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Abstract 22 

Accurate prediction of tropical cyclone (TC) intensity is quite challenging due to multiple 23 

competing processes among the TC internal dynamics and the environment. Most previous 24 

studies have evaluated the environmental effects on TC intensity change from both internal 25 

dynamics and external influence. This study quantifies the environmental effects on TC intensity 26 

change using a simple dynamically based dynamical system (DBDS) model recently developed. 27 

In this simple model, the environmental effects are uniquely represented by a ventilation 28 

parameter B, which can be expressed as multiplicative of individual ventilation parameters of 29 

the corresponding environmental effects. Their individual ventilation parameters imply their 30 

relative importance to the bulk environmental ventilation effect and thus to the TC intensity 31 

change. Six environmental factors known to affect TC intensity change are evaluated in the 32 

DBDS model using machine learning approaches with the best-track data for TCs over the North 33 

Atlantic, central, eastern and western North Pacific and the statistical hurricane intensity 34 

prediction scheme (SHIPS) dataset during 1982–2021. Results show that the deep-layer vertical 35 

wind shear (VWS) is the dominant ventilation factor to reduce the intrinsic TC intensification 36 

rate or to drive the TC weakening, with its ventilation parameter ranging between 0.5–0.8 when 37 

environmental VWS between 200 and 850 hPa is larger than 8 m s-1. Other environmental factors 38 

are generally secondary, with their respective ventilation parameters over 0.8. An interesting 39 

result is the strong dependence of the environmental effects on the stage of TC development.   40 
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1. Introduction 41 

Understanding and accurately predicting tropical cyclones (TC) intensity change have long 42 

been challenging to both scientific research and operational forecasting (Wang and Wu 2004; 43 

Kaplan et al. 2010; Courtney et al., 2019; Hendricks et al. 2019; Tan et al. 2022). The TC 44 

intensity change is controlled by complex and nonlinear thermodynamic and dynamic processes 45 

interacting at and across multiple scales (Elsberry et al. 2013, Lin et al. 2021), which can be 46 

classified as processes intrinsic to a TC vortex and of the TC environmental (extrinsic) effects 47 

(Hendricks et.al. 2018). The effects of extrinsic and intrinsic processes on the intensity change 48 

of a TC can be complementary, amplifying, inhibiting, or offsetting (Judt and Chen, 2016). 49 

Previous studies have identified various environmental factors/processes that affect TC intensity 50 

change, such as the large-scale vertical wind shear (VWS), mid-level dry air intrusion, mid-51 

latitude upper-level trough, the negative ocean feedback due to upwelling and vertical mixing 52 

in the upper ocean induced by the TC itself, sea surface temperature (SST) gradient, and so on 53 

(e.g., Gray 1968; DeMaria and Kaplan 1999; DeMaria et al. 2005; DeMaria 2009; Zeng et al. 54 

2008, 2010; Tang and Emanuel 2010, 2012; Wang et al. 2015; Hendricks et.al. 2018; Fei et al. 55 

2020; Li et al 2022).  56 

In most previous studies, multiple linear regression has been used to identify the key 57 

environmental factors by relating the selected environmental variables and the observed TC 58 

intensity changes based on the TC best-track data (DeMaria et al. 2005). One of the problems 59 

in those statistical studies is that the intensity changes estimated include contributions not only 60 

by the environmental influences but also by the TC internal dynamics, while their respective 61 

contributions are often hard to be effectively separated and quantified. This is why the 62 

correlations between the environmental factors and the TC intensity changes are often small, 63 

and the environmental factors can only explain a small portion of the observed TC intensity 64 

changes based on the linear statistical analyses (e.g., Zeng et al. 2010; Hendricks et al. 2018). 65 

Another issue is the nonlinear interactions between the internal dynamics and external 66 

influences (Wang and Wu 2004; Elsberry et al. 2013), which could not be adequately considered 67 
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by using the linear statistical methods. One such an example is the dependence of the 68 

environmental VWS effect on the stage of the TC development (e.g., Zeng et al. 2010). As a 69 

result, the potential different responses of TC intensity to environmental influences at different 70 

stages of TC development or lifetime could not be uniquely distinguished and evaluated based 71 

on the classical statistical methods. 72 

Recently, both a simple energetically based and a dynamically based dynamical system 73 

models have been developed to quantify the intensification rate (IR) of a TC by Wang et al. 74 

(2021a, 2021b, 2022). The energetically based dynamical system (EBDS) model was formulated 75 

by viewing a TC as a Carnot heat engine, as proposed by Wang (2012, 2015) and first 76 

constructed by Ozawa and Shimokawa (2015). Wang et al. (2021a) introduced an intensity-77 

dependent dynamical efficiency (E), instead of a constant percentage used by Ozawa and 78 

Shimokawa (2015), to quantify the conversion of the production rate of potential energy to the 79 

production rate of inner-core kinetic energy. The dynamical efficiency E depends mainly on the 80 

degree of convective organization in the eyewall and the inner-core inertial stability of the TC 81 

vortex as inferred from the balanced vortex dynamics (e.g., Schubert and Hack 1982). Therefore, 82 

in their first version of the EBDS model, Wang et al. (2021a) parameterized E as a function of 83 

the TC inner-core inertial stability. This makes the model capable of quantitatively capturing the 84 

intensity-dependence of TC IR in idealized full-physics model simulations and in observations 85 

(Wang et al. 2021a; Xu et al. 2016; Xu and Wang 2018).  86 

The dynamically based dynamical system (DBDS) model was developed by Wang et al. 87 

(2021b) based on the slab boundary-layer entropy and tangential wind budget equations and the 88 

assumption of a thermodynamic quasi-equilibrium under the TC eyewall. A major advancement 89 

of the DBDS model of Wang et al. (2021b) compared with the earlier time-dependent theory of 90 

TC intensification developed by Emanuel (2012) is the relaxation of the moist neutral eyewall 91 

ascent by introducing an ad hoc parameter measuring the degree of neutrality of eyewall ascent, 92 

which depends on the TC relative intensity, namely, the current TC intensity normalized by its 93 

maximum potential intensity (MPI, Emanuel 1986). The new model was also shown to be 94 
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capable of realistically capturing the intensity-dependence of TC IR in both idealized full-95 

physics model simulations and observations (Wang et al. 2021b). Interestingly, the EBDS and 96 

DBDS models share the same mathematical formula for TC IR. The only difference is in that 97 

the dynamical efficiency E in the EBDS model is replaced by the ad hoc parameter (A) 98 

measuring the degree of the moist neutrality of eyewall ascent in the DBDS model. The two 99 

parameters even share the same mathematical expression, as a function of the relative TC 100 

intensity (Wang et al. 2021b).  101 

Theoretically, without any prohibiting environmental effects, both the EBDS and DBDS 102 

models give the theoretical upper bound, or potential IR (PIR), that a TC can reach under given 103 

favorable oceanic and atmospheric environmental thermodynamic conditions and the current 104 

TC intensity (Wang et al. 2021a, b). This was recently demonstrated by Xu and Wang (2022), 105 

who showed that the EBDS model (and also the DBDS model) could skillfully reproduce the 106 

observed intensity-dependence of the 99th percentile IRs of TCs in the best-track data over the 107 

North Atlantic, central, eastern and western North Pacific during 1980–2020, indicating that the 108 

dynamical system models developed by Wang et al. (2021a, b) can reliably estimate the PIR of 109 

real TCs. More recently, the DBDS model has been extended to include the frictional dissipative 110 

heating effect by Wang et al. (2022) and refined in several aspects in Wang et al. (2023). As 111 

demonstrated by Wang et al. (2022), by including the frictional dissipative heating effect, the 112 

skill of the dynamical system model in capturing the observed TC PIR can be further improved, 113 

in particular for those extremely strong TCs in which dissipative heating can contribute 114 

positively to the PIR of intense TCs and also the TC MPI (Bister and Emanuel 1998).  115 

Although the EBDS or DBDS model so far developed can capture the PIR of the observed 116 

TCs (Xu and Wang 2022; Wang et al. 2022) and the intensity evolution of idealized simulated 117 

TCs (Wang et al. 2021a, b), it is desirable to include the environmental effects on TC intensity 118 

change so that the theoretical model can be used to evaluate the effects of environmental factors 119 

on the observed TC intensity change, including both intensification and weakening. This is a 120 

key step toward the application of the model to TC intensity prediction. The present study 121 
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attempts to extend the most recent DBDS model developed in Wang et al. (2022b) by including 122 

the environmental effects to allow the model to be used to estimate the effects of various 123 

environmental factors on TC intensity change in observations. As mentioned in Wang et al. 124 

