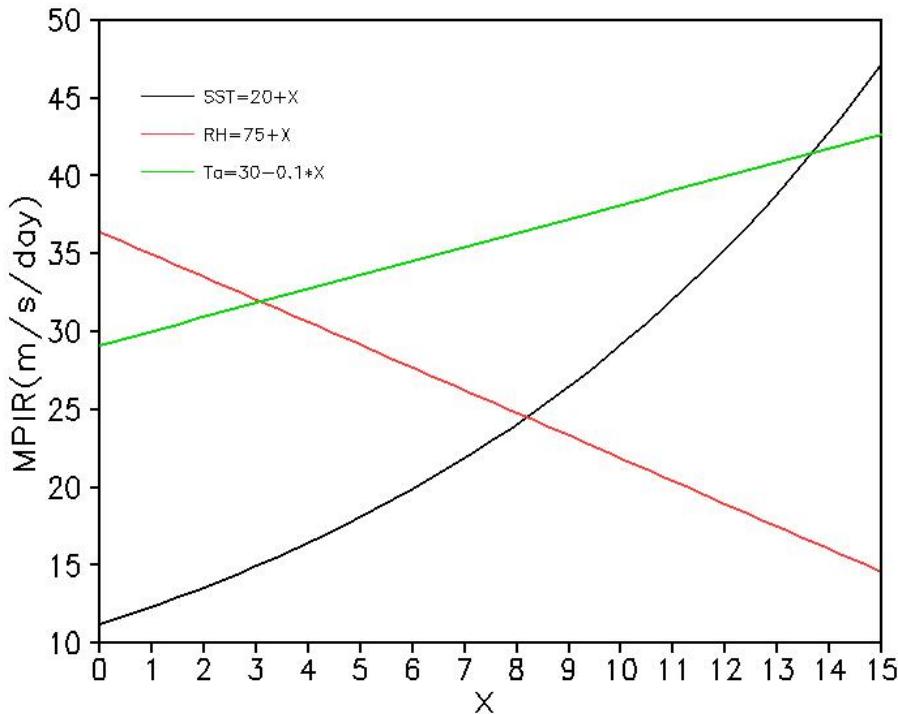
405 framework, Rousseau-Rizzi and Emanuel (2021) assumed the weak temperature gradient (WTG)
406 with the outflow layer temperature being independent of local SST. In that case, not only the
407 possible dependence of the outflow layer temperature on local SST but also the possible effect of
408 the variability of the outflow temperature on TC MPI are ignored. We choose to use the fitted
409 dependence of the outflow-layer temperature on SST.

410 ***b. The intensification rate***


411 We first examine the intensification rate, namely PIR, as a function of relative intensity defined
412 as the intensity normalized by the corresponding MPI for a given SST under four conditions (Fig.
413 8). The first is the control under which neither the isothermal expansion effect nor the dissipative
414 heating is considered. The second is the same as the control but with the isothermal expansion
415 effect considered. The third is the same as the control but with the dissipative heating included.
416 The fourth is the same as the control by with both the isothermal expansion effect and dissipative
417 heating considered. Two calculations are done for each condition: one with zero air-sea temperature
418 difference and one with the surface air temperature being 1°C lower than the underlying SST in the
419 TC environment. Consistent with the findings in Wang et al. (2022), the inclusion of dissipative
420 heating leads to an increase in intensification rate and a slight shift of the maximum intensification
421 rate (namely MPIR) towards the higher relative intensity side. The isothermal expansion shows a
422 similar effect but leads to an increase in intensification rate by about half of that induced by
423 dissipative heating. This is consistent with the effects of isothermal expansion and dissipative
424 heating on the MPI as shown in Fig. 6. The 1°C air-sea temperature difference in the environment
425 leads to an increase in the maximum intensification rate similar to that induced by dissipative
426 heating. This demonstrates that the environmental air-sea temperature difference is another
427 important factor that can considerably enhance the TC intensification rate and MPI.

428
429 Fig. 8. Intensification rate (IR, $\text{m s}^{-1} \text{ day}^{-1}$) as a function of relative intensity (intensity normalized by the
430 corresponding MPI) for a given SST of 30°C under four conditions, including the control (Control, black) without
431 considering the effect of either isothermal expansion or dissipative heating, that as the control but with the
432 isothermal effect included (Control+IE, red), that as the control but with dissipative heating included
433 (Control+DH, green), and that as the control but with both isothermal expansion and dissipative heating included
434 (Control+IE+DH, blue). Solid curves are for results with zero environmental air-sea temperature difference
435 ($\text{dT}=0\text{C}$) and dashed curves are for those with 1°C environmental air-sea temperature difference ($\text{dT}=1\text{C}$).

