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The steelpan is a pitched percussion instrument that takes the form of a concave bowl with several
localized dimpled regions of varying curvature. FEach of these localized zones, called notes, can
vibrate independently when struck, and produces a sustained tone of a well-defined pitch. While
the association of the localized zones with individual notes has long been known and exploited,
the relationship between the shell geometry and the strength of the mode confinement remains
unclear. Here, we explore the spectral properties of the steelpan modeled as a vibrating elastic
shell. To characterize the resulting eigenvalue problem, we generalize a recently developed theory
of localization landscapes for scalar elliptic operators to the vector-valued case, and predict the
location of confined eigenmodes by solving a Poisson problem. A finite element discretization of the
shell shows that the localization strength is determined by the difference in curvature between the
note and the surrounding bowl. In addition to providing an explanation for how a steelpan operates
as a two-dimensional xylophone, our study provides a geometric principle for designing localized
modes in elastic shells.

1. INTRODUCTION

When an elastic structure such as a beam, plate or shell of uniform curvature is struck, the
resulting vibration quickly propagates as a wave through the entire system. In contrast, a flat
portion of a shell surrounded by a region of higher curvature may support localized vibrational
modes, i.e. stationary waves which are confined to a small subregion. This is the basic principle
behind the steelpan, a pitched percussion instrument originating from Caribbean approximately a
century ago [1]. It conmsists of a concave playing surface (referred to as the bowl) joined at the
boundary to a cylindrical “skirt”, as shown in figure 1a. The playing surface has a number of
flat or slightly concave regions which are able to vibrate independently, each with its own pitch
(frequency) determined by its size and shape. These regions are called the notes of the pan, as each
one is designed to resonate at a frequency corresponding to a certain note on the musical scale, thus
making the steelpan a two-dimensional xylophone.

Steelpans were originally made from standard 55-gallon steel drums. The bottom face of the drum
is hammered into a concave bowl shape and the notes are defined by locally raising and flattening the
bowl, creating regions of lower curvature. A steelpan may have anywhere between three to upwards
of 30 notes depending on the desired range. In most pans, the notes are arranged in concentric circles,
with the inner notes either circular or elliptical while the outer notes resemble rounded rectangles
(figure 1a). Part or all of the cylindrical side is retained as the skirt, which acts as an acoustic
baffle, i.e. it prevents the cancellation of sound from the two sides of the bowl [1]. The steelpan and
the crafting process have received considerable interest across multiple fields, including acoustics,
mechanics and material science [2]. Studies of the steelpan have predominantly been experimental,
and focus on either the materials science and metallurgy of the construction processes [3], or the
measurements of spectra and mode shapes [1, 4-6] and of the sound field [7].

The pan is played by striking the notes with a soft-tipped mallet. However, the mechanism un-
derlying the mode confinement in steelpan notes is still incomplete. Steelpan makers conventionally
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FIG. 1. (a) A “double second” steelpan with two types of note regions: The outer notes in the shape of
rounded rectangles and elliptical inner notes. One of the inner notes is indicated by a black circle. Adapted
from Vetter [8], (©2003 Roger Vetter, courtesy of the Grinnell College Musical Instrument Collection. (b)
The first (left) and second (right) localized eigenmodes of a C4 note on a “tenor” steelpan imaged using
time-averaged TV holography. Adapted from Morrison [6] with permission from A.C. Morrison.

outline each note with chisel marks and mode confinement has sometimes been ascribed to this
grooving process [2, 3]. This explanation was challenged by Maloney, Barlow, and Woodhouse, who
proposed that mode confinement is a consequence of the steelpan geometry [5]. In a numerical and
experimental modal analysis, they found that a flat circular note region on a hemispherical pan
supports localized modes, suggesting that confinement is influenced by bowl curvature [5]. Later
experimental studies using holographic interferometry reveal a number of normal modes that are
completely localized to a single note region [6]; the mode shapes are qualitatively similar to those of
a flat plate with the same dimensions. In general, the modes are designated by a pair of numbers
(m,n), where m is the number of radial nodal lines and n is the number of nodal lines perpendic-
ular to the radial direction, e.g. the frequency of the fundamental, or (0,0) mode determines the
pitch, and makers of the steelpan carefully control the geometry to achieve two or three harmonic
overtones. To visualize this, Figure 15 shows experimental images of the (0,0) and (0, 1) modes of
a Cy4 note, both displaying strong localization.

