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Key points:

1. The sea spray effect on TC intensity evolution depends on the surface drag (Cp) scheme used
and the stages of the TC lifetime.

2. Different wind speed dependence of Cp can affect the radial distribution of the spray mass flux
and thus spray-mediated enthalpy flux.

3. Although spray can speed up or slow down the intensification rate, it contributes positively to
the mature-stage TC intensity.
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Abstract

Wave breaking under strong wind conditions in tropical cyclones (TCs) can generate sea spray
droplets, which, during their suspension in air, release sensible heat due to the air-sea temperature
difference while absorb sensible heat from the environment when they evaporate and release latent
heat to the environment. Since the spray mass flux is a function of surface drag coefficient (Cp),
the effect of spray on TC evolution should depends on Cp parameterization, while this has not been
addressed so far. This study examines the effects of sea spray on the simulated TC evolution with
two different Cp parameterizations (the WRF default scheme and the Donelan scheme). Results
show that during the primary intensification stage, the TC with spray effect becomes stronger than
that without spray when the WRF Cp scheme is used, but becomes weaker when the Donelan Cp
scheme is used. This occurs because Cp is maximum outside the RMW with the Donelan scheme,
which produces relatively large spray-mediated latent heat flux outside the RMW, which is
unfavorable for TC intensification. The difference is enlarged by a feedback between spray and TC
intensification involving the inertial stability and surface friction-induced radial inflow. However,
in the mature stage, the simulated TCs with spray become stronger no matter which Cp scheme is
used. In addition, the spray effect on the TC inner-core size evolution also weakly depends on the
drag parameterization. When Cp is relatively greater outside the RMW, the inclusion of the spray
effect would lead to the inner-core size increase.

Key words: Tropical cyclone, Sea spray, Drag coefficient, Sensible and latent heat fluxes
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Plain Language Summary: Wave breaking under strong wind conditions, such as in tropical
cyclones (TCs), can generate abundant sea spray droplets, which, during their suspension in air,
release sensible heat due to the air-sea temperature difference while absorb sensible heat from the
environment when they evaporate and release latent heat to the environment. This will mediate the
air-sea enthalpy transfer and affect the TC intensification. As the spray mass flux is closely related
with sea surface drag coefficient (Cp), we investigated how the spray effects on TC intensity
evolution depend on the Cp scheme used in idealized numerical simulations. Two Cp schemes were
used to perform four numerical experiments. Results show that the sea spray effect on TC intensity
evolution depends on the Cp scheme used and the stages of the TC lifetime, largely due to the
different wind speed dependence of Cp and its effect on the radial distribution of the spray-mediated
latent flux. However, the finding demonstrates that caution should be given to surface drag
parameterization when the sea spray effects on TC evolution are studied using numerical models.
It is also suggested that efforts to measure spray properties under TC conditions should be

conducted to validate/improve spray parameterization in the future.
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1. Introduction

Sea spray droplets are abundantly generated by wave breaking under high near-surface wind
conditions, such as in the boundary layer of tropical cyclones (TCs) (Mestayer & Lefauconnier,
1988; Rouault et al., 1991; Edson et al., 1996). During their suspension in air, sea spray droplets
exchange heat and moisture with the surrounding air and mediate the air-sea enthalpy transfer,
which may affect TC intensification and boundary layer structure (Andreas, 1992; Fairall et al.,
1994; Andreas & Emanuel, 2001; Wang et al., 2001; Mueller & Veron, 2014a, 2014b). Sea spray
releases sensible heat due to the air-sea temperature difference while absorbs sensible heat from
the surrounding air when they evaporate and release latent heat to the air. The feedback of spray
can change air moisture and temperature in the lower boundary layer, and indirectly affect the direct
interfacial air-sea enthalpy flux (Fairall et al., 1994; Mueller & Veron, 2014b). Sea spray has been
considered as an important factor affecting TC structure and intensity (Kepert et al., 1999; Andreas
& Emanuel, 2001; Wang et al., 2001; Perrie et al., 2005; Gall et al., 2008; Bao et al., 2011; Ma et

al., 2015).

Surface drag coefficient (Cp) is an important parameter affecting TC development, structure,
and the maximum intensity (Rosenthal, 1971; Montgomery et al., 2010; Thomsen et al., 2012; Peng
et al.,, 2018; Li & Wang, 2021a). Most previous numerical studies (Craig and Gray, 1996;
Montgomery et al., 2010; Thomsen et al., 2012; Peng et al., 2018; Li and Wang, 2021a) showed
that the intensification rate of a TC simulated in state-of-the-art high-resolution numerical models
is often insensitive to Cp but the maximum intensity is limited by Cp, as predicted by the theoretical
maximum potential intensity (MPI) (Emanuel, 1986, 1995; Wang et al., 2021a, b). Montgomery et

al. (2010) examined the sensitivity of the intensification of a simulated TC to Cp in a nonhydrostatic,
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three-dimensional, cloud-resolving model and showed that when Cp was less than 2.0x10 both
the intensification rate and mature intensity of the simulated TC increased slightly with increasing
Cb, but the mature intensity decreased for a larger Cp. Thomsen et al. (2012) found that both the
intensification rate and mature intensity of the simulated TC were insensitive to Cp randomly
perturbed by as large as 60%. Kilroy et al. (2017) showed that a relatively large Cp could accelerate
the initial organization of deep convection in the inner core and thus shorten the initial spin-up
stage of a simulated TC. In a more recent study, Li & Wang (2021a) found that although the initial
spin-up of the simulated TC development was considerably shortened with a larger Cp, the
subsequent intensification rate showed little difference while a larger Cp also shortened the
intensification period, thus resulting a weaker steady-state intensity (see also the recent theoretical

study by Wang et al. 2022).

