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Abstract

Accurate prediction of tropical cyclone (TC) intensity is quite challenging due to multiple
competing processes among the TC internal dynamics and the environment. Most previous
studies have evaluated the environmental effects on TC intensity change from both internal
dynamics and external influence. This study quantifies the environmental effects on TC intensity
change using a simple dynamically based dynamical system (DBDS) model recently developed.
In this simple model, the environmental effects are uniquely represented by a ventilation
parameter B, which can be expressed as multiplicative of individual ventilation parameters of
the corresponding environmental effects. Their individual ventilation parameters imply their
relative importance to the bulk environmental ventilation effect and thus to the TC intensity
change. Six environmental factors known to affect TC intensity change are evaluated in the
DBDS model using machine learning approaches with the best-track data for TCs over the North
Atlantic, central, eastern and western North Pacific and the statistical hurricane intensity
prediction scheme (SHIPS) dataset during 1982-2021. Results show that the deep-layer vertical
wind shear (VWS) is the dominant ventilation factor to reduce the intrinsic TC intensification
rate or to drive the TC weakening, with its ventilation parameter ranging between 0.5-0.8 when
environmental VWS between 200 and 850 hPa is larger than 8 m s™'. Other environmental factors
are generally secondary, with their respective ventilation parameters over 0.8. An interesting

result is the strong dependence of the environmental effects on the stage of TC development.
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1. Introduction

Understanding and accurately predicting tropical cyclones (TC) intensity change have long
been challenging to both scientific research and operational forecasting (Wang and Wu 2004;
Kaplan et al. 2010; Courtney et al., 2019; Hendricks et al. 2019; Tan et al. 2022). The TC
intensity change is controlled by complex and nonlinear thermodynamic and dynamic processes
interacting at and across multiple scales (Elsberry et al. 2013, Lin et al. 2021), which can be
classified as processes intrinsic to a TC vortex and of the TC environmental (extrinsic) effects
(Hendricks et.al. 2018). The effects of extrinsic and intrinsic processes on the intensity change
of a TC can be complementary, amplifying, inhibiting, or offsetting (Judt and Chen, 2016).
Previous studies have identified various environmental factors/processes that affect TC intensity
change, such as the large-scale vertical wind shear (VWS), mid-level dry air intrusion, mid-
latitude upper-level trough, the negative ocean feedback due to upwelling and vertical mixing
in the upper ocean induced by the TC itself, sea surface temperature (SST) gradient, and so on
(e.g., Gray 1968; DeMaria and Kaplan 1999; DeMaria et al. 2005; DeMaria 2009; Zeng et al.
2008, 2010; Tang and Emanuel 2010, 2012; Wang et al. 2015; Hendricks et.al. 2018; Fei et al.
2020; Li et al 2022).

In most previous studies, multiple linear regression has been used to identify the key
environmental factors by relating the selected environmental variables and the observed TC
intensity changes based on the TC best-track data (DeMaria et al. 2005). One of the problems
in those statistical studies is that the intensity changes estimated include contributions not only
by the environmental influences but also by the TC internal dynamics, while their respective
contributions are often hard to be effectively separated and quantified. This is why the
correlations between the environmental factors and the TC intensity changes are often small,
and the environmental factors can only explain a small portion of the observed TC intensity
changes based on the linear statistical analyses (e.g., Zeng et al. 2010; Hendricks et al. 2018).
Another issue is the nonlinear interactions between the internal dynamics and external

influences (Wang and Wu 2004; Elsberry et al. 2013), which could not be adequately considered
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by using the linear statistical methods. One such an example is the dependence of the
environmental VWS effect on the stage of the TC development (e.g., Zeng et al. 2010). As a
result, the potential different responses of TC intensity to environmental influences at different
stages of TC development or lifetime could not be uniquely distinguished and evaluated based
on the classical statistical methods.

Recently, both a simple energetically based and a dynamically based dynamical system
models have been developed to quantify the intensification rate (IR) of a TC by Wang et al.
(2021a, 2021b, 2022). The energetically based dynamical system (EBDS) model was formulated
by viewing a TC as a Carnot heat engine, as proposed by Wang (2012, 2015) and first
constructed by Ozawa and Shimokawa (2015). Wang et al. (2021a) introduced an intensity-
dependent dynamical efficiency (E), instead of a constant percentage used by Ozawa and
Shimokawa (2015), to quantify the conversion of the production rate of potential energy to the
production rate of inner-core kinetic energy. The dynamical efficiency £ depends mainly on the
degree of convective organization in the eyewall and the inner-core inertial stability of the TC
vortex as inferred from the balanced vortex dynamics (e.g., Schubert and Hack 1982). Therefore,
in their first version of the EBDS model, Wang et al. (2021a) parameterized E as a function of
the TC inner-core inertial stability. This makes the model capable of quantitatively capturing the
intensity-dependence of TC IR in idealized full-physics model simulations and in observations
(Wang et al. 2021a; Xu et al. 2016; Xu and Wang 2018).

The dynamically based dynamical system (DBDS) model was developed by Wang et al.
(2021b) based on the slab boundary-layer entropy and tangential wind budget equations and the
assumption of a thermodynamic quasi-equilibrium under the TC eyewall. A major advancement
of the DBDS model of Wang et al. (2021b) compared with the earlier time-dependent theory of
TC intensification developed by Emanuel (2012) is the relaxation of the moist neutral eyewall
ascent by introducing an ad hoc parameter measuring the degree of neutrality of eyewall ascent,
which depends on the TC relative intensity, namely, the current TC intensity normalized by its

maximum potential intensity (MPI, Emanuel 1986). The new model was also shown to be
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capable of realistically capturing the intensity-dependence of TC IR in both idealized full-
physics model simulations and observations (Wang et al. 2021b). Interestingly, the EBDS and
DBDS models share the same mathematical formula for TC IR. The only difference is in that
the dynamical efficiency £ in the EBDS model is replaced by the ad hoc parameter (A)
measuring the degree of the moist neutrality of eyewall ascent in the DBDS model. The two
parameters even share the same mathematical expression, as a function of the relative TC
intensity (Wang et al. 2021b).

Theoretically, without any prohibiting environmental effects, both the EBDS and DBDS
models give the theoretical upper bound, or potential IR (PIR), that a TC can reach under given
favorable oceanic and atmospheric environmental thermodynamic conditions and the current
TC intensity (Wang et al. 2021a, b). This was recently demonstrated by Xu and Wang (2022),
who showed that the EBDS model (and also the DBDS model) could skillfully reproduce the
observed intensity-dependence of the 99th percentile IRs of TCs in the best-track data over the
North Atlantic, central, eastern and western North Pacific during 1980-2020, indicating that the
dynamical system models developed by Wang et al. (2021a, b) can reliably estimate the PIR of
real TCs. More recently, the DBDS model has been extended to include the frictional dissipative
heating effect by Wang et al. (2022) and refined in several aspects in Wang et al. (2023). As
demonstrated by Wang et al. (2022), by including the frictional dissipative heating effect, the
skill of the dynamical system model in capturing the observed TC PIR can be further improved,
in particular for those extremely strong TCs in which dissipative heating can contribute
positively to the PIR of intense TCs and also the TC MPI (Bister and Emanuel 1998).

