

1 Regulation of cell attachment, spreading, and migration by 2 hydrogel substrates with independently tunable mesh size

3 Jing Xia ^{a, 1}, Zong-Yuan Liu ^{b, 1}, Zheng-Yuan Han ^a, Yuan Yuan ^a, Yue Shao ^b,
4 Xi-Qiao Feng ^{b, *}, David A. Weitz ^{a, c, *}

5 ^a *School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
6 02138, USA*

7 ^b *Institute of Biomechanics and Medical Engineering, Department of Engineering
8 Mechanics, Tsinghua University, Beijing 100084, China*

9 ^c *Department of Physics, Harvard University, Cambridge, MA 02138, USA*

10 ¹ These authors contribute equally.

11 * To whom correspondence may be addressed.

12 **Email:** fengxq@tsinghua.edu.cn (X.Q.F.), weitz@seas.harvard.edu (D.A.W.).

14 **Abstract**

15 Hydrogels are widely used as substrates to investigate interactions between cells and
16 their microenvironment as they mimic many attributes of the extracellular matrix. The
17 stiffness of hydrogels is an important property that is known to regulate cell behavior.
18 Besides stiffness, cells also respond to structural cues such as mesh size. However,
19 since the mesh size of hydrogel is intrinsically coupled to its stiffness, its role in
20 regulating cell behavior has never been independently investigated. Here, we report a
21 hydrogel system whose mesh size and stiffness can be independently controlled. Cell
22 behavior, including spreading, migration, and formation of focal adhesions is significantly
23 altered on hydrogels with different mesh sizes but with the same stiffness. At the
24 transcriptional level, hydrogel mesh size affects cellular mechanotransduction by
25 regulating nuclear translocation of yes-associated protein. These findings demonstrate
26 that the mesh size of a hydrogel plays an important role in cell-substrate interactions.

28 **Statement of Significance**

29 Hydrogels are ideal platforms with which to investigate interactions between cells and
30 their microenvironment as they mimic many physical properties of the extracellular
31 matrix. However, the mesh size of hydrogels is intrinsically coupled to their stiffness,
32 making it challenging to investigate the contribution of mesh size to cell behavior. In this
33 work, we use **hydrogel-on-glass substrates with defined thicknesses whose** stiffness and
34 mesh size can be independently tuned. We use these substrates to isolate the effects of
35 mesh size on cell behavior, including attachment, spreading, migration, focal adhesion
36 formation and YAP localization in the nucleus. Our results show that mesh size has
37 significant, yet often overlooked, effects, on cell behavior, and contribute to a further
38 understanding of cell-substrate interactions.

39

40 **Keywords**

41 Cell behavior, Hydrogel substrates, Mesh size, Stiffness, hBMSC, YAP

42

43 **1. Introduction**

44 Cells interact and respond to their local extracellular microenvironment. It not only
45 serves as an essential physical scaffold for the cells, but it also provides a variety of
46 stimuli that regulate cell behavior [1]. Hydrogels can mimic the attributes of the
47 extracellular microenvironment while allowing control of their mechanical and structural
48 properties [2]; thus they are often used as a material with which to investigate the effects
49 of these properties on cell behavior [3-5]. One of the most important and widely studied
50 physical properties is the stiffness of hydrogel substrate. It is a key mechanical cue that
51 regulates cell behavior and determines stem cell fate [6-9]. However, substrate stiffness
52 cannot be the only parameter controlling cell behavior. Evidence has emerged that
53 structural cues are of essential importance in guiding cell response [10, 11]. For example,
54 the decrease of the hydrogel mesh size can induce significant osteogenic differentiation
55 of human stem cells [12]. However, contradictory results have reported that osteogenic
56 and adipogenic differentiation of human stem cell is not affected by varying the mesh
57 size of hydrogel [13]. This debate arises from the fact that the mesh size of the hydrogel
58 is intrinsically coupled with the stiffness [14-17], making it very difficult to investigate the
59 independent contribution of hydrogel mesh size to cell behavior. **Furthermore, most**
60 **studies have focused only on longer-term response such as cell differentiation, which**
61 **happens over weeks, while how the mesh size affects shorter-term responses, such as**
62 **attachment, spreading, and migration, which happen over hours to a few days, have**
63 **been overlooked.** To distinguish the contribution of mesh size, it is of critical importance
64 to decouple the effects of mesh size and stiffness; this will enable investigation of the
65 corresponding cell behavior such as attachment, spreading, and migration.

66 In this study, we report a hydrogel system whose stiffness and mesh size can be
67 independently controlled, thereby, enabling us to isolate the effect of mesh size on the
68 behavior of human bone marrow-derived mesenchymal stem cells (hBMSCs). By
69 attaching the hydrogel with a defined thickness to the surface of a solid glass slide, we
70 fabricate **a hydrogel-on-glass substrate**. The stiffness of this composite substrate is
71 determined by a combination of the thickness and mesh size of the hydrogel layer; thus,
72 by varying the thickness and the monomer concentration, the stiffness and mesh size of
73 the hydrogel-glass substrate can be adjusted independently. We then grow cells on
74 these substrates with the same stiffness but different mesh sizes, and investigate their
75 behavior, including attachment, spreading, and migration. We find that the attachment of
76 cells is not sensitive to the changes in hydrogel mesh size. By contrast, as the mesh size
77 of hydrogel decreases, cells have significantly larger spreading areas and nuclear
78 projected areas. Furthermore, cells migrate much faster on hydrogels with smaller mesh
79 sizes. At the subcellular scale, cells form bigger focal adhesions on the hydrogels with
80 smaller mesh sizes, indicating better adhesion between cells and hydrogels.
81 Furthermore, we show that more yes-associated protein (YAP) translocates from the
82 cytoplasm to the nucleus in the cells grown on the hydrogels with smaller meshes,
83 indicating a regulatory role of hydrogel mesh size in the cellular mechanotransduction.
84 These results demonstrate that the mesh size of hydrogel has significant effects on cell
85 behavior and plays an important role in the cell-substrate interaction.

86

87 **2. Materials and Methods**

88 *2.1. Fabrication of hydrogel-on-glass substrates with defined thicknesses*

89 Glass slides are functionalized using (3-Aminopropyl)triethoxysilane (APTES; Sigma-
90 Aldrich, MO, USA) to facilitate covalent attachment of the hydrogel to glass. Briefly, glass
91 slides are cleaned for 60 seconds using plasma cleaner (Diener electronic GmbH + Co.
92 KG, Germany) at the power of 100 mW. The glass slides are then immersed in ethanol
93 (Sigma-Aldrich, MO, USA) containing 1% APTES and 1% 1 M NaOH (Sigma-Aldrich,
94 MO, USA) for 10 min. The glass slides are subsequently washed with ethanol twice and
95 rinsed with deionized water. The glass slides are left at room temperature until
96 completely dried.

97 A prepolymer solution is prepared with a total volume of 1124 μ L containing acrylamide
98 monomers (Sigma-Aldrich, MO, USA), *N*, *N'*-Methylene-bisacrylamide (Sigma-Aldrich,
99 MO, USA), 15 μ L of 10% weight percentage ammonium persulfate (Sigma-Aldrich, MO,
100 USA), 0.5 μ L *N*, *N*, *N'*, *N'*- tetramethylethylenediamine (Sigma-Aldrich, MO, USA) and
101 beads of different diameters in deionized water. To tune the mesh size of the hydrogel,
102 acrylamide monomer and *N,N'*-Methylenebisacrylamide are prepared at final weight
103 percentages of 6% / 0.35%, 9% / 0.126%, and 12% / 0.065% in the prepolymer solution.
104 To adjust the thickness of the hydrogel (2.5 μ m, 15 μ m, 30 μ m, and 200 μ m), beads of
105 different diameters are added to the prepolymer solution, which are 2.5 μ m (Magsphere,
106 CA, USA), 15 μ m (Bangslab, Indiana, USA), 30 μ m (Sigma-Aldrich, MO, USA), and 200
107 μ m (Sigma-Aldrich, MO, USA). The density of the beads is controlled such that the
108 distance between the beads is at least 300 μ m. To fabricate thick hydrogels (1000 μ m),
109 we add plastic spacers of 1000 μ m at the edge of the coverslip. The prepolymer solution
110 is then transferred to the pre-treated glass slides and then covered with 18-mm diameter
111 coverslips. Two magnets, one on the top of the coverslip, one beneath the bottom of the
112 glass slide, are used to press the coverslip and slide. After 3 hours, the coverslip is
113 gently peeled off and hydrogels are immersed in phosphate-buffered saline solution
114 (Sigma-Aldrich, MO, USA).

115

116 2.2. *DNA gel electrophoresis*

117 Ultra-Low Range DNA Ladder (Thermo Scientific, MA, USA) is mixed with TriTrack DNA
118 Loading Dye (contains Xylene Cyanol FF, Bromophenol Blue, and Orange G) (Thermo
119 Scientific, MA, USA) and run through polyacrylamide electrophoresis hydrogels in TAE
120 buffer at 110V for 30 minutes. The samples are stained with GelRed Nucleic Acid Stain
121 (Sigma-Aldrich, MO, USA) and imaged with a homemade imaging system built with a
122 camera, a PC, and a UV/white light dual-light source.

123

124 2.3. *Measurement of the Young's modulus of hydrogels*

125 Polyacrylamide hydrogels are polymerized into cylindrical-disk shapes with 35-mm
126 diameter and 10-mm thickness using petri dishes as molds. The hydrogel samples are
127 immersed in PBS for at least 3 hours such that the swelling of the hydrogel can reach its
128 equilibrium. Nanoindentation measurements are performed using a nanoindenter
129 (Agilent G200, Agilent Technologies, Santa Clara, USA) with a 100- μ m-diameter
130 cylindrical diamond probe. For each composition of hydrogels, two samples are
131 prepared and six individual measurements are performed on each sample at different
132 locations, with at least a 200- μ m distance between two neighboring locations. Young's
133 modulus is obtained from the continuous stiffness measurement (CSM) mode of the
134 instrument at an amplitude of 500 nm and a frequency of 10 Hz.

135

136 *2.4. Atomic force microscopy*

137 The stiffness of the hydrogel-on-glass substrate with defined thickness is measured with
138 an atomic force microscope (Nanowizard; JPK, Berlin, Germany). Silicon nitride
139 cantilevers with spherical tips of 3.5- μ m diameter (NanoAndMore USA Corporation, CA,
140 USA) are used. **The hydrogel samples are immersed in PBS for at least 3 hours such**
141 **that their swelling can reach equilibrium.** Samples are indented at 9 positions with a
142 distance of at least 17 μ m apart between two neighboring positions. Samples are
143 indented at an approach velocity of 5 μ m/s until a 2 nN trigger force is registered, and
144 the tip is then retracted at 5 μ m/s. **The linear portion of the indentation force-depth curve**
145 **is analyzed with the JPK data processing software to extract the stiffness of the sample**
146 **by fitting the indentation curve with the Hertzian model.**

147

148 *2.5. Functionalization of the substrate with collagen*

149 These substrates are coated with collagen such that the cells can attach to the substrate
150 well. Briefly, the samples are immersed in Hepes buffer (pH 8.5, Sigma-Aldrich, MO,
151 USA) and then sterilized under germicidal light in a cell culture hood for 20 mins. Then
152 the samples are immersed in 0.125 mg/ml N-sulphosuccinimidyl-6-(4'-azido-2'-
153 nitrophenylamino) hexanoate (sulfo-SANPAH; Thermo Scientific, MA, USA), activated
154 with 365-nm UV light (Analytik Jena, Germany), washed, and then incubated overnight
155 in 200 μ g/ml rat type-I collagen solution (Sigma-Aldrich, MO, USA).