In addition to its effect on the calculation of air-sea interfacial momentum flux directly, Cp
also affects the air-sea enthalpy flux by modifying the spray mass flux. On the other hand, Cp can
be also affected by wave-breaking. That means that wave and surface drag should be coupled (e.g.,
Chen et al., 2013). However, in practical applications, Cp is often parameterized as a function of
near-surface wind speed with the dependence on wave breaking implicitly included. In the current
version of the advanced Weather Research and Forecasting (WRF) model, Cp is a constant in the
high-wind regime (greater than 30 m s™!) for TC simulations. While some other studies indicated
that Cp decreases with wind speed when wind speed exceeds about 30 m s~ (Powell et al., 2003;
Makin, 2005; Black et al., 2007; Donelan, 2018), some recent studies have shown that Cp in the
hurricane-force wind regime might be underestimated and the reduction in Cp may not be realistic

(Richter et al., 2021). It is likely that some uncertainty remains in current Cp parameterization
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schemes.

With different Cp schemes, the sea surface roughness and hence the spray mass flux are
different (see section 2 for details). This means that the effects of spray on TC evolution may
depend on the Cp scheme used in numerical simulations. Recently, Li & Wang (2021a)
demonstrated that Cp can affect the radial location and strength of the maximum boundary layer
inflow and eyewall updraft and thus eyewall convection. They showed that although the effect of
Cpb on the intensification rate during the primary intensification stage is not significant, Cp may
considerably affect the onset time of the primary intensification and the final maximum intensity
of the simulated TCs. Since Cp can affect the spray mass flux and the radial inflow, the different
dependences of Cp on surface wind speed may affect the radial distribution of spray mass flux and
thus the spray-mediated sensible and latent heat fluxes (namely enthalpy flux). Xu & Wang (2010)
demonstrated that TC structure and intensity can be sensitive to the radial distribution of surface
enthalpy flux. Therefore, the effect of spray on TC evolution may be different when different Cp
parameterization schemes are employed in numerical simulations. However, this possibility has
not been investigated in the literature.

This study attempts to examine the possible dependence of the quantity and distribution of sea
spray-mediated fluxes on the Cp scheme used and the effect on the simulated TC structure and
intensity evolution in idealized simulations. We will show that the different dependence of Cp on
surface wind speed can result in different radial distributions and magnitudes of latent heat fluxes.
Such effect is different in the intensification stage and the mature stage of the simulated TC, leading
to either positive or negative effect on TC intensity in different stages. The rest of the paper is
organized as follows. The model and experimental design are described in section 2. The simulation

results are discussed in section 3. Conclusions and discussion are presented in the last section.
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2. Model description and Experimental design

2.1 Model

The model used in this study is the WRF model, version 3.9.1. The model domain is triply
nested with the three meshes of 6300 km by 6300 km, 1080 km by 1080 km, and 600 km by 600
km and their respective horizontal grid spacings of 18, 6, and 2 km, respectively. There are 47
levels in the vertical. The model physics used in this study include the single-moment 6-class cloud
microphysics scheme (WSM6, Hong & Lim, 2006), the Kain-Fritsch cumulus scheme (Kain, 2004)
for the outermost mesh, the Yonsei University scheme for planetary boundary layer vertical mixing
(YSU, Hong et al., 2006) and the Monin-Obukhov scheme for surface stress and flux calculations
(see those related to spray below), the Dudhia shortwave (Dudhia, 1989), and the Rapid Radiative
Transfer Model (RRTM) longwave schemes (Mlawer et al., 1997) for radiation flux calculations.
2.2 Sea spray parameterization

The surface air-sea enthalpy flux includes two components, namely the interfacial exchange
and the spray-mediated exchange (Fairall et al., 1994). The interfacial sensible and latent heat
fluxes are calculated with the bulk aerodynamic scheme as following:

HS = pacpaCHU(To —To + 6T,) (1)

HL = paLoCpU(qs(T,) — qs(Ta + 8T4)) (2)
where HS and HL are the direct interfacial sensible and latent heat fluxes, respectively; p. is the
surface air density of dry air; c,q is specific heat of dry air at constant pressure; L. is the latent heat
of vaporization; Cy and Ck are the surface exchange coefficients for sensible heat and latent heat,
respectively (often Cy = Cy is assumed); U is the near-surface horizontal wind speed; 7, is the
sea surface temperature; 7, is the air temperature near the ocean surface; 7, is the dewpoint

temperature; gs(7,) is the saturation mixing ratio of water vapor at temperature 7,; 07, and 07, are
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the changes of air temperature and dewpoint temperature due to spray feedback (Bao et al., 2011).
The spray-mediated enthalpy flux is determined by detailed spray microphysical processes,
such as the size distribution, source function, and mass flux of spray droplets, etc. (Fairall et al.,
1994; Andreas & Emanuel, 2001; Bao et al., 2011) and is estimated using the version 12 of Fairall
et al. (1994) scheme in this study, which is downloaded from the website
https://downloads.psl.noaa.gov/BLO/Air-Sea/onr_droplet/parameterization/versionl2. The spray-
mediated heat flux due to temperature change of droplets (QS) is calculated as following:
QS = 0.92¢,,, My (T, — T,,) (3)
where 0.92 accounts for the loss of heat not transferred from the very large droplets; ¢,y is the water
specific heat; My is the spray mass flux; 7), is the wet bulb temperature of seawater droplet; The