Although the EBDS or DBDS model so far developed can capture the PIR of the observed
TCs (Xu and Wang 2022; Wang et al. 2022) and the intensity evolution of idealized simulated
TCs (Wang et al. 2021a, b), it is desirable to include the environmental effects on TC intensity
change so that the theoretical model can be used to evaluate the effects of environmental factors
on the observed TC intensity change, including both intensification and weakening. This is a

key step toward the application of the model to TC intensity prediction. The present study



122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

attempts to extend the most recent DBDS model developed in Wang et al. (2022b) by including
the environmental effects to allow the model to be used to estimate the effects of various
environmental factors on TC intensity change in observations. As mentioned in Wang et al.
(2021a, b), the environmental effects on TC intensity change can be included/explained by either
reducing the dynamical efficiency of the TC system in the EBDS model or their ventilation
effects to reduce the degree of the moist neutrality of eyewall ascent in the DBDS model, as also
briefly discussed in section 2. This allows the evaluation of the environmental effects on TC
intensity change, independent of the TC intensity change induced by the TC internal dynamics.

The main objectives of this study are to construct the DBDS model by including the
environmental effects and to develop a generic framework based on the Gradient Boosted
Decision Trees (GBDT) to quantify the relative importance of various environmental factors to
the observed TC intensity change based on the TC best-track data. Instead of the use of classic
linear statistical methods, this study develops a machine learning framework to objectively
quantify the relative importance of various environmental factors to the observed TC intensity
changes. An advantage of the framework is to allow the potential dependence of environmental
influences on the stage of TC development to be considered. Machine learning, artificial neural
network methods have been widely used to deal with systems that involve complex nonlinear
interactions, and have been shown to improve skills of statistical TC intensity prediction
schemes to some extent (e.g., Baik and Hwang 1998; Baik and Paek 2000; Lee et al. 2000;
DeMaria et al. 2022; Griffin et al. 2022).

The rest of this paper is organized as follows. The modification to the DBDS model by
including the environmental effects, data, and analysis methods are described in section 2. The
overall environmental ventilation effect and the relative importance and contributions of various
environmental factors to TC intensity change are analyzed and discussed in section 3. Case
studies for Hurricanes Katrina (2005) and Jose (2017) and Typhoon Hagibis (2019) in the study
period are provided in section 4 to demonstrate the validity of the results discussed in section 3.

The main conclusions are given in the last section.
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2. Model, data, and methodology
a. The DBDS model including the environmental effects

The DBDS model with the effect of frictional dissipative heating included recently
developed by Wang et al. (2022) was extended to include the environmental ventilation effect in
this study. As mentioned in section 1, Wang et al. (2022) showed that with dissipative heating
included, the theoretical model can better reproduce the observed intensity-dependence of the
observed PIR and also results in a high PIR for strong TCs. The simple time-dependent equation
of TC intensification including the effect of dissipative heating has the following form [see Eq.
(8) in Wang et al. (2022)],

WV aCp

S = 2 LAV — [1 - vae (1- 22| v2), (1

WV . . . . S : .
where a—;" is the rate of TC intensity change with 7 being time; V,, is the near-surface maximum

wind speed (referred to as the TC intensity); Vempi is the MPI without the dissipative heating
effect included as in Emanuel (1997); a is the reduction factor of the 10-m wind speed from
the depth-averaged boundary layer wind speed; Cp and C; are the surface drag and exchange
Ts—To

coefficients, respectively; 4 is the estimated depth of the well-mixed boundary layer; € =

N

is the thermodynamic efficiency of the Carnot heat engine (Emanuel 1986), with 7y and Ty being
the underlying SST and the outflow layer air temperature, respectively; o is a tracking parameter
to switch the possible effect of dissipative heating on surface heat flux as advocated by Edwards
(2019); and y is the percentage of the frictional dissipation converted to internal dissipative
heating to warm the atmospheric surface layer; A4 is the an ad hoc parameter measuring the degree
of the moist neutrality of eyewall ascent.

The MPI without considering the dissipative heating effect in Eq. (1) is given as

Cc
VEmpi = /ﬁ e(ky — Kq), (2

where K, is the saturated enthalpy of the ocean surface at a given SST (7s), k, the enthalpy of
the atmosphere near the surface. From Eq. (1), we can get the steady-state intensity, namely the

MPI with the dissipative heating effect included, as given below
6
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Vmpi = — " 3)

The ad hoc parameter 4 in Eq. (1) without any unfavorable environmental effects was assumed
as a function of the relative intensity in Wang et al. (2021b). They also mentioned that the
unfavorable environmental effects can be introduced as a ventilation parameter that reduces the

degree of moist neutrality of eyewall ascent. Namely, we can assume

AEB(Vm )n, (4)

Vmpi

where B is a parameter (0 < B < 1) representing the ventilation effect of all unfavorable
environmental factors, and n = 3/2 based on calibrations using results from idealized full-
physics numerical simulations (Wang et al. 2021b) and observations using best-track data (Xu
and Wang 2022). If there is no any unfavorable environmental effect, B = 1.0, indicating an
intensifying TC can reach its PIR. Under more general conditions with various environmental
effects, B (<1.0) can be decomposed into the following form,

B =By X By X B+, 4
where B; (i =1,2,3,--) is the ventilation parameter of the ith environmental factor, such as
the environmental VWS, the mid-level environmental moisture, and so on (see section 2b). The
main objective of this study is to determine the environmental ventilation effects using the TC
best-track data and various environmental variables from the Statistical Hurricane Intensity
Prediction Scheme (SHIPS) dataset and machine learning algorithm.

If not otherwise stated, all parameters through Eq. (4) and constants in the DBDS model Eq.
(1) are taken the same as those used in Wang et al. (2022), except for B included in 4. Namely,
0 =1 and y = 0.8 were used in this study. The effect of dissipative heating on surface heat flux is
included, and 80% of work done by surface friction is converted to dissipative heating (Wang et
al. 2022); and values for several other parameters are C, = 2.4 X 1073, C, =1.2Xx 1073, h=
2000 m, and a = 0.75. These were shown to give the best fits of the results from full-physics
model simulations (Wang et al. 2021a, b) and observations based on TC best-track data (Xu and

Wang 2022), and all are quite reasonable under TC conditions and thus will be used in our
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following analyses as well.

With the DBDS model introduced, in the following we present our approach to the
multiplicative decomposition of B expressed by Eq. (5) and the subsequent analyses accordingly.
In order to make the description easy to follow, we first present a flowchart of our approach (Fig.

1). Details can be found in the following subsections.

SHIPS data DBDS model: B values
Eq. (1)

XGBoost model:
< logB = f(VWS, COHC, D200,
RHMD, dMPI, SPD)

A
B = Byws X Bcore X Bpzoo Relative |mportance
X BrrmpX Bayps X Bsep analy5|s Flg 4a

Figure 1. Workflow of the adopted approach to main objectives of this study.