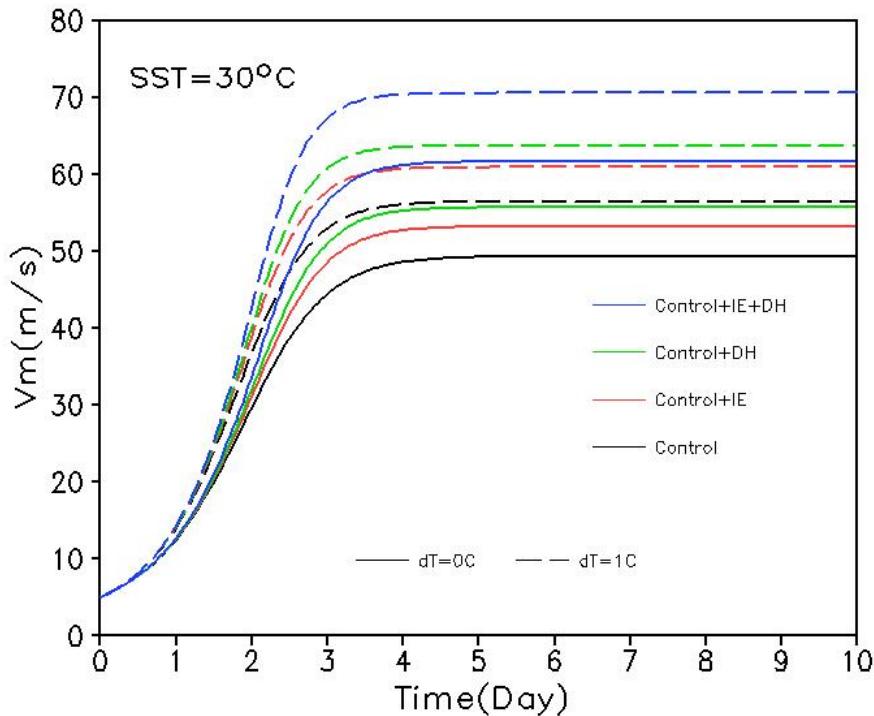
436 We can also see from Fig. 8 that the intensification rate reaches a maximum near the relative
437 intensity of 0.6 in the case with both isothermal expansion effect and dissipative heating. We now
438 examine the sensitivities of the maximum intensification rate to the surface drag and exchange
439 coefficients with the results shown in Fig. 9. The maximum intensification rate increases almost
440 linearly with increasing surface exchange coefficient (dashed curve in Fig. 9) while it is insensitive
441 to surface drag coefficient although a very weak decreasing trend is visible (solid curve in Fig. 9).
442 Note that the MPI is proportional to the square root of the ratio of surface exchange to drag
443 coefficients as we can see from Eq. (7), while the intensification rate is proportional to the square
444 of the MPI (Wang et al. 2021a,b, 2022). As a result, given a drag coefficient and relative intensity,
445 the (maximum) intensification rate would increase about linearly with surface exchange coefficient
446 as we can see from Fig. 9. Although Eq. (18) shows a proportion of the intensification rate to


447 surface drag coefficient, the increase in drag coefficient reduces the MPI. The two effects are
 448 compensated, resulting in little difference in the maximum intensification rate for the drag
 449 coefficient in reasonable range. This is also supported by results of Li and Wang (2021a), who
 450 found that the intensification rate of a numerically simulated TC is insensitive to surface drag
 451 coefficient during the primary intensification stage. We will show below that some sensitivity to
 452 surface drag coefficient occurs at the weak intensity stage of a TC, which is also consistent with
 453 previous numerical simulations using full-physics models (Kilroy et al. 2017; Li and Wang 2021a).

454
 455 Fig. 9. The maximum (potential) intensification rate (MPIR, $m s^{-1} day^{-1}$) as a function of drag coefficient (C_D ,
 456 solid) and enthalpy exchange coefficient (C_k , dashed) for given SST=30°C with both isothermal and dissipative
 457 heating included and the same other parameters as used in Fig. 6.

458 The sensitivities of the maximum intensification rate to the three environmental parameters,
 459 namely SST, boundary-layer RH , and air-sea temperature difference in the TC environment are also
 460 examined. We first look at the dependence of the maximum intensification rate on SST (black, Fig.
 461 10). For given surface drag and exchange coefficients, the maximum intensification rate increases
 462 with increasing SST almost exponentially. This is expected since the intensification rate is
 463 proportional to sea surface saturation enthalpy, which is an exponential function of SST as implied

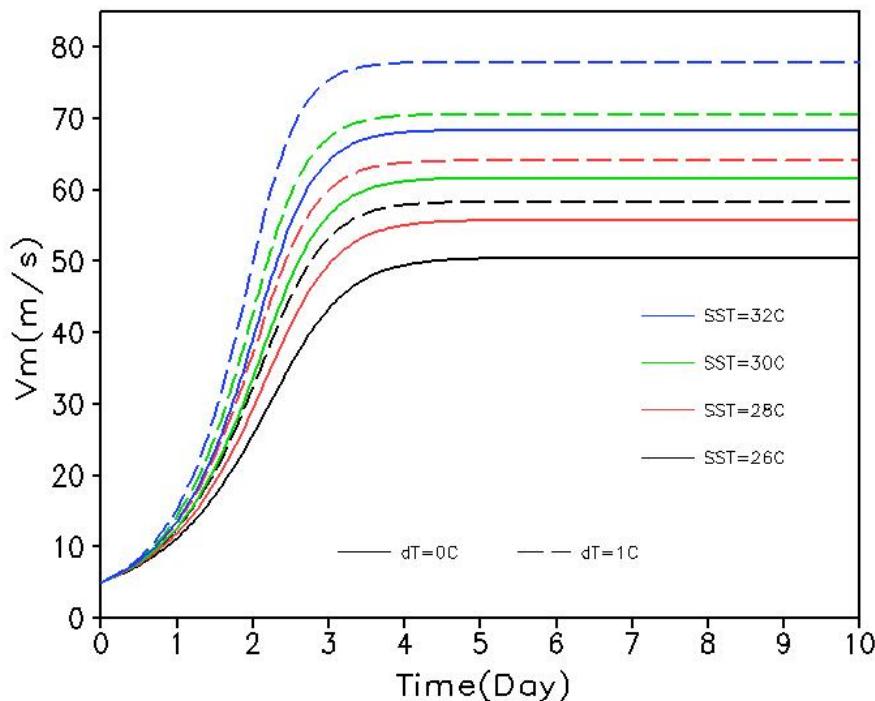
464 by the Clausius–Clapeyron relation. For a given SST, the increase in the environmental boundary-
 465 layer RH leads to a nearly linear decrease in the maximum intensification rate (red, Fig. 10), which
 466 also leads to a decrease in the MPI (not shown). This occurs because the intensification rate is
 467 negatively correlated with the environmental boundary-layer RH as implied from Eqs. (7) and (18).