A similar mode confinement effect is observed in a related instrument, the musical saw, which
consists of a strip of metal such as the blade of a regular handsaw. When bent into an ‘S-shape’, a
number of localized vibrational modes emerge at the inflection line, where the non-vanishing prin-
cipal curvature changes sign [9]. Recent work [10], quantified how the localization strength varies
with the curvature gradient. Moreover, our analysis suggests that these classical confined modes are
topologically protected, analogously to boundary modes in quantum-mechanical topological insula-
tors.

Here, we characterize how localization in elastic shells arises from variations in the curvature of
doubly curved shells, and characterize the strength of mode localization in the steelpan as a function
of bowl curvatures. We model the steelpan as a thin linear elastic shell with an inhomogeneous cur-



vature, whose dynamics is governed by a set of coupled partial differential equations. To understand
the vibrational properties of the system, we have to solve an eigenvalue problem for an idealized
version of the pan geometry.

Here, instead we introduce an alternative approach based on a generalization of the localization
landscape method of Filoche and Mayboroda [11]. Originally developed as a geometric alternative
to explain Anderson localization [12] in quantum mechanical systems, one computes the landscape
function associated with the system, whose peaks coincide with the possible localization regions. The
landscape can be approximated by solving a single Poisson-like problem for the same operator, a
computation which is considerably less expensive than solving the eigenvalue problem. The approach
has been successfully used to analyze localized modes in various systems described by scalar equations
[13-16]. Our generalization of the technique is applicable to elliptic systems of partial differential
equations, which describe a wide variety of physical phenomena, including shell structures. We
demonstrate the method for a steelpan-like shell with realistic note shapes.

The organization of the paper is as follows. In §2, the landscape theory for scalar PDE is reviewed
and the vector landscape is introduced. In §3 we discuss the shell theory which we use to model
the steelpan. In §4 describes the methodology of the modal analysis, including the simplified pan
geometries and the numerical methods. The results are presented in §5.

2. VECTOR LOCALIZATION LANDSCAPE FOR ELLIPTIC SYSTEMS
(a) Review of localization landscape theory for scalar equations

Localization is a phenomenon exhibited by some vibrating systems where a standing wave is
concentrated inside a small part of the domain and almost vanishing outside of it. As a result, a
disturbance at one point of the medium need not propagate to the rest of the system. In the context
of quantum mechanics, a localized wavefunction describes a particle which is confined to one region.
A familiar example is localization due to a potential well, but the effect is observed in many less
obvious cases. Localization may stem from the domain geometry, for instance due to a rough or
irregular boundary, or when the system is composed of several weakly connected subdomains [17].
Confined modes can also arise in a disordered medium. The principal example of this is Anderson
localization, where electron wavefunctions in a crystal are localized in the presence of a sufficiently
rough or disordered potential [12].

To study localization in a general setting, we consider an elliptic partial differential operator L on
a domain € in R™ and the associated eigenvalue problem Lw = Aw. For instance, if L = —A 4+ V
is a Schrodinger operator where the potential V' is piecewise constant with randomly chosen values,
we obtain a model for Anderson localization. In general, it is not obvious whether any modes of
L are localized or what the localization regions are. The recently developed localization landscape
(LL) theory of Filoche and Mayboroda [11] provides a way to predict the confinement properties of
low-frequency modes without solving the full eigenvalue problem. For a symmetric elliptic operator
L acting on scalar functions, they defined the localization landscape as the function £: Q — R given
by L(z) = [,|G(x,y)|dy, where G is the Green’s function of L which satisfies the same boundary
conditions as imposed in the eigenvalue problem. In systems which support low-frequency localized
modes, the landscape has one or more peaks, coinciding with the localization regions, separated
by valleys, where the eigenfunctions are necessarily small. This is made precise by the following
inequality, satisfied by each eigenpair (A, w):

|w(z)]