SHAP analysis:
Egs. (12)-(15)

b. Data

The data used in this study were obtained from the statistical hurricane intensity prediction
scheme (SHIPS) database (DeMaria and Kaplan 1999; Knaff et al, 2005), which was updated
on May 4, 2022. The best-track data of TCs over the North Atlantic, the central and eastern
North Pacific during 1982-2021 and those over the western North Pacific during 1990-2020,
were considered in our analysis. The SHIPS variables are from the Climate Forecast System
Reanalysis (CFSR) for 1982-2000 but operational Global Forecast System (GFS) analyses for
2001-present for the Atlantic, eastern and central Pacific, and from CFSR from 1982-2004 and
operational GFS for 2005-present for the western Pacific. The TC translation speed was
calculated from the difference between the TC location changes at 6-h intervals. To minimize
the influence of TC translation on its intensity, 40% of the TC translation speed was subtracted
from the original 6-hourly maximum sustained 10-m wind speed for all TCs, and the result was
used as the measure of TC intensity (V,) as in Emanuel et al. (2004). The TC intensity changes

at 6-h intervals were calculated accordingly (IRg, = V5" — VE). Only TCs with their Vy
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greater than 17 m s™ were included in our analysis. Only TCs south of 35°N with tropical nature
and with SST greater than 25°C were considered in our analysis to avoid extratropical transition
stages. All landfalling TCs were removed. As in Xu and Wang (2022), the MPIs from the SHIPS
dataset were multiplied by a factor of 1.11 with the dissipative heating effect considered as in
Wang et al. (2022) to consider the superintensity nature of TCs. After such modifications, all
TC MPIs were greater than or equal to their corresponding intensities in the best-track data so
that no negative PIR existed for any intensifying TCs in our analysis.

Six major environmental factors in the SHIPS dataset were selected and their effects on TC
intensity changes were evaluated in this study. They are the environmental VWS defined as the
magnitude of the vector wind difference between 850 and 200 hPa, the climatological ocean
heat content (COHC), the upper-level divergence at 200 hPa (D200), the relative humidity (RH)
between 500-700 hPa averaged between 200-800 km from the TC center, and the TC translation
speed. To take into account the change in SST due to TC motion (e.g., Wood and Ritchie 2015;
Fei et al. 2020), the MPI difference between #y and #o+sn (AMPI) is considered as a proxy. Note
that the effect of environmental sounding (vertical stratification of temperature and moisture)
was included in the MPI calculation using the algorithm described in Bister and Emanuel (2002)
and thus was not considered as an independent environmental factor herein. Table 1 lists the TC
6-hourly maximum sustained 10-m wind speed and environmental variables/factors evaluated

in this study.

TABLE 1. The factors analyzed in this study with their units and descriptions.

Variables Units  Descriptions
v ms! Current TC intensity calculated by subtracting 40% of the translation speed
" from the best-track data
Vempi ms! Maximum potential intensity (Emanuel 1986)
VWS m s Deep-layer vertical wind shear defined as vector difference of winds averaged
within 200-800 km between 850 and 200 hPa
COHC kJ em?  Climatological ocean heat content
D200 107! Divergence averaged within a radius of 1000 km from the TC center at 200

hPa
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RHMD % Mean 500-700 hPa RH averaged between 200-800 km from the TC center
dMPI ms! MPI difference between # and #+6n along TC track

SPD ms! Translation speed of the TC system.

¢. Machine learning methods

To quantify the environmental effects as a whole and the effects of individual environmental
factors, a two-stage machine learning approach was adopted: first, eXtreme Gradient Boosting
(XGBoost) (Chen and Guestrin 2016) was used to build a black-box but exact model of (log) B
as a multiplication of all individual ventilation components (B;) of the six selected environmental
factors; then SHapley Additive exPlanations (SHAP) technique (Lundberg et al. 2020) was used
to transform the black-box model of (log) B into an additive model, equivalent to a multiplicative
model of B. The final multiplicative form of B was used to quantify the effects of all individual

factors.
1) XGBoost

The XGBoost algorithm is a popular implementation of boosted regression trees (Friedman,
2001). Gradient boosting optimizes a loss function by iteratively adding a set of decision trees
into an ensemble. Each new tree is added sequentially such that it reduces the aggregate error
from the existing ensemble of trees. At each iteration k, for the i-th sample y; with an input
feature vector X;, the estimate of y; is updated by a decision tree £ (x;):

959 =9"7" —af POy, ©)
in which a denotes the learning rate, typically chosen to be less than 1, such that only a small
portion of each new tree is added to the overall estimate at each iteration. To construct the

decision tree £, the training data is split into left (/1) and right (/z) nodes based on its input

features x by maximizing the loss reduction, or gain:

2 2
G =1 (Zie’Lgi) (ZiEIRgi) _ Ciergd?| _ %
2| Zier hitd - Dierghitd Yierhi+a ’
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where A and y are regularization parameters controlling the model complexity, [ = I} U I,

and g;, h; are the gradient and hessian, respectively, with respect to ﬁ.(k) of a differentiable

L
loss function to be minimized (e.g., the mean-squared error).

When constructing the decision tree f*), Eq. (7) is evaluated at each node to find the best
possible split gain G* among all features in the input x. Typically a split is made if the gain

exceeds a certain threshold. If no split is made, the node becomes a leaf and the optimal leaf

weight w; can be calculated by

*

Zieljgi )
wH=——~_
J Zleljhl-l—)’ ’

inwhich j € {0,1, 2, ..., T}, with T the total number of leaves in the tree. For a particular sample
y;, the optimized f®(x;) is then simply the leaf weight wj', or

yi(k) = j;i(k_l) —aw;. )

J

A direct inference from the model fitting is the feature importance. Importance is a relative
score that indicates the fractional contribution of each feature to the model performance measure,
and is 100% when summed over all features. XGBoost provides a natural measure of feature
importance, by first summing the gain of a feature’s splits within a single tree [Eq. (7)], weighted
by the number of related observations, and then averaged across all of the trees within the model.
Once the model is fitted, importance is also evaluated accordingly for each feature. The XGBoost
algorithm was adopted here to investigate the nonlinear relationships between the environmental
ventilation parameter and environmental variables. The fitted model is much like a proxy model
that encodes such relationships.

It is well-known that there is a bias/variance trade-off in machine learning. An overfitted
model may have low bias but also poor predictive ability. For a more accurate prediction the
model fitting must be controlled to allow some bias. However, it is less-known that high bias
can also result in poor model interpretability (Lundberg et al. 2020). Low-bias models can better

represent the true data-generating mechanism and depend more naturally on their input features,

so that their interpretations of relationships in data are more stable and reliable. Since the purpose

11
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of this study is to make use of the XGBoost algorithm to interpret the relationship between B
and various environmental factors rather than to predict B, we simply fit the model as accurate
as possible for the training data, without further parameter tuning as in the usual machine

learning practice.
ii) SHAP

SHAP is an additive feature attribution method that attributes values to each feature as the
change in the expected model prediction when conditioning on that feature. Its main advantages
are local accuracy and consistency in global model structure (Lundberg et al. 2020). Local
accuracy states that when approximating the original model f'(e.g., a fitted XGBoost model) for
a specific input x, the SHAP values ¢; for each feature i should sum up to the output f(x):

f) = do(f) + Xili 9i(f, %), (10)
i.e., the sum of feature attributions ¢;(f,x) matches the original model output f(x), where
¢o(f) = E[f(X)] is the bias term. Consistency means that if a model changes so that some
feature’s contribution increases or stays the same regardless of the other inputs, that input’s
attribution should not decrease.

These SHAP values form an additive feature attribution measure to interpret complex
machine learning models. SHAP values estimate contributions of each feature to each individual
prediction. For a given predictor and a given sample, the SHAP value is the difference in the
output depending on if the model is fitted with or without the predictor. For each sample, the
sum of all SHAP values, plus the bias term (the overall mean of predictions), equals the
prediction from the XGBoost model. The resulting matrix of SHAP values can be summarized
to understand how a predictor contributes to the predictions. The mean absolute SHAP value
across all samples summarizes the global feature importance, and more local model
interpretation is possible through exploratory data visualizations such as scatterplots of

individual predictors versus their corresponding SHAP values.