468
 469 Fig. 10. The maximum (potential) intensification rate (MPIR, $m s^{-1} day^{-1}$) as a function of SST ($20+X^{\circ}C$,
 470 black) for a given $RH=80\%$ and zero environmental air-sea temperature difference, a function of the
 471 environmental RH ($75+x\%$, red) for SST= $30^{\circ}C$ and zero environmental air-sea temperature difference, and a
 472 function of the environmental air-sea temperature difference ($Ta=30-0.1X^{\circ}C$), green) for SST= $30^{\circ}C$ and
 473 $RH=80\%$. In all calculations, both isothermal and dissipative heating are included and all other parameters are
 474 the same as those used in Fig. 6.

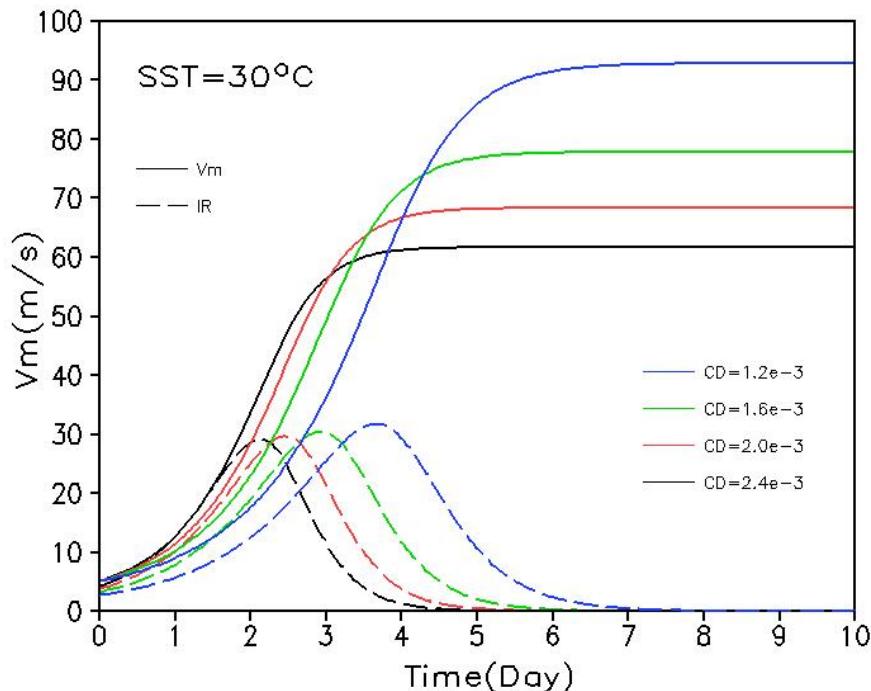
475 Note that although the environmental boundary-layer RH is important to convection during
 476 TC genesis stage, higher environmental RH is unfavorable for TC rapid intensification, which often
 477 occurs at intermediate TC intensity (Xu and Wang 2015, 2018a; Xu et al. 2016). In contrast, an
 478 increase in the environmental air-sea temperature difference leads to a nearly linear increase in the
 479 maximum intensification rate (green, Fig. 10). The increase in environmental air-sea temperature
 480 difference also leads to a considerable increase in the MPI (Fig. 6). The nearly linear increase in
 481 the maximum intensification rate with increasing environmental air-sea temperature difference can

482 be seen clearly from Eqs. (7) and (18). This increase is largely due to the dependence of surface
 483 vapor saturation pressure on the near-surface air temperature for a given environmental *RH* under
 484 the mean tropical conditions.