< AL(z), Vo € Q. (1)
[l Lo (0

The proof is remarkably short in the case when w is smooth (see [11]): from the definition of the



Green’s function and the symmetry of L, we have
w(z) = /QLyG(x, y)w(y)dy = /QG(x,y)Lyw(y) dy = /QG(x’y)Aw(y) dy, (2)
and thus
w(a)] < Alwllie [ 1GG.0)ldy. 0

If w is not necessarily smooth, we replace w(z) by [, w(2)¢e(x — z) dz where ¢, is a mollifier.

The inequality (1) says, roughly, that w is concentrated in the superlevel set E(\) = {x € Q|
L(z) < A}. Note that E(\) may have several connected components, each encompassing a peak of the
landscape L. Therefore, the inequality (1) does not by itself guarantee that w is localized; instead it
may be a linear combination of localized functions, each supported in a single connected component
of E(\). However, numerical experiments [11, 14] have shown that typically, each eigenfunction is
localized near a single peak of £, with the following exceptions: (i) two eigenfunctions with nearly
the same eigenvalue can share a peak, and (ii) an eigenfunction may be spread over two or more
peaks that are sufficiently close together. This much stronger result has been made precise and
shown rigorously for elliptic operators of the form L = —divA(z)V + V(z) [16, Theorem 5.1].

It should be noted that when the Green’s function is non-negative, as is the case when L is of
second order, L is precisely the solution u to the boundary value problem Lu = 1 on €2, which
simplifies its computation dramatically. For higher order operators, this is generally not the case;
indeed, this condition fails even for the bilaplacian on certain domains [18]. However, if the negative
part of G is relatively small, one can approximate the landscape by the solution to Lu = 1 and still
obtain qualitatively correct results.

The localization landscape theory has found applications in semiconductor physics [13] and bio-
chemistry [19] among other fields. However, many physical systems are described by systems of
PDE, to which the existing landscape theory is not applicable. In particular, this includes the equa-
tions of linear elasticity and the shell equations considered in this paper. In the following section,
we state an appropriate extension of the LL theory to elliptic systems by defining a vector-valued
landscape £ and proving a generalization of the inequality (1).

(b) Generalization to elliptic systems

To simplify the exposition, we assume homogeneous Dirichlet boundary conditions throughout.
In the following, ||-|| and (-, -) denote respectively the Euclidean norm and inner product of vectors
or matrices considered as elements of R"*".

Let 2 C R™ with n > 2 be a bounded domain and let L be a second order, symmetric elliptic
operator which acts on vector-valued functions u: 0 — R™ according to

(Lu); = —0, (A;;ﬁaﬁuj) + Bijul | (4)

where A%ﬁ , B;; are bounded, measurable functions. Since localization often arises in rough domains
or for systems with highly irregular coefficients, we impose no further regularity restrictions on {2
or the coefficients. The operator should be understood in the weak sense, as follows: Let H(Q)
denote the usual Sobolev space of functions f € L?(Q2) with weak derivatives in L%(2). The space
H} () is the completion in H'(Q) of C2°(Q), the set of smooth functions with compact support.
Functions in H}(Q) are said to satisfy Dirichlet boundary condition in the weak sense. The action

of the operator L and the corresponding bilinear form a is given by

(Lu,v) =a(u,v) = /QAZ-D‘jﬁ(x)agujaavi + Bjjuv’ dz (5)



for any u, v € H} :== (Hg(2))™. For a vector field f, we say that u is a weak solution of the Dirichlet
problem Lu = f, ulspq = 0 if u € H} and

a(u,v) = (f,v) VveH], (6)

where (f,v) = [, f- vdz denotes the inner product on (L?(2))™.
The assumption that L is symmetric, meaning that a(u,v) = a(v,u) for all u,v € H{, is equiva-
lent to the condition

