

The effect of initial vortex asymmetric structure on tropical cyclone intensity change in response to an imposed environmental vertical wind shear

Qi Gao^{a,b} and Yuqing Wang^c

^aDepartment of Atmospheric and Ocean Sciences, Institute of Atmospheric Sciences,
Fudan University, Shanghai, China

^bState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China
Meteorological Administration, Beijing, China

^cInternational Pacific Research Center and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, USA

10 August 2, 2023 (revised)

11 Dateline

12 Key Points:

- 13 ● The initial asymmetric structure in a TC vortex can either enhance or suppress the TC
14 weakening induced by an imposed environmental VWS.
- 15 ● If the initial asymmetric structure is in phase with the VWS-induced asymmetric structure, the
16 TC weakening would be enhanced and vice versa.
- 17 ● The TC asymmetric structure should be better observed in real time and realistically represented
18 in numerical weather prediction models.

19 Resubmitted to *Geophysical Research Letters*

20 **Corresponding author:** Yuqing Wang, yuqing@hawaii.edu

Abstract

22 Previous studies have investigated how the environmental vertical wind shear (VWS) may
23 trigger the asymmetric structure in an initially axisymmetric tropical cyclone (TC) vortex and how
24 TC intensity changes in response. In this study, the possible effect of the initial vortex asymmetric
25 structure on the TC intensity change in response to an imposed environmental VWS is investigated
26 based on idealized full-physics model simulations. Results show that the effect of the asymmetric
27 structure in the initial TC vortex can either enhance or suppress the initial weakening of the TC in
28 response to the imposed environmental VWS. When the initial asymmetric structure is in phase of
29 the VWS-induced asymmetric structure, the TC weakening will be enhanced and vice versa. Our
30 finding calls for realistic representation of initial TC asymmetric structure in numerical weather
31 prediction models and observations to better resolve the asymmetric structure in TCs.

Plain language summary

33 Although a strong tropical cyclone (TC) is often treated as an axisymmetric vortex in most
34 theoretical studies, asymmetric structure always exists in a TC in nature, such as that generated by
35 the environmental vertical wind shear (VWS). However, it is unclear whether and how the
36 asymmetric structure in the initial TC vortex may affect the TC intensity change in response to an
37 imposed environmental VWS. This has been addressed in this study by conducting idealized high-
38 resolution numerical simulations. Results show that the asymmetric structure in the initial TC
39 vortex can either enhance or suppress the initial weakening of the TC in response to an imposed
40 environmental VWS depending on how the initial asymmetry is aligned with the asymmetry
41 induced by the VWS. If they are in phase, the TC weakening would be enhanced and vice versa.
42 Our finding highlights the importance of realistically representing the asymmetric structure in the
43 initial TC vortex in numerical weather prediction models for TC forecasts and also the need to
44 better resolve the TC asymmetric structure in observations.

46 **1. Introduction**

47 A strong tropical cyclone (TC) is often considered to be quasi-axisymmetric with relatively
48 weak embedded asymmetric structure, therefore, it is common to assume a TC as an axisymmetric
49 vortex in previous theoretical and numerical modeling studies on TC intensification and maximum
50 potential intensity (e.g., Ooyama, 1969; Emanuel, 1986, 2012; Rotunno & Emanuel, 1987; Bryan
51 & Rotunno, 2009a, b; Li et al., 2019, 2020, 2021, 2022; Wang et al., 2021a, b, 2023). Furthermore,
52 our current understanding on TC development has also been largely based on the axisymmetric
53 processes, such as the conditional instability of the second kind (CISK), the wind-induced surface
54 heat exchange (WISHE), and the balanced TC vortex dynamics (Charney & Eliassen, 1964;
55 Ooyama, 1969; Schubert & Hack, 1982; Emanuel et al., 2004; Wang & Wu, 2004), although the
56 asymmetric processes may play critical roles in TCs (e.g., Montgomery et al., 2006; Nolan et al.,
57 2007; Montgomery & Smith, 2014).

58 Asymmetric structures in a TC are often unfavorable for TC intensification. One example is
59 asymmetry caused by TC internal dynamics, such as vortex Rossby waves and mesovortices in the
60 eyewall, which play some roles in limiting TC intensity by eddy mixing across the eyewall or
61 affecting the slope of the eyewall ascent (Wang, 2002a, b, 2007, 2009; Yang et al., 2007; Persing
62 et al., 2013). The asymmetric structure in a TC can also be induced by external environmental
63 forcing. One of such examples is the environmental vertical wind shear (VWS, Jones, 1995; Wang
64 & Holland, 1996a; Frank & Ritchie, 2001; Li et al., 2008, 2017; Xu & Wang, 2013; Gu et al., 2018;
65 Li et al., 2017; Li & Dai, 2019; Fu et al., 2019; Gao et al., 2020). The VWS could perturb the
66 thermal wind balance of the TC and cause the vertical tilt of the TC vortex, leading to the
67 asymmetric vertical motion in the eyewall (Jones, 1995; Wang & Holland, 1996a; Frank & Ritchie,
68 2001; Xu & Wang, 2013). Environmental VWS can also trigger the development of outer spiral
69 rainbands mainly in the downshear quadrants (Heymsfield et al. 2006; Riemer & Montgomery,
70 2011; Li et al., 2017). In addition, different directions of environmental VWS may have different
71 impacts on TC intensity changes (He et al., 2015; Gu et al., 2019). Zeng et al. (2010) found that for
72 similar VWS magnitudes, an easterly VWS was preferable to a westerly VWS for TC