156

157 *2.6. Immunofluorescence staining of collagen*

158 Substrates with collagen coating are blocked with 1% bovine serum albumin (Sigma, MO,
159 USA) in PBS for 1 hour, followed by a two-step immunostaining process. Briefly,
160 samples are first incubated with mouse monoclonal anti-collagen I antibodies (ab90395,
161 Abcam, MA, USA) diluted 200X in PBS with a supplement of 1% bovine serum albumin
162 for 1 hour at room temperature. Samples are then washed 5 times with PBS and
163 incubated with goat anti-mouse Alexa fluor plus 488 secondary antibodies (Thermo
164 Fisher Scientific Inc, MA, USA) diluted 200X in PBS with a supplement of 1% bovine
165 serum albumin for 1 hour in the dark. Samples are washed 3 times with PBS before
166 imaging. Substrate without collagen coating is stained with the same protocol as a
167 negative control. The stained samples are then fluorescently imaged with a confocal
168 microscope equipped with a 25X/0.95-NA water immersion objective (TCS-SP5; Leica
169 Microsystems Inc., IL, USA).

170

171 *2.7. Collagen quantification with enzymatic assay*

172 To compare the collagen amount on the surface of the hydrogel, the ELISA kit (Chondrex,
173 Inc. WA, USA) is partially adapted and the relative amount of collagen is determined
174 based on changes in the optical density. Briefly, the samples are blocked with 1% BSA in
175 PBS. The samples are then incubated with Peroxidase-Conjugated Goat Anti-Rat
176 antibody at room temperature for 1 hour. The samples are subsequently washed 3 times
177 and incubated with TMB solution for 15 minutes. The stop solution is added to each
178 sample and the optical density of the reacted solution is read at 450 nm.

179

180 *2.8. Scanning electron microscopy*

181 For observation of the hydrogel microstructure with a scanning electron microscope,
182 fixed samples are dehydrated in ethanol graded series (50%, 60%, 70%, 80%, 90%,
183 100%, Sigma, MO, USA) for 30 minutes each and eventually immersed in 100% ethanol
184 for 2 hours. After dehydration, samples are transferred to a critical point dryer (Tousimis
185 931GL, MD, USA) and dried under the critical point of CO₂. Samples are then coated
186 with 5 nm Pt/PD and observed with an Ultra 55 scanning electron microscope (Carl
187 Zeiss Microscopy, LLC, NY, USA).

188

189 *2.9. Cell culture*

190 Human bone marrow-derived mesenchymal stem cells (hBMSCs; ATCC, VA, USA) are
191 used in this study. MSC growth medium is prepared by mixing mesenchymal stem cell
192 basal medium (ATCC, VA, USA) with mesenchymal stem cell growth kit (ATCC, VA,
193 USA). Cells are cultured in the MSC growth medium and maintained in the 37 °C, 5%
194 CO₂ infused incubator. All experiments are carried out with early passage hBMSCs
195 (passage 2–passage 6).

196

197 *2.10. Cell attachment and migration assay*

198 Cells are seeded onto substrates at a density of ~4000 cells/cm² and cultured in MSC
199 growth medium. Nuclei of cells are stained with 0.5 µM SiR-DNA staining reagents
200 (Cytoskeleton Inc., DENVER, CO, USA). To perform the live-cell imaging, substrates
201 with cells are kept in an incubator (OKO lab, NA, Italy) supplemented with 5% CO₂ and
202 maintained at 37 °C. The cells are imaged for continuous 4 days with a confocal
203 microscope equipped with a 10X/0.3-NA dry objective (TCS-SP5; Leica Microsystems
204 Inc., IL, USA).

205

206 *2.11. Cell morphology assay*

207 To observe the morphology of cells, cells are seeded on substrates at a density of ~4000
208 cells/cm². We fluorescently stain the cell cytoplasm with 2 µg/ml CellTracker™ green
209 (Thermo Fisher Scientific Inc, MA, USA) and stain the cell nucleus with 0.5 µM SiR-DNA
210 (Cytoskeleton Inc., DENVER, CO, USA). The stained cells are fixed with 4%
211 formaldehyde and imaged with a confocal microscope equipped with a 25X/0.95-NA
212 water immersion objective (TCS-SP5; Leica Microsystems Inc., IL, USA).

213

214 *2.12. Immunofluorescence assay of focal adhesion*

215 Cells are seeded on substrates at a density of ~4000 cells/cm² and cultured in an
216 incubator infused with 5% CO₂ and maintained at 37 °C. After 16 hours, cells are fixed
217 with 4% formaldehyde and 0.1% Triton X100 diluted in PBS, followed by PBS wash 3
218 times to remove excessive reagents. Fixed cells are then triple stained for actin, vinculin,
219 and nucleus: fixed cells are blocked with 10% normal goat serum (Thermo Fisher
220 Scientific Inc, MA, USA) in PBS for 1 hour, followed by a two-step immunostaining
221 process for vinculin. Briefly, cells are first incubated with mouse monoclonal anti-vinculin

222 antibodies (Sigma-Aldrich, MO, USA) diluted 200X in PBS with a supplement of 10%
223 normal goat serum for 1 hour at room temperature. Samples are then washed 5 times
224 with PBS and incubated with goat anti-mouse Alexa fluor plus 488 secondary antibodies
225 (Thermo Fisher Scientific Inc, MA, USA) diluted 200X in PBS with a supplement of 10%
226 normal goat serum for 1 hour in the dark. Phalloidin-iFluor 555 (Abcam, MA, USA) and
227 Draq 5 nucleus probe (Thermo Fisher Scientific Inc, MA, USA) are diluted at ratios of
228 1:1000 and 1:5000 each to stain actin and nuclei of cells. Stained cells are washed 3
229 times with PBS and imaged with a confocal microscope equipped with a 63X/1.20-NA
230 water immersion objective (TCS-SP5; Leica Microsystems Inc., IL, USA).

231

232 *2.13. Immunofluorescence assay of YAP*

233 Cells are seeded on substrates at a density of ~4000 cells/cm² and cultured in an
234 incubator infused with 5% CO₂ and maintained at 37 °C. After 16 hours, cells are fixed
235 with 4% formaldehyde and 0.1% Triton 100X diluted in PBS, followed by PBS wash 3
236 times to remove excessive reagents. Fixed cells are triple stained for actin, YAP, and
237 nucleus: fixed cells are blocked with 10% normal goat serum (Thermo Fisher Scientific
238 Inc, MA, USA) in PBS for 1 hour, followed by a two-step immunostaining process for YAP.
239 Briefly, cells are incubated with rabbit polyclonal anti-YAP antibodies (Cell Signaling
240 Technology, Inc., MA, USA) diluted 200X in PBS with a supplement of 10% normal goat
241 serum for 1 hour at room temperature. Samples are then washed 5 times with PBS and
242 incubated with goat anti-rabbit Alexa fluor plus 594 secondary antibodies (Thermo Fisher
243 Scientific Inc, MA, USA) diluted 200X in PBS with a supplement of 10% normal goat
244 serum for 1 hour in the dark. Phalloidin-iFluor 555 (Abcam, MA, USA) and Draq 5
245 nucleus probe (Thermo Fisher Scientific Inc, MA, USA) are diluted at ratios of 1:1000
246 and 1:5000 each to stain actin and nuclei of cells. Stained cells are washed 3 times with
247 PBS and imaged with a confocal microscope equipped with a 63X/1.2-NA oil immersion
248 objective (LSM880; Nikon Instruments Inc. NY, USA).

249

250 *2.14. Image analysis*

251 To quantify the collagen coating on substrates, the fluorescence intensity of the confocal
252 images is measured with Image J (<https://imagej.nih.gov/ij/>). For the cell attachment
253 study, the number of the cell nucleus is counted with the particle analyzer plugin in
254 Image J. For the cell morphology study, fluorescence images of cells are segmented by
255 OTSU's method; cell spreading area and nuclear projected area are further measured
256 with particle analyzer plugin in Image J. For the cell migration study, fluorescent images
257 of the cell nucleus are contiguously recorded with a 5-minute interval. The migration
258 trajectories of cells are extracted by tracking their nuclei with the particle tracker plugin in
259 Image J. The extracted trajectories are then analyzed with MATLAB (Mathworks, MA,
260 USA) to calculate cell migration speed and directional persistence. Analysis of focal
261 adhesions is performed according to a previous method [18]. For the YAP nuclear
262 translocation study, the total fluorescence intensity of YAP in the nuclear and
263 cytoplasmic regime are quantified with Image J.