kg
m2-s

spray mass flux My with unit of is given by

My = {pywbwSy (4)
where ('is a spray-source function-tuning parameter and the currently accepted value is 0.3 (Gall
et al., 2008); p,, is the water density; p. is the energy inputted by waves with unit of m* s~ and is
estimated as follows:

pW=0.5xg—;cwuf (5)

where ¢, 1s the phase speed of breaking waves and is estimated by c,, = 0.1 + 0.23U. u~ is the
friction velocity, which satisfies u?2 = C,U? with C, being the surface drag coefficient. With
different Cp schemes, the estimated friction velocities (u+) and hence the inputted wave energies
(pw) and spray mass fluxes (My) are different, making the spray mediated enthalpy fluxes different.
When the temperature of droplet reaches equilibrium, the temperature of droplet is the same from
the inner to the surface. Hence, the mass flux associated with sensible heat transfer is estimated

with the volume flux of the droplet. Sy is the normalized source function of volume with unit of

7
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3
(m3 . mi_s) / (%) , being the volume of spray generated in per square meter, per second, per unit

of inputted wave energy. In high-wind conditions, spray droplets are mainly formed when the wind

stress tears off the crest of waves, and hence, Sy is parameterized by the characteristics of waves as

2.5

Sy =29x10"° [1 + (“?W)Ol] (W) (6)

where £, is half of the significant wave height, estimated by h,, = (2 + 10U /60)/2; vis the mean
fall velocity of spray droplets that is positively correlated to surface wind speed and phase speed
of breaking waves and negatively correlated to friction velocity.

After the temperature of droplet falls to 7, the droplet will evaporate by absorbing sensible
heat from its environment. The spray-mediated flux due to evaporation of droplets (QL) at the
equilibrium state is calculated as following:

QL = LMs[qs(Ty — 6T,) — q5(Tq + 6T4)] (7)
where Ms is the spray mass flux due to evaporation. If all the droplets evaporate in the air, Ms is
the same as My. However, this is often not true (Andreas & Emanuel, 2001). As the timescales for
evaporation are large, only part of the droplet evaporates and the rest will re-enter the ocean. Ms

should be different from My. The evaporation only takes place in the surface of droplets, therefore,

Ms 1s estimated via surface area with unit of T:f o which is calculated by
1 11033
Ms = {papuhinBSa |1 =027 (1+ )] (8)

where RH is the relative humidity of the surface air; S, is the normalized source function of spray

1

m2s

3
droplets of surface area with unit of (m2 : ) / (%) , being the surface area that spray evaporate

in per square meter, per second, per unit of inputted wave energy. As the energy inputted by waves

is considered to be converted to potential energy in the surface tension of droplets (Fairall et al.,
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2009), S. could be estimated by the inputted energy and is given by

-1

Sa=4.5><( Pw )0'15x(w) (9)

6.0x107% 50

and f is the coefficient calculated by

B=(1+M>_1 (10)

cpaRvT
where R, is the gas constant of water vapor.

In the presence of spray, OS computed in Eq. (3) is the enthalpy flux carried by the droplets
as they are ejected from the sea surface at 7, and cool to 7,,. However, only the heat transferred to
the air while the droplets cool from T, to 7, is the “sensible heat” part, which is the OSs (Andreas
and Emanuel, 2001; Ma et al., 2015). After their temperature fall from 7, to T,, the droplets
evaporate and the heat is transferred into the atmosphere via the evaporation rather than directly
warming the surrounding air via “sensible heat”. As a result, the remainder of QS (i.e., cooling
from T, to Tw) was allotted to “latent heat” OS;. The total air-sea sensible heat (HS::) and latent

heat (HL) fluxes are:

HStor = HS + QSs — QL (11)
HLye = HL + QS; + QL (12)
where OS; and QS are
QS; = T S (13)
QS; = "0 QS (14)

2.3 Surface drag coefficient (Cp)
As we mentioned above the spray-mediated enthalpy flux is a function of friction velocity
given in Eq. (5), which is a function of surface drag coefficient Cp. To show how the simulated TC

depends on the Cp parameterization, two typical Cp schemes were used in this study, representing
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the two different trends of Cp in high-wind regime (Fig. 1). One is the default scheme in the WRF
model, which is based on the Monin-Obukhov similarity theory (Large & Yeager, 2009) and
modified for TC simulations. Cp initially increases with increasing 10-m wind speed but is kept
constant for 10-m wind speed above 30 m s™!. The other scheme is that described in Donelan (2018),
in which Cp decreases with 10-m wind speed in the regime between 30 and 60 m s™! and slightly
increases with 10-m wind speed in the regime for wind speed above 60 m s™!. Note that the aim of
this study is not to validate which scheme we are testing is better, as both are commonly used in
idealized and real-case TC simulations. Rather, this study is to examine the dependence of spray
effect on Cp schemes in idealized simulations. Results from this study also indicate that more work
is needed to validate both the Cp scheme and spray parameterization for improving TC intensity
and structure forecasts using numerical models.
2.4 Experimental design

In this study, we performed idealized numerical simulations on an f-plane of 20°N. The model
was initialized with an axisymmetric cyclonic vortex embedded in a quiescent and horizontally
uniform environment, which has the mean tropical sounding of temperature and humidity given in
Jordan (1958). The sea surface temperature was fixed at 28°C. The initial TC vortex was in

Mata

hydrostatic and gradient wind balance with a maximum near-surface wind speed of 15 m s~
radius of 82.5 km.

