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We report the first observation of the quantum Joule-Thomson (JT) effect in ideal and unitary Fermi
gases. We study the temperature dynamics of these systems while they undergo an energy-per-particle
conserving rarefaction. For scale-invariant systems, whose equations of state satisfy the relation U ∝ PV,
this rarefaction conserves the specific enthalpy, which makes it thermodynamically equivalent to a JT
throttling process. We observe JT heating in an ideal Fermi gas, a direct consequence of Pauli blocking. In a
unitary Fermi gas, we observe that the JT heating is marginal in the temperature range 0.2≲ T=TF ≲ 0.8 as
the repulsive quantum-statistical effect is lessened by the attractive interparticle interactions.
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The Joule-Thomson (JT) effect is a fundamental phe-
nomenon in thermodynamics whereby the temperature T of
a thermally isolated system changes in response to a
decrease of the pressure P while the specific enthalpy h
is conserved. This effect has played a momentous role in
the history of thermodynamics [1] and the birth of modern
cryogenics [2]. In its own right, the JT effect has attracted
interest as a probe of the thermodynamics of imperfect (i.e.
interacting) gases [3,4] and, more recently, in relation to
black hole expansion dynamics [5–7].
In classical gases, the JT effect is tied to interparticle

interactions. This can be illustrated with a simple equation
of state (EOS) PV ¼ NkBT þ aintN

2=V, i.e., the Van der
Waals EOS without the excluded-volume effect; N is the
number of particles, V is the volume, and aint is an
interaction parameter that is positive for repulsive inter-
actions and negative for attractive ones. In the limit of weak
interactions (aintN=V ≪ kBT), the Joule-Thomson coeffi-
cient μJT ≡ ð∂T=∂PÞh is μJT ∝ −aint=cP in this model
(cP > 0 is the specific heat); thus the system heats
(respectively cools) in the case of repulsive (respectively
attractive) interactions.
Surprisingly, the JT effect does not require interactions.

Indeed, shortly after the discovery of quantum indistin-
guishability, it was predicted that quantum correlations give
rise to a nontrivial JT effect even in the absence of
interactions [8]; in essence, Bose-Einstein particles would
behave as if they were classically attracting and Fermi-
Dirac particles as if they were repelling. The opposite
nature of these respective quantum JTeffects originate from
profoundly different microscopic physics: at low temper-
atures, the former is driven by the Bose saturation of the
single-particle excited states [9], while the latter, by Fermi
hole heating [10]. Despite being a fundamental prediction
of quantum statistical mechanics, only recently has the

bosonic JT effect been observed [11], whereas the fer-
mionic one has remained elusive.
In this work we measure the JT effect in Fermi systems.

In the textbook presentation of the JT process, a gas is
throttled through a porous plug from a high-P to a low-P
compartment [see sketch in Fig. 1(a)]. In our experiment,
we realize a JT rarefaction either by exploiting collisions
with high-energy particles from the residual background
gas (in the vacuum chamber) or by controllably transferring
atoms into internal states that are essentially not interacting
with the states of interest [Fig. 1(b)]. In either case, the loss
process is independent of the energy per particle u ¼ U=N
where U is the total internal energy. For a scale-invariant
gas, whose EOS satisfies U ∝ PV, this process is thermo-
dynamically equivalent to a JT one.
We first focus on the JT effect in the ideal Fermi gas. We

prepare weakly interacting spin-1=2 Fermi gases of 6Li
atoms in a balanced mixture of the first and third lowest
Zeeman sublevels (respectively labeled j1i and j3i). Our
gases are confined in optical boxes so that their density and
other thermodynamics quantities are spatially uniform,
making the interpretation of our measurements straightfor-
ward [12,13]. Our cylindrical boxes have a radius R ¼
77ð2Þ μm and an adjustable length L between 58 μm and
120 μm [see an example of a box in Figs. 1(b) and 1(c)].
The samples are evaporated at a bias magnetic field
B ¼ 287 G, where the s-wave scattering length is a ≈

−880a0 (a0 is the Bohr radius). The B field is then ramped
to its final value, where levitation against gravity is done
with a magnetic field gradient; the difference of magnetic
moments of the trapped states used in this work (<0.8%) is
negligible for our experimental parameters. We typically
start our experiments with a degenerate spin-1=2 Fermi gas,
T ≲ EF=kB (where EF¼ℏ