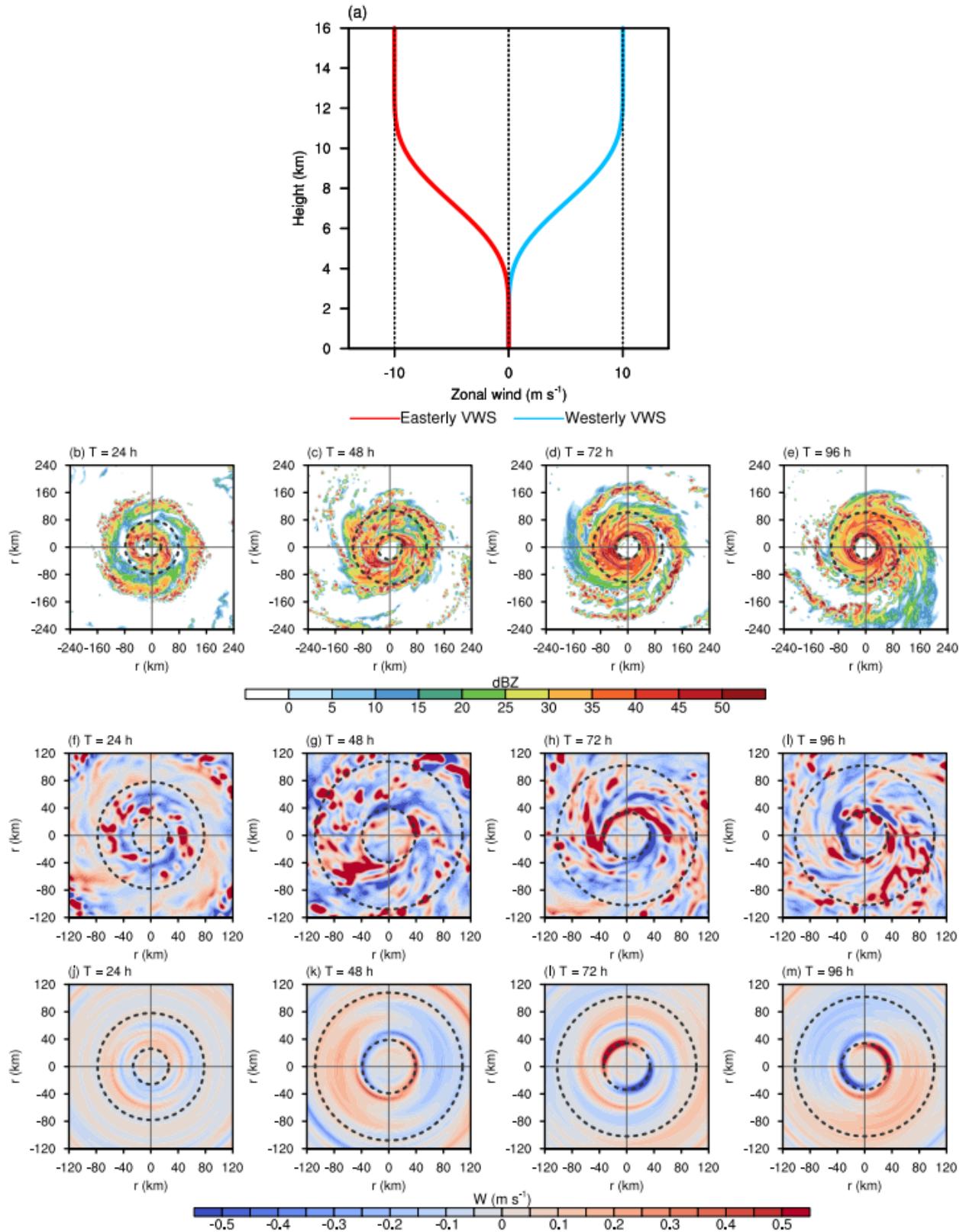
73 intensification, which was explained by the superimposed beta (meridional variation of the Coriolis
74 parameter) effect (Ritchie & Frank, 2007; Wang & Holland, 1996b, c). Ritchie & Frank (2007)
75 found that the beta effect can induce a weak northwesterly VWS over the TC core in the northern
76 hemisphere. As a result, the effect of westerly (easterly) VWS on TC intensity change would be
77 enhanced (suppressed) by beta-induced VWS.

78 Previous studies have mostly focused on how the asymmetric structure is triggered and how
79 the triggered asymmetric structure affects TC intensity change (Wang, 2002a, b, 2009; Yang et al.,
80 2007; Xu & Wang, 2013; Persing et al., 2013; Li & Dai, 2019). However, it is still a challenge to
81 realistically initialize the inner-core asymmetric structure of a TC vortex in a numerical weather
82 prediction model. It is also unknown how the predicted/simulated TC intensity change may be
83 affected by the initial asymmetric structure in a numerical weather prediction model. For example,
84 some dynamical vortex initialization schemes developed so far mainly spin up the axisymmetric
85 vortex, and little attention has been given to the initial asymmetric vortex structure (Cha & Wang,
86 2013; Liu et al., 2018; Liu et al., 2019). Recently, Zhong et al. (2023) found that the spinup and
87 spindown members in ensemble forecasts of TC intensity show oppositely phased distribution in
88 their initial asymmetric wind fields, and they hypothesized that the phased relationships between
89 the direction of VWS and eyewall convection might influence the TC intensity evolution. However,
90 they did not examine the details.

91 In this study, we will show that the initial asymmetric structure of a TC vortex is key to the
92 intensity change of a TC at different developing stages in response to an imposed environmental
93 VWS. We will also demonstrate that the VWS-induced asymmetry could be either enhanced or
94 suppressed by the asymmetric structure in the initial TC vortex depending on the relative phase and
95 strength of the two asymmetric structures. Our finding can help understand why both spinup and
96 spindown members coexist in ensemble forecasts of TC intensity by numerical weather prediction
97 models (e.g., Zhong et al., 2023) and also calls for attention to adequately represent the asymmetric
98 structure of the TC vortex in numerical models.

99 **2. Model and experimental design**

100 The three-dimensional, compressible, non-hydrostatic, full-physics Weather Research and
101 Forecasting (WRF) model version 4.2.2 (Skamarock et al., 2008) was used to perform a series of
102 numerical experiments. The horizontal model domain was triply nested with grid spacings of 18, 6
103 and 2 km and sizes of 502×361 , 361×361 , and 301×301 grid points, respectively. The two inner-
104 meshes automatically moved following the model TC vortex center. The model atmosphere had
105 sixty vertical levels with the model top at 25 km. The model physics included the Yonsei University
106 planetary boundary layer scheme (YSU; Hong et al., 2006) and the Thompson cloud microphysics
107 scheme (Thompson et al., 2008). The modified Tiedtke cumulus parameterization scheme (Tiedtke,
108 1989; Zhang et al., 2011) was only applied to the outermost mesh. Radiation was not considered
109 for simplicity in this study.