Two sets of experiments (Table 1) were designed to investigate the dependence of the spray
effect on the simulated TC evolution on the Cp scheme used. In WRF_CTRL, the WRF default Cp
scheme was used with no spray effect included. In WRF_SPY, the WRF default Cp scheme was

used with the spray effect included. In Donelan CTRL, the Donelan Cp scheme was used with no

spray effect included, while in Donelan_SPY, the Donelan Cp scheme was used with the spray
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3. Results

Before we discuss the effect of spray, we first briefly compare the intensity evolutions of the
simulated TCs in the two experiments with different Cp schemes without inclusion of the spray
effect. Figure 2 shows the time series of the maximum wind speeds at the lowest model level and
the central sea level pressure simulated in WRF CTRL and Donelan CTRL. The intensity
evolutions of the TCs in the two experiments are similar but with some visible differences,
especially after about 40 h of simulations. After an initial 24-h spinup, the simulated TC
experiences a rapid intensification stage up to about 102 h of simulations, which is followed by a
slow evolving, quasi-steady intensity evolution stage. The TC simulated in Donelan CTRL is
stronger than that in WRF_CTRL in both the intensification and mature stages. The central sea
level pressure in Donelan CTRL is about 18 hPa lower than that in WRF_CTRL, and the maximum
wind speed at the lowest model level is about 24 m s™! higher by 199 h of the simulations. This is
consistent with what is expected from the maximum potential intensity (MPI) theory (Emanuel,
1986, 1995), which implies that the maximum TC intensity is inversely proportional to the square
root of Cp. Since the spray-mediated flux depends on surface wind speed, it is expected that the
effect of the parameterized spray on TC structure and intensity may vary with TC intensity or
different stages of the TC development. Therefore, in the following discussion, we will discuss the
spray effects on the simulated TC in the intensification stage and the mature stage, separately.

3.1 Primary intensification stage

Figure 3 compares the intensity evolutions of the simulated TCs in experiments with and

without sea spray effect using the two different Cp schemes. During the primary intensification

stage (60—102 h), the TC in WRF_SPY is stronger than that in WRF _CTRL and the difference
11
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between the maximum surface wind speed reaches 11 m s™!. In the experiments with the WRF Cp
scheme, the TC with the spray effect is stronger (Fig. 3a), which is consistent with previous studies
(Wang et al., 2001; Ma et al., 2015). However, in the same time period, the TC with the spray effect
is weaker than that without the spray effect with the Donelan Cp scheme (Fig. 3b), which is in
contrast to that with the WRF Cp scheme. This indicates that the spray effect on TC intensity
evolution depends on the surface drag scheme used in the numerical model.

The spray-mediated sensible and latent heat fluxes averaged in the primary intensification
stage of 60—102 h in the two spray experiments with different Cp schemes are shown in Fig. 4. The
radial distribution of the spray-mediated sensible heat flux is comparable with that shown in
previous studies (Gall et al., 2008; Ma et al., 2015). The peak values are located under the eyewall,
while the lowest (negative) values are outside the eyewall about 75 km away from the TC center
with negative values of -10.0 and -15.5 w m 2, respectively, in WRF_SPY and Donelan_SPY (Figs.
4a). This can be explained by the spray involved processes. Spray droplets with the sea surface
temperature, which is warmer than the boundary layer air temperature, release sensible heat to the
air. This sensible heat is determined by the air-sea temperature difference and the quantity of spray
mass flux mainly controlled by the wind stress. In the meantime, evaporation of spray droplets
absorbs sensible heat from the environment, which is mainly controlled by the relative humidity of
the surrounding air (Fairall et al., 1994). Under the TC eyewall with high wind speed, spray droplets
release large sensible heat due to high air-sea temperature difference but absorb relatively little
sensible heat due to evaporation because the air is nearly saturated. This results in the peak value
of the spray-mediated sensible heat under the eyewall. In the region outside the eyewall, less
sensible heat is released by spray droplets because of less spray droplets generated under relatively

weak wind speed and smaller air-sea temperature difference. In addition, the relative humidity often
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decreases rapidly outside the eyewall. As a result, a considerable percentage of spray droplets
evaporate, absorbing large amount of sensible heat from the environmental air and leading to
negative net sensible heat flux outside of the eyewall. However, due to evaporation during their
lifetime suspended in the air, spray-meditated latent heat flux is positive at all radii (Figs. 4b).
Although less percentage of droplets evaporate in the eyewall region, a plenty of droplets are
generated due to high wind speed, and thus the overall latent heat flux was still the greatest under
the eyewall region.