2=ð2mÞð6π2N=VÞ2=3 is the Fermi
energy); henceforth, all thermodynamic quantities (such
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as U, N, etc.) are defined for each spin population. We
typically have N1 ≈ N3 ≈ 8 × 105, corresponding to a
Fermi temperature of TF ¼ EF=kB ≈ 300 nK.
We take advantage of the slow one-body losses due to

collisions with the background gas to realize u-constant
rarefactions [Fig. 2(a)], as in [11]. Here, the tunability of
interparticle interactions is important as the interactions
must obey conflicting requirements. On the one hand,
interactions must be weak enough so that we probe
essentially ideal gas physics and that PV ≈ ð2=3ÞU; fur-
thermore, two-body energy-dependent evaporation must be
suppressed on the (long) timescale of the measurements.
On the other hand, interactions must be strong enough to
ensure that the gas is in thermal equilibrium when the
measurements are done.
Consequently, we satisfy those conditions by choosing

the final value of B such that a is in the range
100a0 ≲ a≲ 220a0. The specific value is picked as large
as possible, while ensuring that the decay time is indis-
tinguishable from the vacuum-limited lifetime. In Fig. 2(b),
we show examples of decays at various quantum degen-
eracies (colored diamonds); each data set is normalized to
the initial atom number Ni. The lifetimes in those data
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FIG. 1. Joule-Thomson rarefaction of a homogeneousFermi gas.
(a) Classic throttling process. A thermally isolated gas is forced
from a high pressure chamber (left) to a low pressure one (right).
(b) JT process through a rarefaction at fixed energy per particle u
and volume V; Ni is the initial particle number. The images to the
left of the cartoons are in situ optical density (OD) images of
homogeneous Fermi gases of 6Li atoms, before (left, purple) and
after (right, green) rarefaction. (c) Cuts along thewhite dotted lines
on theOD images. The solid lines are fits to extract the box volume.
The length and radius of this cylindrical box areL ¼ 58ð1Þ μmand
R ¼ 77ð2Þ μm, and remain essentially unchanged during rarefac-
tion (see vertical dashed gray lines as guides to the eye, located at
the same positions between the left and right panels). The density
cuts are colored according to panel (b).

FIG. 2. Joule-Thomson effect of the ideal Fermi gas. (a) Sketch
of an energy-independent atom loss due to collisions with high-
energy background particles (red empty circle). (b) Decay of a
noninteracting Fermi gas (black circles) and weakly interacting
Fermi gases (colored diamonds) at different initial T=TF (see
legend). The solid lines are exponential fits. The samemarker color
is used in (c) and (d). (c) Azimuthally averaged radial momentum
distribution of Fermi gases extracted from column integrated OD
after a time-of-flight expansion of duration tTOF. The distributions
are normalized such that

R

ñðkr=kFÞð2πkr=kFÞdðkr=kFÞ¼1; here

kr¼m
ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2þz2
p

=ðℏtTOFÞ and kF is the Fermi wave number. The
distributions correspond to the initial points in (b). The solid lines
are fits to Fermi-Dirac distributions to extract temperatures. The
black dashed line shows the momentum distribution at T ¼ 0.
(d) Temperature evolution of weakly interacting Fermi gases
during a JT rarefaction. The solid lines are theoretical predictions
fixing ðT=TFÞi to the experimentally measured values, with the
(barely visible) bands representing the uncertainty on ðT=TFÞi.
The dashed lines take into account the effect of technical heating in
the box (see text and [14]). The dotted lines show the evolution of
T=TF at constant T. (e) Sketch of Fermi hole heating at T ≪ TF.
The blue (respectively brown) point represents a particle whose
removal causes no temperature change (respectively causes heat-
ing). (f) Quantum-statistical interaction potential Uq of ideal
quantum gases in the high-T limit.
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series are indistinguishable from that of a noninteracting
gas (jaj ≤ 50a0), τvac ¼ 55ð2Þ s (see the black circles, the
vacuum-limited lifetime in our chamber). At the same time,
the two-body elastic collision rate is in the appropriate
regime Γel ≫ 1=τvac (in our range of densities and temper-
atures, Γel ≥ 0.17 s−1). Furthermore, for our regime of
interactions and temperatures, h changes less than 0.01%
during the decay, making this rarefaction an excellent
approximation of a JT process [14].
We perform thermometry using time-of-flight expan-

sions (see Appendix A and [14]). We show in Fig. 2(c)
the momentum distributions for two initial conditions
ðT=TFÞi ¼ 0.27ð3Þ (blue) and ðT=TFÞi ¼ 0.61ð4Þ (red).
In Fig. 2(d), we show the temperature dynamics of the
gas during rarefaction for these two cases; we plot T=TF

versus N=Ni, where the instantaneous TF decreases
as the gas rarefies. The dotted lines correspond to
T=TF ∝ ðN=NiÞ