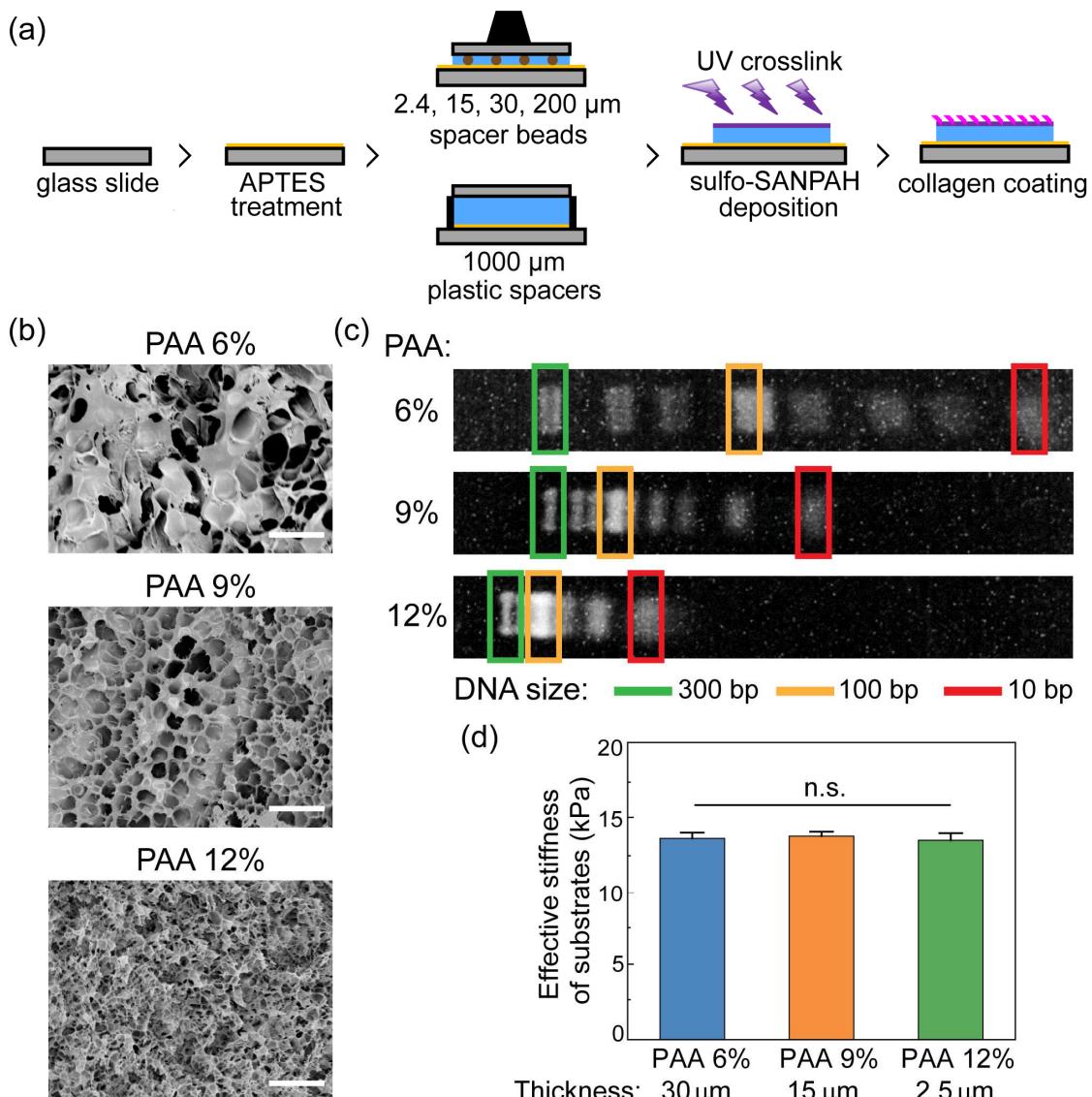
264

265 *2.15. Statistical analysis*

266 Statistical analysis is performed using Origin software (OriginLab Corporation, MA, USA).
267 The one-way analysis of variance (ANOVA) is used to determine whether there are any
268 statistically significant differences between multiple comparisons [19]. P-values larger
269 than 0.05 are assumed to be non-significant in all analyses; P-values smaller than 0.05
270 are assumed to be significant and marked with *; P-values smaller than 0.01 are marked
271 with **; P-values smaller than 0.001 are marked with ***; P-values smaller than 0.0001
272 are marked with ****.

273

274 **3. Results and Discussion**


275 *3.1. Preparation of hydrogel substrates with different mesh sizes but the same stiffness*

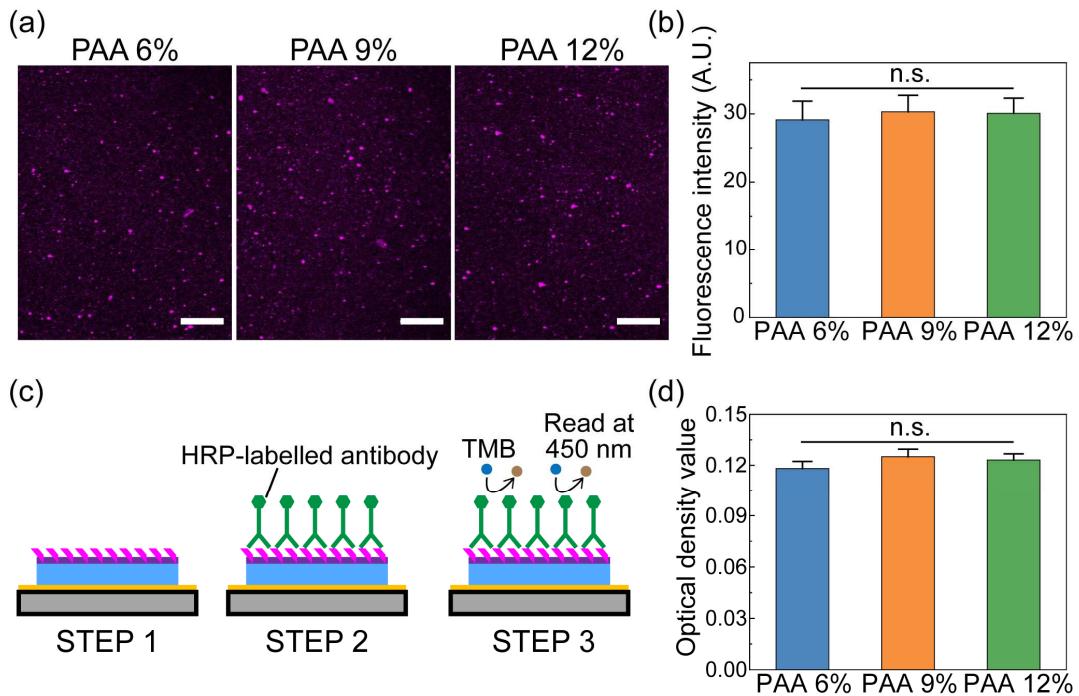
276 To decouple the stiffness of the hydrogel from its mesh size, we fabricate a composite
277 substrate where a hydrogel of controlled thickness is cast on the surface of a rigid, glass
278 slide. The stiffness of this composite substrate is determined by both the intrinsic
279 stiffness of the hydrogel, which depends on its mesh size, and the thickness of the
280 hydrogel layer. Then, by adjusting both the intrinsic stiffness of the hydrogel and its
281 thickness, we can independently control the mesh size and stiffness of the composite
282 substrate. We fabricate these composite substrates by casting polyacrylamide (PAA)
283 hydrogel layers onto glass slides treated with 3-Aminopropyltriethoxysilane (APTES).
284 The treatment of APTES on the glass slides enables strong covalent binding of the
285 polyacrylamide (PAA) hydrogel to the glass slides. To ensure cells adhere to the
286 hydrogels, we covalently couple type-I collagen molecules to the hydrogel surface using
287 the heterobifunctional linker sulfosuccinimidyl 6-(4'-azido-2'-nitrophenylamino)
288 hexanoate (sulfo-SANPAH), as shown in Figure 1(a).

289 To change the mesh size of the hydrogel, we tune the concentrations of acrylamide
290 monomer and crosslinker *N,N'*-Methylene-bisacrylamide, which are used for PAA
291 hydrogel polymerization. We make three samples: the first sample has a weight/volume
292 percentage concentration of 6% monomer and 0.35% crosslinker; the other two samples
293 have monomer/crosslinker weight/volume percentage concentrations of 9%/0.126%, and
294 12%/0.065%, respectively. To compare the mesh size of hydrogels, we freeze dry
295 samples and observe them with scanning electron microscopy (SEM). The mesh size of
296 the dried hydrogel decreases as the acrylamide concentration increases, as shown in
297 Figure 1(b). However, the value measured with SEM is likely an overestimation of the
298 mesh size of the hydrogel in its hydrated state due to structural collapse during the
299 sample drying process [12, 13]. To qualitatively compare the mesh size among hydrogel
300 samples, we measure the dynamics of DNA fragments passing through the hydrogels in
301 their hydrated state by gel electrophoresis. The mobility of the DNA fragment is an
302 indicator of the relative mesh size among hydrogel samples; higher mobility of the DNA
303 fragment indicates a larger mesh size [20-22]. We fabricate the hydrogels following the
304 same protocol as those for SEM imaging but without drying them. We find that DNA
305 fragments migrate faster in hydrogels with lower concentrations of acrylamide, as shown
306 in Figure 1(c). In addition, the same observation has been made on the mobility of DNA
307 loading dyes, as shown in Figure S1. This suggests that hydrogels with lower
308 concentrations of acrylamide have larger mesh sizes; the relative size of hydrogel mesh
309 is also consistent with those measured with SEM. Taken together, all three
310 measurements are consistent and confirm that the mesh size of the hydrogel decreases
311 as the acrylamide concentration increases from 6% to 12%.

312 The variation of hydrogel mesh size with composition also leads to a variation in the

313 intrinsic stiffness of the hydrogel. To determine the intrinsic stiffness of the hydrogel, we
314 fabricate a thick layer (~10mm) of the polyacrylamide hydrogel and measure its intrinsic
315 stiffness with a nanoindenter. As the acrylamide concentration increases from 6% to
316 12%, the intrinsic stiffness, or Young's modulus of the hydrogel, decreases from ~15 kPa
317 to ~7.5 kPa, as shown in Figure S2. To adjust the stiffness of the composite substrates,
318 we fabricate hydrogel layers with different thicknesses onto the glass slides [23-25]. We
319 use two different methods to vary the thickness of PAA hydrogel layers, either by adding
320 spacer beads with a certain diameter [24] or by adding plastic spacers, as shown in
321 Figure 1a. For the spacer beads, we intentionally control the density of the beads in the
322 hydrogels such that the distance between the beads is at least 300 μm , which is much
323 larger than the size of a single cell (~80 μm). Therefore, when the cells are cultured on
324 substrates, most of them do not contact beads and are not influenced by the beads. The
325 stiffness of the hydrogel-glass substrate is measured with atomic force microscopy
326 (AFM). A typical indentation force-depth curve of AFM measurement is shown in Figure
327 S3. For each of the different compositions, the stiffness decreases rapidly as the
328 thickness increases, but saturates at the intrinsic stiffness of the hydrogel when the
329 thickness is greater than 30 μm , as shown in Figure S4. To select the substrates with the
330 same stiffness, we choose the overlapping stiffness range of hydrogel substrates with
331 different mesh sizes, which is ~12-15kPa. Therefore, we select three substrates with the
332 same stiffness of ~13kPa: 30- μm thick PAA at an acrylamide concentration of 6%, 15- μm
333 thick PAA at 9%, and 2.5- μm thick PAA at 12%. The stiffnesses of these three samples
334 are very nearly the same, as shown in Figure 1(d). Nevertheless, the mesh sizes are
335 clearly distinct, as evidenced from Figures 1(b) and (c). For simplicity, these three
336 substrates are referred to as PAA 6%, PAA 9%, and PAA 12%, respectively. In this
337 manner, hydrogel mesh size is the only changing parameter and its effect on the cell
338 behavior can be decoupled from the hydrogel stiffness.
339

340

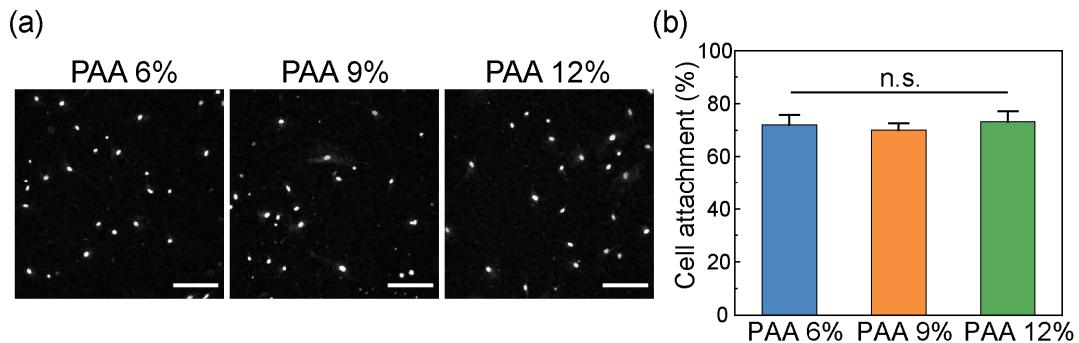

341 Figure 1. Fabrication of hydrogel-on-glass substrates with different mesh sizes but the same
 342 stiffness. (a) Schematic of the fabrication workflow of hydrogel-on-glass substrates with defined
 343 thickness. (b) Representative SEM images of PAA hydrogels with different acrylamide
 344 concentrations. Scale bars, 5 μ m. (c) Electrophoresis of DNA fragments in hydrated PAA
 345 hydrogels with different acrylamide concentrations. (d) Stiffness of the hydrogel-on-glass
 346 substrates with indicated acrylamide concentrations and hydrogel thicknesses (Mean \pm SD, N=9
 347 per group, one-way ANOVA, P>0.05).