It is the surface latent heat flux that dominate the energy supply for the development and
maintenance of a TC. Therefore, we compare the total surface latent heat fluxes in different
experiments to examine how the inclusion of sea spray may modify the total latent flux. Figure 5
shows the difference in the azimuthal-mean total latent flux between the runs with and without the
spray effect included. During the intensification stage in experiments with the WRF Cp scheme,
the surface latent heat flux in WRF _SPY is greater inside the radius of maximum wind (RMW)
than that in WRF_CTRL, while is mostly smaller outside the RMW (Fig. 5a). In contrast, during
the 60—102 h, the surface latent flux is generally smaller inside the RMW and greater outside the
RMW in Donelan SPY than in Donelan CTRL (Fig. 5b). The simulated TC intensified with a
relatively greater intensification rate in the case with greater surface latent heat flux inside the
RMW (Table 1), which is consistent with the findings of Xu & Wang (2010) and Wang & Heng
(2016). They found that surface flux near and inside the RMW is favorable for TC intensification,
while that beyond a radius of 2-3 times of the RMW is unfavorable for TC intensification, but
important to the inner-core size growth. They showed that the radial distribution and magnitude of
surface latent heat flux affects the strength and radial location of convection and thus the TC

intensification. As we can see from Fig. 6, with the sea spray effects included, during the primary
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intensification stage (60—102 h), the surface latent heat flux and upward motion (and thus
convection) in WRF_SPY increased inside the RMW but decreased outside the RMW (Fig. 6a),
making the TC stronger than that in WRF_CTRL. In contrast, the surface latent heat flux and
convection in Donelan SPY decreased inside the RMW and increased outside the RMW (Fig. 6b),
resulting in the weaker TC than that in Donelan CTRL.

The difference in the radial distribution of surface latent heat flux in different Cp experiments
results primarily from the dependence of the spray mass flux on sea surface wind stress, which
depends on Cp. During 60—102 h, the wind speed around the RMW exceeds 30 m s!, and thus Cp
is constant with the WRF Cp scheme, while the wind speed and thus Cp is smaller in the outer
region than in the inner core. As a result, in the experiment with the WRF scheme, Cp is maximum
around the RMW (Fig. 7). This leads to large spray mass flux and thus spray-mediated latent heat
flux around the RMW in WRF_SPY (Fig. 8), which is beneficial for the TC intensification. In
contrast, in the experiments with the Donelan Cp scheme, after 60 h of simulation, the wind speed
in the inner core in both Donelan CTRL and Donelan SPY increase gradually and exceeds 30 m
s~1, indicating that Cp in the inner core would decrease with TC intensification. At the same time,
the wind speed in the outer region is weaker than 30 m s™!, Cp increases with TC intensification
and 1s even larger than that in the inner core (Fig. 7). The maximum value Cp averaged during 60—
102 h occurs near the radius of 60 km from the TC center, producing relatively large spray-mediated
latent heat flux in this region (Fig. 8). The increased spray-mediated latent flux in the outer region
is not beneficial for TC intensification.

It can be seen from Fig. 4 that the spray-mediated latent flux is generally smaller than 50 W
m~2 during the primary intensification stage. However, the difference in latent flux between spray

experiment and control experiment is even larger and could be over 100 W m 2 (Fig. 5), leading to
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considerable difference in TC intensification rate (Fig. 3). This suggests that other processes
associated with the Cp scheme may make positive feedback between spray and TC intensity. Many
studies have shown that the response of boundary layer dynamics to Cp is a fast process and plays
a significant role in affecting TC intensification (Kepert and Wang, 2001; Kepert 2017). Li & Wang
(2021a, b) found that Cp induced boundary layer inflow can determine the strength and radial
location of mass convergence and eyewall updraft. A larger Cp, thus greater surface friction,
corresponds to greater moisture convergence, providing faster moistening and organization of
convection. This contributes to the different effects of spray when the different Cp schemes are
used. During 60—102 h of the simulation with the WRF Cp scheme, Cp is maximum around the
RMW (Fig. 7), which is beneficial for the inward penetration of spray-mediated latent heat into the
inner core region. This leads to greater total latent heat flux and convection around the RMW (Fig.
Sa, Fig. 6a), making the stronger TC in WRF_SPY. However, in the experiments with the Donelan
Cp scheme, Cp is maximum outside the RMW (Fig. 7). This is beneficial for the moisture
convergence and spray mass flux at those radii. Smaller Cp near the RMW of 28 km is unfavorable
for the inward penetration of boundary layer inflow, giving rise to a tendency of increasing mass
and moisture convergence between the radii 28 km and 60 km. Furthermore, smaller Cp is
unfavorable for spray mass flux near the RMW. Compared with Donelan CTRL, considerable
spray-mediated latent heat flux, and thus convection, in Donelan_SPY is located slightly outside
of the RMW (Fig. 8b and Fig. 6b), which slows down the intensification rate of the simulated TC
in Donelan_SPY (Fig. 3b, Table 1). From Figs. 9c, d and Table 1, we also can see that the size of
the simulated TC in Donelan SPY expands outward relative to that in Donelan. CTRL. This is
consistent with the finding in Xu & Wang (2010).