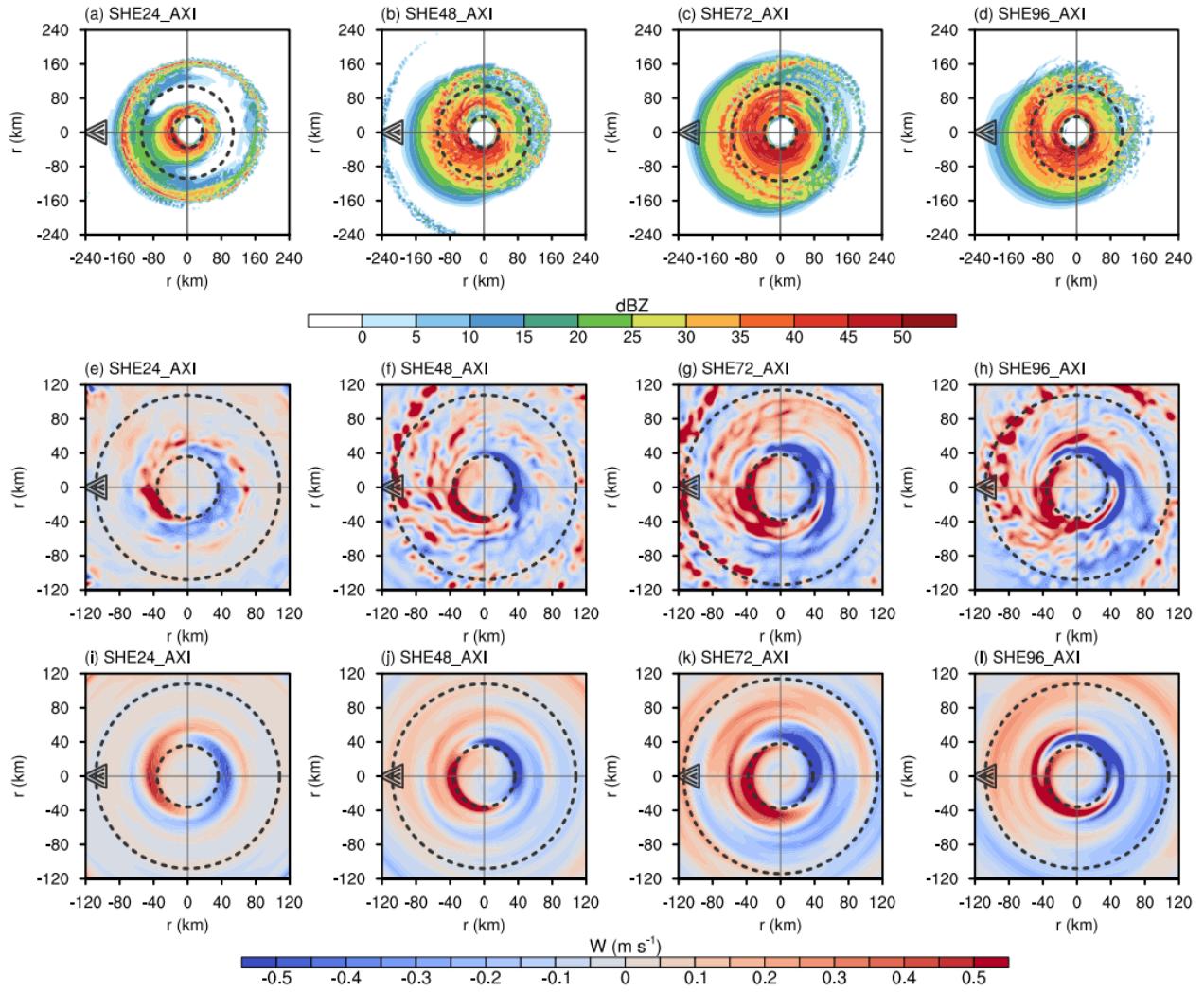

110 Since the main concern in this study is to examine the effect of the asymmetric structure of
111 the initial TC vortex on the response of TC intensity change to an imposed moderate environmental
112 VWS, all numerical experiments were conducted on an *f*-plane at 15°N over the ocean with a
113 uniform sea surface temperature of 28.5°C . The initial unperturbed sounding of the model
114 atmosphere was the moist-tropical sounding documented in Dunion (2011). In a control experiment
115 (CTRL), the initial TC vortex was axisymmetric in gradient and thermal wind balance as in
116 Rotunno & Emanuel (1987) with a maximum tangential wind speed of 18 m s^{-1} near the surface at
117 a radius of 90 km, and the model was run for 192 h. The moderate environmental VWS was set to
118 10 m s^{-1} initially in geostrophic wind and hydrostatic balances. The vertical profiles of the zonal
119 wind corresponding to the easterly VWS and westerly VWS are given in Figure 1a. Namely, the
120 environmental zonal wind increased from 0 m s^{-1} below 3.5 km height to 10 m s^{-1} above 12.0 km.
121 Note that both easterly and westerly VWS were considered since the VWS effect on TC intensity
122 change is theoretically independent of the shear direction on the *f*-plane.

123 In the VWS experiments, the VWS was imposed onto the TC vortex after 24, 48, 72, and 96
124 h of simulation in CTRL described above. Since the TC vortex from CTRL developed asymmetric
125 structure even though there was no any asymmetric forcing, as studied in Wang (2007), two sets of
126 VWS experiments were conducted. In one set, only the axisymmetric component of the TC vortex

127 from CTRL was used in the corresponding VWS experiments, and in the other set, the TC vortex
128 from CTRL was directly used in the VWS experiments. The axisymmetric component of the vortex
129 was calculated as the azimuthal average for all prognostic variables, including all hydrometeors, in
130 the WRF model. In total, 16 VWS experiments were performed, among them 4 easterly VWS and
131 4 westerly VWS experiments initialized with the axisymmetric components of the TC vortices after
132 24, 48, 72, and 96 h of simulation from CTRL, and 4 easterly VWS and 4 westerly VWS
133 experiments initialized with the TC vortices directly after 24, 48, 72, and 96 h of simulation from
134 CTRL. We named the axisymmetric and asymmetric experiments as “_AXI” and “_ASY” in
135 suffixes and the easterly and westerly VWS experiments as “SHE” and “SHW” in prefixes,
136 respectively. Therefore, the corresponding experiments were named SHE24_AXI (SHE24_ASY),
137 SHE48_AXI (SHE48_ASY), SHE72_AXI (SHE72_ASY), SHE96_AXI (SHE96_ASY), and
138 SHW24_AXI (SHW24_ASY), SHW48_AXI (SHW48_ASY), SHW72_AXI (SHW72_ASY),
139 SHW96_AXI (SHW96_ASY), respectively. The TC vortex center was defined as the point with
140 the largest azimuthally averaged maximum tangential wind speed at the given time. Note that the
141 environmental wind profile was well maintained throughout the 96-h simulations in all VWS
142 experiments (not shown).

143 3. Results

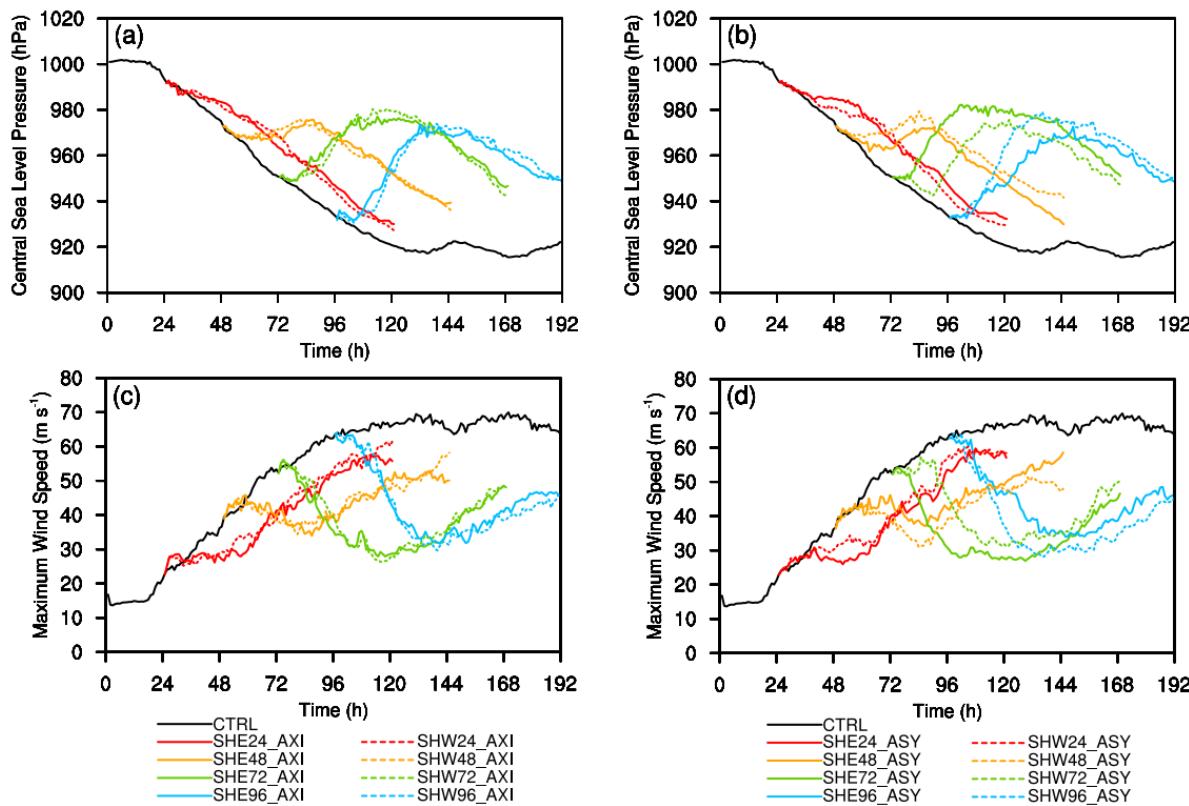
144 Previous studies have shown that the development of asymmetric structure is responsible for
145 a TC to weaken in environmental VWS as already mentioned in Section 1. In particular, the TC
146 vortex would develop a quasi-steady wavenumber-1 asymmetry in vertical motion and convection
147 in the eyewall with enhanced upward motion and convection in the downshear-left quadrant when
148 facing down the direction of the VWS (e.g., Jones, 1995; Wang & Holland 1996a). As such, if the
149 initial asymmetric structure of the initial TC vortex is in phase with the VWS-induced
150 wavenumber-1 asymmetric structure, the asymmetry of the TC vortex would be enhanced, and thus
151 the weakening of the TC in response to the imposed VWS would be enhanced. To demonstrate this
152 possible mechanism, we first analyze the initial asymmetric structure of the TC vortices in CTRL.