348

349 3.2. Characterization of collagen coating on hydrogels with different mesh sizes

350 Cells do not readily attach to PAA hydrogels due to the lack of anchoring sites [26];
 351 therefore, extracellular matrix (ECM) ligands, such as collagen, must be bound to the
 352 surface of the hydrogel to provide the essential anchoring sites for cells [27, 28]. In this
 353 study, we coat the hydrogels with sulfo-SANPAH, a protein crosslinker, and then
 354 covalently link collagen molecules to the sulfo-SANPAH. The same concentration of
 355 sulfo-SANPAH and collagen are used for all the hydrogels.

356 To ensure that any observed differences in cell behavior do not originate from the ECM
357 protein functionalization, the collagen coating of the hydrogels is interrogated using three
358 methods: a direct fluorescence quantification assay, an immunostaining assay and an
359 enzymatic assay. To perform the direct fluorescence quantification assay, we coat the
360 hydrogel surface with a mixture of FITC-labeled and unlabeled collagen at a ratio of 5:1,
361 and quantify the surface fluorescence with confocal microscopy according to a
362 previously reported method [29-31]. We find that spot-like collagen is randomly
363 distributed on all hydrogel surfaces, as shown in Figure 2(a). This is in contrast to the
364 rod-like fibers of collagen assembled under the physiological condition [32, 33]. We
365 attribute this difference to the deposition of sulfo-SANPAH on the PAA hydrogel surface,
366 which disrupts fiber formation of collagen monomers due to the non-specific protein
367 conjugation and the blockage of triple helices [34-36]. We then quantify the average
368 fluorescence intensity of the collagen coatings among different samples. The
369 fluorescence intensity of the collagen coating is nearly the same among samples with no
370 obvious difference, as shown in Figure 2(b). This conforms with the previous finding that
371 the collagen coating does not change as the hydrogel structure changes [37, 38]. To
372 further confirm this result, we performed the second assay, an immunostaining assay.
373 We coat the hydrogel surface with unlabeled collagen and immunofluorescence stain
374 them, as shown in [Figure S5\(a\)](#). We observe similar collagen structures and averaged
375 fluorescence intensity among the collagen coating of hydrogels, as shown in [Figure](#)
376 [S5\(b\)](#). In the absence of any collagen coating, the measured fluorescence intensity is
377 one order of magnitude smaller, confirming that the fluorescence measured is from the
378 collagen coating, as shown in [Figure S6](#). To verify that the amount of the collagen
379 coating quantified by the confocal imaging method is not biased by the resolution of the
380 imaging technique, we quantify the collagen coating of hydrogels with an enzymatic
381 assay as the third method. Briefly, collagen coatings are incubated with peroxidase-
382 conjugated collagen antibodies to allow them to bind; the amount of bound peroxidase-
383 conjugated antibodies is proportional to the amount of collagen coating. We then add
384 3,3',5,5'-Tetramethylbenzidine (TMB) substrate to the samples and allow it to react with
385 the peroxidase-conjugated collagen antibodies to produce a measurable color change,
386 as depicted in Figure 2(c). The optical density of the reaction product at 450 nm is used
387 as an indicator of the collagen coating amount. The optical density values show no
388 observable difference among different hydrogels, as shown in Figure 2(d). Therefore, we
389 conclude that there is no difference in collagen coatings across hydrogels with different
390 mesh sizes.

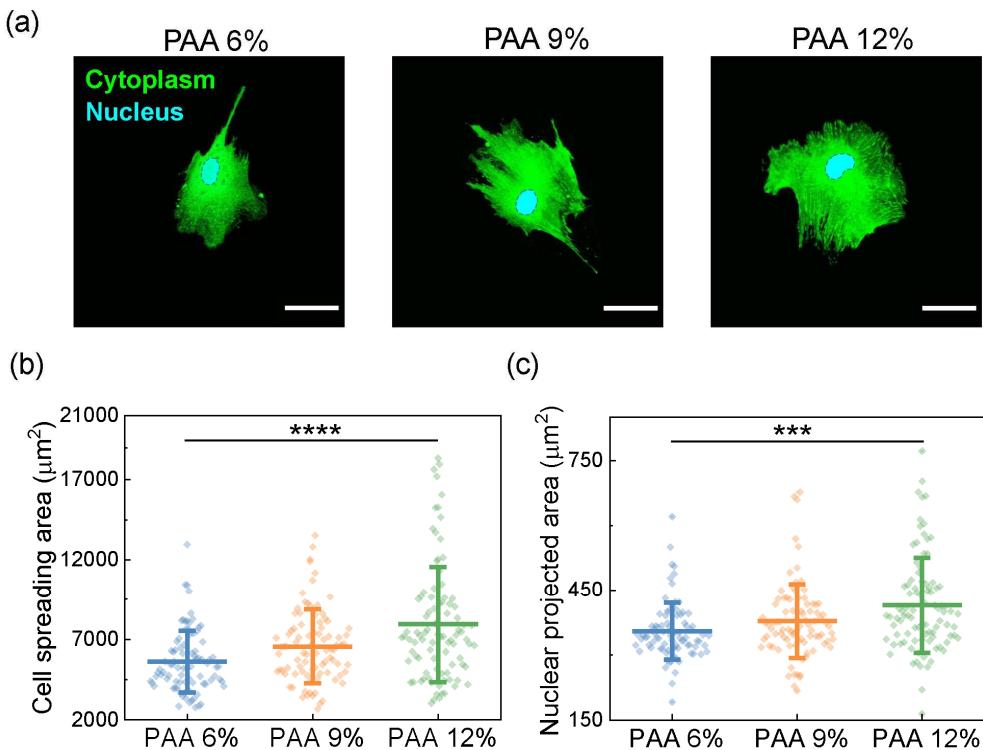

391

392 **Figure 2.** Characterization of collagen coating on hydrogels. (a) Representative fluorescence
393 images of FITC-labeled collagen on different hydrogels. Scale bars, 50 μ m. (b) The average
394 fluorescence intensity of FITC-labeled collagen on different hydrogels (Mean \pm SD, $N=20$ per
395 group, one-way ANOVA, $p>0.05$). (c) Schematic of the enzymatic detection assay of collagen
396 coating on hydrogels. (d) Optical density values of peroxidase-TMB reaction product measured
397 on different hydrogels (Mean \pm SD, $N=9$ per group, one-way ANOVA, $p>0.05$).

398

399 3.3. Effects of hydrogel mesh size on the cell attachment

400 To investigate how cells respond to hydrogels with different mesh sizes, we culture cells
401 on these different substrates and observe their corresponding behavior. The first
402 behavior we investigate is the cell attachment, which is the initial step in the cascade of
403 cell-substrate interactions. Cells are seeded onto hydrogels at a low density of ~ 4000
404 cells/cm 2 , so that most cells are isolated, without cell-cell contact. Cells are well
405 separated on different substrates, as shown by the representative confocal images in
406 Figure 3(a). The number of attached cells is quantified and normalized by the total cell
407 number seeded in the medium to calculate the percentage of cells that are successfully
408 attached to the substrates. For the conditions used in all experiments, at least 80%
409 percent of the cells attach to the hydrogels, and no statistically significant difference in
410 cell-attachment percentage is found among the different substrates, as shown in Figure
411 3(b). We therefore conclude that the influence of the mesh size of the hydrogel on cell
412 attachment is negligible. A possible interpretation of this observation is that the cell
413 attachment is predominantly determined by the collagen coating on the hydrogel surface
414 [39], for which we observe no differences under our experimental conditions.


415

416 Figure 3. Attachment of cells on hydrogels with different mesh sizes. (a) Representative confocal
 417 fluorescence microscopy images of cells on different hydrogels with nuclei stained; cells are
 418 imaged 12 h after they are seeded. Scale bars, 200 μ m. (b) Percentage cells attached on
 419 different hydrogels (Mean \pm SE, $N=26$ per group, one-way ANOVA, $p>0.05$).