Ay = A3

Bij = Bji. (7)

In addition, we assume that the bilinear form a is coercive on H(l)7 i.e. that for some p > 0,
anw) > gl = [ (190l + ful?) do. Vo€ H, ®)

This holds, for example, if the coefficients satisfy the strong ellipticity condition (see e.g. [20, chap-
ter 13]),

A (@) = cllg]?, vE e R™, o)
Bij(x)¢'¢7 > 0, V¢ eR™,

for some ¢ > 0 (see also [21] for weaker but more technical conditions). Under these assumptions,
there exists a unique weak solution to the boundary value problem (6) for any f € [L?(2)]™. As an
example, we note that our setting includes in particular the Lamé operator Lu = —8, (H*** E(u),.,,)
of three-dimensional linear elasticity (see §3(c)), and the Naghdi shell operator of equation (29).

In continuum mechanics, one often encounters generalized eigenvalue problems of the form (cf.
equation (33))

a(u,v) = dm(u,v), VveH]. (10)

where the bilinear form m is given by m(u, v) = [,(M(z)u(z), v(x)) dz. We assume that the matrix-
valued function M is positive semidefinite for all  and with coefficients in L*>°(£2). Our goal is to
obtain pointwise bounds for the generalized eigenfunctions in terms of integrals of the Green matrix
of the system. We repeat here the definition of the Green matrix given in [21], specialized to our case.
In the following, ej denotes the kth standard unit vector in R”™ and B, (y) = {z € R" | |z —y|| < r}
is the open ball with center y and radius 7.

Definition 2.1. We say that the matriz function G(x,y) = (Gij(z,y)){—, defined on {(z,y) €
Q x Q| x#y} is the Dirichlet Green matriz of L if the following holds:

1. For ally € Q, G(-,y) is locally integrable and satisfies LG(-,y) = 0,1 in the weak sense, i.e.
a(G(- yler, @) = ¢"(y). Y € CZ(Q)™ (11)

2. For anyy € Q and r > 0, G(-,y) € HY(Q\ B,(y))™*™, and G(-,y) vanishes on 0 in the
sense that for every ¢ € C2°(Q) satisfying (|p, ) =1 for some r >0, we have

(1-¢G(y) € Hy(\ B (y))™™ (12)
3. For any f = (f',..., f™)T € L>(Q)™, the function u = (u,...,u™)T given by

um=AGmwww

is the unique weak solution in HY to Lu = f.



We note that since L is assumed to be symmetric, G satisfies the symmetry relation G(z,y) =
G(y,z)T. Assume that (), w) is an eigenpair, i.e. a solution of (10), and assume moreover that
w € L>*(2)"™. Then \Mw € L>*(2)™ and from property (iii) of Definition (2.1), it follows that the
function u defined by

— /Q G(z,y)\M(y)w(y) dy

is in H} and satisfies Lu = AMw in the sense of distributions. By uniqueness of solutions, it follows
that u = w. Interchanging the roles of x and y and using the symmetry property of the Green’s
matrix, we find for the ith component of w:

wi(y) = A /Q (G(y, 2)M(z)w(z), e;) dz = A /Q (M(z)w(z), G(z, y)e;) da.

Let M2 denote the unique positive semidefinite square root of M. From the Cauchy—Schwarz
inequality in R™, we have

i (y |<>\/| (M2 (2)w(z), M2 G(z, y)e:)]| da
<A / IME (@)w (@) M ()G, y)es | dz

1 1
<AMiw] /Q M2 ()G (2, e .
Defining the vector landscape L£L: 0 — R™ as the vector field with components
£) = [ IMEG( e do. (13)

we obtain the following generalization of the scalar inequality (1):

Proposition 2.1. Assume a Dirichlet Green’s matric G exists for L and that w is a bounded
eigenfunction satisfying (10). Then

(IMEw] ) i) €A @),  zeq (14)

where L is defined in equation (13).