11i1) Multiplicative model of B.
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Combining Egs. (1) and (3), the environmental ventilation parameter B can be calculated

for all TC cases in using the TC best-track dataset, and are used as ‘observations’ to build a

multiplicative model as Eq. (5). This is achieved by adopting the two-stage approach described

above: we first fit a XGBoost model to log B instead of B, to capture the nonlinear relationship
between log B and the selected environmental factors

logB = f(VWS,COHC,D200,---); (11)

where VWS, COHC, D200, --- indicate various environmental factors/parameters listed in

Table 1. Then, by means of the SHAP values, Eq. (11) is assumed to have the following additive

form:

logB; = G + X5, Sij, (12)

where G is the bias term (the overall mean of logB); S;; (j = 1,2,...,6) are SHAP values

corresponding to the six features in Eq. (11) for the i sample. G is an undesirable term for

reaching a multiplicative model as Eq. (5). Since all parameters in Eq. (5) are between 0 and 1,

the higher the value is the weaker the ventilation effect, and vice versa. As a result, all terms in

Eq. (12) should be negative. By proportionally allocating G to each SHAP value according to
their global feature importance [; = % §V=1|S ij |, which is the mean absolute SHAP value across

all samples, we have:

, GXI;
S'ij =55+ Sij, (13)

j=11j

so that Eq. (12) can be rewritten as:

logB; = %7, 5'i;. (14)
Such an allocation scheme still holds the local accuracy and global consistency properties of
SHAP values. Defining S’;; =log (B;;) where B;; € (0,1], and taking the exponential
function of both sides of Eq. (14), we finally obtain the sample-specific multiplicative model of
the environmental ventilation parameter:

B; = [15-1 Byj. (15)

Note that SHAP values S;; cannot be guaranteed to be all negative, and thus neither can

13



341

342

343

344

345

346

347

348

349

350

351
352

353
354
355

356

357

S';j. Consequently, for few cases with B;; greater than 1 (all less than 1.2 in our analysis), we

simply set such B;; to be 1 in our following analysis. This does not affect the results.

3. Results

a. The characteristics of the environmental ventilation B

Figure 2 shows the calculated environmental ventilation parameter B in Eq. (1) against the
relative intensity and compares the frequency distributions of B for intensifying and decaying
TC cases using the 6-h TC best-track data. Since B is less than 1.0 for all TC cases in Fig. 2a,
the environmental ventilation effect inhibits TC intensification (with IR < PIR) or makes TCs

weaken (with 9V}, /0t <0). From Egs. (1)—(4), we can get

1
v, Vimpi
—2 > (0, when B > BN
ot Sck
1+y£(1— ) 1

(16)

3000 -

2000 -

1000

° (0,0.11 (0.3,0.4] (0.6,0.71 (0.9,1]
Vmax/Vmpi B

Figure 2. (a) Estimated B against relative intensity (Vua/Vimpi) for IR < 0 (blue) and IR > 0 (red) based on

the TC best-track data using Eq. (1) with § =1,y = 0.8,C;, = 1.2 X 1073,Cp = 2.4 X 1073, 2 = 2000 m,

and a =0.75, and (b) the frequency distributions of B for intensifying (red) and weakening (blue) TC cases,

respectively.

Eq. (16) indicates that a TC can intensify only when the ventilation parameter related to

unfavorable environmental effects exceeds a critical value. Note that stronger ventilation
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corresponds to smaller ventilation parameter B. The critical value depends on the relative
intensity of a TC. This can be clearly seen from Fig. 2a, in which all intensifying cases (red) are
located above the weakening cases (blue) for a given relative intensity. This indicates that the
TC weakening results primary from strong environmental ventilation effect. From Fig. 2b, we
can see that overall B is greater than 0.4, with high frequency when B is between 0.6-0.8 for
intensifying cases, but B is evenly distributed for decaying cases between 0.3—0.8 with relatively
high frequency when B is between 0.5-0.7, suggesting that B can well reflect the environmental
ventilation effect on slowing down the TC IR or driving TC weakening. The higher B reflects
the more favorable environmental conditions for TC intensification. When B =1 in Eq. (4),
Eq. (1) results in the PIR of an intensifying TC, indicating all environmental factors are favorable
for a TC to intensify.

Figure 3 further shows the TC IR (intensifying IR > 0 and weakening IR < 0) as a function
of B and relative intensity, and B as a function of IR and PIR, respectively. We can see from Fig.
3a that although IR shows a general tendency to increase with increasing B, the dependence of
IR on B for intensifying TC cases is much stronger than that for weakening TC cases. Particularly,
the rapid intensification (RI) cases with IR greater than 4 m s7!(6h)! for the 95th of all IR samples
occur with B greater than 0.7. For the weakening cases, the slow weakening cases occur with B
between 0.3 and 0.8, while the rapid weakening (RW) cases with IR less than -4 m s7!(6h)! occur
with B between 0.2 and 0.7. This suggests that TCs can weaken in a large range of adverse
environmental conditions. Especially, as a TC approaches its MPI at its higher relative intensity,
the TC IR is very sensitive to the environmental effects. In those cases, even relatively weak
environmental effects may lead to TC weakening. However, the RW cases occur with small B,
indicating that RW often results from strong adverse environmental effects, such as strong
environmental VWS.

The maximum IR occurs with B greater than 0.9 and relative intensity around 0.6. This is
consistent with the theoretical results in Wang et al. (2021b), which showed that the theoretical

maximum PIR occurs at intermediate TC intensities (roughly 60% of their MPIs). The larger
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negative IR [<—6 m s! (6h)™!] occurs with B either being small (less than 0.4) when the relative
intensity is relatively smaller than 0.5 or being between 0.6 and 0.7 when the relative intensity
is relatively high around 0.8—0.9. This indicates that only strong adverse environmental effects
can lead to RW of a TC in its primary intensification stage before reaching its maximum PIR,
but relatively weak adverse environmental effects can lead to RW of a TC when it is close to its
MPI as already mentioned above. This is consistent with the results by Fei et al. (2020), who
statistically studied the RW of TCs over the western North Pacific and found that there were
86.1% of TCs undergoing their first weakening phase and about 29.4% of RW cases undergoing
their first RW period within 24 hours after they reached their lifetime maximum intensity. The

latter was recently studied in more detail by Zhou et al. (2022).

10 (a)-IR . 15 (b) BIR PIR 7 y )
Shen - _ = - .
T - |R=0.5F‘IRA/'_ = . eeff 10
08 - 0.9
0.8
0.6 - 0.7
aa]
0.4 - o
0.5
0.2 A4 04
ko) . 0.3
0.0 — | I

0.2 04 0.6 0.8 1.0
Vmax/Vmpi

Figure 3. (2) Distribution of TC IR [m s™! (6h)"!, contours and shading] in B and relative intensity (Va/ Vinpi)
space, (b) the distribution of B in IR and PIR [m s! (6h)’!, contours and shading] space. The black dash lines
in (b) denote the relative IR (namely IR normalized by the theoretical PIR) of 1.0 and 0.5, respectively.