485 ***c. The time-dependent solution***

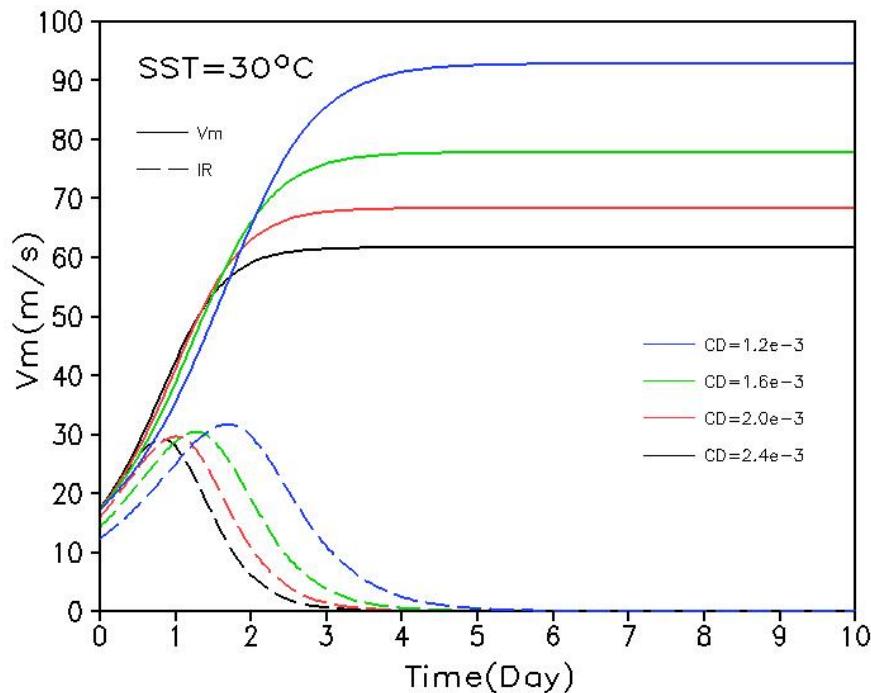
486
 487 Fig. 11. Time-dependent solutions of TC intensity (V_m , m s^{-1}) obtained by time-integration of Eq. (18) with
 488 the use of Eqs. (19) and (20) for a given SST of 30°C with the initial V_m of 5 m s^{-1} under four conditions as in
 489 Fig. 8, including the control (Control, black) without considering the effect of either isothermal expansion or
 490 dissipative heating, that as the control but with the isothermal expansion effect included (Control+IE, red), that
 491 as the control but with dissipative heating included (Control+DH, green), and that as the control but with both
 492 isothermal expansion and dissipative heating included (Control+IE+DH, blue). Solid curves are for results with
 493 zero environmental air-sea temperature difference ($dT=0^\circ\text{C}$) and dashed curves are for those with 1°C
 494 environmental air-sea temperature difference ($dT=1^\circ\text{C}$). Other parameters are the same as those used in Fig. 6.

495 Now we give some examples of the time-dependent solution of Eq. (18) obtained by the simple
 496 leap-frog scheme with the Asselin time filter (Asselin 1972). Figure 11 shows the time-dependent
 497 solutions with various assumptions, including the basic solution without considering the effect of
 498 isothermal expansion effect or dissipative heating and those with and without the environmental
 499 air-sea temperature difference. Consistent with the results shown in Figs. 6 and 8, both the


500 intensification rate and the steady-state intensity of the TC increase with the inclusion of either the
 501 isothermal expansion effect or dissipative heating or both. The isothermal expansion imposes an
 502 overall effect on both the intensification rate and steady-state intensity about half of that induced
 503 by dissipative heating. Their effects are almost linear and additive as implied by Eqs. (18) and (22).
 504 It is shown that 1°C environmental air-sea temperature difference leads to an increase in both the
 505 intensification rate and the steady-state intensity comparable to the inclusion of dissipative heating.
 506 We also found that assuming a zero environmental air-sea temperature difference often
 507 underestimates the observed maximum TC intensity (not shown), which is supported by the studies
 508 of Xu et al. (2019a,b).

509
 510 Fig. 12. Time-dependent solutions of TC intensity (V_m , m s^{-1}) obtained by time-integration of Eq. (18) with
 511 the use of Eqs. (19) and (20) for different SSTs with the initial V_m of 5 m s^{-1} for two cases: one with zero
 512 environmental air-sea temperature difference ($dT=0$, solid) and one with 1°C environmental air-sea temperature
 513 difference ($dT=1^\circ\text{C}$, dashed). In these calculations, both the isothermal expansion and dissipative heating are
 514 included and all other parameters are the same as those used in Fig. 6.

515 Although both the intensification rate and the steady-state intensity increase with increasing
 516 SST and the environmental air-sea temperature difference (Fig. 12), 1°C increase in SST leads to
 517 only 5% increase in the MPI and the intensification rate, while 1°C increase in the environmental


518 air-sea temperature difference leads to an increase of about 15% in both. Namely, 1°C change in
 519 environmental air-sea temperature difference can result in a threefold change in both the TC
 520 intensification rate and MPI induced by 1°C change in SST. This further demonstrates the
 521 importance of the environmental air-sea temperature difference to TC intensification and maximum
 522 intensity. Note that this dramatic effect of environmental air-sea temperature difference on TC
 523 intensification and MPI has not been explicitly/quantitatively discussed in previous time-dependent
 524 theories although air-sea temperature difference exists in general in the tropics (Xu et al. 2019a,b).

525
 526 Fig. 13. Time-dependent solutions of TC intensity (V_m , m s^{-1} , solid) obtained by time-integration of Eq. (18)
 527 with the use of Eqs. (19) and (20) for a given $\text{SST}=30^{\circ}\text{C}$ with the initial V_m of 5 m s^{-1} and zero environmental
 528 air-sea temperature difference using different surface drag coefficients. The dashed curves are the corresponding
 529 intensification rate ($\text{m s}^{-1} \text{ day}^{-1}$). In these calculations, both the isothermal expansion and dissipative heating are
 530 included and all other parameters are the same as those used in Fig. 6.