153
154 Figure 1. (a) The vertical profiles of the environmental zonal winds (red for easterly VWS and blue for westerly
155 VWS) with the shear magnitudes of 10 m s^{-1} ; (b-m) Horizontal distributions of radar reflectivity at 1-km height

156 (dBZ, the first row), the total (the second row) and wavenumber-1 (the third row) asymmetric vertical motion (m
157 s^{-1}) averaged in the layer between 1–4 km heights. The area within the grey dashed big circle indicates the inner
158 core and the small circle indicates the eyewall. The four vertical columns from the left to right correspond to
159 times at 24, 48, 72, and 96 h of simulation in CTRL, respectively.

160 Figures 1b-1m shows the horizontal distribution of radar reflectivity at 1-km height and the
161 total and wavenumber-1 asymmetric vertical motion computed by the azimuthal Fourier
162 decomposition averaged in the layer between 1 and 4 km heights at the four times in CTRL when
163 the TC vortex was used as the initial TC in the VWS experiments. The asymmetries arise at the
164 four times in CTRL all from the TC internal dynamics. In the early development stage, the TC
165 vortex is quite axisymmetric with relatively weak asymmetric structure in both radar reflectivity
166 and vertical motion. The asymmetries in both fields become obvious by 48 h of the simulation,
167 with upward asymmetric motion to the eastern semicircle and descending motion to the western
168 semicircle. The asymmetries after 72 and 96 h of the simulation in CTRL become stronger but
169 show different phases, with upward motion in the northwestern and subsidence in the southeastern
170 quadrants by 72 h and upward motion in the eastern semicircle and subsidence in the western
171 semicircle by 96 h. The asymmetries in vertical motion are dominated by wavenumber-1 structure
172 (Figures 1j-1m), with large values mainly in the eyewall, about within the radius of maximum wind.

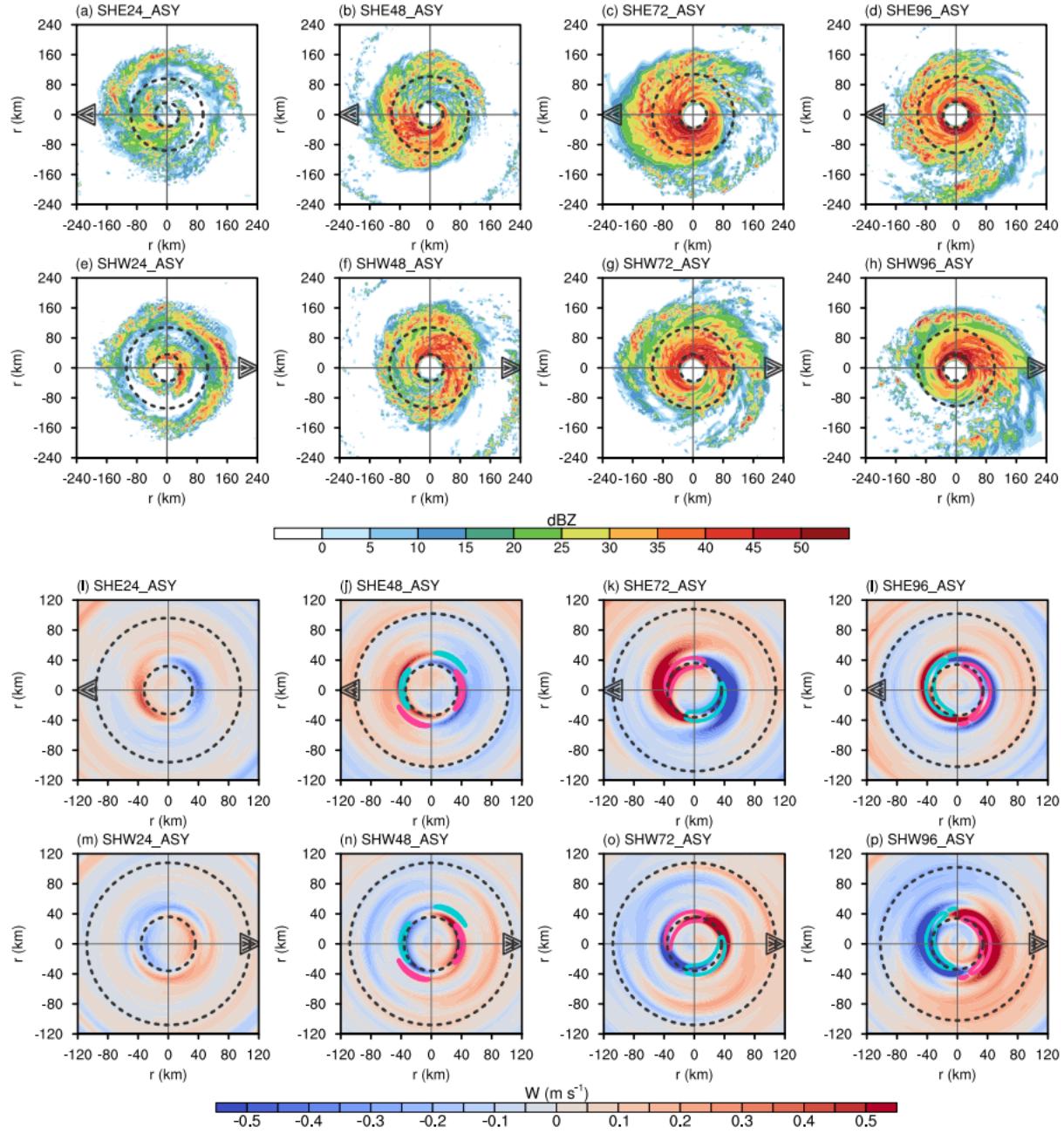
173 To examine the differences in the phase and strength of the asymmetric structure between the
174 initial TC vortex and those induced by the imposed VWS, we now analyze the asymmetric structure
175 of the TCs averaged within the first 1-3 hours of simulations after the VWS is imposed in the
176 easterly VWS experiments with the initially axisymmetric TC vortex obtained from CTRL (Figure
177 2). Note that the asymmetric structure in the westerly VWS experiments is quite similar to that in
178 the easterly VWS experiments for the initially axisymmetric TC vortex on the f -plane and thus not
179 shown. We can see that a consistent predominant wavenumber-1 asymmetric structure developed
180 in the first 3 h of simulations in all VWS experiments, with elevated radar reflectivity and upward
181 motion downshear and downshear-left in the eyewall. Since the initial TC vortices were
182 axisymmetric, the developed asymmetric structure in Figure 2 resulted primarily from the
183 interaction between the TC vortex and the imposed VWS as documented in many previous studies