From the distribution of B in the IR and PIR space in Fig. 3b, we can see that high B, namely
favorable environmental conditions, is key for TCs reaching their PIRs. For example,
intensifying TCs with their IR reaching 50% of their PIRs or above are only observed in the
environment with B greater than 0.8 (short dashed line in Fig. 3b). An interesting result is the
quite weak dependence of RI [with IR greater than 4 m s™'(6h)'] on B for PIR greater than 12 m

s! (6h)!. This indicates that TCs are potentially more resistant to the adverse environmental
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influence during their intensifying stage with relatively high PIRs (often with intermediate
intensities as mentioned earlier, also see Wang et al. 2021a, b), but more vulnerable when their
PIRs are relatively low, especially, under strong adverse environmental conditions. This indicates
that the intrinsic vortex dynamics is key to TC intensification, while the adverse environmental
influence controls the weakening of TCs. Furthermore, we can see that B shows a general
increasing tendency with increasing IR and a decreasing tendency with the increase of IRs from
their corresponding PIRs. This indicates that the adverse environmental influence plays a key
role in limiting the TCs from reaching their theoretical PIR. This explains why very few TCs can

reach their theoretical PIR in observations as seen in Fig. 3b.
b. XGBoost modeling and feature importance analysis of B
1) Model fitting

The environmental ventilation effect (parameter B) discussed in section 3a results from
various environmental factors, such as environmental VWS, COHC, D200, RHMD, dMPI and
SPD as mentioned in section 2b and listed in Table 1. In this subsection, the XGBoost model
described in section 2¢ was used to quantify contributions of those individual environmental
factors to log(B). Each environmental factor is an input feature to the XGBoost model for all
TC cases. With some typical parameter settings (learning rate = 0.5 and the maximum depth of
a tree = 7, refer to https://xgboost.readthedocs.io/en/latest/parameter.html for a detailed
description), the root mean-square error (RMSE) of the fitted B stabilizes at 0.0023 after about
2000 iterations, which is 0.23% of the range of B. This result shows that the model with the
identified input features/factors can well reproduce B through log(B). However, the fitting error
does not indicate the prediction error due to the bias/variance trade-off. To examine the model’s
prediction skill, 10-fold cross validation of the same model was further carried out. The dataset
was randomly divided into 10 subsamples with equal size, each of which was used as testing
data with all the others pooled together as training data in turn for once. For each set of testing

data, the mean squared error (MSE) of B predictions was calculated. In order to eliminate the
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potential bias caused by random division, this procedure was repeated for 10 times, yielding 100
MSEs. The root mean of these MSEs can be viewed as a measure of model prediction skill,
which is 0.15 for the XGBoost model. Apparently, the prediction error is much greater than the
fitting error.

Recall that, for prediction models, there is a ubiquitous trade-off between model bias and
prediction variance. Linear models have the property of high bias and low variance in general
(Hastie et al. 2009). We also fitted a multiple linear counterpart of the XGBoost model as a
baseline for comparison:

E(log(B)) = Bo + X{-1 BiB; a7)
where f, is the intercept and f;,i = 1,...,6 are coefficients. Parameter estimates and their p
values of significance test are shown in Table 2. It can be seen that AMPI may not be a significant
linear effect at the level of 0.05 since the p value for S5 is greater than 0.05. Using the same
validation strategy, the fitting and prediction errors of B are both around 0.13. It can be seen by
comparison that the fitted XGBoost model reproduces the nonlinear relationships between B and
all individual environmental factors with a very small error (0.0023), much smaller than that of
the counterpart linear regression model (0.13), whereas the prediction error (0.15) is a little bit
larger than that of the linear model (0.13), suggesting an overfit of the XGBoost model. Since
our purpose of fitting the XGBoost model is to derive a multiplicative form of B through the
SHAP analysis and thus to explain which factors in B are most important, rather than to predict

B for new input of environmental factors, thus an accurate or even overfitted model is acceptable.

TABLE 2. Parameter estimates and their p values for the counterpart model of Eq. (17)

Parameter Bo B B B3 Ba Bs Bs
(Intercept)  (VWS)  (COHC)  (D200)  (RHMD)  (dMPI)  (SPD)

Estimate —-0.30 -8.5x10*  7.7x107* 8.5x107%  —2.4x103  6.7x107* 3.2x1073

P values <2x107'6 <2x107'¢  <2x107'®  <2x10716  <2x]107!® 0.059 <2x107'6

i1) Feature importance analysis
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As a direct inference of our fitted XGBoost model, the relative importance of six individual
environmental factors to log(B), namely to what extent log(B) is contributed by each of the
input features, are evaluated as shown in Fig. 4a. It can be seen that the environmental VWS is
the most important factor and contributes 25% to log(B). Climatological ocean heat content
(COHC) and the upper-level divergence (D200) contribute about 17-18% to log(B). Mid-level
RH (RHMD), 6-h change in MPI along the TC track (dMPI), and translation speed (SPD)
contribute, respectively, 16%, 14%, and 11% to log(B). This is broadly consistent with previous

knowledge on the adverse environmental effects on TC intensity (Gray 1968; Wang and Wu 2004;

Hendricks et al. 2018; Fei et al. 2020).
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Figure 4. (a) Relative importance of six individual environmental factors used in the XGBoost model. Factors
are listed to the left (see Table 1) in descending order of their relative importance. Contributions of the
individual environmental factors are given on the right of their corresponding bars. (b) Same as (a) but for the
counterpart linear model of (a). Bars show absolute values of SRCs with their real values labeled to the right
of their corresponding bars. (c) Same as (b) but with a quadratic term dMPI2 added to the linear model.

For the counterpart linear model, however, there is not straightforward to infer the relative
importance. An alternative way to check the feature importance is to examine the standardized
regression coefficient (SRC) (Kleijnen and Helton, 1999)

SRC; = fi 3t (18)

where o0; and oy denote the standard deviations of the model input X; and the model output
Y, respectively. This is actually a sensitivity measure representing the expected change in Y
because of an increase in X; of one of its standardized units (i.e., o0;), with all other X variables

unchanged. The absolute values of the SRCs may be compared, giving a rough indication of the
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relative importance of the variables (but not weighted to sum to 1). Figure 4b shows the absolute
values of SRCs of the counterpart linear model as bars with their real values labeled. Compared
with Fig. 4a, VWS still has the highest relative importance; COHC, D200 and RHMD also have
comparable importance values to those in Fig. 4a; dMPI, however, has the least relative
importance. This result is consistent with the significance test of parameter estimates (Table 2),
by which dMPI may not be a significant linear effect. This comparison suggests that AIMPI exerts
influence on log(B) in a nonlinear way, which has been captured by the XGBoost model. This
can be confirmed simply by adding a quadratic term of dMPI (denoted as dMPI2) to the right-
hand side of Eq. (17) and refitting the model. Significance tests of the parameters show that all
the seven variables, including dMPI2, have significant effects with p values less than 2x10-16,
Relative importance of variables in the expanded model is shown in Fig. 4c. It can be seen that
dMPI2 gains more importance than dMPI. However, the fitting and prediction errors of B,
calculated using the same method as before, are still around 0.13: reduction in each error takes
place only after the third decimal point digit is included, which is negligible. To sum up, the
multiple linear regression model can only achieve very limited improvement in the model
accuracy simply by adding more nonlinear terms of factors, whereas the XGBoost model can
reproduce the nonlinear relationship between input factors and response almost precisely,
without considerable loss of generalization ability. The latter merit is just what we require to

derive the multiplicative form of B.
c. Multiplicative form of B and contributions of individual environmental factors to IR