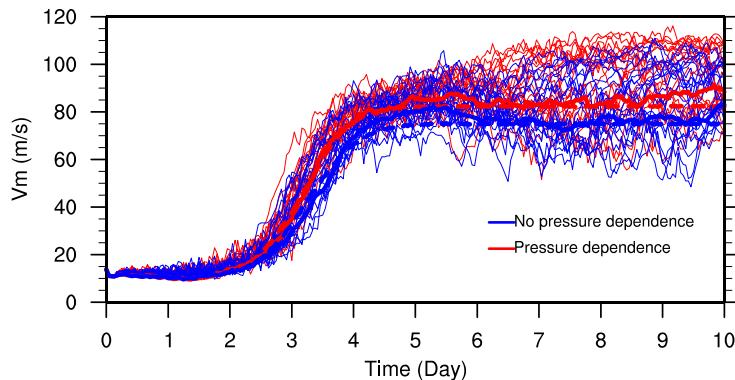
531 Finally, we examine the sensitivity of the time-dependent solution to surface drag coefficient.
 532 We can see from Fig. 13 that the maximum intensification rate depends very weakly on surface
 533 drag coefficient (dashed, Fig. 13) as shown in Fig. 9, and the steady-state intensity decreases with
 534 increasing surface drag coefficient as inferred from the MPI given in Eqs. (7) and (22). However,
 535 larger surface drag coefficient leads to earlier intensification of the TC (solid, Fig. 13). This is

536 mainly because the parameter A is a function of the relative intensity defined in Eq. (19). Larger
 537 surface drag coefficient reduces the MPI, and thus, for the same intensity, a reduced MPI indicates
 538 a higher relative intensity, and a larger parameter A . This can also be explained as a result of the
 539 increasing boundary-layer mass convergence and the contraction of the RMW as surface drag
 540 coefficient increases in the early stage of TC intensification. This would lead to a tendency of
 541 increasing the degree of congruence between the moist entropy surface and absolute angular
 542 momentum surface in the eyewall updraft (Wang et al. 2021b) or a tendency of increasing inner-
 543 core inertial stability and the dynamical efficiency of eyewall heating (Wang et al. 2021a). Similar
 544 sensitivity has also been found in full-physics model simulations in previous studies (e.g., Kilroy
 545 et al. 2017; Li and Wang 2021a). However, we found that such a sensitivity depends strongly on
 546 TC intensity and only obvious when the TC is in the weak intensity stage. This is confirmed by the
 547 time-dependent solution with the initially TC intensity of 17.2 m s^{-1} shown in Fig. 14. This
 548 demonstrates that for a TC after reaching the tropical storm intensity, its intensification rate
 549 becomes insensitive to surface drag coefficient. This agrees with previous full-physics model
 550 simulations (e.g., Peng et al. 2018; Li and Wang 2021a).

551
 552

Fig. 14. As in Fig. 13 but with the initial V_m of 17.2 m s^{-1} , namely the tropical storm intensity.

553 **4. Conclusions and discussion**


554 In the last decade or so, several efforts have been devoted to the development of time-
555 dependent theories of TC intensification, which can help quantify TC intensification based on a
556 simplified dynamical system model (Emanuel 2012; Ozawa and Shimokawa 2015; Wang et al.
557 2021a,b, 2022). A key unresolved issue in the current theories developed so far is the lack of a
558 closure required to take into account of the pressure dependence of sea surface saturation enthalpy,
559 namely the isothermal expansion effect, under the eyewall. Two other issues are the definitions of
560 the TC environment and the outflow-layer air temperature. In this study, a closure has been
561 developed for the time-dependent theory of TC intensification most recently updated with the
562 inclusion of dissipative heating by Wang et al. (2022). A key to the closure is to find a functional
563 relationship between the surface air pressure under the eyewall and the TC intensity. This is
564 achieved based on the cyclostrophic wind balance and calibrated using full-physics cloud-resolving
565 model simulations. Although the outflow-layer air temperature is often considered as an
566 environmental parameter, it is highly and negatively correlated with the underlying SST. Based on
567 global reanalysis data, a linear relationship between the outflow-layer air temperature and SST is
568 also constructed. As a result, given the environmental thermodynamic conditions, including the
569 boundary-layer relative humidity and surface air-sea temperature difference in the TC environment,
570 and the assumed surface drag and exchange coefficients, the time-dependent theory with the
571 refinements documented in this study can give the intensity-dependent intensification rate and the
572 steady-state TC maximum intensity. Namely, with the refinements, the updated simple time-
573 dependent theory of TC intensification becomes self-contained and is more practical.

574 It is shown that under the mean tropical conditions the pressure dependence of sea surface
575 saturation enthalpy can lead to an increase in both the steady-state TC intensity, namely the MPI,
576 and the intensification rate about 50% of that induced by dissipative heating due to surface friction.
577 Results from sensitivity calculations and time-dependent numerical solutions show that both the
578 MPI and intensification rate increase with increasing SST, surface exchange coefficient, and the
579 environmental air-sea temperature difference, but decrease with increasing the environmental