184 (e.g., Frank & Ritchie, 2001; Xu & Wang, 2013). Note that the total and wavenumber-1 asymmetric
 185 vertical motion exhibit highly consistent features and dominated the total asymmetric vertical
 186 motion induced by the imposed environmental VWS.

187
 188 Figure 2. As in Figure 1b-m, but for the easterly VWS experiments with the initial axisymmetric TC vortices
 189 averaged within the first 1-3 hours of simulations after the VWS is imposed. The grey arrows indicate the
 190 direction of the environmental VWS.

191 Figure 3 shows the time evolutions of the TC intensity in terms of the central sea level pressure
 192 and the maximum wind speed in all VWS experiments initialized with the axisymmetric TC
 193 vortices from CTRL (colored in Figures 3a and 3c) and in those initialized with the TC vortices
 194 directly from CTRL (colored in Figures 3b and 3d), respectively. The TC in CTRL (black)
 195 intensified until 120 h of the simulation and evolved quasi-steadily afterwards. We can see from

196 Figures 3a and 3c that TCs experienced a reduced intensification rate when the VWS was imposed
 197 in the early intensification stage (for the TCs after 24 and 48 h of the simulation from CTRL) or a
 198 weakening when the VWS was imposed in the later intensification or mature stages (for the TCs
 199 after 72 and 96 h of the simulations from CTRL). This suggests that a moderate VWS had a
 200 relatively weak effect on the intensification of a weak TC. We hypothesize that for a weak TC, the
 201 weak warm core also indicates weak ventilation of the upper-level warm core by the imposed shear
 202 flow. However, for a relatively strong TC, in response to the imposed moderate VWS, the strong
 203 upper-level warm core implies relatively strong ventilation by the shear flow, resulting in a great
 204 weakening of the upper-level warm core and thus the weakening of the TC (Figure S1). A detailed
 205 process-oriented analysis of the TC intensity in response to the environmental VWS is planned for
 206 a future study. Here, we focus on the dependence of the response of the TC intensity change to the
 207 imposed moderate environmental VWS on the asymmetric structure of the initial TC vortex.


208
 209 Figure 3. Time evolutions of (a, b) the simulated central sea level pressure (hPa) and (c, d) the maximum wind
 210 speed (m s⁻¹) of TCs in CTRL (black) and in all easterly (color solid) and westerly (color dashed) VWS
 211 experiments with initially axisymmetric vortex from CTRL (a, c) and with the TC vortex directly from CTRL (b,

212 d). The red, orange, green and blue colors represent the VWS experiments with TC vortices after 24, 48, 72, and
213 96 h of the simulation in CTRL, respectively.

214 As expected, the intensity evolutions (both the central sea level pressure and the maximum
215 wind speed) for a TC with an initially axisymmetric structure embedded in westerly and easterly
216 VWSs are quite similar on the *f*-plane (Figures 3a and 3c), as mentioned in section 2. Some small
217 differences resulted from the small deviation of the initially axisymmetric TC vortex center from
218 the center of the model domain and can be considered being unphysical and negligible. In contrast
219 to the initially axisymmetric TC vortex, the TC vortex including both the axisymmetric and
220 asymmetric structures from CTRL shows relatively large differences in intensity evolutions in
221 responses to the imposed moderate environmental westerly and easterly VWSs (Figures 3b and 3d).
222 Since the intensity evolution in environmental VWS on the *f*-plane experiment is little dependent
223 on the direction of the VWS (Figure 3a and 3c), the large difference in intensity evolutions for a
224 TC vortex embedded in easterly and westerly VWSs should result from the asymmetric structure
225 of the TC vortex at the time of VWS was imposed. We can see from Figures 3b and 3d that the
226 difference in TC intensity evolutions in the westerly and easterly experiments also depends on the
227 stage of TC intensification in CTRL which show different degree of the asymmetric feature of the
228 initial vortex. Although we found that the mean early TC weakening rate is nearly proportional to
229 the degree of the asymmetry of the initial TC vortex, it also depends on the initial TC intensity.
230 Therefore, the actual weakening of the TC in response to the imposed VWS could not be quantified
231 with limited model experiments.

232 Comparing the asymmetric structures in Figures 1 and 2, we can see that the asymmetric
233 structure in vertical motion at 72 h in CTRL resembles the asymmetric structure induced by easterly
234 VWS for an initially axisymmetric TC vortex in Figure 2. The asymmetric distribution of vertical
235 motion after 48 and 96 h of the simulation in CTRL is roughly in phase with that induced by the
236 westerly VWS. As a result, the asymmetric structure in SHW48_ASY, SHW96_ASY, and
237 SHE72_ASY would be enhanced due to the superposition of the in-phase asymmetric structure in
238 the initial TC vortices. The enhanced asymmetric structure can lead to stronger upper-level
239 ventilation, which is consistent with the larger weakening of TCs in SHW48_ASY, SHW96_ASY

240 and SHE72_ASY as seen from Figures 3b and 3d.

241
242 Figure 4. (a-h) and (i-p) are the same as in Figure 1b-e and 1j-m, respectively; but for the four easterly VWS and
243 four westerly VWS experiments with the initial asymmetric TC vortices averaged within the first 1-3 hours of
244 simulations after the VWS is imposed, respectively. The wavenumber-1 vertical motions (m s^{-1}) after 24, 48, 72,
245 and 96 h of simulation in CTRL are overlaid in i-p contoured at -0.4 (blue) and 0.4 (pink) m s^{-1} . The grey arrows
246 indicate the direction of the environmental VWS.