(2021a, b), the environmental effects on TC intensity change can be included/explained by either 125 

reducing the dynamical efficiency of the TC system in the EBDS model or their ventilation 126 

effects to reduce the degree of the moist neutrality of eyewall ascent in the DBDS model, as also 127 

briefly discussed in section 2. This allows the evaluation of the environmental effects on TC 128 

intensity change, independent of the TC intensity change induced by the TC internal dynamics.  129 

The main objectives of this study are to construct the DBDS model by including the 130 

environmental effects and to develop a generic framework based on the Gradient Boosted 131 

Decision Trees (GBDT) to quantify the relative importance of various environmental factors to 132 

the observed TC intensity change based on the TC best-track data. Instead of the use of classic 133 

linear statistical methods, this study develops a machine learning framework to objectively 134 

quantify the relative importance of various environmental factors to the observed TC intensity 135 

changes. An advantage of the framework is to allow the potential dependence of environmental 136 

influences on the stage of TC development to be considered. Machine learning, artificial neural 137 

network methods have been widely used to deal with systems that involve complex nonlinear 138 

interactions, and have been shown to improve skills of statistical TC intensity prediction 139 

schemes to some extent (e.g., Baik and Hwang 1998; Baik and Paek 2000; Lee et al. 2000; 140 

DeMaria et al. 2022; Griffin et al. 2022).  141 

The rest of this paper is organized as follows. The modification to the DBDS model by 142 

including the environmental effects, data, and analysis methods are described in section 2. The 143 

overall environmental ventilation effect and the relative importance and contributions of various 144 

environmental factors to TC intensity change are analyzed and discussed in section 3. Case 145 

studies for Hurricanes Katrina (2005) and Jose (2017) and Typhoon Hagibis (2019) in the study 146 

period are provided in section 4 to demonstrate the validity of the results discussed in section 3. 147 

The main conclusions are given in the last section.  148 
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2. Model, data, and methodology 149 

a. The DBDS model including the environmental effects 150 

The DBDS model with the effect of frictional dissipative heating included recently 151 

developed by Wang et al. (2022) was extended to include the environmental ventilation effect in 152 

this study. As mentioned in section 1, Wang et al. (2022) showed that with dissipative heating 153 

included, the theoretical model can better reproduce the observed intensity-dependence of the 154 

observed PIR and also results in a high PIR for strong TCs. The simple time-dependent equation 155 

of TC intensification including the effect of dissipative heating has the following form [see Eq. 156 

(8) in Wang et al. (2022)], 157 

𝜕𝑉𝑚

𝜕𝜏
=

𝛼𝐶𝐷

ℎ
{𝐴𝑉𝐸𝑚𝑝𝑖

2 − [1 − 𝛾𝐴𝜀 (1 −
𝛿𝐶𝑘

2𝛾𝐶𝐷
)] 𝑉𝑚

2},               (1) 158 

where 
𝜕𝑉𝑚

𝜕𝜏
 is the rate of TC intensity change withτbeing time; Vm is the near-surface maximum 159 

wind speed (referred to as the TC intensity); VEmpi is the MPI without the dissipative heating 160 

effect included as in Emanuel (1997); 𝛼 is the reduction factor of the 10-m wind speed from 161 

the depth-averaged boundary layer wind speed; 𝐶𝐷 and Ck are the surface drag and exchange 162 

coefficients, respectively; h is the estimated depth of the well-mixed boundary layer; 𝜀 =
𝑇𝑠−𝑇0

𝑇𝑠
 163 

is the thermodynamic efficiency of the Carnot heat engine (Emanuel 1986), with Ts and T0 being 164 

the underlying SST and the outflow layer air temperature, respectively; δ is a tracking parameter 165 

to switch the possible effect of dissipative heating on surface heat flux as advocated by Edwards 166 

(2019); and γ is the percentage of the frictional dissipation converted to internal dissipative 167 

heating to warm the atmospheric surface layer; A is the an ad hoc parameter measuring the degree 168 

of the moist neutrality of eyewall ascent.  169 

The MPI without considering the dissipative heating effect in Eq. (1) is given as 170 

𝑉𝐸𝑚𝑝𝑖 = √
𝐶𝑘

𝐶𝐷
𝜀(𝜅𝑜

∗ − 𝜅𝑎),       (2) 171 

where 𝜅𝑜
∗  is the saturated enthalpy of the ocean surface at a given SST (TS), 𝜅𝑎 the enthalpy of 172 

the atmosphere near the surface. From Eq. (1), we can get the steady-state intensity, namely the 173 

MPI with the dissipative heating effect included, as given below 174 
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𝑉𝑚𝑝𝑖 =
𝑉𝐸𝑚𝑝𝑖

√1−𝛾𝜀(1−
𝛿𝐶𝑘

2𝛾𝐶𝐷
)
.                       (3) 175 

The ad hoc parameter A in Eq. (1) without any unfavorable environmental effects was assumed 176 

as a function of the relative intensity in Wang et al. (2021b). They also mentioned that the 177 

unfavorable environmental effects can be introduced as a ventilation parameter that reduces the 178 

degree of moist neutrality of eyewall ascent. Namely, we can assume 179 

𝐴 ≅ 𝐵 (
𝑉𝑚

𝑉𝑚𝑝𝑖
)

𝑛

,         (4) 180 

where B is a parameter (0 < 𝐵 ≤ 1 ) representing the ventilation effect of all unfavorable 181 

environmental factors, and 𝑛 = 3/2  based on calibrations using results from idealized full-182 

physics numerical simulations (Wang et al. 2021b) and observations using best-track data (Xu 183 

and Wang 2022). If there is no any unfavorable environmental effect, 𝐵 = 1.0, indicating an 184 

intensifying TC can reach its PIR. Under more general conditions with various environmental 185 

effects, B (<1.0) can be decomposed into the following form, 186 

𝐵 = 𝐵1 × 𝐵2 × 𝐵3 ⋯,         (5) 187 

where 𝐵𝑖 (𝑖 = 1, 2, 3, ⋯) is the ventilation parameter of the ith environmental factor, such as 188 

the environmental VWS, the mid-level environmental moisture, and so on (see section 2b). The 189 

main objective of this study is to determine the environmental ventilation effects using the TC 190 

best-track data and various environmental variables from the Statistical Hurricane Intensity 191 

Prediction Scheme (SHIPS) dataset and machine learning algorithm.  192 

If not otherwise stated, all parameters through Eq. (4) and constants in the DBDS model Eq. 193 

(1) are taken the same as those used in Wang et al. (2022), except for B included in A. Namely, 194 

δ = 1 and γ = 0.8 were used in this study. The effect of dissipative heating on surface heat flux is 195 

included, and 80% of work done by surface friction is converted to dissipative heating (Wang et 196 

al. 2022); and values for several other parameters are 𝐶𝐷 = 2.4 × 10−3, 𝐶𝑘 = 1.2 × 10−3, h = 197 

2000 m, and 𝛼 = 0.75. These were shown to give the best fits of the results from full-physics 198 

model simulations (Wang et al. 2021a, b) and observations based on TC best-track data (Xu and 199 

Wang 2022), and all are quite reasonable under TC conditions and thus will be used in our 200 
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following analyses as well.  201 

With the DBDS model introduced, in the following we present our approach to the 202 

multiplicative decomposition of B expressed by Eq. (5) and the subsequent analyses accordingly. 203 

In order to make the description easy to follow, we first present a flowchart of our approach (Fig. 204 

1). Details can be found in the following subsections. 205 

B valuesSHIPS data
DBDS model:

Eq. (1)

XGBoost model:
logB = f(VWS, COHC, D200, 

RHMD, dMPI, SPD)

SHAP analysis:
Eqs.  12      

B = BVWS×BCOHC×BD200
×BRHMD×BdMPI×BSPD 

Relative importance 
analysis: Fig. 4a

  206 

Figure 1. Workflow of the adopted approach to main objectives of this study. 207 

b. Data 208 

The data used in this study were obtained from the statistical hurricane intensity prediction 209 

scheme (SHIPS) database (DeMaria and Kaplan 1999; Knaff et al, 2005), which was updated 210 

on May 4, 2022. The best-track data of TCs over the North Atlantic, the central and eastern 211 

North Pacific during 1982–2021 and those over the western North Pacific during 1990–2020, 212 

were considered in our analysis. The SHIPS variables are from the Climate Forecast System 213 

Reanalysis (CFSR) for 1982-2000 but operational Global Forecast System (GFS) analyses for 214 