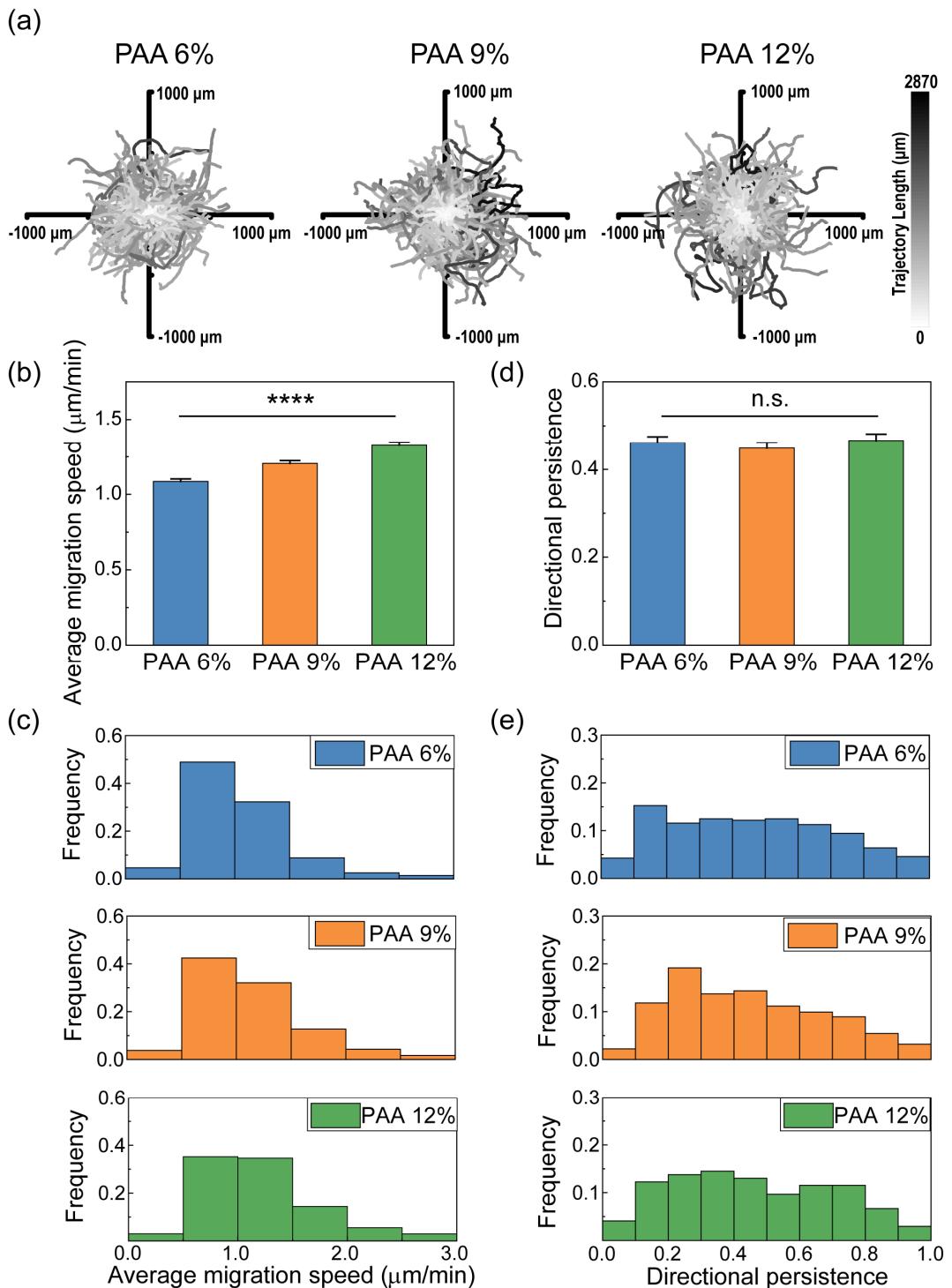
420

421 *3.4. Effect of hydrogel mesh size on the cell morphology*

422 Shortly after their initial attachment, cells will stretch themselves and spread on the
 423 substrates. The morphology of the cell has important consequences on cell metabolism
 424 [40], as it can determine whether or not a cell proliferates [41], or dies [42]. We
 425 investigate the morphology of the fully spread cells on different substrates. We seed
 426 cells on the substrates at a low density of ~ 4000 cells/cm 2 . We fluorescently stain the
 427 cells with CellTrackerTM green to determine their spreading area. We also fluorescently
 428 stain the nuclei with DNA dye DRAQ5 to determine their nuclear projected area;
 429 representative images obtained with confocal microscopy are shown in Figure 4(a). Cell
 430 spreading area and nuclear projected area are quantified from the confocal microscopy
 431 images using Image J software. The results suggest that the cell spreading area is
 432 significantly larger on hydrogels with smaller mesh sizes, as shown in Figure 4(b).
 433 **However, the circularity of cells, defined as $4\pi \times \text{Area}/\text{Perimeter}^2$, exhibits no difference**
 434 **on hydrogels with different mesh sizes, as shown in Figure S7.** Moreover, the nuclear
 435 projected area follows the same trend as the cell spreading area, as shown in Figure
 436 4(c). Our results demonstrate that by varying the mesh size of the hydrogel, the
 437 spreading behavior of cells is pronouncedly altered. Interestingly, the same correlation
 438 between cell spreading and nuclear projected area is also reported for cells grown on
 439 substrates with different stiffnesses and microstructures [43-45], possibly indicating a
 440 similar regulating mechanism of hydrogel mesh size that determines the cell spreading
 441 and nuclear projected area.

442

443 Figure 4. Morphology of cells on hydrogels with different mesh sizes. (a) Representative confocal
 444 microscopy images of cells on different hydrogels. The cytoplasm of the cell is depicted in green;
 445 the nucleus of the cell is depicted in cyan. Scale bars, 50 μm . (b) Cell spreading area on different
 446 hydrogels (Mean \pm SD, $N>88$ per group, one-way ANOVA, $p<0.0001$). (c) Nuclear projected area
 447 on different hydrogels (Mean \pm SD, $N>88$ per group, one-way ANOVA, $p<0.0001$).


448

449 3.5. Effect of hydrogel mesh size on the cell migration

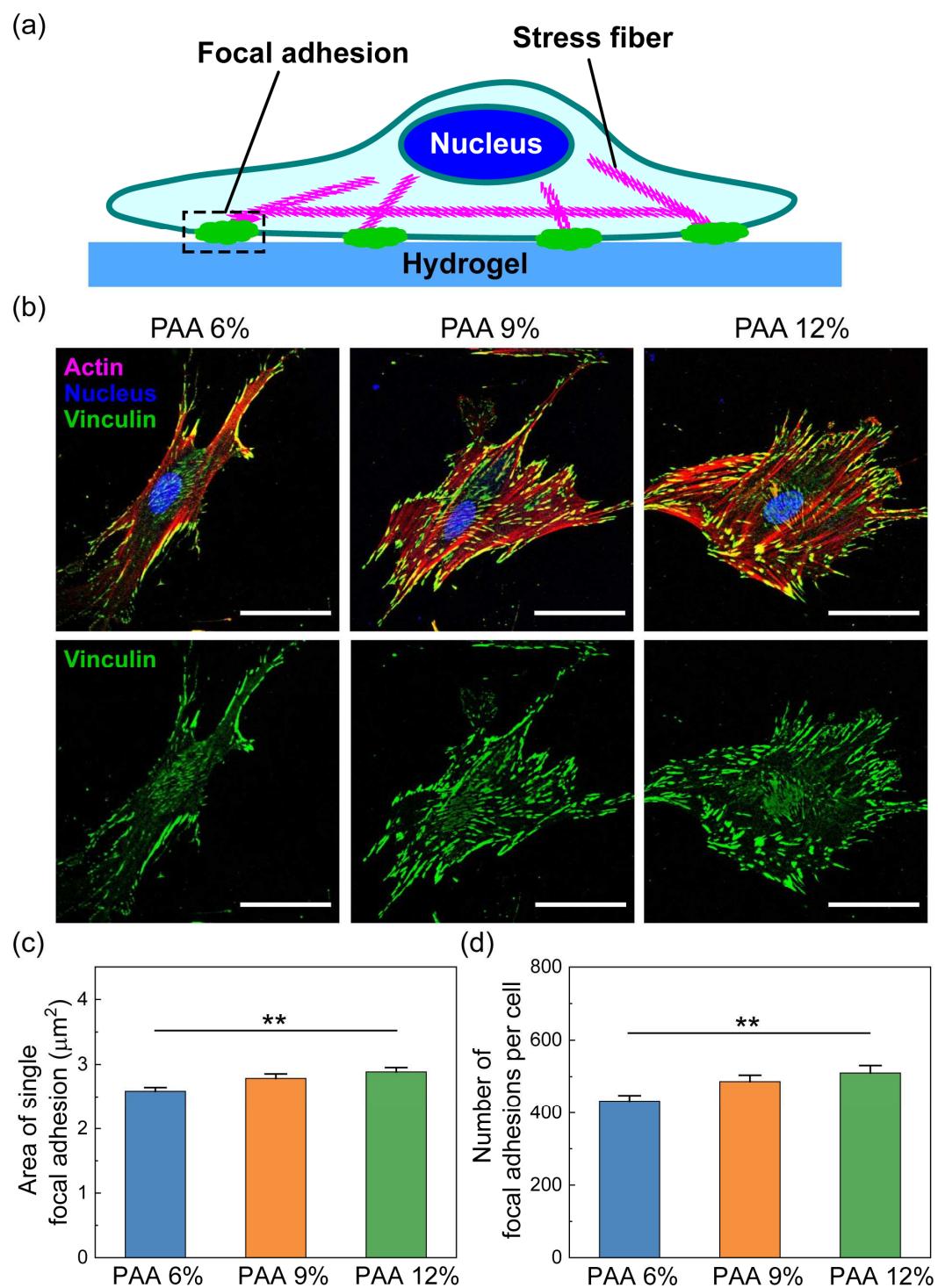
450 Besides cell spreading, mechanical and structural cues also influence a series of other
 451 cell functions, in particular, cell migration, which is closely associated with cell
 452 attachment and spreading [46]. Cell migration is the dynamic movements of cells that is
 453 essential for morphogenesis and tissue remodeling [47, 48]. To investigate cell migration
 454 on the hydrogels, cells are seeded sparsely enough to avoid cell-cell interactions and
 455 are imaged with confocal microscopy over 48 hours. Trajectories of cell migration are
 456 extracted from the confocal images with Image J software. Cells migrate in a random
 457 pattern without any directional preference and do so on hydrogels with different mesh
 458 sizes, as shown by the overlays of cell migration trajectories in Figure 5(a). Our finding is
 459 in stark contrast with the directed motion of cells on fibrous collagen networks that
 460 results from the strong contact guidance of collagen fibers [49-51], suggesting that the
 461 random migratory behavior observed here likely results from the non-fiber structure of
 462 the collagen coating.

463 We then determine the efficiency of the cell migration, which depends on two essential
 464 parameters: migration speed, which is how fast a cell moves, and directional persistence,
 465 which is how robustly a cell moves along the same direction. We first calculate the
 466 average migration speed of the cells, which is determined by dividing the contour length

467 of the migration trajectory by its duration. We find that cells migrate faster on hydrogels
468 with smaller meshes, as shown in Figure 5(b). Additionally, we determine the distribution
469 of the average migration speeds among cells; for all hydrogels, the distribution is broad
470 and there is a slight shift in the shape, with more faster cells as the mesh size decreases,
471 as shown in Figure 5(c). The other determining parameter of the cell migration efficiency
472 is the directional persistence, which is a parameter that quantifies the straightness of the
473 trajectory and is determined by the ratio of the end-to-end distance to the contour length
474 of each trajectory [52, 53]. In contrast to the average migration speed, the directional
475 persistence exhibits no difference among hydrogels with different mesh sizes, as shown
476 in Figures 5(d) and (e). These results suggest that cell migration efficiency is improved
477 on hydrogels with smaller mesh sizes, which is caused by the increased migration speed,
478 even though there is no change in directional persistence.

479

480 **Figure 5.** Migration behavior of cells on hydrogels with different mesh sizes. (a) Migration
481 trajectories of cells on different hydrogels ($N>269$ per group). (b) Average migration speed of cells
482 on different hydrogels (Mean \pm SE, $N>269$ per group, one-way ANOVA, $p<0.0001$). (c)
483 Distribution of average migration speed of cells on different hydrogels ($N>269$ per group). (d)
484 Directional persistence of cells on different hydrogels (Mean \pm SE, $N>269$ per group, one-way


485 ANOVA, $p>0.05$). (e) Distribution of directional persistence of cells on different hydrogels ($N>269$
486 per group).