boundary-layer relative humidity. Results also show the significant contribution of the environmental near-surface air-sea temperature difference to both the TC intensification rate and MPI. We found that 1°C increase in the environmental air-sea temperature difference can lead to an increase in both the MPI and the intensification rate comparable to that induced by dissipative heating or by an increase of 3°C in SST. Another interesting result is the negligible dependence of the maximum intensification rate on surface drag coefficient in reasonable range. However, a strong sensitivity of TC intensification to surface drag coefficient is found in the weak intensity stage, as also shown in previous full-physics model simulations (e.g., Kilroy et al. 2017; Peng et al. 2018; Li and Wang 2021a). This sensitivity can be explained by a tendency of the increasing degree of congruence between the moist entropy surface and the absolute angular momentum surface in the eyewall ascent as a result of the increasing boundary layer mass convergence with increasing surface drag coefficient and thus surface friction (Wang et al. 2021b) or a tendency of increasing inner-core inertial stability and the dynamical efficiency of eyewall heating (Wang et al. 2021a). Note that the refinements documented in this study mainly make the theory self-contained and feasible to examine the sensitivity of the theoretical TC potential intensification rate on various physical parameters/processes. Comparisons of the TC intensification rates and intensity evolutions estimated by the simple theory with those in the full-physics model simulations under different model parameters, including SST, the RMW of the initial TC vortex, drag coefficient, lateral and vertical mixing lengths, can be found in Wang et al. (2021a,b). Some comparisons of the theory with observations can be found in Xu and Wang (2022) and Wang et al. (2022).

In addition, to further demonstrate the validity of the constructed isothermal expansion effect in the simple theoretical framework, we compared two ensemble experiments using the full-physics, axisymmetric cloud model CM1 with the results shown in Fig. 15. One includes the time-dependent sea surface pressure in the calculation of sea surface saturation enthalpy and one with the constant unperturbed environmental sea surface pressure. The model settings are identical to the SST-dependent sounding experiments in Li et al. (2020) with an SST of 30°C and atmospheric sounding sorted over the North Atlantic, but with the horizontal mixing length reduced from 700 m to 63 m

607 to ensure the simulated TC strong enough so that the effect of isothermal expansion can be well
 608 observed. Dissipative heating is not included in the two ensemble experiments. We can see from
 609 Fig. 15 that without considering the pressure dependence (isothermal expansion effect) of sea
 610 surface saturation enthalpy results in a slightly smaller intensification rate and a 10% reduction in
 611 the maximum intensity of the simulated TC averaged during the quasi-steady state evolution. The
 612 difference between the two experiments is consistent with that predicted by the simple theoretical
 613 model as shown in Fig. 11. The time-dependent solutions of the TC intensity obtained by time
 614 integration of Eqs. (18)–(20) using the environmental parameters in the ensemble simulations are
 615 also shown in Fig. 15. We can see that the theoretical solutions well capture the TC intensity
 616 evolutions in the two ensemble experiments. The theoretical solutions are initialized when the TC
 617 intensity reached 17 m s^{-1} to reduce the effect of initial spinup of the numerical model (Li et al.
 618 2020). In addition, the upper limit of the wind dependent C_D in CM1 is reduced from 2.4×10^{-3}
 619 to 2.0×10^{-3} in the theoretical solutions to capture the high steady-state intensity due to the use
 620 of a small horizontal mixing length in the numerical experiments. The results demonstrate that the
 621 theoretical model with the refinements in this study can capture the effect the pressure dependence
 622 of sea surface saturation enthalpy and reproduce the time evolution of the simulated TC intensity.

623
 624 Fig. 15. The intensity evolutions in two ensemble experiments using the full-physics axisymmetric CM1,
 625 with results from the individual runs and ensemble mean shown in thin and thick curves (solid). The model
 626 settings are identical to those used in the SST-dependent sounding experiment in Li et al. (2020) with an SST of
 627 30°C and atmospheric sounding sorted over the North Atlantic, but with the horizontal mixing length reduced
 628 from 700 m to 63 m. One experiment includes the pressure dependence of sea surface saturation enthalpy (red)
 629 and the other does not (blue). Dissipative heating is not included in the two experiments. The time-dependent
 630 solutions of TC intensity from Eqs. (18)–(20) using the environmental parameters in the ensemble simulation are
 631 shown in dashed thick curves.

Finally, we should point out that some issues need to be considered when the simple theory documented in this study is applied to real or numerically simulated TCs or when it is further developed in future studies. First, previous studies have shown the dependence of TC intensification rate on the structure of the initial TC vortex in both observations and full-physics model simulations (Xu and Wang 2015, 2018a,b; Li and Wang 2021b; Peng and Fang 2021; Li et al. 2022). As we mentioned in section 2b, no explicit structure parameter is included in the current version of the simple theoretical time-dependent equation of TC intensification. The parameters c in Eq. (14) and A in Eq. (19) can be modified to consider the possible dependence of TC intensification rate on TC structure. In that case, parameter c and the functional relationship between the parameters A and the TC relative intensity need to be recalibrated using both idealized full-physics model simulations and observations. The parameter c depends weakly on the inner-core dynamical structure of the TC. The form of A in the current theoretical framework does not strongly depend on the TC inner-core size (see Figs. 9c,d in Wang et al. 2021a). Second, the relationship between the outflow-layer air temperature and SST fitted in this study is based on the current climate, and it should be modified if the theory is applied to understand the impact of global warming on TC intensification and MPI, which is a topic under investigation. In addition, there is considerable variability in the outflow-layer air temperature relative to the fitted curve. Although part of the variability in the estimated outflow-layer temperature might be related to TC intensity, our preliminary analysis shows that the variability of the estimated outflow-layer air temperature is not related to TC intensity (not shown). It is likely related to the large-scale environmental flow patterns, which needs to be examined in a future study. In addition, the global reanalysis data could not capture the real TC intensity due to the relatively coarse resolution of the model used to produce the reanalysis data. We also noticed that in a recent theoretical study Rousseau-Rizzi and Emanuel (2021) assumed the weak temperature gradient (WTG) with the outflow layer temperature being independent of local SST. In that case, not only the possible dependence of the outflow-layer temperature on local SST but also the possible effect of the variability of the outflow temperature on TC MPI are ignored. Therefore, it is a good topic for a future study to evaluate the uncertainties

659 related to the variability of the outflow-layer air temperature in estimating TC intensification rate
660 and the steady-state intensity in the simple theoretical model. Our results also strongly suggest that
661 the variability of air-sea temperature difference may be one of the major environmental factors that
662 contribute to the observed variability of TC MPI and intensification rate even for a given SST (Xu
663 et al. 2019a,b; Xu and Wang 2022).