Figure 10 compares the radius-height distributions of the azimuthal-mean radial wind, vertical
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motion, and inertial stability between experiments with and without spray effects. As a result of the
higher intensity of the TC in WRF_SPY, the radial inflow under the eyewall is about 1.9 m s~
(11%) stronger than that in WRF _CTRL, and the maximum upward motion in the eyewall is
enhanced by about 0.6 m s~ (35%). The inertial stability is also enhanced, which implied relatively
more rapid intensification rate of the TC because higher inner-core inertial stability indicates higher
efficiency of eyewall heating in spinning up tangential wind near the RMW (Schubert & Hack,
1982; Pendergrass & Willoughby, 2009). Consistent with the weaker TC in Donelan SPY, both
the radial inflow and upward motion are weaker (—10% and —8% respectively) between the radii
of 25 and 50 km than those in Donelan CTRL. However, there is an increase in radial inflow and
upward motion outside the eyewall between the radii of 60 and 90 km in Donelan_SPY, indicating
less penetrative of the boundary layer inflow into the eyewall region. This might be due to the
larger Cp outside the RMW, which induces more spray-mediated latent heat flux, promotes
boundary layer moisture and mass convergence, and hence enhances upward motion relative to
those in Donelan CTRL. As a result of the stronger moisture convergence and convection in the
region outside the RMW, the wind and hence the inertial stability are also enhanced as shown in
Fig. 10f. The increased inertial stability outside the RMW in turn may impedes inflow toward the
eyewall region, partially suppressing TC intensification in Donelan_SPY. This is because relatively
larger inertial stability outside the RMW has a greater resistance to the boundary layer inflow and
thus inhabits the intensification of the TC. Therefore, in addition to the difference in the radial
distribution of spray-mediated latent heat flux, the feedback from inertial stability may also partly
contribute to the different intensification rates of the simulated TC with spray effects using different
Cp schemes.

The above analysis indicates that during the primary intensification stage, because Cp is

16



381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

greater outside the RMW than that near the RMW with the Donelan Cp scheme, the larger spray-
mediated latent heat flux and stronger moisture convergence outside the RMW result in enhanced
convection outside the RMW and reduced intensification rate of the simulated TC relative to the
TC simulated without spray effect. In the meantime, the increased inflow outside the RMW also
leads to the increase in the local tangential wind and the inertial stability, which in turn can further
reduce the inward penetration of inflow into the eyewall region. This would also reduce the
intensification rate of the simulated TC. The opposite conditions apply to the simulations with the
WREF Cp scheme, leading to the more rapid intensification for the TC with spray effect than in the
simulation without the spray effect included.
3.2 Mature stage

Although the TC is not necessarily stronger after incorporating spray during the primary
intensification stage, the intensity of the TC with spray effect is consistently greater at mature stage
(144-192 h) than that without the spray effect (Fig. 3). The maximum TC intensities during the
mature stage in WRF_SPY and Donelan_SPY increase by 12% and 7%, respectively, relative to
their corresponding intensities in WRF _CTRL and Donelan CTRL. The greater final intensity of
the simulated TC with spray effect is consistent with the MPI theory, which predicts a proportion
of the maximum wind speed of the TC to the square root of Cg/Cp under the eyewall. Spray droplets
are injected into the air with the sea surface temperature, and some of which fall back into the sea
with the equilibrium temperature with the air. That means during suspending in the air, the spray
droplets release an appreciable sea-air enthalpy flux and act as a heating source of the TC boundary
layer, being comparable with a larger Ce. We can see from Fig. 11 that at mature stage the boundary
layer inflow, the eyewall convection and inertial stability in WRF_SPY and Donelan_SPY are all

enhanced in the inner-core region, compared with the corresponding variables in WRF _CTRL and
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Donelan CTRL, corresponding to the stronger TCs in the simulations with the sea spay effects.

! and hence

At mature stage in WRF_SPY, the wind speed outside the eyewall exceeds 30 m s~
Cp near the RMW and in the near-core environment are almost equal (Fig. 11). This indicates
considerable spray mass flux and thus spray-mediated latent heat flux both near and outside the
RMW. The increased latent heat flux outside the RMW due to spray evaporation is favorable for
convective activity outside the eyewall. As we can see from Fig. 11, compared with that in
WRF _CTRL, the inflow in WRF_SPY shows a larger local maximum in the boundary layer and
larger weak outflow above (Fig. 11a) with stronger upward motion between the radii of 60—100 km
(Fig. 11b). This implies more active spiral rainbands in the region. The enhanced inflow favors the
spinup of tangential wind and thus increase in inertial stability in the region (Fig. 11c). The
increased inertial stability favors the increase in boundary layer inflow in the outer core region.
Such an effect is beneficial to the outward expansion of both inflow and tangential wind and thus
the increase in the inner-core size of the simulated TC, as evident in Figs. 9a, b. As a result, in
addition to the higher TC intensity in experiment with spray effect using the WRF Cp scheme than
in the control experiment without considering the spray effect, the change of the TC size (RHW,
radii of hurricane force wind, > 32.7 m s™!) at the mature stage is also considerably larger (Fig. 9,
Table 1).

The radial distribution of Cp in the simulation with the Donelan scheme at the mature stage
shows a different distribution from that with the WRF scheme (Figs. 11a, d). Now Cp peaks in the
outer core region, relatively far away from the RMW at mature stage as inferred from the wind
speed dependence of Cp shown in Fig. 1. The larger Cp produces higher spray mass flux in
Donelan_SPY, and thus larger spray-mediated latent heat flux in the outer region beyond the radius

of 100 km from the TC center. In the region near the RMW, Cp is larger inside the RMW and lower
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outside the RMW (Fig. 11d). This leads to the increased spray mass flux and thus spray-mediated
latent heat flux inside the RMW but relative smaller spray-mediated latent heat flux outside the
RMW in the inner-core region within a radius of 90 km (Fig. 8b). This is unfavorable for the
outward expansion of tangential wind and the increase in the inner-core size of the simulated TC
(Xu & Wang, 2010). Although the increased Cp is also evident outside a radius of 100 km from the
TC center, the wind speed is often weaker and thus the spray-mediated latent heat flux becomes
relatively small with no evidence of any enhanced convective activity in the outer-core region
compared to the experiment without the spray effect included (Fig. 11e). This is also consistent
with the lack of any obvious outward expansion of the TC size compared with that in the simulation

in Donelan CTRL (Figs. 9c, d).