The interpretation is similar to the scalar case: The inequality states that each component of w?
is concentrated in the superlevel set E(\) = {z € Q | L(z) < A} of the corresponding component of
the vector landscape. Our numerical experiments experiments (§5(b)) suggest that, at least for some
systems, w® will in fact be localized near a single peak of £, as in the scalar case. We conjecture
that an analogue of theorem 5.1 in [16] holds also for the vector landscape.

As a concrete example, consider the equations of three-dimensional linear elasticity, equation (28).
Then M =1 is the identity matrix, and the vector landscape yields a simple upper bound on the
norm of the displacement U:

U@ <ML@)], L) = / 1G (. y)ei] dz, (15)

where the eigenfunction has been normalized so that ||U|| has L°°-norm 1. In the remainder of the
paper, we will consider the Naghdi eigenvalue problem, equation (33), for which M is the diagonal
matrix M = diag(1, 1,1,0,0), and we again obtain an upper bound on the norm of the displacement:

lu(@)l| < AL@)],  L(x) =/Qllé(x,y)eilldx (16)

where G is the upper-left 3 x 3 submatrix of G and e; € R3. Finally, we note that the statement of
Proposition 2.1 is easily modified to account for different boundary conditions, namely by replacing
the Dirichlet Green’s matrix with one satisfying the same boundary conditions as w



3. THE ELASTIC SHELL MODEL

To apply our generalization of the localization landscape to the steelpan modeled mathematically
as a thin elastic shell. The mechanics of three-dimensional structures which are thin in one direction
in comparison with the other two are simplified versions of the 3D equations of continuum mechanics,
and apply to the two-dimensional problem of finding the deformation of the midsurface. Shell
theories can be seen as a generalization of the more familiar plate theories, which model flat bodies,
to structures which may be curved in their rest state. Like plates, shells are much weaker to bending
(i.e. isometric deformations) than they are to stretching and shearing. For shells, however, the
membrane (stretching) strains are generally coupled to the bending and shearing strains due to the
curvature of the midsurface. This has a dramatic effect on the mechanics, allowing shells to resist
applied loads more effectively. The curvature of the midsurface also complicates the analysis: In
contrast to plates, the equations describing in-surface and transverse displacements are coupled, and
one must generally work in curvilinear coordinates. Apart from exceptional cases, the equations of
shell theory can only be solved numerically.

There are a number of different shell theories, each based on different physical assumptions; see
for example [22] for an overview. Here we use a specific model known as the Naghdi shell model [23],
which allows for extensional and shear deformations of the mid-surface, as well shear and bending
deformations transverse to the mid-surface. These kinematical assumptions are the same as the
well-known Reissner—Mindlin model for thin plates [22], to which the Naghdi model reduces in the
special case of a flat midsurface. The choice of model is motivated by ease of computation: shearable
theories such as the Naghdi model require only H'-conforming finite elements methods, which are
relatively simple to implement and are available in many free software packages. This should be
contrasted with models that do not allow for transverse shear which give rise to weak formulations
with solutions in H2, and thus call for more complicated H?2-conforming or discontinuous Galerkin
methods.

We start with a derivation of the Naghdi equations for completeness, following [22], leading directly
to the equations of motion in weak form, required to apply the finite element method. Since our
goal is modal analysis of the steelpan, we limit the discussion to the linearized theory and clamped
boundary conditions. For simplicity, we consider only the case of an isotropic, homogeneous material
of constant thickness.