−2=3, the expectation for constant-T rar-
efactions. The measurements show heating, and the main
qualitative feature is that the heating is more pronounced
for a more quantum-degenerate gas, i.e., the fractional
change of T is larger at low T=TF for the same decrease
of N=Ni.
Quantitatively, we describe the temperature dynamics

during this JT process using the dimensionless coefficient
θJT ≡ ½∂ logðTÞ=∂ logðPÞ�h. This coefficient is related to the
JT coefficient: μJT ¼ ðT=PÞθJT. For a homogeneous gas
whose EOS is universal, i.e. for which Pλ3T=ðkBTÞ only
depends on the chemical potential μ and kBT via the
ratio μ=ðkBTÞ, θJT is a function of T=TF alone (λT is the
thermal wavelength). The evolution of T=TF follows
½∂ logðT=TFÞ=∂ logðNÞ�h ¼ θJT − 2=3 [14]. In Fig. 2(d),
the solid lines are the theoretical predictions derived from
the EOS of the ideal Fermi gas (where ðT=TFÞi is fixed
to the experimental value). We find good agreement with
the data. The small discrepancy is well accounted for
by a weak technical heating in our box; the dashed lines
show the theoretical predictions from the model
dlogðT=TFÞ=dlogðNÞ¼ ðθJT−2=3Þð1þð3=2Þγtechτvac=uÞ,
where our heating rate γtech ¼ 0.58ð7ÞkB × nK=s is char-
acterized independently [14].
In the low- and high-T limits, simple pictures provide

insights into the microscopic origin of the JT effect.
First, for T ≪ TF, the state of the gas is essentially a
Fermi sea [Fig. 2(e)]. In that case, the average energy per
particle lost in a random (energy-independent) removal is
only uloss ≈ ð3=5ÞEF; the energy per particle that needs
to be removed to keep the temperature constant,
uT ≡ ð∂U=∂NÞT;V , is uT ≈ EF. As a result, the system
heats up, a process referred to as Fermi hole heating [10].
The interpretation of quantum correlations as

statistical “forces” demystifies the quantum JT effect in
the T ≫ TF limit. For that purpose, it is useful to con-
sider the pair density correlation function Gðr1; r2Þ≡
hΨ†ðr1ÞΨ

†ðr2ÞΨðr2ÞΨðr1Þi=½nðr1Þnðr2Þ�, where Ψ†ðrjÞ

(ΨðrjÞ) is the field operator that creates (annihilates) a

particle at position rj, and nðrjÞ≡ hΨ†ðrjÞΨðrjÞi. For an
ideal homogeneous gas in the high-T (virial) limit,
Gðr1;r2Þ¼GðrÞ≈1þηexpð−2πr2=λ2TÞ, where r¼jr1−r2j,
η ¼ 1 for bosons and η ¼ −1 for fermions (η ¼ 0 for the
classical ideal gas) [20]. For a dilute classical gas,
GðrÞ ≈ exp½−UintðrÞ=ðkBTÞ�, where UintðrÞ is the interpar-
ticle interaction potential. By analogy, one can define an
effective quantum-statistical interaction between indistin-
guishable noninteracting particles, UqðrÞ≡ −kBT logGðrÞ
[21,22]. The potential UqðrÞ is shown as yellow and
purple lines in Fig. 2(f); as intuitively expected, fermions
effectively “repel” while bosons “attract” each other.
Furthermore, the signs of their quantum JT coefficients
are consistent with their respective quantum-statistical
interaction [14,23].
We now turn to the unitary Fermi gas, for which 1=a ¼ 0.

Crucially, because PV − ð2=3ÞU ∝ I=a, where I is Tan’s
contact [24], the universal relation PV ¼ ð2=3ÞU also holds
for the unitary gas. This makes the unitary case another
special point in the BEC-BCS crossover [25] for which a
u-constant rarefaction is also a JT process. We create a
unitary gas by preparing a spin-balancedmixture of atoms in
states j1i and j3i that is evaporatively cooled and loaded into
the optical box atB ≈ 796 G. The field is then ramped to the
Feshbach resonance, B ≈ 690 G. At this stage we typically
have N1 ≈ N3 ≈ 3 × 105 at T=TF ≈ 0.2 (slightly above the
superfluid transition temperature Tc [25]).
Just as in the ideal gas case, the two main ingredients to

observe the JT effect in this setting are the realization of a
u-constant rarefaction and a thermometry method. Both
present new challenges compared to the weakly interact-
ing case.
As the collision rate in the unitary gas is so high (typically