2001-present for the Atlantic, eastern and central Pacific, and from CFSR from 1982-2004 and 215 

operational GFS for 2005-present for the western Pacific. The TC translation speed was 216 

calculated from the difference between the TC location changes at 6-h intervals. To minimize 217 

the influence of TC translation on its intensity, 40% of the TC translation speed was subtracted 218 

from the original 6-hourly maximum sustained 10-m wind speed for all TCs, and the result was 219 

used as the measure of TC intensity (Vm) as in Emanuel et al. (2004). The TC intensity changes 220 

at 6-h intervals were calculated accordingly (𝐼𝑅6ℎ = 𝑉𝑚
𝑡+6ℎ − 𝑉𝑚

𝑡 ). Only TCs with their Vm 221 
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greater than 17 m s-1 were included in our analysis. Only TCs south of 35°N with tropical nature 222 

and with SST greater than 25℃ were considered in our analysis to avoid extratropical transition 223 

stages. All landfalling TCs were removed. As in Xu and Wang (2022), the MPIs from the SHIPS 224 

dataset were multiplied by a factor of 1.11 with the dissipative heating effect considered as in 225 

Wang et al. (2022) to consider the superintensity nature of TCs. After such modifications, all 226 

TC MPIs were greater than or equal to their corresponding intensities in the best-track data so 227 

that no negative PIR existed for any intensifying TCs in our analysis. 228 

Six major environmental factors in the SHIPS dataset were selected and their effects on TC 229 

intensity changes were evaluated in this study. They are the environmental VWS defined as the 230 

magnitude of the vector wind difference between 850 and 200 hPa, the climatological ocean 231 

heat content (COHC), the upper-level divergence at 200 hPa (D200), the relative humidity (RH) 232 

between 500-700 hPa averaged between 200-800 km from the TC center, and the TC translation 233 

speed. To take into account the change in SST due to TC motion (e.g., Wood and Ritchie 2015; 234 

Fei et al. 2020), the MPI difference between t0 and t0+6h (dMPI) is considered as a proxy. Note 235 

that the effect of environmental sounding (vertical stratification of temperature and moisture) 236 

was included in the MPI calculation using the algorithm described in Bister and Emanuel (2002) 237 

and thus was not considered as an independent environmental factor herein. Table 1 lists the TC 238 

6-hourly maximum sustained 10-m wind speed and environmental variables/factors evaluated 239 

in this study. 240 

TABLE 1. The factors analyzed in this study with their units and descriptions. 241 

Variables Units Descriptions 

Vm m s-1 
Current TC intensity calculated by subtracting 40% of the translation speed 

from the best-track data 

𝑉𝐸𝑚𝑝𝑖 m s-1 Maximum potential intensity (Emanuel 1986)  

VWS m s-1 
Deep-layer vertical wind shear defined as vector difference of winds averaged 

within 200-800 km between 850 and 200 hPa 

COHC kJ cm-2 Climatological ocean heat content  

D200 107s-1 Divergence averaged within a radius of 1000 km from the TC center at 200 

hPa 
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RHMD % Mean 500-700 hPa RH averaged between 200-800 km from the TC center 

dMPI m s-1 MPI difference between t0 and t0+6h along TC track 

SPD m s-1 Translation speed of the TC system. 

c. Machine learning methods 242 

To quantify the environmental effects as a whole and the effects of individual environmental 243 

factors, a two-stage machine learning approach was adopted: first, eXtreme Gradient Boosting 244 

(XGBoost) (Chen and Guestrin 2016) was used to build a black-box but exact model of (log) B 245 

as a multiplication of all individual ventilation components (Bi) of the six selected environmental 246 

factors; then SHapley Additive exPlanations (SHAP) technique (Lundberg et al. 2020) was used 247 

to transform the black-box model of (log) B into an additive model, equivalent to a multiplicative 248 

model of B. The final multiplicative form of B was used to quantify the effects of all individual 249 

factors. 250 

i) XGBoost 251 

The XGBoost algorithm is a popular implementation of boosted regression trees (Friedman, 252 

2001). Gradient boosting optimizes a loss function by iteratively adding a set of decision trees 253 

into an ensemble. Each new tree is added sequentially such that it reduces the aggregate error 254 

from the existing ensemble of trees. At each iteration k, for the i-th sample 𝑦𝑖 with an input 255 

feature vector 𝐱𝑖, the estimate of 𝑦𝑖 is updated by a decision tree 𝑓(𝑘)(𝐱𝑖): 256 

𝑦̂𝑖
(𝑘)

= 𝑦̂𝑖
(𝑘−1)

− 𝛼𝑓(𝑘)(𝐱𝑖),                      (6) 257 

in which 𝛼 denotes the learning rate, typically chosen to be less than 1, such that only a small 258 

portion of each new tree is added to the overall estimate at each iteration. To construct the 259 

decision tree 𝑓(𝑘), the training data is split into left (IL) and right (IR) nodes based on its input 260 

features x by maximizing the loss reduction, or gain: 261 

𝐺 =
1

2
[

(∑ 𝑔𝑖𝑖∈𝐼𝐿
)

2

∑ ℎ𝑖𝑖∈𝐼𝐿
+𝜆

+
(∑ 𝑔𝑖𝑖∈𝐼𝑅

)
2

∑ ℎ𝑖𝑖∈𝐼𝑅
+𝜆

−
(∑ 𝑔𝑖𝑖∈𝐼 )2

∑ ℎ𝑖𝑖∈𝐼 +𝜆
] − 𝛾,     (7) 262 
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where 𝜆 and 𝛾 are regularization parameters controlling the model complexity, 𝐼 = 𝐼𝐿 ∪ 𝐼𝑅, 263 

and 𝑔𝑖, ℎ𝑖 are the gradient and hessian, respectively, with respect to 𝑦̂𝑖
(𝑘)

 of a differentiable 264 

loss function to be minimized (e.g., the mean-squared error). 265 

When constructing the decision tree 𝑓(𝑘), Eq. (7) is evaluated at each node to find the best 266 

possible split gain 𝐺∗ among all features in the input x. Typically a split is made if the gain 267 

exceeds a certain threshold. If no split is made, the node becomes a leaf and the optimal leaf 268 

weight 𝑤𝑗
∗ can be calculated by 269 

𝑤𝑗
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖𝑖∈𝐼𝑗
+𝜆

 ,        (8) 270 

in which 𝑗 ∈ {0, 1, 2, … , 𝑇}, with T the total number of leaves in the tree. For a particular sample 271 

𝑦𝑖, the optimized 𝑓(𝑘)(𝐱𝑖) is then simply the leaf weight 𝑤𝑗
∗, or 272 

𝑦̂𝑖
(𝑘)

= 𝑦̂𝑖
(𝑘−1)

− 𝛼𝑤𝑗
∗.                         (9) 273 

A direct inference from the model fitting is the feature importance. Importance is a relative 274 

score that indicates the fractional contribution of each feature to the model performance measure, 275 

and is 100% when summed over all features. XGBoost provides a natural measure of feature 276 

importance, by first summing the gain of a feature’s splits within a single tree [Eq. (7)], weighted 277 

by the number of related observations, and then averaged across all of the trees within the model. 278 

Once the model is fitted, importance is also evaluated accordingly for each feature. The XGBoost 279 

algorithm was adopted here to investigate the nonlinear relationships between the environmental 280 

ventilation parameter and environmental variables. The fitted model is much like a proxy model 281 

that encodes such relationships.  282 

It is well-known that there is a bias/variance trade-off in machine learning. An overfitted 283 

model may have low bias but also poor predictive ability. For a more accurate prediction the 284 

model fitting must be controlled to allow some bias. However, it is less-known that high bias 285 

can also result in poor model interpretability (Lundberg et al. 2020). Low-bias models can better 286 

represent the true data-generating mechanism and depend more naturally on their input features, 287 

so that their interpretations of relationships in data are more stable and reliable. Since the purpose 288 
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of this study is to make use of the XGBoost algorithm to interpret the relationship between B 289 

and various environmental factors rather than to predict B, we simply fit the model as accurate 290 

as possible for the training data, without further parameter tuning as in the usual machine 291 

learning practice. 292 

ii) SHAP 293 

SHAP is an additive feature attribution method that attributes values to each feature as the 294 

change in the expected model prediction when conditioning on that feature. Its main advantages 295 

are local accuracy and consistency in global model structure (Lundberg et al. 2020). Local 296 

accuracy states that when approximating the original model f (e.g., a fitted XGBoost model) for 297 

a specific input x, the SHAP values 𝜙𝑖 for each feature i should sum up to the output 𝑓(𝐱): 298 

𝑓(𝐱) = 𝜙0(𝑓) + ∑ 𝜙𝑖(𝑓, 𝐱)𝑀
𝑖=1 ,       (10) 299 

i.e., the sum of feature attributions 𝜙𝑖(𝑓, 𝐱) matches the original model output 𝑓(𝐱), where 300 