487

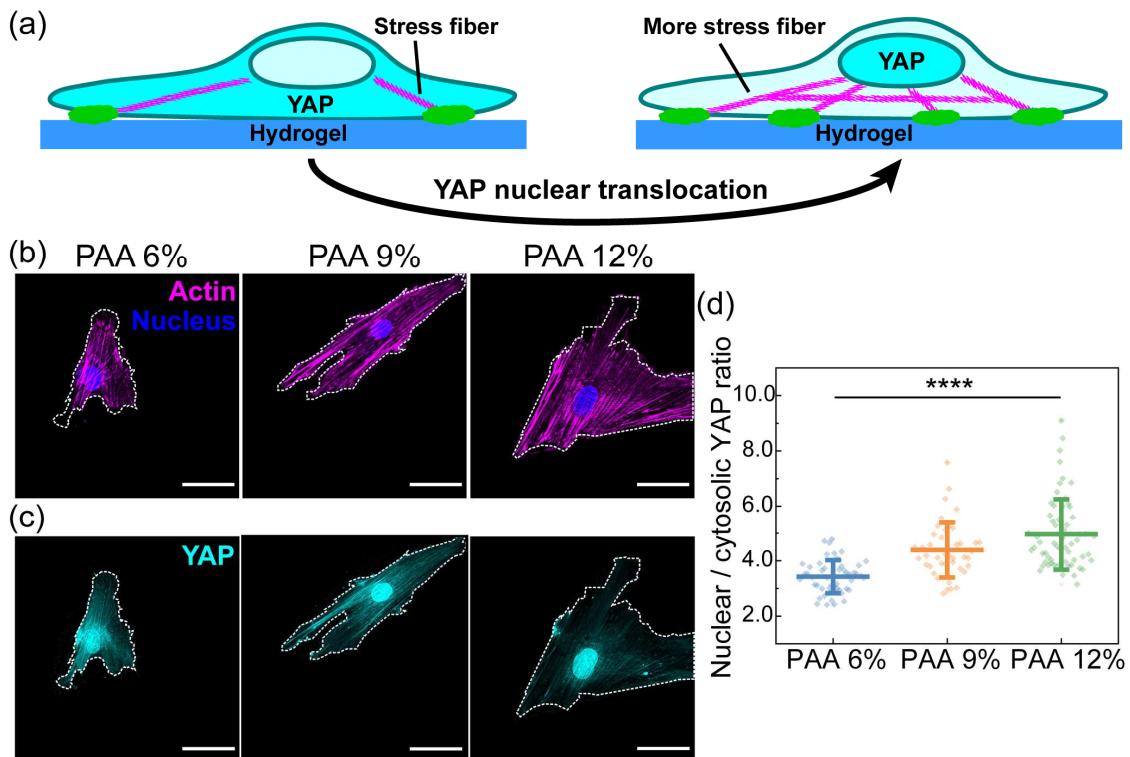
488 *3.6. Effect of hydrogel mesh size on the formation of focal adhesions*

489 Given the dramatic changes in the spreading and migration behavior of cells with
490 different hydrogel mesh sizes, we hypothesize that there is a corresponding change in
491 the focal adhesion, which is a key mechanosensor at the interface between the cell and
492 the ECM and which plays a critical role in cell spreading and migration [54, 55]. The
493 focal adhesion serves as a bridge between the extracellular substrate and the cell,
494 connecting the extracellular substrate at one end and actin stress fibers at the other, as
495 shown schematically in Figure 6(a). Both the focal adhesion and actin stress fibers are
496 indicators of how strongly a cell binds to the substrate [56-58] and we therefore
497 interrogate the morphology of these two cellular components. To characterize the
498 morphology of actin stress fibers, we stain the cells with fluorescent phalloidin. For cells
499 on hydrogels with smaller meshes, more actin stress fibers are formed, as shown by the
500 red fluorescent stain in Figure 6(b). To investigate the focal adhesion of cells, we
501 immunofluorescently label vinculin, one key structural protein of the focal adhesion [59-
502 61], and quantify the morphology of focal adhesions with confocal microscopy. For all
503 hydrogels, the focal adhesions display elongated shapes at the ends of the stress fibers,
504 with a typical length of 3-5 μm , as shown by the green fluorescent stain in Figure 6(b).
505 The morphology of these focal adhesions suggests that they are in the mature state,
506 since unmatured focal adhesions typically exhibit dot-like structures with lengths less
507 than a micron [62, 63]. **The area of single focal adhesions increases as the hydrogel
508 mesh size decreases, as shown in Figure 6(c).** Similarly, the number of focal adhesions
509 per cell also increases, as shown in Figure 6(d). As a consequence, the total focal
510 adhesion area per cell increases dramatically as the hydrogel mesh size decreases, as
511 shown in **Figure S8**. Overall, our results suggest that the ability of cells to form focal
512 adhesion is greatly promoted, and therefore a cell has better adhesion on hydrogels with
513 smaller meshes, as evidenced by the increase of both the number and area of focal
514 adhesion per cell. This also suggests that cells on hydrogels with smaller mesh sizes
515 pull a larger amount of protein, given that the density of the collagen coating is similar
516 among all substrates.

517 Interestingly, we find a close correlation between focal adhesion area and cell spreading
518 area: cells with larger focal adhesions also tend to have larger spreading areas. This
519 finding agrees with those found for cells on substrates with different stiffnesses [64],
520 despite the fact that the variation here is the hydrogel mesh size rather than the stiffness.
521 However, we observe a positive correlation between focal adhesion size and cell
522 migration speed, which contradicts the biphasic correlation reported previously [65-68].
523 This likely indicates the focal adhesion size in our study is below the size threshold that
524 inhibits cell migration and therefore positively correlates with cell migration speed.

525

526 Figure 6. Focal adhesions of cells on hydrogels with different mesh sizes. (a) Schematic of a
 527 spreading cell on the hydrogel substrate. The cell adheres to the hydrogel by forming focal
 528 adhesions, which are connected to actin stress fibers in the cell. (b) Representative confocal
 529 images of stress fibers and focal adhesions of cells on hydrogels with different mesh sizes. Actin
 530 is depicted in red; the nucleus is depicted in blue; and vinculin is depicted in green. Scale bars,


531 50 μ m. (c) Area of single focal adhesion of cells on hydrogels with different mesh sizes
532 (Mean \pm SE, $N>88$ per group, one-way ANOVA, $p<0.01$). (d) Number of focal adhesions per cell
533 on hydrogels with different mesh sizes (Mean \pm SE, $N>88$ per group, one-way ANOVA, $p<0.01$).

534

535 *3.7. Effect of hydrogel mesh size on the yes-associated protein (YAP) nuclear*
536 *translocation*

537 The key mechanism that regulates cell response to structural and mechanical cues is
538 mechanotransduction [55, 69]. To test whether that is the case for the measurements
539 presented here, we quantify the distribution of yes-associated protein (YAP), a key
540 transcriptional regulator which affects the mechanotransduction of cells by translocating
541 from the cytoplasm to the nucleus [70-74]. The translocation of YAP is regulated by the
542 tension of the F-actin cytoskeleton, which is usually correlated with the formation of
543 stress fibers [75, 76], as illustrated in Figure 7(a). Therefore, we investigate actin and
544 YAP in the cells with immunofluorescent staining and image them with confocal
545 microscopy. As the mesh size of the hydrogel decreases, more stress fibers are formed
546 in cells, as shown in Figure 7(b). In addition, YAP becomes more localized in the nuclear
547 region than the cytosolic region of the cell, as shown in Figure 7(c). We quantify the total
548 fluorescence intensity of YAP in the nucleus and cytosol of cells with ImageJ. The ratio
549 of nuclear to cytosolic YAP increases for the cells grown on hydrogels with smaller
550 meshes, as shown in Figure 7(d). Our results suggest that the mesh size of the hydrogel
551 alters YAP nuclear translocation and acts as a physical regulator that modulates cellular
552 mechanotransduction.

553 When grown on stiffer substrates, cells have more YAP localized in the nucleus than in
554 the cytoplasm [71, 74]. They also show the enhanced formation of focal adhesions and
555 stress fibers [73, 77]. A possible explanation is that the increased tension exerted
556 through focal adhesions by actomyosin stress fibers opens the nuclear pores and thus
557 allows the entry of YAP from the cytoplasm to the nucleus [76]. Interestingly, similar
558 phenomena are also observed in our systems, suggesting that a similar mechanism of
559 mechanotransduction is triggered by hydrogel mesh size.
560

561

562 Figure 7. YAP nuclear translocation of cells on hydrogels with different mesh sizes. (a) Schematic
 563 view of YAP nuclear translocation. As more stress fibers form in cells, YAP translocates from the
 564 cytoplasm to the nucleus of the cell. (b) Representative confocal fluorescence microscopy images
 565 of actin stress fibers in cells on hydrogels with different mesh sizes. The outline of the cell is
 566 represented by the white dashed line. Actin stress fibers are depicted in red; the nucleus is
 567 depicted in blue. Scale bars, 50 μ m. (c) Representative confocal fluorescence microscopy images
 568 of YAP in cells on hydrogels with different mesh sizes. The outline of the cell is represented by
 569 the white dashed line. YAP is depicted in cyan. Scale bars, 50 μ m. (d) The ratio of nuclear to
 570 cytosolic YAP for cells on hydrogels with different mesh sizes (Mean \pm SD, $N>42$ per group, one-
 571 way ANOVA, $p<0.0001$).

572

573 4. Conclusion

574 In this study, we report a hydrogel system with independently tunable mesh size and
 575 stiffness, and use it to isolate the effect of hydrogel mesh size on the behavior of
 576 hBMSCs, including cell attachment, spreading, and migration. We show that varying the
 577 hydrogel mesh size affects a multitude of cell behavior: the spreading area, nuclear
 578 projected area, and migration speed of cells all increase significantly as the mesh size of
 579 the hydrogel decreases, while the cell attachment is not affected. At the subcellular scale,
 580 both the area and the number of focal adhesions increase as the mesh size of the
 581 hydrogel decreases. Furthermore, we find a striking increase in YAP nuclear
 582 translocation in cells on hydrogels with smaller meshes, indicating that cellular
 583 mechanotransduction is markedly modulated by the mesh size of the hydrogel.

584 In summary, our study shows that cells respond to the mesh size of hydrogel which is
 585 often overlooked in the studies of the cell-substrate interaction, and highlights the
 586 important role of mesh size as a structural cue in regulating cell behavior.

587

588 This study not only fills in a gap in knowledge in mechanobiology but also provides new
589 insights to use the mesh size as a parameter to regulate cell behavior. Moreover, the
590 results may help in optimizing the structural design of biomaterials in tissue engineering
591 applications. Additionally, this work may deepen our understanding of the mechanics-
592 dependent coordination of physiological and pathological tissue growth. **In addition, our**
593 **results may also be applicable for other fibroblasts, as they share similar phenotypic**
594 **characteristics and similar responses in short-term assays to mechanical cues [78-81].**
595 Finally, the fundamental mechanisms by which the mesh size affects the cell behavior
596 remain unclear. Possible mechanisms include its influence on nutrient waste diffusion
597 [82] and the variations in the viscous properties of the hydrogel with microstructure [83,
598 84]. It would be valuable to further explore the complete biological pathway related to
599 hydrogel mesh size in the future.

600

601 **Acknowledgements**

602 J.X., Z.Y.H., Y.Y. and D.A.W. acknowledge the financial support from the National
603 Science Foundation of United States (DMR-1708729), the National Science Foundation
604 through the Harvard University MRSEC of United States (DMR-2011754, DMR-
605 1420570), and the National Institutes of Health of United States (EB023287). Z.Y.L., Y.S.
606 and X. Q.F. acknowledge the financial support from the National Natural Science
607 Foundation of China (Nos. 11620101001, 11921002 and 042014002).