The environmental ventilation B can be expressed as the multiplication of individual
ventilation parameters B; (i = 1,2,---,6) induced by the six environmental factors using the
SHAP analysis described in section 2c. Figure 5 shows the six individual environmental
ventilation parameters Byyws, Bcowc, Bpzoo> Brump Bampr, and Bspp induced by,
respectively, the individual environmental factors VWS, COHC, D200, RHMD, dMPI, and SPD
as a function of the corresponding environmental variables and relative intensity. Overall, the

relationship between each ventilation parameter and the corresponding variable is nonlinear and
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505  Figure 5. Individual ventilation parameters (a) Byys, (b) Bconcs (€) Bpzoos () Brump» (€) Bampr, and (f)
506  SPD induced by, respectively, VWS (m s™"), COHC (kJ cm2), D200 (10”7 s7"), RHMD (%), dMPI (m s™), and
507  SPD (m s™') as a function of the corresponding environmental variables and relative intensity obtained using
508  the SHAP analysis.

509 The ventilation parameter Byy,s induced by the most unfavorable environmental factor
510 VWS varies between 0.5-1.0 (Fig. 5a). By is generally greater than 0.9 when VWS is less
511  than 7m s! but decreases significantly with increasing VWS afterwards. This suggests that weak
512  environmental VWS has very limited effect on TC intensity change but imposes an increasing
513 adverse effect on TC IR as VWS increases beyond 8 m s™'. This agrees with previously reported

514  threshold of about 8—10 m s™! above which VWS can have a significant detrimental effect on TC

21



515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

intensity and intensification (Zeng et al. 2010; Wang et al. 2015; Hendricks et al., 2018). By
also shows an overall slow decrease with decreasing relative intensity, implying that
environmental VWS is more detrimental to relatively weak TCs than to strong TCs. The
ventilation parameters induced by other environmental factors are generally between 0.8—1.0
(Figs. 5b-5f), considerably smaller than that induced by VWS, implying that they have relatively
weaker adverse effects on TC intensity change than VWS.

The ventilation parameter (B.opyc) induced by COHC shows a general increasing tendency
with increasing COHC (Fig. 5b). This is because high ocean heat content limits the upper ocean
cooling induced by upwelling and vertical mixing across the mixed layer base under the TC
(Wang and Wu 2004). Similar to COHC, the ventilation parameter Bp,o, induced by upper-
level divergence (D200) also varies between 0.8—1.0 (Fig. 5¢). It increases with increasing upper-
level divergence, suggesting that upper-level divergence (convergence) is favorable (unfavorable)
for TC intensification. This is because the upper-level convergence or weak divergence is
unfavorable for eyewall ascent, and thus plays a role equivalent to the mid-level ventilation
induced by lateral dry-air intrusion to reduce Bp,qq. This is consistent with previous studies by
Kaplan et al. (2010) and Lee et al. (2015), who found that strong upper-level environmental
divergence is favorable for TC intensification.

The ventilation parameter Bgyyp associated with the mid-level RH between 500-700 hPa
is generally high (Fig. 5d), with relatively small values for both too high (greater than 75%) and
too small (less than 40%) RHMD. Too high RHMD implies moist mid-level environment, which
is favorable for active rainbands and TC size expansion, which is often unfavorable for TC
intensification, as demonstrated in previous modeling (e.g., Wang 2009; Hill and Lackmann
2009; Li et al. 2020) and theoretical (Wang et al. 2023) studies. In contract, too low RHMD
makes the eyewall ascent vulnerable to any environmental perturbations by lateral dry-air
intrusion. Therefore, too dry mid-level environment plays a role in enhancing the environmental
ventilation effect (Tang and Emanuel 2010).

The factor dMPI is the change in MPI along the TC track, which is mainly determined by
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the underlying SST gradient and the translation speed of the TC, and determines the response
timescale of the TC to change in the underlying SST. Positive dMPI partly reflects the potential
increase in eyewall convection and, consequently, the weakened ventilation (Fig. Se). Negative
dMPI is equivalent to a decrease in SST, and thus increasing ventilation effect and reducing
Baypr- Baupr decreases with decreasing dMPI when dMPI is less than —5 m s™'. As a result,
large negative dMPI often leads to rapid weakening of TCs, similar to the SST gradient
previously revealed by Wood and Ritchie and (2015) and Fei et al. (2020). However, Biyp;
shows a decreasing trend with increasing dMPI and decreasing relative intensity for positive
dMPI. This may be due to the delayed response of TC intensity to the increase in SST, which is
more significant for weak TCs (with relative intensity less than 0.4).

The last factor is the TC translation speed (SPD), which has dual effects on TC intensity
change and thus the ventilation parameter (Bgspp, Fig. 5f). On one hand, too slow translation
(with SPD less than 6 m s™') often enlarges the negative ocean feedback due to cooling induced
by TC forcing. On the other hand, too fast translation (with SPD greater than 20 m s') can induce
large asymmetric structure, which may lead to ventilation effect by eddy processes (Zeng et al.
2007, 2008). Note that fast translation has a more pronounced effect on weak TCs with relative
intensity less than 0.4.

To further quantify contributions of individual environmental factors to TC IR (dV;,/d7),
we calculated IR using Eq. (1) with 4 from Eq. (4) and B from Eq. (5). In each calculation, we
used the actual ventilation parameter induced by one environmental factor while keeping all
other ventilation factors being 1.0. For VWS as an example, the contribution by environmental
VWS to TC RI (/Ryws), which is calculated using the actual Byws while keeping Bcowuc, Bp20o,
Brumvp, Bampr, and Bspp all being 1.0, is evaluated by /Ryws normalized by the PIR calculated
using Eq. (1) with B = 1 in Eq. (4). Figure 6 shows the contributions of all individual
environmental factors to TC IR as a function of the factor and relative intensity. The normalized
IRyws shows a nearly linear decrease with increasing VWS and also a decrease with increasing

relative intensity when VWS is larger than about 7-8 m s™' (Fig. 6a). This is mainly because that
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569 the stronger the TCs are when approaching their MPI, there will be lower probability for them
570 to intensify. Note that there are a few cases with negative normalized /Ryws when VWS is greater
571 than 15 m s™!, consistent with the small Byws in Fig. 5a, indicating the dominant effect of VWS

572 on TC weakening.
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574  Figure 6. Same as Fig. 5, but for the normalized TC IR induced by one of individual factors to the
575  corresponding potential intensification rate (PIR).

576 The normalized /Rconc shows a general increase with increasing COHC (Fig. 6b),
577  indicating that high climatological ocean heat content is favorable for TC intensification. The
578  normalized /Rp2po (Fig. 6¢) shows somewhat small values when the D200 is convergence or

579  weak divergence, consistent with the relatively small Bpgp value in Fig. Sc, suggesting that
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upper-level environmental divergence reflects TC rapid intensification. The normalized IRzump,
IRamp1, and IRspp all show distributions in the parameter space similar to their corresponding
ventilation parameters, indicating that high middle-level RH, large negative dMPI and too slow
or too fast translation are all unfavorable for TC intensification. These results confirm that the
environmental effects on TC IR can be effectively included in our dynamical system model

through their corresponding ventilation parameters.