4. Summary and Discussion

The dependence of the sea spray effects on TC evolution on the surface drag coefficient
parameterization is investigated with two different Cp schemes using the WRF model. The first Cp
scheme is the one commonly used for TC simulations/predictions in the WRF model, namely Cp
increases linearly with 10-m wind speed in the low-wind regime (less than 30 m s') and is a
constant when wind speed is above 30 m s™!. The second Cp scheme is the one recently developed
by Donelan (2018), which is obtained based on laboratory experiments. In the Donelan scheme,
Cp increases with increasing 10-m wind speed in the low-wind regime (less than 30 m s™!) and
decreases with increasing 10-m wind speed when 10-m wind speed between 30 m s ™! and 60 m s,
and slightly increases again afterwards. The Version 12 of the Fairall spray scheme (1994) is used
to parameterize the spray processes.

In the experiments with the sea spray effect, the spray-mediated sensible heat flux is positive

inside the RMW and negative outside the RMW. Spray droplets release sensible heat due to the
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temperature difference between the initial droplet temperature and the surrounding air temperature.
On the other hand, the evaporation of spray droplets absorbs sensible heat from the surrounding air.
In the inner-core region, only a small portion of spray mass evaporates, and hence the net sensible
heat flux is positive. However, in the outer region, higher proportion of mass evaporates and the
sensible heat released by spray droplets cannot offset the sensible heat absorbed by evaporation.
As spray droplets evaporate at all radii, the spray-mediated latent heat flux is always positive. As a
result, for a mature TC, the additional spray-mediated latent heat may result in an increase in the
total surface enthalpy flux, which can lead to an increase in the maximum TC intensity, as predicted
by the MPI theory. This explains why the simulated TCs at the mature stage are stronger in the
experiments with the spray effects included than those in the corresponding experiments without
spray effects regardless which surface drag coefficient scheme is used.

However, during the primary intensification stage, sea spray may either enhance or reduce the
intensification rate of the simulated TC depending on the Cp scheme used (Fig.3, Table 1). This is
because the different dependence of Cp on near-surface wind speed can result in spray mass flux,
which depends on the near-surface wind speed. Such a dependence can lead to the difference in the
radial distribution of Cp, and thus the spray mass flux and the spray-mediated latent heat flux. In
the Donelan scheme, Cp is maximum outside the RMW, which produces relatively large spray-
mediated latent heat flux well outside the RMW. The larger Cp outside the RMW is also
unfavorable for the inward penetration of the spray-mediated latent heat, giving rise to a tendency
of increasing mass and moisture convergence outside the RMW and thus the reduced intensification
rate compared to the experiment without the spray effects included. On the contrary, in the WRF

1

default scheme, Cp is a constant when the near-surface wind speed is over 30 m s™* and is greater

near the RMW. This leads to large spray mass flux and thus the spray-mediated latent heat flux
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around the RMW. The larger Cp around the RMW is also beneficial for the inward penetration of
spray-mediated latent heat. As a result, the intensification rate of the TC simulated with the spray
effects is larger than that without the spray effects included in the WRF Cp scheme (Fig.3, Table
1).

Sea spray also affects the inner-core size change of the simulated TC. This is because sea
spray can modify the radial distribution of latent heat flux, depending on the spray mass flux, which
is a function of surface wind stress partly affected by the wind speed dependence of Cp. When Cp
is greater near the RMW, more spray droplets would be generated under the eyewall and thus
enhances surface latent heat flux, and larger Cp is also beneficial for the inward penetration of
spray-mediated latent heat into the RMW. These may contribute to the contraction of the RMW of
the TC and hence insignificant outward expansion of the TC inner-core size, such as in the primary
intensification stage in WRF_SPY and in the mature stage in Donelan_SPY. However, during the
primary intensification stage in Donelan_SPY and the mature stage in WRF_SPY, Cp is relatively
greater outside the RMW. This produces considerable sea spray mass flux and the associated spray-
mediated latent heat flux, contributing to the enhanced boundary layer inflow spinning up of
tangential wind and the increase in inertial stability outside the eyewall. The positive feedback
between the inertial stability and the outward expansion of tangential wind further enhances
convection outside the eyewall. This would lead to the inner-core size increase. This is more
pronounced during the later intensification stage and during the mature stage in WRF_SPY.
Therefore, our results suggest that different Cp schemes can induce difference in the radial
distribution of sea spray mass flux and spray-mediated latent heat flux and thus the size change of
TCs, in support the findings of Xu & Wang (2010). The detailed eftects, however, may differ during

different stages of TC development because Cp often depends on near-surface wind speed and thus
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the TC intensity.

Results from this study also indicate that in addition to how much sea spray is generated and
its mediated enthalpy flux, the radial distribution resulting from the dependence of sea spray mass
flux on surface wind stress and thus surface drag coefficient scheme is also important when the
effect of sea spray on TC evolution is incorporated in numerical models used for simulating and
predicting TCs. Indeed, the simulated TC intensity and size change in response to the sea spray
effects differ during different stages of the TC development, which is shown to result from the
different dependence of surface drag coefficient on near-surface wind speed. Therefore, our results
demonstrate that caution needs to be given to the surface drag parameterization when the sea spray
effects on TC evolution is studied and discussed using numerical sensitivity experiments. Note that
in addition to the surface drag coefficient, the TC structure and environmental conditions may also
modify the radial distribution of spray mass flux and the related spray-mediated enthalpy flux under
TC conditions. These needs to be further investigated in future work.