𝜙0(𝑓) = 𝐸[𝑓(𝐗)] is the bias term. Consistency means that if a model changes so that some 301 

feature’s contribution increases or stays the same regardless of the other inputs, that input’s 302 

attribution should not decrease.  303 

These SHAP values form an additive feature attribution measure to interpret complex 304 

machine learning models. SHAP values estimate contributions of each feature to each individual 305 

prediction. For a given predictor and a given sample, the SHAP value is the difference in the 306 

output depending on if the model is fitted with or without the predictor. For each sample, the 307 

sum of all SHAP values, plus the bias term (the overall mean of predictions), equals the 308 

prediction from the XGBoost model. The resulting matrix of SHAP values can be summarized 309 

to understand how a predictor contributes to the predictions. The mean absolute SHAP value 310 

across all samples summarizes the global feature importance, and more local model 311 

interpretation is possible through exploratory data visualizations such as scatterplots of 312 

individual predictors versus their corresponding SHAP values. 313 

iii) Multiplicative model of B.  314 
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Combining Eqs. (1) and (3), the environmental ventilation parameter B can be calculated 315 

for all TC cases in using the TC best-track dataset, and are used as ‘observations’ to build a 316 

multiplicative model as Eq. (5). This is achieved by adopting the two-stage approach described 317 

above: we first fit a XGBoost model to log 𝐵 instead of B, to capture the nonlinear relationship 318 

between log 𝐵 and the selected environmental factors 319 

log 𝐵 = 𝑓( 𝑉𝑊𝑆, 𝐶𝑂𝐻𝐶, 𝐷200, ⋯ );       (11) 320 

where VWS, COHC, D200, ⋯  indicate various environmental factors/parameters listed in 321 

Table 1. Then, by means of the SHAP values, Eq. (11) is assumed to have the following additive 322 

form: 323 

log 𝐵𝑖 = 𝐺 + ∑ 𝑆𝑖𝑗
6
𝑗=1 ,        (12) 324 

where G is the bias term (the overall mean of log 𝐵); 𝑆𝑖𝑗  (𝑗 = 1,2, … ,6) are SHAP values 325 

corresponding to the six features in Eq. (11) for the ith sample. G is an undesirable term for 326 

reaching a multiplicative model as Eq. (5). Since all parameters in Eq. (5) are between 0 and 1, 327 

the higher the value is the weaker the ventilation effect, and vice versa. As a result, all terms in 328 

Eq. (12) should be negative. By proportionally allocating G to each SHAP value according to 329 

their global feature importance 𝐼𝑗 =
1

𝑁
∑ |𝑆𝑖𝑗|𝑁

𝑖=1 , which is the mean absolute SHAP value across 330 

all samples, we have: 331 

𝑆′𝑖𝑗 =
𝐺×𝐼𝑗

∑ 𝐼𝑗
6
𝑗=1

+ 𝑆𝑖𝑗,         (13) 332 

so that Eq. (12) can be rewritten as: 333 

log 𝐵𝑖 = ∑ 𝑆′𝑖𝑗
6
𝑗=1 .         (14) 334 

Such an allocation scheme still holds the local accuracy and global consistency properties of 335 

SHAP values. Defining 𝑆′𝑖𝑗 = log (𝐵𝑖𝑗)  where 𝐵𝑖𝑗 ∈ (0,1] , and taking the exponential 336 

function of both sides of Eq. (14), we finally obtain the sample-specific multiplicative model of 337 

the environmental ventilation parameter: 338 

𝐵𝑖 = ∏ 𝐵𝑖𝑗
6
𝑗=1 .         (15) 339 

 Note that SHAP values 𝑆𝑖𝑗 cannot be guaranteed to be all negative, and thus neither can 340 
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𝑆′𝑖𝑗. Consequently, for few cases with 𝐵𝑖𝑗 greater than 1 (all less than 1.2 in our analysis), we 341 

simply set such 𝐵𝑖𝑗 to be 1 in our following analysis. This does not affect the results. 342 

3. Results 343 

a. The characteristics of the environmental ventilation B  344 

Figure 2 shows the calculated environmental ventilation parameter B in Eq. (1) against the 345 

relative intensity and compares the frequency distributions of B for intensifying and decaying 346 

TC cases using the 6-h TC best-track data. Since B is less than 1.0 for all TC cases in Fig. 2a, 347 

the environmental ventilation effect inhibits TC intensification (with IR < PIR) or makes TCs 348 

weaken (with 𝜕𝑉𝑚/𝜕𝜏 < 0). From Eqs. (1)–(4), we can get 349 

𝜕𝑉𝑚

𝜕𝜏
≥ 0, when 𝐵 ≥

(
𝑉𝑚

𝑉𝑚𝑝𝑖
)

1
2

1+𝛾𝜀(1−
𝛿𝐶𝑘

2𝛾𝐶𝐷
)[1−(

𝑉𝑚
𝑉𝑚𝑝𝑖

)

2

]

,      (16) 350 

 351 
Figure 2. (a) Estimated B against relative intensity (Vmax/Vmpi) for IR ≤ 0 (blue) and IR > 0 (red) based on 352 

the TC best-track data using Eq. (1) with 𝛿 = 1, 𝛾 = 0.8, 𝐶𝑘 = 1.2 × 10−3, CD = 2.4 × 10−3, h = 2000 m, 353 

and 𝛼 = 0.75, and (b) the frequency distributions of B for intensifying (red) and weakening (blue) TC cases, 354 

respectively. 355 

Eq. (16) indicates that a TC can intensify only when the ventilation parameter related to 356 

unfavorable environmental effects exceeds a critical value. Note that stronger ventilation 357 
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corresponds to smaller ventilation parameter B. The critical value depends on the relative 358 

intensity of a TC. This can be clearly seen from Fig. 2a, in which all intensifying cases (red) are 359 

located above the weakening cases (blue) for a given relative intensity. This indicates that the 360 

TC weakening results primary from strong environmental ventilation effect. From Fig. 2b, we 361 

can see that overall B is greater than 0.4, with high frequency when B is between 0.6–0.8 for 362 

intensifying cases, but B is evenly distributed for decaying cases between 0.3–0.8 with relatively 363 

high frequency when B is between 0.5–0.7, suggesting that B can well reflect the environmental 364 

ventilation effect on slowing down the TC IR or driving TC weakening. The higher B reflects 365 

the more favorable environmental conditions for TC intensification. When 𝐵 = 1 in Eq. (4), 366 

Eq. (1) results in the PIR of an intensifying TC, indicating all environmental factors are favorable 367 

for a TC to intensify. 368 

Figure 3 further shows the TC IR (intensifying IR > 0 and weakening IR < 0) as a function 369 

of B and relative intensity, and B as a function of IR and PIR, respectively. We can see from Fig. 370 

3a that although IR shows a general tendency to increase with increasing B, the dependence of 371 

IR on B for intensifying TC cases is much stronger than that for weakening TC cases. Particularly, 372 

the rapid intensification (RI) cases with IR greater than 4 m s-1(6h)-1 for the 95th of all IR samples 373 

occur with B greater than 0.7. For the weakening cases, the slow weakening cases occur with B 374 

between 0.3 and 0.8, while the rapid weakening (RW) cases with IR less than -4 m s-1(6h)-1 occur 375 

with B between 0.2 and 0.7. This suggests that TCs can weaken in a large range of adverse 376 

environmental conditions. Especially, as a TC approaches its MPI at its higher relative intensity, 377 

the TC IR is very sensitive to the environmental effects. In those cases, even relatively weak 378 

environmental effects may lead to TC weakening. However, the RW cases occur with small B, 379 

indicating that RW often results from strong adverse environmental effects, such as strong 380 

environmental VWS.  381 

The maximum IR occurs with B greater than 0.9 and relative intensity around 0.6. This is 382 

consistent with the theoretical results in Wang et al. (2021b), which showed that the theoretical 383 

maximum PIR occurs at intermediate TC intensities (roughly 60% of their MPIs). The larger 384 
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negative IR [< –6 m s-1 (6h)-1] occurs with B either being small (less than 0.4) when the relative 385 

intensity is relatively smaller than 0.5 or being between 0.6 and 0.7 when the relative intensity 386 

is relatively high around 0.8–0.9. This indicates that only strong adverse environmental effects 387 

can lead to RW of a TC in its primary intensification stage before reaching its maximum PIR, 388 

but relatively weak adverse environmental effects can lead to RW of a TC when it is close to its 389 

MPI as already mentioned above. This is consistent with the results by Fei et al. (2020), who 390 

statistically studied the RW of TCs over the western North Pacific and found that there were 391 