664 *Acknowledgments.*

665 The authors are grateful to three anonymous reviewers for their constructive review comments,
666 which helped improve the manuscript. This study was supported in part by National Natural
667 Science Foundation of China under grant 41730960 and the National Key R&D Program of China
668 under grant 2017YFC1501602 and in part by NSF grant AGS-1834300.

669 *Data Availability Statement.*

670 The EBT data were obtained from https://rammb2.cira.colostate.edu/research/tropical-cyclones/tc_extended_best_track_dataset/. The ERA-Interim data were obtained from
671 <https://apps.ecmwf.int/datasets/>. The CM1 source code and model data used in this study are
672 available at the website: <https://box.nju.edu.cn/d/f0898f30cbee44c88adb/>.

674 REFERENCES

675 Asselin, R., 1972: Frequency filter for time integrations. *Mon. Wea. Rev.*, **100**, 487-490,
676 [https://doi.org/10.1175/1520-0493\(1972\)100<0487:FFFTI>2.3.CO;2](https://doi.org/10.1175/1520-0493(1972)100<0487:FFFTI>2.3.CO;2)

677 Bister, M. and Emanuel, K.A., 2002. Low frequency variability of tropical cyclone potential
678 intensity 1. Interannual to interdecadal variability. *J. Geophys. Res.*, **107**, 4801.
679 <https://doi:10.1029/2001JD000776>.

680 Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical
681 model. *Mon. Wea. Rev.*, **130**, 2917–2928, [https://doi.org/10.1175/1520-0493\(2002\)130<2917:ABSFMN>2.0.CO;2](https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2).

683 Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of
684 the data assimilation system. *Quart. J. Roy. Meteor. Soc.*, **137**, 553–597, <https://doi.org/10.1002/qj.828>.

686 Demuth, J. L., M. DeMaria, J. A. Knaff, and T. H. Vonder Haar, 2004: Evaluation of advanced
687 microwave sounding unit tropical-cyclone intensity and size estimation algorithms. *J. Appl.
688 Meteor. Climatol.*, **43**, 282–296, [https://doi.org/10.1175/1520-0450\(2004\)043%3C0282:EOAMSU%3E2.0.CO;2](https://doi.org/10.1175/1520-0450(2004)043%3C0282:EOAMSU%3E2.0.CO;2).

690 Edwards, J. M. 2019: Sensible heat fluxes in the nearly neutral boundary layer: The impact of
691 frictional heating within the surface layer. *J. Atmos. Sci.*, **76**, 1039-1053.
692 <https://doi.org/10.1175/JAS-D-18-0158.1>.

693 Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state
694 maintenance. *J. Atmos. Sci.*, **43**, 585–605, [https://doi.org/10.1175/1520-0469\(1986\)043<0585:AASITF>2.0.CO;2](https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2).

695 Emanuel, K. A., 1988: The maximum intensity of hurricanes. *J. Atmos. Sci.*, **45**, 1143–1155,
696 [https://doi.org/10.1175/1520-0469\(1988\)045<1143:TMIOH>2.0.CO;2](https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2).

697 Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a
698 revised steady-state model incorporating eye dynamics. *J. Atmos. Sci.*, **52**, 3969–
700 3976, [https://doi.org/10.1175/1520-0469\(1995\)052<3969:SOTCTS>2.0.CO;2](https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2).

701 Emanuel, K. A., 2012: Self-stratification of tropical cyclone outflow: Part II: Implications to storm
702 intensification. *J. Atmos. Sci.*, **69**, 988–996, <https://doi.org/10.1175/JAS-D-11-0177.1>.

703 Emanuel, K., 2017: A fast intensity simulator for tropical cyclone risk analysis. *Nat. Hazards*, **88**,
704 779–796, <https://doi.org/10.1007/s11069-017-2890-7>.

705 Kieu, C. 2015: Revisiting dissipative heating in tropical cyclone maximum potential intensity.
706 *Quart. J. Roy. Meteor. Soc.*, **141**, 2497–2504, <https://doi.org/10.1002/qj.2534>.

707 Kilroy, G., M. T. Montgomery, and R. K. Smith, 2017: The role of boundary-layer friction on
708 tropical cyclogenesis and subsequent intensification. *Quart. J. Roy. Meteor. Soc.*, **143**, 2524–
709 2536. <https://doi.org/10.1002/qj.3187>.

710 Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation
711 of a new database format. *Mon. Wea. Rev.*, **141**, 3576–3592, <https://doi.org/10.1175/MWR-D-12-00254.1>.

712 Li, T.-H., and Y. Wang, 2021a: The role of boundary layer dynamics in tropical cyclone
713 intensification. Part I: Sensitivity to surface drag coefficient. *J. Meteor. Soc. Japan*, **99**, 537–
714 554, <https://doi.org/10.2151/jmsj.2021-027>.