(a) Differential geometry of a deforming shell

We adopt the convention that Latin indices denote components of (2D) surface tensors and take
the values {1, 2}, while Greek indices denote components of 3D tensors and take the values {1, 2, 3};
repeated indices are summed as usual. The shell is defined as a three-dimensional (3D) slender elastic
body specified by a reference surface S, representing the midsurface of the undeformed configuration,
and a constant thickness h, which is assumed small compared to the lateral dimensions and radius of
curvature of the shell. The midsurface is parametrized by a map Xg : g — R> where the reference
domain g is a bounded domain in R2. At any point on the midsurface, the vectors e; = ;X are
linearly independent, and form the covariant basis for the tangent plane. We also define the unit
normal vector ez = (€1 X e2)/|le1 x ez]|. The undeformed shell body is then parametrized by

(17)

Ro(€1,€2,6%) = Xo (€1, &) + Eea(eh, ), (€1,€2.6%) € Q= Oy x {—h h} ,

2’2

where ¢ are the local 3D coordinates within the material. We follow the usual convention of
denoting components of tensors with respect to the covariant basis by superscripts; we call these the
contravariant components. Subscript indices indicate covariant components, which are components
with respect to the contravariant basis (e', e?), defined by the relation €' - e; = §°;.



The first fundamental form a and second fundamental form b of the reference midsurface have
the covariant components

Qi = 61X0 . an07 bij =e3- (‘zajxo (18)

The reference area element of the surface is dA = /det(a)d¢'d€?. Indices of midsurface tensors are
raised and lowered using a. For example, the components of a vector V = Vie; = V;e’ are related
by Vi = a;; VJ. The 3D reference metric tensor Jdap = OaRo - 0sR has a simple expression in terms
of the fundamental forms:

Gi5 = Q45 — 2§3bz‘j + (fB)bebkj, gi3 =0, gs3=1 (19)

Finally, covariant derivatives of midsurface tensors are defined in terms of the Christoffel symbols
Ffj = 0;e; - ek of the reference surface, so that e.g.,

ViV =9,V 4TI VE VYV =8,V - TE V. (20)

for the vector field V.

(b) Kinematics

We let U(€) be the displacement of the material point of the shell which is initially at Ro(§) (the
deformed position is then R = Ry + U). To reduce the dimensionality of the model, we make the
Reissner—-Mindlin kinematic assumption, which specifies the displacement U of an arbitrary point of
the shell in terms of two vector fields defined on the midsurface: A displacement vector field u and
a rotation (01, 6s) of the unit normal. Specifically, we assume that the displacement takes the form

U = u%e, + &0'e;. (21)

In words, the assumption states that a material line initially normal to the midsurface remains
straight and unstretched in the deformed state, but may be translated and rotated. We see that u
is the translation of the midsurface while 0; are the rotations of the material line around the axes
defined by the tangent vectors e; (see figure 2).

The full nonlinear strain tensor is defined by En.g = (1/2)(Gas — gas), Where Jog = 0uR - IR
is the metric of the deformed configuration. To leading order in variations along the thickness (i.e.
£3), we obtain

Ejj = +&Ci + 0((£%)?),
E33 =0,

where ¢;; is the in-plane strain, Cj; is the curvature or bending strain and S; is the transverse shear
strain, given by

1

Sij =3 (Viuj + Vju;) — bijus, (23a)
1

Cij = 5 (Vﬂj + VJHZ — bfvjuk — bfVZuk) + bfbkju?,, (23b)
1

Si =5 (i + Oyus + bux) (23c)

as depicted in figure 2b.
Remarks. (i) In the case of a flat plate, the second fundamental form b;; vanishes and equa-
tions (22)—(23) reduce to the usual strain tensor of the Reissner-Mindlin plate model. Note that in
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FIG. 2. A simplified model of the steelpan as a thin elastic shell in the shape of a hemispherical bowl (positive
Gaussian curvature K) with a flat central note (K = 0). In the Naghdi shell theory, the deformations are
described by the midsurface displacement u and the rotation 6 of material lines which are orthogonal
to the midsurface in the undeformed configuration. The equations of motion (written in weak form in
equation (29) and in strong form in equation (35)) take into account the elastic energy associated with
membrane (stretching), bending and shear strains (23) and stresses (34) (adapted from Shankar et al. [10],
and Chapelle and Bathe [22]).