86.1% of TCs undergoing their first weakening phase and about 29.4% of RW cases undergoing 392 

their first RW period within 24 hours after they reached their lifetime maximum intensity. The 393 

latter was recently studied in more detail by Zhou et al. (2022).  394 

 395 

Figure 3. (a) Distribution of TC IR [m s-1 (6h)-1, contours and shading] in 𝐵 and relative intensity (Vmax/Vmpi) 396 

space, (b) the distribution of 𝐵 in IR and PIR [m s-1 (6h)-1, contours and shading] space. The black dash lines 397 

in (b) denote the relative IR (namely IR normalized by the theoretical PIR) of 1.0 and 0.5, respectively.  398 

From the distribution of B in the IR and PIR space in Fig. 3b, we can see that high B, namely 399 

favorable environmental conditions, is key for TCs reaching their PIRs. For example, 400 

intensifying TCs with their IR reaching 50% of their PIRs or above are only observed in the 401 

environment with B greater than 0.8 (short dashed line in Fig. 3b). An interesting result is the 402 

quite weak dependence of RI [with IR greater than 4 m s-1(6h)-1] on B for PIR greater than 12 m 403 

s-1 (6h)-1. This indicates that TCs are potentially more resistant to the adverse environmental 404 
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influence during their intensifying stage with relatively high PIRs (often with intermediate 405 

intensities as mentioned earlier, also see Wang et al. 2021a, b), but more vulnerable when their 406 

PIRs are relatively low, especially, under strong adverse environmental conditions. This indicates 407 

that the intrinsic vortex dynamics is key to TC intensification, while the adverse environmental 408 

influence controls the weakening of TCs. Furthermore, we can see that B shows a general 409 

increasing tendency with increasing IR and a decreasing tendency with the increase of IRs from 410 

their corresponding PIRs. This indicates that the adverse environmental influence plays a key 411 

role in limiting the TCs from reaching their theoretical PIR. This explains why very few TCs can 412 

reach their theoretical PIR in observations as seen in Fig. 3b.  413 

b. XGBoost modeling and feature importance analysis of B 414 

i) Model fitting 415 

The environmental ventilation effect (parameter B) discussed in section 3a results from 416 

various environmental factors, such as environmental VWS, COHC, D200, RHMD, dMPI and 417 

SPD as mentioned in section 2b and listed in Table 1. In this subsection, the XGBoost model 418 

described in section 2c was used to quantify contributions of those individual environmental 419 

factors to log(𝐵). Each environmental factor is an input feature to the XGBoost model for all 420 

TC cases. With some typical parameter settings (learning rate = 0.5 and the maximum depth of 421 

a tree = 7, refer to https://xgboost.readthedocs.io/en/latest/parameter.html for a detailed 422 

description), the root mean-square error (RMSE) of the fitted B stabilizes at 0.0023 after about 423 

2000 iterations, which is 0.23% of the range of B. This result shows that the model with the 424 

identified input features/factors can well reproduce B through log(𝐵). However, the fitting error 425 

does not indicate the prediction error due to the bias/variance trade-off. To examine the model’s 426 

prediction skill, 10-fold cross validation of the same model was further carried out. The dataset 427 

was randomly divided into 10 subsamples with equal size, each of which was used as testing 428 

data with all the others pooled together as training data in turn for once. For each set of testing 429 

data, the mean squared error (MSE) of B predictions was calculated. In order to eliminate the 430 
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potential bias caused by random division, this procedure was repeated for 10 times, yielding 100 431 

MSEs. The root mean of these MSEs can be viewed as a measure of model prediction skill, 432 

which is 0.15 for the XGBoost model. Apparently, the prediction error is much greater than the 433 

fitting error. 434 

Recall that, for prediction models, there is a ubiquitous trade-off between model bias and 435 

prediction variance. Linear models have the property of high bias and low variance in general 436 

(Hastie et al. 2009). We also fitted a multiple linear counterpart of the XGBoost model as a 437 

baseline for comparison: 438 

𝐸(log(𝐵)) = 𝛽0 + ∑ 𝛽𝑖𝐵𝑖
6
𝑖=1         (17) 439 

where 𝛽0 is the intercept and 𝛽𝑖, 𝑖 = 1, … ,6 are coefficients. Parameter estimates and their p 440 

values of significance test are shown in Table 2. It can be seen that dMPI may not be a significant 441 

linear effect at the level of 0.05 since the p value for 𝛽5 is greater than 0.05. Using the same 442 

validation strategy, the fitting and prediction errors of B are both around 0.13. It can be seen by 443 

comparison that the fitted XGBoost model reproduces the nonlinear relationships between B and 444 

all individual environmental factors with a very small error (0.0023), much smaller than that of 445 

the counterpart linear regression model (0.13), whereas the prediction error (0.15) is a little bit 446 

larger than that of the linear model (0.13), suggesting an overfit of the XGBoost model. Since 447 

our purpose of fitting the XGBoost model is to derive a multiplicative form of B through the 448 

SHAP analysis and thus to explain which factors in B are most important, rather than to predict 449 

B for new input of environmental factors, thus an accurate or even overfitted model is acceptable. 450 

TABLE 2. Parameter estimates and their p values for the counterpart model of Eq. (17) 451 

Parameter 𝛽0 

(Intercept) 

𝛽1 

(VWS) 

𝛽2 

(COHC) 

𝛽3 

(D200) 

𝛽4 

(RHMD) 

𝛽5 

(dMPI) 

𝛽6  

(SPD) 

Estimate −0.30         −8.5×10−4 7.7×10−4 8.5×10−4 −2.4×10−3 6.7×10−4 3.2×10−3 

P values < 2×10−16 < 2×10−16 < 2×10−16 < 2×10−16 < 2×10−16 0.059 < 2×10−16 

ii) Feature importance analysis 452 
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As a direct inference of our fitted XGBoost model, the relative importance of six individual 453 

environmental factors to log(𝐵), namely to what extent log(𝐵) is contributed by each of the 454 

input features, are evaluated as shown in Fig. 4a. It can be seen that the environmental VWS is 455 

the most important factor and contributes 25% to log(𝐵). Climatological ocean heat content 456 

(COHC) and the upper-level divergence (D200) contribute about 17-18% to log(𝐵). Mid-level 457 

RH (RHMD), 6-h change in MPI along the TC track (dMPI), and translation speed (SPD) 458 

contribute, respectively, 16%, 14%, and 11% to log(𝐵). This is broadly consistent with previous 459 

knowledge on the adverse environmental effects on TC intensity (Gray 1968; Wang and Wu 2004; 460 

Hendricks et al. 2018; Fei et al. 2020). 461 

 462 
Figure 4. (a) Relative importance of six individual environmental factors used in the XGBoost model. Factors 463 

are listed to the left (see Table 1) in descending order of their relative importance. Contributions of the 464 

individual environmental factors are given on the right of their corresponding bars. (b) Same as (a) but for the 465 

counterpart linear model of (a). Bars show absolute values of SRCs with their real values labeled to the right 466 

of their corresponding bars. (c) Same as (b) but with a quadratic term dMPI2 added to the linear model. 467 

For the counterpart linear model, however, there is not straightforward to infer the relative 468 

importance. An alternative way to check the feature importance is to examine the standardized 469 

regression coefficient (SRC) (Kleijnen and Helton, 1999) 470 

𝑆𝑅𝐶𝑖 = 𝛽𝑖
𝜎𝑖

𝜎𝑌
          (18) 471 

where 𝜎𝑖 and 𝜎𝑌 denote the standard deviations of the model input 𝑋𝑖 and the model output 472 

Y, respectively. This is actually a sensitivity measure representing the expected change in Y 473 

because of an increase in 𝑋𝑖 of one of its standardized units (i.e., 𝜎𝑖), with all other X variables 474 

unchanged. The absolute values of the SRCs may be compared, giving a rough indication of the 475 
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relative importance of the variables (but not weighted to sum to 1). Figure 4b shows the absolute 476 

values of SRCs of the counterpart linear model as bars with their real values labeled. Compared 477 

with Fig. 4a, VWS still has the highest relative importance; COHC, D200 and RHMD also have 478 

comparable importance values to those in Fig. 4a; dMPI, however, has the least relative 479 

importance. This result is consistent with the significance test of parameter estimates (Table 2), 480 

by which dMPI may not be a significant linear effect. This comparison suggests that dMPI exerts 481 

influence on log(𝐵) in a nonlinear way, which has been captured by the XGBoost model. This 482 

can be confirmed simply by adding a quadratic term of dMPI (denoted as dMPI2) to the right-483 

hand side of Eq. (17) and refitting the model. Significance tests of the parameters show that all 484 

the seven variables, including dMPI2, have significant effects with p values less than 2×10−16. 485 