247 The above argument has been confirmed with the asymmetric structure in the 8 VWS
248 experiments with the initially asymmetric TC vortex in Figure 4. As expected, although the phase

249 of the wavenumber-1 asymmetric structure shows similarity in all VWS experiments, namely with
250 upward motion downshear and downshear-left and subsidence upshear and upshear-right, the
251 asymmetric structure in SHW48₁ASY and SHW96₁ASY was enhanced clearly among the
252 westerly VWS experiments, especially in SHW96₁ASY, while the asymmetric structure in
253 SHE72₁ASY was enhanced among the easterly VWS experiments. In contrast, the asymmetric
254 structure in SHE48₁ASY, SHE96₁ASY, and SHW72₁ASY was relatively weaker than that in
255 SHW48₁ASY, SHW96₁ASY, and SHE72₁ASY. As a result, the weakening of TCs in SHE48₁ASY,
256 SHE96₁ASY, and SHW72₁ASY was either suppressed or delayed compared to their corresponding
257 opposite direction of shear (Figures 3b and 3d). These results strongly support our above hypothesis.
258 Our finding demonstrates that the realistic representation of asymmetric structure in the initial TC
259 vortex is important for accurate prediction of TC intensity, especially in the presence of large-scale
260 environmental VWS.

261 **4. Conclusions**

262 This study conducted idealized high-resolution numerical experiments to help understand the
263 possible effect of the asymmetric structure in the initial TC vortex on TC intensity changes at
264 different developing stages in response to an imposed moderate environmental VWS. In all VWS
265 experiments, the TC intensity responses to the imposed easterly VWS and westerly VWS are
266 similar if the initial TC vortex was axisymmetric. In these VWS experiments, the wavenumber-1
267 asymmetric structure developed with upward motion downshear and downshear-left and
268 subsidence upshear and upshear-right as documented in many previous studies. In experiments
269 with asymmetric structure of the initial TC vortex, when the initial asymmetric structure was in
270 phase with the VWS-induced asymmetric structure, the weakening would be enhanced and
271 immediate after the VWS was imposed. However, when the two asymmetric structures are out of
272 phase, the weakening would be suppressed compared with the TC in the experiments with the initial
273 axisymmetric TC vortex. We have repeated our experiments using different initial vortex intensities
274 for CTRL, and our results were consistent (Figure S2).

275 Our finding can help explain the results recently reported in Zhong et al. (2023), who found

276 that the low-wavenumber components in the initial wind speed had played an important role in the
277 initial spinup and spindown of the TC intensity in their ensemble prediction of Hurricane Patricia
278 (2015) but the involved physical process was not explored. Our results suggest that the spinup and
279 spindown could be partly due to the phasing between the initial TC vortex asymmetry and that
280 induced by the environmental VWS in their ensemble simulations, because they also noticed the
281 presence of large-scale moderate environmental VWS in Hurricane Patricia case. Our results also
282 support that the initial TC weakening in response to the imposed moderate VWS is qualitatively
283 proportional to the degree of the asymmetry of the TC vortex while the actual weakening rate also
284 depends on the initial TC intensity. Therefore, this study demonstrates that it is key to accurately
285 represent the asymmetric structure of the initial TC vortex in numerical models for skillful
286 prediction of TC intensity. Our results also call for efforts in improving the observations of
287 asymmetric structure in TCs and understanding effect of the asymmetric structure on TC intensity
288 change. Note that a detailed physical process analysis of the TC intensity change in response to an
289 imposed environmental VWS at the different TC developing stages is planned for a future study.

290 **Acknowledgments**

291 The authors thank Prof. Qingqing Li and Dr. Jianfeng Gu for their helpful discussions in this
292 study. Q. Gao was supported by National Natural Science Foundation of China under grant
293 41730960 and Y. Wang was supported by NSF grant AGS-1834300.

294 **Data Availability Statement**

295 The WRF simulations were conducted using the WRF model Version 4.2.2, which were
296 downloaded from the website (<https://github.com/wrf-model/WRF/releases>). All simulation data
297 that support the findings of this study are available at
298 <https://datadryad.org/stash/share/5NMoeWi9hITh5yBO3f7M7niYQ3708gP5BACM6KnV8zY>.

299 **References**

300 Bryan, G. H., & Rotunno, R. (2009a). The influence of near-surface, high-entropy air in hurricane eyes on

301 maximum hurricane intensity. *Journal of the Atmospheric Sciences*, 66(1), 148–158.
302 <https://doi.org/10.1175/2008JAS2707.1>

303 Bryan, G. H., & Rotunno, R. (2009b). Evaluation of an analytical model for the maximum intensity of tropical
304 cyclones. *Journal of the Atmospheric Sciences*, 66(10), 3042–3060. <https://doi.org/10.1175/2009JAS3038.1>

305 Charney, J. G., & Eliassen, A. (1964). On the growth of the hurricane depression. *Journal of the Atmospheric
306 Sciences*, 21(1), 68–75. [https://doi.org/10.1175/1520-0469\(1964\)021<0068:OTGOTH>2.0.CO;2](https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2)

307 Cha, D. -H., & Wang, Y. (2013). A dynamical initialization scheme for real-time forecasts of tropical cyclones
308 using the WRF model. *Monthly Weather Review*, 141(3), 964–986. [https://doi.org/10.1175/MWR-D-12-00077.1](https://doi.org/10.1175/MWR-D-12-
309 00077.1)

310 Dunion, J. P. (2011). Rewriting the climatology of the tropical north Atlantic and Caribbean Sea atmosphere.
311 *Journal of Climate*, 24(3), 893–908. <https://doi.org/10.1175/2010JCLI3496.1>

312 Emanuel, K. A. (1986). An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance.
313 *Journal of the Atmospheric Sciences*, 43(6), 585-605. [https://doi.org/10.1175/1520-0469\(1986\)043<0585:AASITF>2.0.CO;2](https://doi.org/10.1175/1520-
314 0469(1986)043<0585:AASITF>2.0.CO;2)

315 Emanuel, K. A. (2012). Self-stratification of tropical cyclone outflow: Part II: Implications to storm
316 intensification. *Journal of the Atmospheric Sciences*, 69(3), 988–996. [https://doi.org/10.1175/JAS-D-11-0177.1](https://doi.org/10.1175/JAS-D-11-
317 0177.1)

318 Emanuel, K. A., Desautels, C., Holloway, C., & Korty, R. (2004). Environmental control of tropical cyclone
319 intensity. *Journal of the Atmospheric Sciences*, 61(7), 843-858. [https://doi.org/10.1175/1520-0469\(2004\)061<0843:ECOTCI>2.0.CO;2](https://doi.org/10.1175/1520-
320 0469(2004)061<0843:ECOTCI>2.0.CO;2)

321 Frank, W. M., & Ritchie, E. A. (2001). Effects of vertical wind shear on the intensity and structure of numerically
322 simulated hurricanes. *Monthly Weather Review*, 129(9), 2249–2269. [https://doi.org/10.1175/1520-0493\(2001\)129<2249:EOVWSO>2.0.CO;2](https://doi.org/10.1175/1520-
323 0493(2001)129<2249:EOVWSO>2.0.CO;2)

324 Fu, H., Wang, Y., Riemer, M., & Li, Q.-Q. (2019). Effect of unidirectional vertical wind shear on tropical cyclone
325 intensity change – Lower-layer shear versus upper-layer shear. *Journal of Geophysical Research –
326 Atmospheres*, 124(12), 6265–6282. <https://doi.org/10.1029/2019JD030586>