Finally, it should be pointed out that in this study we have only considered the direct effect of
sea spray caused by using different Cp schemes, which only control the energy inputted by breaking
waves through Eq. (5) and thus the spray mass flux through Eq. (4). In addition to Cp, spray mass
flux is also largely controlled by the properties of the breaking waves. In the sea spray
parameterization we used, both the significant wave height and the phase speed of breaking waves
are parameterized as a function of wind speed, which is independent of Cp. This means that the
possible coupling between Cp and breaking waves is not included in the current spray
parameterization. In this sense, in terms of the sensitivity of spray effect on the simulated TCs to
Cp is incomplete. To fully address the issue, a coupled ocean-atmosphere-wave-spray model should

be developed and used. This can be a topic for a future study. Nevertheless, results from this study
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have demonstrated the importance of Cp scheme to the parameterized spray effect on the simulated
TC evolution. Large uncertainties exist in the parameterized sea spray source function and spray
properties, including the spray size distribution. Therefore, efforts to measure spray properties
under TC conditions should be conducted to provide data for validation and improvements of

current spray parameterization scheme in future studies.
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List of Tables

Table 1. Summary of the numerical experiments performed in this study, the mean intensification
rate (IR, m s' h™!) during the primary intensification stage (60—102h), the steady-state (144—-192h)
mean intensity, and the stage-means of the size parameters (RMW—the radius of maximum wind

and ARHW-change of the radius of hurricane force wind).

Co Spray 60-102 h 144-192 h
scheme IR RMW  ARHW Intensity RMW  ARHW
(ms'h!)  (km) (kmh') (ms!) (km) (km h™)
WRF_CTRL WRF No 0.47 30.7 0.66 56.0 472 0.72
WRF_SPY WRF Yes 0.54 27.5 0.48 63.0 42.9 0.94
Donelan CTRL ~ Donelan No 0.62 28.1 0.54 66.7 44.0 0.57
Donelan SPY  Donelan Yes 0.57 29.2 0.59 75.1 38.5 0.37
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Figure 1. The dependence of surface drag coefficient (Cp) on surface wind speed for the default

scheme for TC simulations in the WRF model (orange) and for the Donelan scheme (Donelan 2018,

blue), respectively.
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Figure 2. Time series of (a) maximum surface wind speed (m s ') and (b) minimum sea level

pressure (hPa) of the simulated TCs in experiments without the sea spray effects with the WRF Cp

scheme (orange) and the Donelan Cp scheme (blue), respectively. The two stages (primary

intensification and mature stages) are marked with gray shadings.
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Figure 3. The time evolution of maximum 10-m wind speed (m s ') in experiments with (blue) and

without (orange) the sea spray effects (a) with the WRF Cp scheme (WRF_CTRL and WRF_SPY)

and (b) with the Donelan Cp scheme (Donelan CTRL and Donelan_SPY). The two stages (primary

intensification and mature stages) are marked with gray shadings.
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698  Figure 4. Spray-mediated (a) sensible heat and (b) latent heat fluxes (W m2) during the primary
699 intensification stage (60—102 h) with the WRF Cp scheme (blue) and the Donelan Cp scheme

700  (orange), respectively.
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702 Figure 5. Radius-time cross-section of the difference in the azimuthal-mean latent heat flux (W m™2,
703  shading) between experiments with and without the spray effects using (a) the WRF Cp scheme
704 and (b) the Donelan Cp scheme. Solid curves mark the RMW in the reference control experiments
705  without the spray effects. The two stages (primary intensification and mature stages) are marked
706  with gray lines.
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Figure 6. Radius-time cross-sections of the differences in the azimuthal-mean vertical velocity at

the height of 2.3 km between experiments with and without the spray effects (m s

, shading) using
(a) the WRF Cp scheme and (b) the Donelan Cp scheme. Solid curves mark the RMW in the
reference control experiments without the spray effects. The two stages (primary intensification

and mature stages) are marked with gray lines.
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715  Figure 7. The radial distribution of averaged Cp during primary intensification stage (60—102 h)

716 with WRF Cp scheme (blue) and Donelan Cp scheme (orange).
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718  Figure 8. Radius-time cross-sections of the spray-mediated latent heat flux (W m ™2, shading) in
719  the experiments with spray effects using (a) the WRF Cp scheme and (b) the Donelan Cp scheme.
720 Solid curves mark the RMW in experiments. The two stages (primary intensification and mature
721  stages) are marked with gray lines.
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Figure 9. Hovmdller diagram of the azimuthal-mean tangential wind speed (m s™!) at the lowest
model level from experiments: (a) WRF_CTRL, (b) WRF_SPY, (c) Donelan CTRL, and (d)
Donelan_SPY. The two stages (primary intensification and mature stages) are marked with gray

lines.
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Figure 10. The differences in the azimuthal-mean radial inflow (m, s™!, a and d), vertical motion
(m s!, b and e) and inertial stability (s!, ¢ and f) averaged during 60-102 h simulation period
between the experiment with and without the sea spray effects with the use of the WRF Cp scheme
(a-c) and of the Donelan Cp scheme (d-f). Solid curves indicate the radial distribution of Cp (107°)

in the corresponding control experiments. Right Y axis shows the values of Cp.
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734  Figure 11. The same as in Fig. 10, but averaged between 144—192 h during the mature stage of the
735  simulations.
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