608

609 **References**

610 [1] R.O. Hynes, A. Naba, Overview of the matrisome—an inventory of extracellular matrix
611 constituents and functions, *Cold Spring Harbor Perspectives in Biology* 4(1) (2012) a004903.

612 [2] T. Yeung, P.C. Georges, L.A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W.Y. Ming, V.
613 Weaver, P.A. Janmey, Effects of substrate stiffness on cell morphology, cytoskeletal structure, and
614 adhesion, *Cell Motil Cytoskel* 60(1) (2005) 24-34.

615 [3] S.R. Caliari, J.A. Burdick, A practical guide to hydrogels for cell culture, *Nat Methods* 13(5)
616 (2016) 405-14.

617 [4] M.W. Tibbitt, K.S. Anseth, Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture,
618 *Biotechnol Bioeng* 103(4) (2009) 655-663.

619 [5] Y. Li, E. Kumacheva, Hydrogel microenvironments for cancer spheroid growth and drug
620 screening, *Sci Adv* 4(4) (2018) eaas8998.

621 [6] A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage
622 specification, *Cell* 126(4) (2006) 677-89.

623 [7] J. Li, D. Han, Y.P. Zhao, Kinetic behaviour of the cells touching substrate: the interfacial
624 stiffness guides cell spreading, *Sci Rep* 4 (2014) 3910.

625 [8] J.S. Park, J.S. Chu, A.D. Tsou, R. Diop, Z. Tang, A. Wang, S. Li, The effect of matrix stiffness
626 on the differentiation of mesenchymal stem cells in response to TGF-beta, *Biomaterials* 32(16)
627 (2011) 3921-30.

628 [9] L.E. Dickinson, D.R. Rand, J. Tsao, W. Eberle, S. Gerecht, Endothelial cell responses to
629 micropillar substrates of varying dimensions and stiffness, *J Biomed Mater Res A* 100(6) (2012)

630 1457-66.

631 [10] K. Metavarayuth, P. Sitasuwan, X. Zhao, Y. Lin, Q. Wang, Influence of Surface Topographical
632 Cues on the Differentiation of Mesenchymal Stem Cells in Vitro, *Acs Biomaterials Science &*
633 *Engineering* 2(2) (2016) 142-151.

634 [11] M. Akhmanova, E. Osidak, S. Domogatsky, S. Rodin, A. Domogatskaya, Physical, Spatial,
635 and Molecular Aspects of Extracellular Matrix of In Vivo Niches and Artificial Scaffolds Relevant to
636 Stem Cells Research, *Stem Cells Int* (2015).

637 [12] B. Trappmann, J.E. Gautrot, J.T. Connelly, D.G. Strange, Y. Li, M.L. Oyen, M.A. Cohen Stuart,
638 H. Boehm, B. Li, V. Vogel, J.P. Spatz, F.M. Watt, W.T. Huck, Extracellular-matrix tethering
639 regulates stem-cell fate, *Nat Mater* 11(7) (2012) 642-9.

640 [13] J.H. Wen, L.G. Vincent, A. Fuhrmann, Y.S. Choi, K.C. Hribar, H. Taylor-Weiner, S. Chen, A.J.
641 Engler, Interplay of matrix stiffness and protein tethering in stem cell differentiation, *Nat Mater*
642 13(10) (2014) 979-87.

643 [14] M. Rubinstein, R.H. Colby, *Polymer physics*, Oxford university press New York2003.

644 [15] B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas, *Hydrogels in*
645 *regenerative medicine*, *Adv Mater* 21(32-33) (2009) 3307-29.

646 [16] M.C. LaPlaca, V.N. Vernekar, J.T. Shoemaker, D.K. Cullen, Three-dimensional neuronal
647 cultures, *Methods in bioengineering: 3D tissue engineering* (2010) 187-204.

648 [17] E.R. Aurand, K.J. Lampe, K.B. Bjugstad, Defining and designing polymers and hydrogels for
649 neural tissue engineering, *Neurosci. Res.* 72(3) (2012) 199-213.

650 [18] U. Horzum, B. Ozdil, D. Pesen-Okvur, Step-by-step quantitative analysis of focal adhesions,
651 *MethodsX* 1 (2014) 56-9.

652 [19] J.H. McDonald, *Handbook of biological statistics*, sparky house publishing Baltimore,
653 MD2009.

654 [20] N.C. Stellwagen, E. Stellwagen, Effect of the matrix on DNA electrophoretic mobility, *J*
655 *Chromatogr A* 1216(10) (2009) 1917-1929.

656 [21] N.C. Stellwagen, Effect of the Electric-Field on the Apparent Mobility of Large DNA
657 Fragments in Agarose Gels, *Biopolymers* 24(12) (1985) 2243-2255.

658 [22] A.G. Ogston, The Spaces in a Uniform Random Suspension of Fibres, *T Faraday Soc* 54(11)
659 (1958) 1754-1757.

660 [23] M. Galli, M. Oyen, Spherical indentation of a finite poroelastic coating, *Appl Phys Lett* 93(3)
661 (2008) 031911.

662 [24] A. Buxboim, K. Rajagopal, A.E. Brown, D.E. Discher, How deeply cells feel: methods for thin
663 gels, *J Phys Condens Matter* 22(19) (2010) 194116.

664 [25] E.K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, R.S. Chadwick, Determination of elastic
665 moduli of thin layers of soft material using the atomic force microscope, *Biophys. J.* 82(5) (2002)
666 2798-2810.

667 [26] A.A. Khalili, M.R. Ahmad, A Review of Cell Adhesion Studies for Biomedical and Biological
668 Applications, *Int. J. Mol. Sci.* 16(8) (2015) 18149-18184.

669 [27] J.P. Stegemann, H. Hong, R.M. Nerem, Mechanical, biochemical, and extracellular matrix
670 effects on vascular smooth muscle cell phenotype, *J Appl Physiol* (1985) 98(6) (2005) 2321-7.

671 [28] Y. Artemenko, L. Axiotakis, Jr., J. Borleis, P.A. Iglesias, P.N. Devreotes, Chemical and
672 mechanical stimuli act on common signal transduction and cytoskeletal networks, *Proc Natl Acad*
673 *Sci U S A* 113(47) (2016) E7500-E7509.

674 [29] C. Gaudet, W.A. Marganski, S. Kim, C.T. Brown, V. Gunderia, M. Dembo, J.Y. Wong,
675 Influence of type I collagen surface density on fibroblast spreading, motility, and contractility,
676 Biophysical Journal 85(5) (2003) 3329-3335.

677 [30] A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, D. Discher, Substrate
678 compliance versus ligand density in cell on gel responses, Biophysical Journal 86(1) (2004) 617-
679 628.

680 [31] A.J. Engler, L. Richert, J.Y. Wong, C. Picart, D.E. Discher, Surface probe measurements of
681 the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: Correlations
682 between substrate stiffness and cell adhesion, Surf Sci 570(1-2) (2004) 142-154.

683 [32] J.P. Orgel, A. Miller, T.C. Irving, R.F. Fischetti, A.P. Hammersley, T.J. Wess, The in situ
684 supermolecular structure of type I collagen, Structure 9(11) (2001) 1061-9.

685 [33] M. Gale, M.S. Pollanen, P. Markiewicz, M.C. Goh, Sequential assembly of collagen revealed
686 by atomic force microscopy, Biophys J 68(5) (1995) 2124-8.

687 [34] J.K. Mouw, G. Ou, V.M. Weaver, Extracellular matrix assembly: a multiscale deconstruction,
688 Nat Rev Mol Cell Biol 15(12) (2014) 771-85.

689 [35] J.P. Lee, E. Kassianidou, J.I. MacDonald, M.B. Francis, S. Kumar, N-terminal specific
690 conjugation of extracellular matrix proteins to 2-pyridinecarboxaldehyde functionalized
691 polyacrylamide hydrogels, Biomaterials 102 (2016) 268-76.

692 [36] T. Gurry, P.S. Nerenberg, C.M. Stultz, The contribution of interchain salt bridges to triple-
693 helical stability in collagen, Biophys J 98(11) (2010) 2634-43.

694 [37] W.J. Hadden, J.L. Young, A.W. Holle, M.L. McFetridge, D.Y. Kim, P. Wijesinghe, H. Taylor-
695 Weiner, J.H. Wen, A.R. Lee, K. Bieback, Stem cell migration and mechanotransduction on linear
696 stiffness gradient hydrogels, Proceedings of the National Academy of Sciences 114(22) (2017)
697 5647-5652.

698 [38] B.C. Isenberg, P.A. Dimilla, M. Walker, S. Kim, J.Y. Wong, Vascular smooth muscle cell
699 durotaxis depends on substrate stiffness gradient strength, Biophys J 97(5) (2009) 1313-22.

700 [39] A.E. Stanton, X. Tong, F. Yang, Varying solvent type modulates collagen coating and stem
701 cell mechanotransduction on hydrogel substrates, APL Bioeng 3(3) (2019) 036108.

702 [40] J.L. McGrath, Cell spreading: the power to simplify, Curr. Biol. 17(10) (2007) R357-8.

703 [41] J. Folkman, A. Moscona, Role of cell shape in growth control, Nature 273(5661) (1978) 345-9.

704 [42] C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, D.E. Ingber, Geometric control of cell life
705 and death, Science 276(5317) (1997) 1425-8.

706 [43] M. Guo, A.F. Pegoraro, A. Mao, E.H. Zhou, P.R. Arany, Y. Han, D.T. Burnette, M.H. Jensen,
707 K.E. Kasza, J.R. Moore, F.C. Mackintosh, J.J. Fredberg, D.J. Mooney, J. Lippincott-Schwartz, D.A.
708 Weitz, Cell volume change through water efflux impacts cell stiffness and stem cell fate, Proc Natl
709 Acad Sci USA 114(41) (2017) E8618-E8627.

710 [44] R. Vishavkarma, S. Raghavan, C. Kuyyamudi, A. Majumder, J. Dhawan, P.A. Pullarkat, Role
711 of actin filaments in correlating nuclear shape and cell spreading, PLoS One 9(9) (2014) e107895.

712 [45] J. Xia, Y. Yuan, H. Wu, Y. Huang, D.A. Weitz, Decoupling the effects of nanopore size and
713 surface roughness on the attachment, spreading and differentiation of bone marrow-derived stem
714 cells, Biomaterials 248 (2020) 120014.

715 [46] K. Webb, V. Hlady, P.A. Tresco, Relationships among cell attachment, spreading, cytoskeletal
716 organization, and migration rate for anchorage-dependent cells on model surfaces, J Biomed
717 Mater Res 49(3) (2000) 362-368.

718 [47] D.A. Lauffenburger, A.F. Horwitz, Cell migration: a physically integrated molecular process,

719 Cell 84(3) (1996) 359-69.

720 [48] A.J. Ridley, M.A. Schwartz, K. Burridge, R.A. Firtel, M.H. Ginsberg, G. Borisy, J.T. Parsons,
721 A.R. Horwitz, Cell migration: integrating signals from front to back, Science 302(5651) (2003)
722 1704-9.