327 Gu, J.-F., Tan, Z.-M., & Qiu, X. (2018). The evolution of vortex tilt and vertical motion of tropical cyclones in
328 directional shear flows. *Journal of the Atmospheric Sciences*, 75(10), 3565–3578.
329 <https://doi.org/10.1175/JAS-D-18-0024.1>

330 Gu, J.-F., Tan, Z.-M., & Qiu, X. (2019). Intensification variability of tropical cyclones in directional shear flows:
331 vortex tilt–convection coupling. *Journal of the Atmospheric Sciences*, 76(6), 1827–1844.
332 <https://doi.org/10.1175/JAS-D-18-0282.1>

333 Gao, Q., Li, Q.-Q., & Dai, Y.-F. (2020). Characteristics of the outer rainband stratiform sector in numerically
334 simulated tropical cyclones: Lower-layer shear versus upper-layer shear. *Advances in Atmospheric Sciences*,
335 37(4), 399–419. <https://doi.org/10.1007/s00376-020-9202-y>

336 He, F., Posselt, D. J., Zarzycki, C. M., & Jablonowski, C. (2015). A balanced tropical cyclone test case for Agcm3

337 with background vertical wind shear. *Monthly Weather Review*, 143(5), 1762–1781.
338 <https://doi.org/10.1175/MWR-D-14-00366.1>

339 Heymsfield, G. M., Simpson, J., Halverson, J., Tian, J., Ritchie, E., & Molinari, J. (2006). Structure of highly
340 sheared tropical storm Chantal during CAMEX-4. *Journal of the Atmospheric Sciences*, 63(1), 268–287.
341 <https://doi.org/10.1175/JAS3602.1>

342 Hong, S.-Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of
343 entrainment processes. *Monthly Weather Review*, 134(9), 2318–2341. <https://doi.org/10.1175/MWR3199.1>

344 Jones, S. C. (1995). The evolution of vortices in vertical shear. Part I: Initially barotropic vortices. *Quarterly
345 Journal of the Royal Meteorological Society*, 121(524), 821–851. <https://doi.org/10.1002/qj.49712152406>

346 Li, Q.-Q., Duan, Y.-H., Yu, H., & Fu, G. (2008). A high-resolution simulation of Typhoon Rananim (2004) with
347 MM5. Part I: Model verification, inner-core shear, and asymmetric convection. *Monthly Weather Review*,
348 136(7), 2488–2506. <https://doi.org/10.1175/2007MWR2159.1>

349 Li, Q.-Q., & Dai, Y.-F. (2019). Revisiting azimuthally asymmetric moist instability in the outer core of sheared
350 tropical cyclones. *Monthly Weather Review*, 148(3), 1297–1319. [https://doi.org/10.1175/MWR-D-19-0004.1](https://doi.org/10.1175/MWR-D-19-
351 0004.1)

352 Li, Q.-Q., Wang, Y., & Duan, Y.-H. (2017). A numerical study of outer rainband formation in a sheared tropical
353 cyclone. *Journal of the Atmospheric Sciences*, 74(1), 203–227. <https://doi.org/10.1175/JAS-D-16-0123.1>

354 Li, Y.-L., Wang, Y., & Lin, Y.-L. (2019). Revisiting the dynamics of eyewall contraction of tropical cyclones.
355 *Journal of the Atmospheric Sciences*, 76(10), 3229–3245. <https://doi.org/10.1175/JAS-D-19-0076.1>

356 Li, Y.-L., Wang, Y., & Lin, Y.-L. (2020). How much does the upward advection of the supergradient component
357 of boundary layer wind contribute to tropical cyclone intensification and maximum intensity? *Journal of
358 the Atmospheric Sciences*, 77(8), 2649–2664. <https://doi.org/10.1175/JAS-D-19-0350.1>

359 Li, Y.-L., Wang, Y., Lin, Y.-L., & Wang, X. (2021). Why does rapid contraction of the radius of maximum wind
360 precede rapid intensification in tropical cyclones? *Journal of the Atmospheric Sciences*, 78(11), 3441–3453.
361 <https://doi.org/10.1175/JAS-D-21-0129.1>

362 Li, Y.-L., Tan, Z.-M., & Wang, Y. (2022). Relative timing of the ends of hurricane intensification and contraction
363 of the radius of maximum wind in the north Atlantic and Eastern north Pacific. *Geophysical Research Letters*,
364 49(22), L101027. <https://doi.org/10.1029/2022GL101027>

365 Liu, H.-Y., Wang, Y., Xu, J., & Duan, Y.-H. (2018). A dynamical initialization scheme for tropical cyclones under
366 the influence of terrain. *Weather and forecasting*, 33(3), 641–659. [https://doi.org/10.1175/WAF-D-17-0139.1](https://doi.org/10.1175/WAF-D-17-
367 0139.1)

368 Liu, L., Wang, Y., & Duan, Y.-H. (2019). Contribution of Recycling of Surface Precipitation to Landfalling
369 Tropical Cyclone Rainfall: A Modeling Study for Typhoon Utor (2013). *Journal of Geophysical Research
370 – Atmospheres*, 124(2), 870–885. <https://doi.org/10.1029/2018JD029380>

371 Montgomery, M. T., Nicholls, M. E., Cram, T. A., & Saunders, A. B. (2006). A vortical hot tower route to tropical
372 cyclogenesis. *Journal of the Atmospheric Sciences*, 63(1), 355–386. <https://doi.org/10.1175/JAS3604.1>

373 Montgomery, M. T., & Smith, R. K. (2014). Paradigms for tropical cyclone intensification. *Australian*

374 *Meteorological and Oceanographic Journal*, (Bruce Morton Memorial Volume), 64, 37–66.

375 Nolan, D. S., Moon, Y. & Stern, D. P. (2007). Tropical cyclone intensification from asymmetric convection:

376 Energetics and efficiency. *Journal of the Atmospheric Sciences*, 64(10), 3377–3405.

377 <https://doi.org/10.1175/JAS3988.1>

378 Ooyama, K. V. (1969). Numerical simulation of the life cycle of tropical cyclones. *Journal of the Atmospheric*

379 *Sciences*, 26(1), 3–40. [https://doi.org/10.1175/1520-0469\(1969\)026<0003:NSOTLC>2.0.CO;2](https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2)

380 Persing, J., Montgomery, M. T., McWilliams, J. C., & Smith, R. K. (2013). Asymmetric and axisymmetric

381 dynamics of tropical cyclones. *Atmospheric Chemistry Physics*, 13(24), 12299–12341.

382 <https://doi.org/10.5194/acp-13-12299-2013>

383 Riemer, M., & Montgomery M. T. (2011). Simple kinematic models for the environmental interaction of tropical

384 cyclones in vertical wind shear. *Atmospheric Chemistry and Physics*, 11(17), 9395–9414.

385 <https://doi.org/10.5194/acp-11-9395-2011>

386 Ritchie, E. A., & Frank, W. M. (2007). Interactions between simulated tropical cyclones and an environment with

387 a variable Coriolis parameter. *Monthly Weather Review*, 135(5), 1889–1905.