4. Case studies of Hurricanes Katrina (2005) and Jose (2017) and Typhoon Hagibis (2019)

In section 3, we discussed how the six environmental factors contribute to the ventilation
parameter B as a whole and also individually and eventually bring the theoretical PIR towards
the observed TC IR based on the DBDS model. This also makes it possible to objectively
quantify the relative contributions of various environmental factors to the observed intensity
change of each TC. In this section, three representative cases are used to give further insight into
the environmental effects on intensity change of individual TCs in terms of their lifetime
intensity changes including both intensification and weakening stages.

Before going into detailed case studies, let’s first have an overview of how individual
environmental factors affect B and virtually bring PIR towards IR. The six environmental
ventilation parameters Byyws, Bconcs Bp20o» Brump, Bampr> and Bgspp for the whole sample
data can be retrieved from the database discussed in section 3. Then, we calculated a set of IRs
(0V,,/07) by adding one factor each time for the six environmental effects in the above order
into Eq. (1) to highlight how the PIR is reduced to the actual IR (3dV},,/071) by the six individual
environmental factors, as shown in Fig. 7. Note that, theoretically, the final group of IRs (black)
should coincide with real IRs such that the dots align with the diagonal line. However, due to the
fitting errors from the XGBoost model propagated to the SHAP values, they scattered a bit
[RMSE = 0.10 m s/(6h)!]. Also note that, different orders of adding environmental ventilation
parameters do not make any difference in the black dots, which are only observable in Fig. 7.

We then retrieved the time series of the six environmental ventilation parameters By,
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Bconc> Bp200s Brump»> Bampr, and Bspp for each case individually (left column in Fig. 8), and
calculated a set of IR series in the same way as done above (right column in Fig. 8). Note that
the lifetime mean of individual ventilation parameters for each of the cases is given in Table 3
for a quick look at the relative contributions of individual environmental factors to the observed

TC intensity changes.
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Figure 7. Illustration of how the PIR is reduced to the actual IR by adding one of the six environmental
ventilation parameters for each time. The gray dashed line is diagonal.

a. Hurricane Katrina (2005)

Hurricane Katrina (2005) was one of the deadliest and the costliest meteorological disasters
that struck the United States on record. Katrina formed at 1800 UTC 23 August 2005 over the
southeastern Bahamas. It showed few signs of weakening during its brief passage over the
Florida peninsula and began to intensify shortly after moving into the Gulf of Mexico early on
26 August. Two periods of RI on 26 and 28 August brought Katrina to category 5 with the
maximum near-surface wind speed of 77 m s (Knabb et. al. 2005). The environmental
ventilation factors indicated a favorable environment for RI, such as weak VWS and large COHC
with their lifetime mean ventilation parameters being 0.93 and 0.97, respectively (Table 3). Other

environmental factors were also favorable for TC intensification, including moist RHMD,
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positive dMPI and slower SPD than average, with their ventilation parameters being 0.95-0.96
(Fig. 8a). Only D200 was a little bit weaker than normal, giving rise an average ventilation
parameter of 0.91, which may hinder TC intensification (DeMaria and Kaplan 1999) until 0000
UTC 29 August. After that, the environmental VWS showed a continuous increase, leading to a
rapid weakening of Katrina. Figure 8b shows how the PIR was reduced to the actual IR by adding
one of the six environmental effects for each time, showing clearly that each ad hoc IR is indeed
an upper bound on the actual IR. The weak VWS only reduced PIR slightly, while D200 was
dominant in reducing PIR with the smallest B among all 6 factors (Table 3). Other factors
weakened PIR slightly during the intensification stage (IR > 0), but contributed equally during

the decaying stage with similar individual ventilation parameters after 1200 UTC 28 August.
b. Hurricane Jose (2017)

Hurricane Jose (2017) formed as a tropical storm by 1200 UTC 5 September west of the
Cabo Verde Islands, intensified to its peak intensity of 68 m s by 1800 UTC 8, weakened and
then oscillated around 33 m s™! for about five days, and then weakened to a tropical storm early
on 15 September. After re-intensifying to hurricane strength in a few days, Jose weakened to a
tropical storm again when it was located east of Virginia Beach and also began to take on some
extratropical characteristics by 1200 UTC 19 September. Jose had a long over-water lifespan of
a total of 14.75 days (Berg 2018). Along the long-life track of Jose, all environmental factors
played complicated roles in its R, intensity fluctuation, and weakening processes. Initially, both
the increasing PIR and high B led to RI, making Jose attaining its lifetime maximum intensity
(LMI) (Figs. 8c and 8d). Jose moved northwestward after 9 through 11 September, and suffered
from an increasing northeasterly VWS and a partial eyewall replacement, which caused Byws to
decrease sharply, and thus Jose weakened below hurricane intensity. For the rest of its life,
environmental VWS played a dominant role during its intensity fluctuation and weakening
processes. VWS was 3.4 m s™! larger than normal average, resulting in a low Byws of 0.86 (Table

3), which alone reduced about 42% of the PIR (Fig. 8d).
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¢. Typhoon Hagibis (2019)

Super Typhoon Hagibis (2019) formed over the western North Pacific in October 2019. It
intensified explosively from 28 m s at 1200 UTC 6 to 73 m s™' at 1200 UTC 7 (from tropical
storm to Category 5), namely reached its LMI of 73 m s™!. Hagibis started its RI and reached the
maximum IR of 15.4 m s”!(6h)! at 1200 UTC 7, which is very close to its PIR under a favorable
environment. Note that the maximum IR happened when the relative intensity (Vimax/Vimpi) Was
around 0.54, which is consistent with observation in Fig. 3a and the theoretical results in Wang
et al. (2021b), who showed that the theoretical maximum PIR occurs at intermediate TC
intensities (roughly 60% of their MPIs). After the RI, Hagibis’s intensity dropped and then
fluctuated during 89 October. Actually, the environmental factors changed little during this
period, with individual ventilation parameters fluctuating slightly as shown in Fig. 8e. Lin et al.
(2020) compared the environmental conditions, such as the ocean eddy, environmental vertical
wind shear, and mid-level relative humidity, etc., in this period with those in the RI stage. They
found that some conditions, such as weak environmental VWS and warm ocean eddy were even
better in this period than in the RI period. As a result, they concluded that the eyewall
replacement cycle and the relatively large size expansion predominantly hindered Hagibis’
further intensification. Note that Hagibis was approaching its MPI during this period with the
relative intensity greater than 0.75. As we mentioned earlier, when a TC approaches its MPI,
there is less potential for it to intensify, and the IR becomes very sensitive to the environmental
effects (Fig. 3a). Hagibis terminated its strengthening at 0000 UTC 9, and turned northward and
moved into region with much cooler SST with relatively high VWS and low-moisture
environment, which led to much lower Byws and Bonc, as shown in Fig. 8f. During Hagibis’
weakening stage, the environmental factors reduced 116% of the PIR, changing from
intensifying to weakening. Particularly, environmental VWS alone reduced about 40% of the
PIR, and together with D200 and CHOC, reduced about 80% of the PIR, which dominated the
whole weakening period (Fig. 8f). As Hagibis moved northward toward Japan, the COHC was

—27.2 kJ cm™ below the average (Table 3), which was also a major factor contributing to Hagibis’
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677  weakening process.