this case, the in-plane membrane strain tensor €;; depends only on the in-plane displacement u; and
is uncoupled from the bending and shearing strains. (ii) A displacement field of the form given in
equation (21) where 0; = —V,uz — bfuk is said to satisfy the Kirchhoff-Love kinematic assumption.
It is stronger than the Reissner—-Mindlin hypothesis as it imposes that a material line which is ini-
tially normal to the midsurface remains normal in the deformed state as well. From equation (23c),
this is equivalent to the transverse shear strain S; vanishing. (iii) If the displacement field satisfies
the Kirchhoff-Love assumption and the shell is flat (a;; = d;5, b;; = 0), we obtain the Kirchhoff-Love
plate model.

(c¢) Governing equations

We derive the dynamical Naghdi equations starting from the continuum mechanics of the three-
dimensional shell body. The constitutive relation for the 3D stress tensor X% = H O‘B‘”’EW involves
the elastic tensor (for an isotropic material)

Y
2(1+v)

2v

Haﬁ;ux _
1—2)?

g g + g™ g + aBgmr (24)

where Y and v are the Young’s modulus and Poisson’s ratio of the material, respectively. Using the
expression for the 3D metric tensor, equation (19), along with the standard additional assumption
that the normal stress ¥33 vanishes everywhere, we get

- . . 1 ~..
id A”MEM, 213 _ §Blej3’ (25)
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with the reduced elastic tensors

oy Y o I 2v s < 2y .
ijkt _ ik ¢ il kj ij ke B — ij 2
A 0 +v) (g A A e ) 7 (26)
Newton’s second law for the 3D shell reads
p}U =V - +F, (27)

where p is the mass density and F = F®e, is an external force density on the shell. To obtain a
weak form of the equation, suitable for the finite element method, we introduce a test vector field
V which satisfies the same kinematic assumptions as U, i.e., V = v%, + £3n'e;, and vanishes on
the lateral boundary (corresponding to (£1,£2) € 9€)) where the displacement boundary condition
U = 0 is prescribed.

Taking the inner product of equation (27) with V and integrating by parts, we obtain

dVpo?U-V+ [ dV Z(U):E(V)= [ dAVF-V+ [ dS (Z(U)-p)-V. (28)
Q Q Q o

where dV = \/det(g)d¢tdé2de? is the volume element and & is the unit outward normal along the
boundary of the 3D shell, with dS the boundary area element. The last term of equation (28)
represents the effect of boundary tractions, and can be divided into integrals over the upper and
lower faces of the shell (corresponding to €3 = 4h/2), and an integral over the lateral faces. The
upper and lower faces of the shell are free, meaning that the traction 3(U) - & vanishes. Moreover,
V = 0 on the lateral faces as previously noted. Therefore, the last term of equation (28) vanishes
for this choice of boundary conditions.

Upon expanding the second term on the left-hand side of equation (28), and integrating over the
thickness of the shell (to leading order in &3, conversely h), we obtain the dynamic Naghdi equations
in weak form:

. h?
/ dA ph@fuava +/ dA h.A”kf {eij(u)f—:u(v) + 707] (u,O)Ckg(v,n)
o o 12 (29)
+ [ dARBYS;(u,0)S;(v,n) = / dA hF v,
Qg QO
where dA = \/det(a)d¢tdgE? is the area element on the midsurface and A, B are the restrictions of
the elastic tensors A, B onto the midsurface, i.e.,

Y

ikt _
A 2(1+v)

ik g4 il jk ij kL i ij
a“ad’" +a " + ——a%a , BY = a*. 30
( ) 0+7) o

It remains to specify an appropriate space of functions V in which to seek the solution. Since the weak
form of Naghdi’s equations, equation (29), involves only first order derivatives, this will be a subspace
of the Sobolev space (H'(€p))?. In order to impose clamped (homogeneous Dirichlet) boundary
conditions, we take V := (Hg (€))%, the subspace of functions which vanish at the boundary.