388 <https://doi.org/10.1175/MWR3359.1>

389 Rotunno, R., & Emanuel, K. A. (1987). An air-sea interaction theory for tropical cyclones. Part II: Evolutionary

390 study using a nonhydrostatic axisymmetric numerical model. *Journal of the Atmospheric Sciences*, 44(3),

391 542–561. [https://doi.org/10.1175/1520-0469\(1987\)044<0542:AAITFT>2.0.CO;2](https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2)

392 Schubert, W. H., & Hack, J. J. (1982). Inertial stability and tropical cyclone development. *Journal of the*

393 *Atmospheric Sciences*, 39(8), 1687–1697. [https://doi.org/10.1175/1520-0469\(1982\)039<1687:ISATCD>2.0.CO;2](https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2)

394 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X. Y., Wang, W., &

395 Powers, J. G. (2008). A description of the advanced research WRF version 3. *NCAR Tech. Note NCAR/TN-*

396 4751STR, 113. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

397 Thompson, G., Field, P. R., Rasmussen, R. M., & Hall, W. D. (2008). Explicit forecasts of winter precipitation

398 using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization.

399 *Monthly Weather Review*, 136(12), 5095–5115. <https://doi.org/10.1175/2008MWR2387.1>

400 Tiedtke, M. (1989). A comprehensive mass flux scheme for cumulus parameterization in large-scale models.

401 *Monthly Weather Review*, 117(8), 1779–1800. [https://doi.org/10.1175/1520-0493\(1989\)117<1779:ACMFSF>2.0.CO;2](https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2)

402 Wang, Y. (2002a). Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure,

403 potential vorticity and kinetic energy budgets. *Journal of the Atmospheric Sciences*, 59(7), 1213–1238.

404 [https://doi.org/10.1175/1520-0469\(2002\)059<1213:VRWIAN>2.0.CO;2](https://doi.org/10.1175/1520-0469(2002)059<1213:VRWIAN>2.0.CO;2)

405 Wang, Y. (2002b). Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical

408 cyclone structure and intensity changes. *Journal of the Atmospheric Sciences*, 59(7), 1239–1262.
409 [https://doi.org/10.1175/1520-0469\(2002\)059<1239:VRWIAN>2.0.CO;2](https://doi.org/10.1175/1520-0469(2002)059<1239:VRWIAN>2.0.CO;2)

410 Wang, Y. (2007). A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model -
411 TCM4: Model description and development of asymmetries without explicit asymmetric forcing.
412 *Meteorology and Atmospheric Physics*, 97, 93–116. <https://doi.org/10.1007/s00703-006-0246-z>

413 Wang, Y. (2009). How do outer spiral rainbands affect tropical cyclone structure and intensity? *Journal of the*
414 *Atmospheric Sciences*, 66(5), 1250–1273. <https://doi.org/10.1175/2008JAS2737.1>

415 Wang, Y., & Holland, G. J. (1996a). Tropical cyclone motion and evolution in vertical shear. *Journal of the*
416 *Atmospheric Sciences*, 53(22), 3313–3332. [https://doi.org/10.1175/1520-0469\(1996\)053,3313:TCMAEI.2.0.CO;2](https://doi.org/10.1175/1520-0469(1996)053,3313:TCMAEI.2.0.CO;2)

417 Wang, Y., & Holland, G. J. (1996b). The beta drift of baroclinic vortices. Part II: Diabatic vortices. *Journal of the*
418 *Atmospheric Sciences*, 53(24), 3737–3756. [https://doi.org/10.1175/1520-0469\(1996\)053<3737:TBDDBV>2.0.CO;2](https://doi.org/10.1175/1520-0469(1996)053<3737:TBDDBV>2.0.CO;2)

419 Wang, Y., & Holland, J. G. (1996c). The beta drift of baroclinic vortices. Part I: Adiabatic vortices. *Journal of*
420 *the Atmospheric Sciences*, 53(3), 411–427. [https://doi.org/10.1175/1520-0469\(1996\)053<0411:TBDDBV>2.0.CO;2](https://doi.org/10.1175/1520-0469(1996)053<0411:TBDDBV>2.0.CO;2)

421 Wang, Y., & Wu, C.-C. (2004). Current understanding of tropical cyclone structure and intensity changes-A
422 review. *Meteorology and Atmospheric Physics*, 87, 257–278. <https://doi.org/10.1007/s00703-003-0055-6>

423 Wang, Y., Li, Y.-L., Xu, J., Tan, Z.-M., & Lin, Y.-L. (2021a). The intensity-dependence of tropical cyclone
424 intensification rate in a simplified energetically based dynamical system model. *Journal of the Atmospheric*
425 *Sciences*, 78(7), 2033–2045. <https://doi.org/10.1175/JAS-D-20-0393.1>

426 Wang, Y., Li, Y., & Xu, J. (2021b). A new time-dependent theory of tropical cyclone intensification. *Journal of*
427 *the Atmospheric Sciences*, 78(12), 3855–3865. <https://doi.org/10.1175/JAS-D-21-0169.1>

428 Wang, Y., Tan, Z.-M. & Li, Y.-L., (2023). Some refinements to the most recent simple time-dependent theory of
429 tropical cyclone intensification and sensitivity. *Journal of the Atmospheric Sciences*, 79(1), 321–335.
430 <https://doi.org/10.1175/JAS-D-22-0135.1>

431 Xu, Y.-M., & Wang, Y. (2013). On the initial development of asymmetric vertical motion and horizontal relative
432 flow in a mature tropical cyclone embedded in environmental vertical shear. *Journal of the Atmospheric*
433 *Sciences*, 70(11), 3471–3491. <https://doi.org/10.1175/JAS-D-12-0335.1>

434 Yang, B., Wang, Y. & Wang, B. (2007). The effect of internally generated inner-core asymmetries on tropical
435 cyclone potential intensity. *Journal of the Atmospheric Sciences*, 64(4), 1165–1188.
436 <https://doi.org/10.1175/JAS3971.1>

437 Zhang, C.-X., Wang, Y., & Hamilton, K. (2011). Improved representation of boundary layer clouds over the
438 southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. *Monthly*
439 *Weather Review*, 139(11), 3489–3513. <https://doi.org/10.1175/MWR-D-10-05091.1>

440 Zeng, Z., Wang, Y. & Chen, L.-S. (2010). A statistical analysis of vertical shear effect on tropical cyclone intensity

444 change in the north Atlantic: Vertical shear effect on TC intensity. *Geophysical Research Letters*, 37(2),
445 L02802. <https://doi.org/10.1029/2009GL041788>

446 Zhong, Q.-J., Wang, W.-G., Ding, R.-Q., Lu, X., Huang, Y.-J., Duan, W.-S., Liu, L. (2023). Impact of the low
447 wavenumber structure in the initial vortex wind analyses on the prediction of the intensification of Hurricane
448 Patricia (2015). *Journal of Geophysical Research – Atmospheres*, 128(2), e2022JD037082.
449 <https://doi.org/10.1029/2022JD037082>