678  TABLE 3. List of environmental factors, in standard (std) anomaly form, and individual ventilation parameters

679 B of lifetime mean of TCs Katrina, Jose and, Hagibis, respectively.
Katrina Jose Hagibis
Factors (std anomaly)/B (std anomaly)/B (std anomaly)/B
VWS -1.11/0.93 3.4/0.86 -0.92/0.92
COHC 37.2/0.97 -3.5/0.93 -27.2/0.96
D200 -34.4/0.91 -27.2/0.94 75.4/0.97
RHMD 3.4/0.96 -6.4/0.97 1.86/0.96
dMPI 1.81/0.95 0.59/0.97 -1.1/0.97
SPD -1.85/0.96 -0.03/0.96 3.1/0.97
(a) Katrina(2005) (b)
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Figure 8. Case studies for Hurricanes Katrina (2005) (a and b) and Jose (2017) (¢ and d) and Typhoon Hagibis
(2019) (e and f), respectively. The left column shows time series of the ventilation parameter B and its
components due to individual environmental factors. The right column shows the PIR (grey dash, m s™! day')
and reductions of the PIR by individual environmental ventilation parameters by B as the multiplication of
individual ventilation parameters Byws, Byws Bp20o, - .., and Byws Bp20o Bcroc Bspp Baver Bravp (colored dashes),
respectively, towards the observed IR (grey, solid). The effect of the dominant ventilation factor VWS is
highlighted by the red bold dashes for all three cases.

5. Conclusions and discussion

In two recent studies, W21a and W21b introduced a simple energetically based and a
dynamically based dynamical system models, or in short EBDS and DBDS models, to quantify
the intensification rate (IR) of a TC, respectively. Both models share the same mathematical
expression of TC IR as a function of the relative TC intensity and maximum potential intensity
(MPI). The only difference is that the dynamical efficiency (£) in the EBDS model is replaced
by the ad hoc ventilation parameter (4) measuring the degree of the moist neutrality of eyewall
ascent in the DBDS model. Both models have been shown to be capable of realistically capturing
the intensity-dependence of TC IR in both idealized full-physics model simulations and
observations (Wang et al. 2021b, Xu and Wang 2022). This study extends the DBDS model to
include the effects of various environmental factors so that the model can be used to quantify the
detrimental effects on IR of real TCs.

The environmental effect has been introduced through the environmental ventilation
parameter B in the DBDS model, which can be uniquely expressed as a multiplication of
individual ventilation parameters of various environmental factors. TC IR shows a general
increase with increasing B or decreasing ventilation effect. Results based on the best-track data
over the North Atlantic, central, eastern and western North Pacific during 19822021 show that
the dependence of TC IR on B for intensifying TC cases is much stronger than that for weakening
TC cases. Particularly, the rapid intensification [RI, with IR greater than 4 m s7'(6h)'] cases
occur with B greater than 0.7. For the weakening cases, the slow weakening cases occur with B
between 0.3 and 1.0, while the rapid weakening [RW, with IR less than —4 m s7!(6h)!] cases

occur with B between 0.2 and 0.7. Especially, as a TC approaches its MPI with high relative
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intensity, the TC IR is very sensitive to the environmental effects. In these cases, even relatively
weak environmental effects may lead to TC weakening. An interesting result is the quite weak
dependence of RI on B for PIR greater than 12 m s! (6h)!. This indicates that TCs are potentially
more resistant to the adverse environmental influence during their intensifying stage with
relatively high PIRs.

Six major environmental factors in the SHIPS dataset were selected and their effects on TC
intensity changes were evaluated based on the TC best-track data and the SHIPS dataset during
1982-2021, including the environmental deep-layer VWS, the climatological ocean heat content
(COHC), the upper-level divergence at 200 hPa (D200), the mid-level relative humidity (RHMD)
between 500-700 hPa averaged between 200—-800 km from the TC center, the TC translation
speed (SPD), and the MPI difference between ¢y and fo+6n (IMPI) considered as a proxy of the 6-
h change in SST along the TC track. The machine learning algorithm XGBoost model was
adopted to quantify the relative importance of the above factors, and the SHAP method was used
to quantify the contribution from each factor to the observed TC intensity change. Results from
these analyses demonstrate that VWS is the most important environmental factor, which
contributes 25% to log(B). COHC and D200 contribute about 17-18% to log(B). RHMD,
dMPI, and SPD contribute 16%, 14%, and 11%, respectively. The ventilation parameters also
represent their individual relative importance to the bulk environmental ventilation parameter
and thus their relative contributions to the observed TC intensity changes.

With the SHAP analysis method, the environmental ventilation parameter B can be
expressed as the multiplication of individual ventilation parameters of the selected
environmental factors. Results show that the relationship between each ventilation parameter
and the corresponding variable depends on the TC relative intensity. The ventilation parameter
Byws induced by the environmental VWS varies between 0.5—1.0. Compared with VWS, the
ventilation parameters induced by other environmental factors are relatively higher and vary
between 0.8—1.0, implying that they have relatively weaker effects on TC intensity change than

VWS. Consistently, the normalized /Ryws decreases almost linearly with increasing VWS and
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also with increasing relative intensity when VWS is larger than about 7-8 m s!, largely due to
the little potential for strong TCs approaching their MPI. A few cases show negative normalized
IRyws when VWS is greater than 15 m s, indicating the dominant effect of VWS on TC
weakening. The normalized /Rconc shows a general increase with increasing COHC indicating
that high climatological ocean heat content is favorable for TC intensification. The normalized
IRp200 shows somewhat small values when the D200 is convergence or weak divergence,
suggesting that upper-level environmental divergence reflects TC rapid intensification. High
RHMD, large negative dMPI, and too slow or too fast translation are all unfavorable for TC
intensification.

Three representative cases, namely Hurricanes Katrina (2005) and Jose (2017) and
Supertyphoon Hagibis (2019), are chosen to give further insight into the environmental effects
on intensity change of individual TCs in terms of their lifetime intensity changes, including both
intensification and weakening stages. Results demonstrate that the individual environmental
ventilation parameters can well capture the detrimental effects of various environmental factors
on TC PIR, while the relative importance of the environmental factors varied with case and the
different life stages of individual TCs. In all cases, the TC weakening results primarily from
strong environmental ventilation effects, with strong VWS being the major detrimental
environmental factor.

We should point out that in this study it is assumed that the DBDS model can precisely give
the PIR that a TC can reach under all favorable environmental thermodynamic conditions. As a
result, the difference between the PIR and the observed intensity change is attributed to the
detrimental environmental effects. Since the DBDS model is highly idealized and was verified
based on ensemble idealized numerical simulations and best-track TC data, it could not capture
the short-term intensity change resulting from high-frequency convective activities. Namely, the
model can be used to evaluate the storm-scale intensification. In our study, therefore, we assumed
that the best-track data mainly reflect the storm-scale intensity change. Our results strongly

suggest that this assumption is acceptable. Formally the strategy we adopted here can also be
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used to predict the TC intensity. However, for the prediction purpose, the SHAP analysis and the
multiplicative decomposition of B can be skipped, whereas more parameters tuning, validation
and testing steps should be taken for developing the XGBoost model, or any other machine
learning model that can model B as response to environmental factors as input features, such as
neural networks. In our follow-up studies, we will apply the DBDS model to estimate the PIR

and conduct real-time TC intensity prediction.
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