Γuni
el ≥ 500 s−1 in our case), the evaporation rate is vastly

higher than in the weakly interacting case, threatening the JT
nature of the rarefaction. In our deepest box (Ubox ≳ 8EF),
the lifetime of our unitary gas is τuni ≈ 30 s, close to but a
little shorter than τvac [26] (possibly limited by a slow
residual evaporation). To mitigate this issue, we artificially
increase the u-independent “loss” rate by applying a weak
two-tonemicrowave pulse of duration tμw to transfer atoms to
higher Zeeman sublevels [see Appendix B and Fig. 3(a)].
Measuring the number of atoms remaining in j1i and j3i,
we find exponential decays with respective characteristic
times τμw ¼ 0.33ð1Þ s and τμw ¼ 0.35ð1Þ s [pink and blue
diamonds in Fig. 3(b)]. This timescale is such that
τuni ≫ τμw ≫ 1=Γuni

el , i.e. the microwave-induced rarefac-
tion is slow compared to the elastic collision rate so that
the gas remains in thermal equilibrium, but fast enough so
that energy-dependent losses are negligible. We validate
our microwave-induced rarefaction method on the now-
verified case of the weakly interacting gas; the effect of
the technical heating is now negligible because the
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timescale of the microwave-induced rarefaction is short,
see [14].
For thermometry, we use radio-frequency (rf) spectros-

copy and compare it to the calibrated spectra for the unitary
gas as a function of temperature measured at MIT [28,29].

We transfer atoms from state j1i to state j2i and measure
the transferred fraction as a function of ω, the detuning
frequency relative to the bare j1i → j2i transition fre-
quency (see Appendix C and [14]). Specifically, we extract
the temperature from the peak response frequency
Ep ≡ −ℏωp, whose magnitude decreases monotonically
with increasing T=TF [28].
We first verify that without microwave transfers and

on the timescale of the experiment, evaporation and
other T dynamics are negligible. We measure the initial
rf spectrum of the gas [green diamonds in Fig. 3(c)] and
after a hold of 0.7 s (black diamonds), without microwave
field. The spectra are essentially identical; quantitatively,
we extract T=TF ¼ 0.24þ7

−8
and T=TF ¼ 0.23þ7

−8
from Ep ¼

−0.59ð2ÞEF and Ep ¼ −0.61ð2ÞEF, respectively.
When the microwave induces rarefaction, the rf spectra

significantly change [see magenta diamonds in Fig. 3(c),
corresponding to a rarefaction of N=Ni ¼ 0.28ð6Þ]. In fact,
we observe that the magnitude of Ep=EF continuously
decreases with rarefaction [upper panel of Fig. 3(d)],
indicating qualitatively that the quantum degeneracy
decreases. In the lower panel of Fig. 3(d) we show the
evolution of T=TF in a unitary-gas JT process. For an initial
condition ðT=TFÞi ¼ 0.24þ7

−8
(blue diamonds), the data

show that the unitary gas experiences a less pronounced
heating compared to the ideal Fermi gas (purple dash-
dotted line); the data are in very good agreement with the
prediction based on the experimentally measured EOS
(blue solid line) [27]. The band represents the uncertainty
window arising from the uncertainty in ðT=TFÞi. We took
an additional data set at a lower initial degeneracy,
corresponding to ðT=TFÞi ¼ 0.35ð4Þ, and observe weaker
heating (see [14] for details).
Despite the theoretical challenge in describing the

strongly interacting Fermi gas, its JT effect is relatively
simple to interpret in both the low-T (T ≪ Tc) and high-T
(T ≫ TF) limits. In the low-T limit, the unitary gas should
exhibit a strong JT heating as θJT ∝ −ðT=TFÞ

−4 (which
originates from both its nonvanishing ground state energy
in the thermodynamic limit and its low-lying phononic
excitations [30]). In the high-T limit, the unitary gas
exhibits an effective interaction [∝ − logGðrÞ] that is
attractive [31]; it should thus cool during a JT process
[14], akin to the ideal Bose gas. From the EOS, we expect
that there exists an inversion temperature, i.e. the temper-
ature at which the JT effect changes from heating to
cooling, at T inv ≈ 0.9TF. In the intermediate range of
T=TF explored in this work, we observe weak heating,
in between the expectations for the ideal Bose and Fermi
gases [yellow and purple dot-dashed lines in Fig. 3(d)].
In conclusion, we realized JT processes in the essentially