Relative importance of variables in the expanded model is shown in Fig. 4c. It can be seen that 486 

dMPI2 gains more importance than dMPI. However, the fitting and prediction errors of B, 487 

calculated using the same method as before, are still around 0.13: reduction in each error takes 488 

place only after the third decimal point digit is included, which is negligible. To sum up, the 489 

multiple linear regression model can only achieve very limited improvement in the model 490 

accuracy simply by adding more nonlinear terms of factors, whereas the XGBoost model can 491 

reproduce the nonlinear relationship between input factors and response almost precisely, 492 

without considerable loss of generalization ability. The latter merit is just what we require to 493 

derive the multiplicative form of B. 494 

c. Multiplicative form of B and contributions of individual environmental factors to IR 495 

The environmental ventilation B can be expressed as the multiplication of individual 496 

ventilation parameters 𝐵𝑖  (𝑖 = 1,2, ⋯ ,6 ) induced by the six environmental factors using the 497 

SHAP analysis described in section 2c. Figure 5 shows the six individual environmental 498 

ventilation parameters 𝐵𝑉𝑊𝑆 , 𝐵𝐶𝑂𝐻𝐶 , 𝐵𝐷200 , 𝐵𝑅𝐻𝑀𝐷  𝐵𝑑𝑀𝑃𝐼 , and 𝐵𝑆𝑃𝐷  induced by, 499 

respectively, the individual environmental factors VWS, COHC, D200, RHMD, dMPI, and SPD 500 

as a function of the corresponding environmental variables and relative intensity. Overall, the 501 

relationship between each ventilation parameter and the corresponding variable is nonlinear and 502 
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depends on relative intensity of TCs. 503 

 504 
Figure 5. Individual ventilation parameters (a) 𝐵𝑉𝑊𝑆, (b) 𝐵𝐶𝑂𝐻𝐶, (c) 𝐵𝐷200, (d) 𝐵𝑅𝐻𝑀𝐷, (e) 𝐵𝑑𝑀𝑃𝐼, and (f) 505 

SPD induced by, respectively, VWS (m s-1), COHC (kJ cm-2), D200 (10-7 s-1), RHMD (%), dMPI (m s-1), and 506 

SPD (m s-1) as a function of the corresponding environmental variables and relative intensity obtained using 507 

the SHAP analysis.  508 

The ventilation parameter 𝐵𝑉𝑊𝑆  induced by the most unfavorable environmental factor 509 

VWS varies between 0.5–1.0 (Fig. 5a). 𝐵𝑉𝑊𝑆 is generally greater than 0.9 when VWS is less 510 

than 7m s-1 but decreases significantly with increasing VWS afterwards. This suggests that weak 511 

environmental VWS has very limited effect on TC intensity change but imposes an increasing 512 

adverse effect on TC IR as VWS increases beyond 8 m s-1. This agrees with previously reported 513 

threshold of about 8–10 m s-1 above which VWS can have a significant detrimental effect on TC 514 
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intensity and intensification (Zeng et al. 2010; Wang et al. 2015; Hendricks et al., 2018). 𝐵𝑉𝑊𝑆 515 

also shows an overall slow decrease with decreasing relative intensity, implying that 516 

environmental VWS is more detrimental to relatively weak TCs than to strong TCs. The 517 

ventilation parameters induced by other environmental factors are generally between 0.8–1.0 518 

(Figs. 5b-5f), considerably smaller than that induced by VWS, implying that they have relatively 519 

weaker adverse effects on TC intensity change than VWS.  520 

The ventilation parameter (𝐵𝐶𝑂𝐻𝐶) induced by COHC shows a general increasing tendency 521 

with increasing COHC (Fig. 5b). This is because high ocean heat content limits the upper ocean 522 

cooling induced by upwelling and vertical mixing across the mixed layer base under the TC 523 

(Wang and Wu 2004). Similar to COHC, the ventilation parameter 𝐵𝐷200 induced by upper-524 

level divergence (D200) also varies between 0.8–1.0 (Fig. 5c). It increases with increasing upper-525 

level divergence, suggesting that upper-level divergence (convergence) is favorable (unfavorable) 526 

for TC intensification. This is because the upper-level convergence or weak divergence is 527 

unfavorable for eyewall ascent, and thus plays a role equivalent to the mid-level ventilation 528 

induced by lateral dry-air intrusion to reduce 𝐵𝐷200. This is consistent with previous studies by 529 

Kaplan et al. (2010) and Lee et al. (2015), who found that strong upper-level environmental 530 

divergence is favorable for TC intensification.  531 

The ventilation parameter 𝐵𝑅𝐻𝑀𝐷 associated with the mid-level RH between 500–700 hPa 532 

is generally high (Fig. 5d), with relatively small values for both too high (greater than 75%) and 533 

too small (less than 40%) RHMD. Too high RHMD implies moist mid-level environment, which 534 

is favorable for active rainbands and TC size expansion, which is often unfavorable for TC 535 

intensification, as demonstrated in previous modeling (e.g., Wang 2009; Hill and Lackmann 536 

2009; Li et al. 2020) and theoretical (Wang et al. 2023) studies. In contract, too low RHMD 537 

makes the eyewall ascent vulnerable to any environmental perturbations by lateral dry-air 538 

intrusion. Therefore, too dry mid-level environment plays a role in enhancing the environmental 539 

ventilation effect (Tang and Emanuel 2010).  540 

The factor dMPI is the change in MPI along the TC track, which is mainly determined by 541 
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the underlying SST gradient and the translation speed of the TC, and determines the response 542 

timescale of the TC to change in the underlying SST. Positive dMPI partly reflects the potential 543 

increase in eyewall convection and, consequently, the weakened ventilation (Fig. 5e). Negative 544 

dMPI is equivalent to a decrease in SST, and thus increasing ventilation effect and reducing 545 

𝐵𝑑𝑀𝑃𝐼. 𝐵𝑑𝑀𝑃𝐼 decreases with decreasing dMPI when dMPI is less than –5 m s-1. As a result, 546 

large negative dMPI often leads to rapid weakening of TCs, similar to the SST gradient 547 

previously revealed by Wood and Ritchie and (2015) and Fei et al. (2020). However, 𝐵𝑑𝑀𝑃𝐼 548 

shows a decreasing trend with increasing dMPI and decreasing relative intensity for positive 549 

dMPI. This may be due to the delayed response of TC intensity to the increase in SST, which is 550 

more significant for weak TCs (with relative intensity less than 0.4).  551 

The last factor is the TC translation speed (SPD), which has dual effects on TC intensity 552 

change and thus the ventilation parameter (𝐵𝑆𝑃𝐷, Fig. 5f). On one hand, too slow translation 553 

(with SPD less than 6 m s-1) often enlarges the negative ocean feedback due to cooling induced 554 

by TC forcing. On the other hand, too fast translation (with SPD greater than 20 m s-1) can induce 555 

large asymmetric structure, which may lead to ventilation effect by eddy processes (Zeng et al. 556 

2007, 2008). Note that fast translation has a more pronounced effect on weak TCs with relative 557 

intensity less than 0.4.  558 

To further quantify contributions of individual environmental factors to TC IR (𝑑𝑉𝑚/𝑑𝜏), 559 

we calculated IR using Eq. (1) with A from Eq. (4) and B from Eq. (5). In each calculation, we 560 

used the actual ventilation parameter induced by one environmental factor while keeping all 561 

other ventilation factors being 1.0. For VWS as an example, the contribution by environmental 562 

VWS to TC RI (IRVWS), which is calculated using the actual BVWS while keeping BCOHC, BD200, 563 

BRHMD, BdMPI, and BSPD all being 1.0, is evaluated by IRVWS normalized by the PIR calculated 564 

using Eq. (1) with B = 1 in Eq. (4). Figure 6 shows the contributions of all individual 565 

environmental factors to TC IR as a function of the factor and relative intensity. The normalized 566 

IRVWS shows a nearly linear decrease with increasing VWS and also a decrease with increasing 567 

relative intensity when VWS is larger than about 7–8 m s-1 (Fig. 6a). This is mainly because that 568 
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the stronger the TCs are when approaching their MPI, there will be lower probability for them 569 

to intensify. Note that there are a few cases with negative normalized IRVWS when VWS is greater 570 

than 15 m s-1, consistent with the small BVWS in Fig. 5a, indicating the dominant effect of VWS 571 

on TC weakening.  572 

 573 
Figure 6. Same as Fig. 5, but for the normalized TC IR induced by one of individual factors to the 574 

corresponding potential intensification rate (PIR). 575 

The normalized IRCOHC shows a general increase with increasing COHC (Fig. 6b), 576 

indicating that high climatological ocean heat content is favorable for TC intensification. The 577 

normalized IRD200 (Fig. 6c) shows somewhat small values when the D200 is convergence or 578 

weak divergence, consistent with the relatively small BD200 value in Fig. 5c, suggesting that 579 
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upper-level environmental divergence reflects TC rapid intensification. The normalized IRRHMD, 580 