715 Li, T.-H., and Y. Wang, 2021b: The role of boundary layer dynamics in tropical cyclone
716 intensification. Part II: Sensitivity to initial vortex structure. *J. Meteor. Soc. Japan*, **99**, 555–
717 573, <https://doi.org/10.2151/jmsj.2021-028>.

718 Li, Y., Y. Wang, Y. Lin, and R. Fei, 2020: Dependence of superintensity of tropical cyclones on
719 SST in axisymmetric numerical simulations. *Mon. Wea. Rev.*, **148**, 4767–4781,
720 <https://doi.org/10.1175/MWR-D-20-0141.1>.

721 Li, Y., Y. Wang, and Z.-M. Tan, 2022: Why does the initial wind profile inside the radius of
722 maximum wind matter to tropical cyclone development? *J. Geophys. Res.-Atmos.*, **127**,
723 e2022JD037039, <https://doi.org/10.1029/2022JD037039>.

724 Ozawa, H., and S. Shimokawa, 2015: Thermodynamics of a tropical cyclone: generation and
725 dissipation of mechanical energy in a self-driven convection system. *Tellus A*, **67**, 24216,
726 <https://doi.org/10.3402/tellusa.v67.24216>.

727 Peng, K., R. Rotunno, and G. H. Bryan, 2018: Evaluation of a time-dependent model for the
728 intensification of tropical cyclones. *J. Atmos. Sci.*, **75**, 2125–2138, <https://doi.org/10.1175/JAS-D-17-0382.1>.

729 Peng, K., and J. Fang, 2021: Effect of the initial vortex vertical structure on early development of
730 an axisymmetric tropical cyclone. *J. Geophys. Res.-Atmos.*, **126**, e2020JD033697,
731 doi:10.1029/2020JD033697.

734 Rotunno, R., and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II.
735 *J. Atmos. Sci.*, **44**, 542–561, [https://doi.org/10.1175/1520-0469\(1987\)044<0542:AAITFT>2.0.CO;2](https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2).

736 Rousseau-Rizzi, R. and Emanuel, K., 2021. A weak temperature gradient framework to quantify
737 the causes of potential intensity variability in the tropics. *J. Climate*, **34**, 8669–8682,
738 <https://doi.org/10.1175/JCLI-D-21-0139.1>.

739 Wang, Y., and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a
740 numerically simulated tropical cyclone. *J. Atmos. Sci.*, **67**, 97–116,
741 [doi:10.1175/2009JAS3143.1](https://doi.org/10.1175/2009JAS3143.1).

742 Wang, Y., Y.-L. Li, J. Xu, Z.-M. Tan, and Y.-L. Lin, 2021a: The intensity-dependence of tropical
743 cyclone intensification rate in a simplified energetically based dynamical system model. *J. Atmos. Sci.*, **78**,
744 2033–2045, <https://doi.org/10.1175/JAS-D-20-0393.1>.

745 Wang, Y., Y. Li, and J. Xu, 2021b: A new time-dependent theory of tropical cyclone intensification.
746 *J. Atmos. Sci.*, **78**, 3855–3865, <https://doi.org/10.1075/JAS-D-21-0169.1>.

747 Wang, Y., J. Xu, and Z.-M. Tan, 2022: Contribution of dissipative heating to the intensity-
748 dependence of tropical cyclone intensification. *J. Atmos. Sci.*, **79**, 2169–2180,
749 <https://doi.org/10.1175/JAS-D-22-0012.1>.

750 Xu, J., and Y. Wang, 2015: A statistical analysis on the dependence of tropical cyclone
751 intensification rate on the storm intensity and size in the North Atlantic. *Wea. Forecasting*, **30**,
752 692–701, <https://doi.org/10.1175/WAF-D-14-00141.1>.

753 Xu, J., Y. Wang, and Z.-M. Tan, 2016: The relationship between sea surface temperature and
754 maximum potential intensification rate of tropical cyclones over the North Atlantic. *J. Atmos. Sci.*, **73**,
755 4979–4988, <https://doi.org/10.1175/JAS-D-16-0164.1>.

756 Xu, J., and Y. Wang, 2018: Dependence of tropical cyclone intensification rate on sea surface
757 temperature, storm intensity, and size in the western North Pacific. *Wea. Forecasting*, **33**, 523–
758 537, <https://doi.org/10.1175/WAF-D-17-0095.1>.

759 Xu, J., Y. Wang, and C. Yang, 2019a: Factors affecting the variability of maximum potential
760 intensity (MPI) of tropical cyclones over the North Atlantic. *J. Geophys. Res.: Atmos.*, **124**,
761 6654–6668. <https://doi.org/10.1029/2019JD030283>.

762 Xu, J., Y. Wang, and C. Yang, 2019b: Interbasin differences in the median and variability of tropical
763 cyclone MPI in the northern hemisphere. *J. Geophys. Res.: Atmos.*, **124**, 13,714–13,730,
764 <https://doi.org/10.1029/2019JD031588>.

765 Zeng, Z., L.-S. Chen, and Y. Wang, 2008: An observational study of environmental dynamical
766 control of tropical cyclone intensity in the North Atlantic. *Mon. Wea. Rev.*, **136**, 3307–3322,
767 <https://doi.org/10.1175/2008MWR2388.1>