723 [49] D.R. Nisbet, J.S. Forsythe, W. Shen, D.I. Finkelstein, M.K. Horne, Review paper: a review of
724 the cellular response on electrospun nanofibers for tissue engineering, J Biomater Appl 24(1)
725 (2009) 7-29.

726 [50] K. Kolind, K.W. Leong, F. Besenbacher, M. Foss, Guidance of stem cell fate on 2D patterned
727 surfaces, Biomaterials 33(28) (2012) 6626-33.

728 [51] J. Wang, J.W. Petefish, A.C. Hillier, I.C. Schneider, Epitaxially grown collagen fibrils reveal
729 diversity in contact guidance behavior among cancer cells, Langmuir 31(1) (2015) 307-14.

730 [52] B.D. Harms, G.M. Bassi, A.R. Horwitz, D.A. Lauffenburger, Directional persistence of EGF-
731 induced cell migration is associated with stabilization of lamellipodial protrusions, Biophys J 88(2)
732 (2005) 1479-88.

733 [53] M. Krause, A. Gautreau, Steering cell migration: lamellipodium dynamics and the regulation
734 of directional persistence, Nat Rev Mol Cell Biol 15(9) (2014) 577-90.

735 [54] D.E. Discher, P. Janmey, Y.L. Wang, Tissue cells feel and respond to the stiffness of their
736 substrate, Science 310(5751) (2005) 1139-1143.

737 [55] D.E. Jaalouk, J. Lammerding, Mechanotransduction gone awry, Nat Rev Mol Cell Biol 10(1)
738 (2009) 63-73.

739 [56] S. Tojkander, G. Gateva, P. Lappalainen, Actin stress fibers--assembly, dynamics and
740 biological roles, J Cell Sci 125(Pt 8) (2012) 1855-64.

741 [57] N.D. Gallant, K.E. Michael, A.J. Garcia, Cell adhesion strengthening: contributions of
742 adhesive area, integrin binding, and focal adhesion assembly, Mol Biol Cell 16(9) (2005) 4329-40.

743 [58] K.E. Michael, A.J. García, Cell Adhesion Strengthening: Measurement and Analysis, Cell
744 Mechanics2007, pp. 329-346.

745 [59] K. Haase, Z. Al-Rekabi, A.E. Pelling, Mechanical cues direct focal adhesion dynamics, Prog
746 Mol Biol Transl Sci 126 (2014) 103-34.

747 [60] K. Hayakawa, H. Tatsumi, M. Sokabe, Mechano-sensing by actin filaments and focal
748 adhesion proteins, Communicative & Integrative Biology 5(6) (2012) 572-577.

749 [61] G.R. Owen, D. Meredith, R. Richards, Focal adhesion quantification-a new assay of material
750 biocompatibility? Review, Eur Cells Mater 9 (2005) 85-96; discussion 85-96.

751 [62] M.A. Partridge, E.E. Marcantonio, Initiation of attachment and generation of mature focal
752 adhesions by integrin-containing filopodia in cell spreading, Mol Biol Cell 17(10) (2006) 4237-48.

753 [63] C.W. Kuo, D.Y. Chueh, P. Chen, Investigation of size-dependent cell adhesion on
754 nanostructured interfaces, J Nanobiotechnology 12 (2014) 54.

755 [64] D.-H. Kim, D. Wirtz, Predicting how cells spread and migrate: focal adhesion size does
756 matter, Cell Adhesion & Migration 7(3) (2013) 293-296.

757 [65] D.H. Kim, D. Wirtz, Focal adhesion size uniquely predicts cell migration, Faseb J 27(4) (2013)
758 1351-1361.

759 [66] S.P. Palecek, J.C. Loftus, M.H. Ginsberg, D.A. Lauffenburger, A.F. Horwitz, Integrin-ligand
760 binding properties govern cell migration speed through cell-substratum adhesiveness, Nature
761 385(6616) (1997) 537-540.

762 [67] G. Maheshwari, G. Brown, D.A. Lauffenburger, A. Wells, L.G. Griffith, Cell adhesion and

763 motility depend on nanoscale RGD clustering, *J Cell Sci* 113(10) (2000) 1677-1686.

764 [68] P.A. DiMilla, K. Barbee, D.A. Lauffenburger, Mathematical model for the effects of adhesion
765 and mechanics on cell migration speed, *Biophysical Journal* 60(1) (1991) 15-37.

766 [69] Y. Sun, C.S. Chen, J. Fu, Forcing stem cells to behave: a biophysical perspective of the
767 cellular microenvironment, *Annu Rev Biophys* 41 (2012) 519-42.

768 [70] A. Totaro, T. Panciera, S. Piccolo, YAP/TAZ upstream signals and downstream responses,
769 *Nat Cell Biol* 20(8) (2018) 888-899.

770 [71] S. Dupont, Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and
771 mechanotransduction, *Exp Cell Res* 343(1) (2016) 42-53.

772 [72] S.E. Hiemer, A.D. Szymaniak, X. Varelas, The transcriptional regulators TAZ and YAP direct
773 transforming growth factor beta-induced tumorigenic phenotypes in breast cancer cells, *J Biol
774 Chem* 289(19) (2014) 13461-74.

775 [73] G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skladal, M. Pesl, G.
776 Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N.M. Pugno, G.B.
777 Stokin, G. Forte, YAP regulates cell mechanics by controlling focal adhesion assembly, *Nat
778 Commun* 8 (2017) 15321.

779 [74] S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. Le
780 Digabel, M. Forcato, S. Bicciato, N. Elvassore, S. Piccolo, Role of YAP/TAZ in
781 mechanotransduction, *Nature* 474(7350) (2011) 179-83.

782 [75] K. Wada, K. Itoga, T. Okano, S. Yonemura, H. Sasaki, Hippo pathway regulation by cell
783 morphology and stress fibers, *Development* 138(18) (2011) 3907-14.

784 [76] A. Elosegui-Artola, I. Andreu, A.E.M. Beedle, A. Lezamiz, M. Uroz, A.J. Kosmalska, R. Oria,
785 J.Z. Kechagia, P. Rico-Lastres, A.L. Le Roux, C.M. Shanahan, X. Trepat, D. Navajas, S. Garcia-
786 Manyes, P. Roca-Cusachs, Force Triggers YAP Nuclear Entry by Regulating Transport across
787 Nuclear Pores, *Cell* 171(6) (2017) 1397-1410 e14.

788 [77] S. Fusco, V. Panzetta, P.A. Netti, Mechanosensing of substrate stiffness regulates focal
789 adhesions dynamics in cell, *Meccanica* 52(14) (2017) 3389-3398.

790 [78] B. Venugopal, P. Mogha, J. Dhawan, A. Majumder, Cell density overrides the effect of
791 substrate stiffness on human mesenchymal stem cells' morphology and proliferation, *Biomaterials
792 Science* 6(5) (2018) 1109-1119.

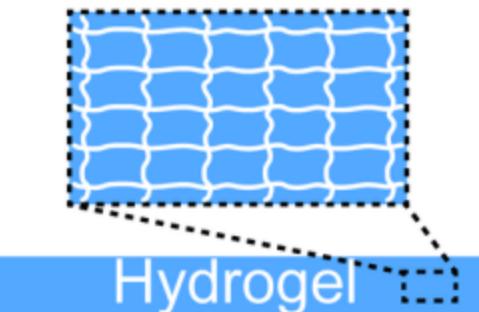
793 [79] A. Chopra, M.E. Murray, F.J. Byfield, M.G. Mendez, R. Halleluyan, D.J. Restle, D.R.-B.
794 Aroush, P.A. Galie, K. Pogoda, R. Bucki, Augmentation of integrin-mediated
795 mechanotransduction by hyaluronic acid, *Biomaterials* 35(1) (2014) 71-82.

796 [80] M. Guo, A.F. Pegoraro, A. Mao, E.H. Zhou, P.R. Arany, Y. Han, D.T. Burnette, M.H. Jensen,
797 K.E. Kasza, J.R. Moore, Cell volume change through water efflux impacts cell stiffness and stem
798 cell fate, *Proceedings of the National Academy of Sciences* 114(41) (2017) E8618-E8627.

799 [81] R.A. Denu, S. Nemcek, D.D. Bloom, A.D. Goodrich, J. Kim, D.F. Mosher, P. Hematti,
800 Fibroblasts and Mesenchymal Stromal/Stem Cells Are Phenotypically Indistinguishable, *Acta
801 Haematol* 136(2) (2016) 85-97.

802 [82] H. Yu, I. Meyvantsson, I.A. Shkel, D.J. Beebe, Diffusion dependent cell behavior in
803 microenvironments, *Lab Chip* 5(10) (2005) 1089-95.

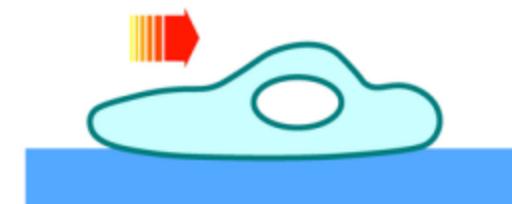
804 [83] J.M. Grolman, P. Weinand, D.J. Mooney, Extracellular matrix plasticity as a driver of cell
805 spreading, *Proceedings of the National Academy of Sciences* 117(42) (2020) 25999-26007.

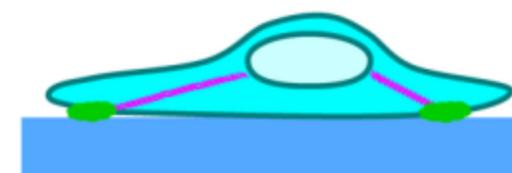

806 [84] O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S.A. Bencherif, J.C. Weaver, N. Huebsch, H.P.
807 Lee, E. Lippens, G.N. Duda, D.J. Mooney, Hydrogels with tunable stress relaxation regulate stem

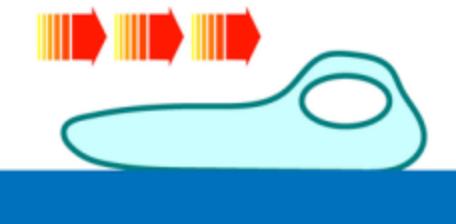
808 cell fate and activity, *Nat Mater* 15(3) (2016) 326-34.

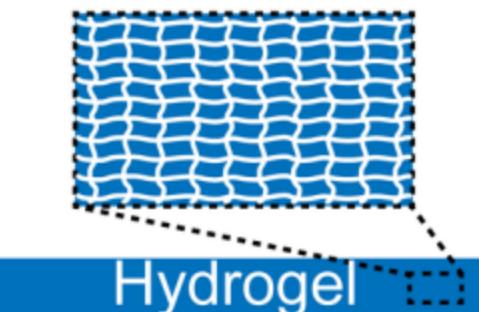
809

Same stiffness


Large mesh size


Cell spreading




Cell migration

Subcellular structures

Small mesh size

Focal adhesion

Stress fiber

YAP