IRdMPI, and IRSPD all show distributions in the parameter space similar to their corresponding 581 

ventilation parameters, indicating that high middle-level RH, large negative dMPI and too slow 582 

or too fast translation are all unfavorable for TC intensification. These results confirm that the 583 

environmental effects on TC IR can be effectively included in our dynamical system model 584 

through their corresponding ventilation parameters. 585 

4. Case studies of Hurricanes Katrina (2005) and Jose (2017) and Typhoon Hagibis (2019) 586 

In section 3, we discussed how the six environmental factors contribute to the ventilation 587 

parameter B as a whole and also individually and eventually bring the theoretical PIR towards 588 

the observed TC IR based on the DBDS model. This also makes it possible to objectively 589 

quantify the relative contributions of various environmental factors to the observed intensity 590 

change of each TC. In this section, three representative cases are used to give further insight into 591 

the environmental effects on intensity change of individual TCs in terms of their lifetime 592 

intensity changes including both intensification and weakening stages.  593 

Before going into detailed case studies, let’s first have an overview of how individual 594 

environmental factors affect B and virtually bring PIR towards IR. The six environmental 595 

ventilation parameters 𝐵𝑉𝑊𝑆, 𝐵𝐶𝑂𝐻𝐶, 𝐵𝐷200, 𝐵𝑅𝐻𝑀𝐷, 𝐵𝑑𝑀𝑃𝐼, and 𝐵𝑆𝑃𝐷 for the whole sample 596 

data can be retrieved from the database discussed in section 3. Then, we calculated a set of IRs 597 

(𝜕𝑉𝑚/𝜕𝜏) by adding one factor each time for the six environmental effects in the above order 598 

into Eq. (1) to highlight how the PIR is reduced to the actual IR (𝜕𝑉𝑚/𝜕𝜏) by the six individual 599 

environmental factors, as shown in Fig. 7. Note that, theoretically, the final group of IRs (black) 600 

should coincide with real IRs such that the dots align with the diagonal line. However, due to the 601 

fitting errors from the XGBoost model propagated to the SHAP values, they scattered a bit 602 

[RMSE = 0.10 m s-1(6h)-1]. Also note that, different orders of adding environmental ventilation 603 

parameters do not make any difference in the black dots, which are only observable in Fig. 7. 604 

We then retrieved the time series of the six environmental ventilation parameters 𝐵𝑉𝑊𝑆, 605 
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𝐵𝐶𝑂𝐻𝐶, 𝐵𝐷200, 𝐵𝑅𝐻𝑀𝐷, 𝐵𝑑𝑀𝑃𝐼, and 𝐵𝑆𝑃𝐷 for each case individually (left column in Fig. 8), and 606 

calculated a set of IR series in the same way as done above (right column in Fig. 8). Note that 607 

the lifetime mean of individual ventilation parameters for each of the cases is given in Table 3 608 

for a quick look at the relative contributions of individual environmental factors to the observed 609 

TC intensity changes. 610 

 611 

Figure 7. Illustration of how the PIR is reduced to the actual IR by adding one of the six environmental 612 

ventilation parameters for each time. The gray dashed line is diagonal. 613 

a. Hurricane Katrina (2005) 614 

Hurricane Katrina (2005) was one of the deadliest and the costliest meteorological disasters 615 

that struck the United States on record. Katrina formed at 1800 UTC 23 August 2005 over the 616 

southeastern Bahamas. It showed few signs of weakening during its brief passage over the 617 

Florida peninsula and began to intensify shortly after moving into the Gulf of Mexico early on 618 

26 August. Two periods of RI on 26 and 28 August brought Katrina to category 5 with the 619 

maximum near-surface wind speed of 77 m s-1 (Knabb et. al. 2005). The environmental 620 

ventilation factors indicated a favorable environment for RI, such as weak VWS and large COHC 621 

with their lifetime mean ventilation parameters being 0.93 and 0.97, respectively (Table 3). Other 622 

environmental factors were also favorable for TC intensification, including moist RHMD, 623 
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positive dMPI and slower SPD than average, with their ventilation parameters being 0.95–0.96 624 

(Fig. 8a). Only D200 was a little bit weaker than normal, giving rise an average ventilation 625 

parameter of 0.91, which may hinder TC intensification (DeMaria and Kaplan 1999) until 0000 626 

UTC 29 August. After that, the environmental VWS showed a continuous increase, leading to a 627 

rapid weakening of Katrina. Figure 8b shows how the PIR was reduced to the actual IR by adding 628 

one of the six environmental effects for each time, showing clearly that each ad hoc IR is indeed 629 

an upper bound on the actual IR. The weak VWS only reduced PIR slightly, while D200 was 630 

dominant in reducing PIR with the smallest B among all 6 factors (Table 3). Other factors 631 

weakened PIR slightly during the intensification stage (IR > 0), but contributed equally during 632 

the decaying stage with similar individual ventilation parameters after 1200 UTC 28 August.  633 

b. Hurricane Jose (2017) 634 

Hurricane Jose (2017) formed as a tropical storm by 1200 UTC 5 September west of the 635 

Cabo Verde Islands, intensified to its peak intensity of 68 m s-1 by 1800 UTC 8, weakened and 636 

then oscillated around 33 m s-1 for about five days, and then weakened to a tropical storm early 637 

on 15 September. After re-intensifying to hurricane strength in a few days, Jose weakened to a 638 

tropical storm again when it was located east of Virginia Beach and also began to take on some 639 

extratropical characteristics by 1200 UTC 19 September. Jose had a long over-water lifespan of 640 

a total of 14.75 days (Berg 2018). Along the long-life track of Jose, all environmental factors 641 

played complicated roles in its RI, intensity fluctuation, and weakening processes. Initially, both 642 

the increasing PIR and high B led to RI, making Jose attaining its lifetime maximum intensity 643 

(LMI) (Figs. 8c and 8d). Jose moved northwestward after 9 through 11 September, and suffered 644 

from an increasing northeasterly VWS and a partial eyewall replacement, which caused BVWS to 645 

decrease sharply, and thus Jose weakened below hurricane intensity. For the rest of its life, 646 

environmental VWS played a dominant role during its intensity fluctuation and weakening 647 

processes. VWS was 3.4 m s-1 larger than normal average, resulting in a low BVWS of 0.86 (Table 648 

3), which alone reduced about 42% of the PIR (Fig. 8d). 649 
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c. Typhoon Hagibis (2019) 650 

Super Typhoon Hagibis (2019) formed over the western North Pacific in October 2019. It 651 

intensified explosively from 28 m s-1 at 1200 UTC 6 to 73 m s-1 at 1200 UTC 7 (from tropical 652 

storm to Category 5), namely reached its LMI of 73 m s-1. Hagibis started its RI and reached the 653 

maximum IR of 15.4 m s-1(6h)-1 at 1200 UTC 7, which is very close to its PIR under a favorable 654 

environment. Note that the maximum IR happened when the relative intensity (Vmax/Vmpi) was 655 

around 0.54, which is consistent with observation in Fig. 3a and the theoretical results in Wang 656 

et al. (2021b), who showed that the theoretical maximum PIR occurs at intermediate TC 657 

intensities (roughly 60% of their MPIs). After the RI, Hagibis’s intensity dropped and then 658 

fluctuated during 8–9 October. Actually, the environmental factors changed little during this 659 

period, with individual ventilation parameters fluctuating slightly as shown in Fig. 8e. Lin et al. 660 

(2020) compared the environmental conditions, such as the ocean eddy, environmental vertical 661 

wind shear, and mid-level relative humidity, etc., in this period with those in the RI stage. They 662 

found that some conditions, such as weak environmental VWS and warm ocean eddy were even 663 

better in this period than in the RI period. As a result, they concluded that the eyewall 664 

replacement cycle and the relatively large size expansion predominantly hindered Hagibis’ 665 

further intensification. Note that Hagibis was approaching its MPI during this period with the 666 

relative intensity greater than 0.75. As we mentioned earlier, when a TC approaches its MPI, 667 

there is less potential for it to intensify, and the IR becomes very sensitive to the environmental 668 

effects (Fig. 3a). Hagibis terminated its strengthening at 0000 UTC 9, and turned northward and 669 

moved into region with much cooler SST with relatively high VWS and low-moisture 670 

environment, which led to much lower BVWS and BOHC, as shown in Fig. 8f. During Hagibis’ 671 

weakening stage, the environmental factors reduced 116% of the PIR, changing from 672 

intensifying to weakening. Particularly, environmental VWS alone reduced about 40% of the 673 