ideal Fermi gas and the unitary Fermi gas by exploiting
scale invariance and implementing u-constant rarefactions.
In the range of temperature explored, we observed JT
heating in both cases and the effect is lessened when the
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FIG. 3. Joule-Thomson effect of the unitary Fermi gas.
(a) Breit-Rabi diagram of the ground state manifold of 6Li
(sketch not to scale). Solid (open) symbols represent the initial
(final) states of the microwave transfer. (b) Microwave-driven
decay of a unitary Fermi gas. Pink and blue diamonds are the
populations in states j1i and j3i respectively. The black empty
diamond shows the reference decay without microwave field.
(c) Radio-frequency (rf) thermometry. The cartoon shows the
internal states used in the rf spectroscopy: the gas, initially in a
balanced mixture of j1i–j3i, is driven on the transition j1i → j2i;
the states that are imaged are marked with the lightning symbols.
Green and magenta diamonds are the spectra at tμw ¼ 0 s and
tμw ¼ 0.5 s, and black diamonds correspond to the spectrum after
0.7 s no-microwave hold. Dot-dashed vertical lines mark the peak
response. (d) Degeneracy of a unitary Fermi gas during isen-
thalpic rarefaction. The peak frequency response Ep and T=TF are
shown along the rarefaction N=N i, respectively in the upper and
lower panel. The green and magenta diamonds correspond to the
spectra in (c). The blue solid line is the prediction based on the
EOS [27], fixing ðT=TFÞi to the experimental values. The blue
band is the uncertainty arising from the uncertainty on ðT=TFÞi.
The dotted line shows the evolution of T=TF at constant T. The
purple (respectively yellow) dot-dashed line is the theoretical
temperature evolution of an ideal Fermi (respectively Bose) gas
during JT process; TF is defined with the density of the
corresponding (Bose or Fermi) gas.
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repulsive quantum-statistical force is either weakened by
the loss of degeneracy or counterbalanced by attractive
interparticle forces.
In the future, it would be interesting to study the JT effect

in other many-body platforms, such as dipolar gases [32],
low-dimensional gases, and Hubbard systems [33,34]. The
JT effect can encode interesting physics such as complex
P-T diagrams delineated by boundaries called inversion
curves—where μJT changes sign [35]. These diagrams are
essentially unknown for strongly correlated quantum sys-
tems and they could provide valuable new information in
settings where the interplay between interactions and
quantum statistics is essential.
More specifically, it would be interesting to extend the

study of the JT effect to the BEC-BCS crossover, where one
expects a continuous transition from bosonic to fermionic
behavior. It would be particularly intriguing to understand
how the sign change of the JT effect at low T relates to the
transition point where the nature of the single-particle
excitations turns from bosonic to fermionic in the crossover
(i.e. where μð1=kFaÞ ¼ 0) [25]. While the absence of scale
invariance poses interesting experimental challenges on
how to realize a JT process in that system, the JT coefficient
could also be extracted from the isothermal compressibility
[14,27,36].
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Appendix A: Time-of-flight thermometry of a weakly

interacting Fermi gas.—In our experiment, the gas
parameter is small, kFa ≤ 0.02, so interaction effects in
flight are weak, i.e., the flights are essentially ballistic.
Furthermore, kFa is low enough so that interactions do
not appreciably affect the in situ momentum distribution
[14]; thermometry can thus be done as if the samples
were noninteracting.

Appendix B: Microwave transfer.—We use a
microwave field to transfer atoms from state j1i to j6i,
and from state j3i to j4i, where jji is the Zeeman
sublevel labeled from the ground up (j ¼ 1;…; 6), see
Fig. 3(a). The interactions of atoms in the final states
with those in the initial states are very weak [37]. While
the outcoupled states j4i–j6i could inelastically collide
and decay into either j2i–j6i or j1i–j5i [38], we see no
evidence of deposited energy as a result of such
processes. Furthermore, the absorption of the microwave
photons is independent of the atoms’ energy because the

Doppler effect is negligible. The powers of the tones are
adjusted so that the transfer rates on the two transitions
are the same.

Appendix C: Radio-frequency (rf) thermometry of a

unitary Fermi gas.—We apply a tpulse ¼ 2.5 ms square
rf pulse with a (single-particle) Rabi frequency Ω0 ¼
2π × 139ð1Þ Hz to transfer a small fraction of atoms
(≤15%) from state j1i to state j2i. The normalized
response spectrum, Iðℏω=EFÞ ¼ ðN2=N1ÞEF=ðℏΩ

2

0
tpulseÞ

is temperature dependent (N1 and N2 are measured before
and after the pulse, respectively). The bare j1i → j2i
transition frequency is calibrated using a fully polarized
sample prepared in state j1i [14].
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