PIR, and together with D200 and CHOC, reduced about 80% of the PIR, which dominated the 674 

whole weakening period (Fig. 8f). As Hagibis moved northward toward Japan, the COHC was 675 

–27.2 kJ cm-2 below the average (Table 3), which was also a major factor contributing to Hagibis’ 676 
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weakening process. 677 

TABLE 3. List of environmental factors, in standard (std) anomaly form, and individual ventilation parameters 678 

B of lifetime mean of TCs Katrina, Jose and, Hagibis, respectively. 679 

 Katrina Jose Hagibis 

Factors (std anomaly)/B (std anomaly)/B (std anomaly)/B 

VWS -1.11/0.93 3.4/0.86 -0.92/0.92 

COHC 37.2/0.97 -3.5/0.93 -27.2/0.96 

D200 -34.4/0.91 -27.2/0.94 75.4/0.97 

RHMD 3.4/0.96 -6.4/0.97 1.86/0.96 

dMPI 1.81/0.95 0.59/0.97 -1.1/0.97 

SPD -1.85/0.96 -0.03/0.96 3.1/0.97 

 680 
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Figure 8. Case studies for Hurricanes Katrina (2005) (a and b) and Jose (2017) (c and d) and Typhoon Hagibis 681 

(2019) (e and f), respectively. The left column shows time series of the ventilation parameter B and its 682 

components due to individual environmental factors. The right column shows the PIR (grey dash, m s-1 day-1) 683 

and reductions of the PIR by individual environmental ventilation parameters by B as the multiplication of 684 

individual ventilation parameters BVWS, BVWS BD200, …, and BVWS BD200 BCHOC BSPD BdMPI BRHMD (colored dashes), 685 

respectively, towards the observed IR (grey, solid). The effect of the dominant ventilation factor VWS is 686 

highlighted by the red bold dashes for all three cases. 687 

5. Conclusions and discussion 688 

In two recent studies, W21a and W21b introduced a simple energetically based and a 689 

dynamically based dynamical system models, or in short EBDS and DBDS models, to quantify 690 

the intensification rate (IR) of a TC, respectively. Both models share the same mathematical 691 

expression of TC IR as a function of the relative TC intensity and maximum potential intensity 692 

(MPI). The only difference is that the dynamical efficiency (E) in the EBDS model is replaced 693 

by the ad hoc ventilation parameter (A) measuring the degree of the moist neutrality of eyewall 694 

ascent in the DBDS model. Both models have been shown to be capable of realistically capturing 695 

the intensity-dependence of TC IR in both idealized full-physics model simulations and 696 

observations (Wang et al. 2021b, Xu and Wang 2022). This study extends the DBDS model to 697 

include the effects of various environmental factors so that the model can be used to quantify the 698 

detrimental effects on IR of real TCs.  699 

The environmental effect has been introduced through the environmental ventilation 700 

parameter B in the DBDS model, which can be uniquely expressed as a multiplication of 701 

individual ventilation parameters of various environmental factors. TC IR shows a general 702 

increase with increasing B or decreasing ventilation effect. Results based on the best-track data 703 

over the North Atlantic, central, eastern and western North Pacific during 1982–2021 show that 704 

the dependence of TC IR on B for intensifying TC cases is much stronger than that for weakening 705 

TC cases. Particularly, the rapid intensification [RI, with IR greater than 4 m s-1(6h)-1] cases 706 

occur with B greater than 0.7. For the weakening cases, the slow weakening cases occur with B 707 

between 0.3 and 1.0, while the rapid weakening [RW, with IR less than –4 m s-1(6h)-1] cases 708 

occur with B between 0.2 and 0.7. Especially, as a TC approaches its MPI with high relative 709 
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intensity, the TC IR is very sensitive to the environmental effects. In these cases, even relatively 710 

weak environmental effects may lead to TC weakening. An interesting result is the quite weak 711 

dependence of RI on B for PIR greater than 12 m s-1 (6h)-1. This indicates that TCs are potentially 712 

more resistant to the adverse environmental influence during their intensifying stage with 713 

relatively high PIRs.  714 

Six major environmental factors in the SHIPS dataset were selected and their effects on TC 715 

intensity changes were evaluated based on the TC best-track data and the SHIPS dataset during 716 

1982–2021, including the environmental deep-layer VWS, the climatological ocean heat content 717 

(COHC), the upper-level divergence at 200 hPa (D200), the mid-level relative humidity (RHMD) 718 

between 500–700 hPa averaged between 200–800 km from the TC center, the TC translation 719 

speed (SPD), and the MPI difference between t0 and t0+6h (dMPI) considered as a proxy of the 6-720 

h change in SST along the TC track. The machine learning algorithm XGBoost model was 721 

adopted to quantify the relative importance of the above factors, and the SHAP method was used 722 

to quantify the contribution from each factor to the observed TC intensity change. Results from 723 

these analyses demonstrate that VWS is the most important environmental factor, which 724 

contributes 25% to log(𝐵) . COHC and D200 contribute about 17–18% to log(𝐵) . RHMD, 725 

dMPI, and SPD contribute 16%, 14%, and 11%, respectively. The ventilation parameters also 726 

represent their individual relative importance to the bulk environmental ventilation parameter 727 

and thus their relative contributions to the observed TC intensity changes. 728 

With the SHAP analysis method, the environmental ventilation parameter B can be 729 

expressed as the multiplication of individual ventilation parameters of the selected 730 

environmental factors. Results show that the relationship between each ventilation parameter 731 

and the corresponding variable depends on the TC relative intensity. The ventilation parameter 732 

𝐵𝑉𝑊𝑆 induced by the environmental VWS varies between 0.5–1.0. Compared with VWS, the 733 

ventilation parameters induced by other environmental factors are relatively higher and vary 734 

between 0.8–1.0, implying that they have relatively weaker effects on TC intensity change than 735 

VWS. Consistently, the normalized IRVWS decreases almost linearly with increasing VWS and 736 
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also with increasing relative intensity when VWS is larger than about 7–8 m s-1, largely due to 737 

the little potential for strong TCs approaching their MPI. A few cases show negative normalized 738 

IRVWS when VWS is greater than 15 m s-1, indicating the dominant effect of VWS on TC 739 

weakening. The normalized IRCOHC shows a general increase with increasing COHC indicating 740 

that high climatological ocean heat content is favorable for TC intensification. The normalized 741 

IRD200 shows somewhat small values when the D200 is convergence or weak divergence, 742 

suggesting that upper-level environmental divergence reflects TC rapid intensification. High 743 

RHMD, large negative dMPI, and too slow or too fast translation are all unfavorable for TC 744 

intensification. 745 

Three representative cases, namely Hurricanes Katrina (2005) and Jose (2017) and 746 

Supertyphoon Hagibis (2019), are chosen to give further insight into the environmental effects 747 

on intensity change of individual TCs in terms of their lifetime intensity changes, including both 748 

intensification and weakening stages. Results demonstrate that the individual environmental 749 

ventilation parameters can well capture the detrimental effects of various environmental factors 750 

on TC PIR, while the relative importance of the environmental factors varied with case and the 751 

different life stages of individual TCs. In all cases, the TC weakening results primarily from 752 

strong environmental ventilation effects, with strong VWS being the major detrimental 753 

environmental factor. 754 

We should point out that in this study it is assumed that the DBDS model can precisely give 755 

the PIR that a TC can reach under all favorable environmental thermodynamic conditions. As a 756 

result, the difference between the PIR and the observed intensity change is attributed to the 757 

detrimental environmental effects. Since the DBDS model is highly idealized and was verified 758 

based on ensemble idealized numerical simulations and best-track TC data, it could not capture 759 

the short-term intensity change resulting from high-frequency convective activities. Namely, the 760 

model can be used to evaluate the storm-scale intensification. In our study, therefore, we assumed 761 

that the best-track data mainly reflect the storm-scale intensity change. Our results strongly 762 

suggest that this assumption is acceptable. Formally the strategy we adopted here can also be 763 
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used to predict the TC intensity. However, for the prediction purpose, the SHAP analysis and the 764 

multiplicative decomposition of B can be skipped, whereas more parameters tuning, validation 765 

and testing steps should be taken for developing the XGBoost model, or any other machine 766 

learning model that can model B as response to environmental factors as input features, such as 767 

neural networks. In our follow-up studies, we will apply the DBDS model to estimate the PIR 768 

and conduct real-time TC intensity prediction.  769 
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