For convenience, we will use the shorthand u = (u,0), v = (v,n), and let k,,, k and ks denote
the membrane, bending and shear terms of equation (29):

km(u,v) = dA h.AijMeij(u)akg(v)
Qo

o h3
kb(u7 fu) — ‘/Q dA Al]keﬁcij(lL G)C}cé (V7 "7) (31)

ks(u,v) :/ dA B9 S;(u, 0)S;(v,n).
Qo
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Lastly, we define the bilinear forms

m(u,v) :/ dA phuyv®,
Qo

k(u,v) = kp(u,v) + kp(u,v) + ks (u, v),

(32)

which we call the mass and stiffness form, respectively. With this notation in place, the eigenvalue

problem associated with (29) can be stated succinctly as: Find pairs (w?,u) with w? > 0, u =
(u,0) € V= (H(0))? so that
Ek(u,v) = w?m(u,v) for all v € V. (33)

For completeness, we mention that the Naghdi equations can also be written as a boundary value
problem in strong form as follows: Define the in-plane stress o, bending moment M and transverse
shear stress Q by

o' = hAIM e,

R
MY = E-A” “Cre (34)
o
Q' = EB”SJ».

Then the weak form (29) is formally equivalent to the following system of equations:
phd2u’ = Vol —biQ7 — V(b M) + hF,  i=1,2,
phdu® = V,Q" + b0 — bEb; MY + hF?, (35)
0=Q" — VMY, i=1,2.

Remarks. (1) We note that in equation (29), the bending term k; is of higher order in the
thickness h compared to the stretching and shearing terms, a general feature of shell models [22].
In the limit of small thickness, modes with vanishing membrane and shear strains are energetically
favorable. In the linear theory, these pure-bending modes are characterized by € = 0, and 8 =
—(Vus + b -u). Existence of pure-bending displacements depends on the boundary conditions as
well as the midsurface reference geometry, in particular the sign of the Gaussian curvature K =
det(b)/ det(a) [22]. Isometric bending deformations are well understood for surfaces where K has a
constant sign, but less is known for surfaces of mixed type where K changes sign. (ii) If we replace the
Reissner—-Mindlin kinematic assumptions with the stronger Kirchhoff-Love assumption, we obtain
instead the weak form of Koiter’s equations [22]. (iii) In the absence of curvature (i.e. b;; = 0), the
variational problem of equation (29) splits into two decoupled equations: a membrane problem for
the in-plane displacement (u;,u2) and the remaining variables (us, 0) satisfy the Reissner-Mindlin
plate equations. If we instead make the Kirchhoff-Love kinematic assumption, which for a flat plate
states that §; = —V,ug, then the normal displacement ug satisfies a simple bending equation. If we
choose orthonormal coordinates so that a;; = d;;, the equation is

pho}u® + BV*u® = hI3 (36)
where B = Yh3/[12(1 — v?)]. This is most easily seen from the strong form equations (35).
4. STEELPAN MODEL AND NUMERICAL SIMULATIONS

(a) Numerical methods

We discretize the Naghdi eigenvalue problem, equation (33), in space using the finite element
method. As previously mentioned, the weak form of the Naghdi equations admits solutions in H'.
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However, it is well known that standard H'-conforming finite element methods suffer from numerical
locking when applied to shell models, which leads to overstiff behavior unless a very fine mesh is used.
Several approaches to alleviate locking have been proposed, see [24, 25] and references therein. While
no method has been rigorously shown to be locking free for all problems, numerical tests suggest
that many of the known methods can successfully treat locking in the Naghdi model. Following [25],
we use a high-order partial selective reduced integration (PSRI) method, a variation of the technique
introduced in [24]. This method was shown in [24] to converge uniformly with respect to the shell
thickness under some restrictive assumptions on the coefficients in the Naghdi model. In the PSRI
approach, second-order Lagrange finite elements augmented by cubic bubble functions are used for
the displacements (u,), and second-order Lagrange finite elements are used for the rotations (6;).
The stiffness form k in equation (33) is modified by splitting the membrane term k,, and shear term
ks into a weighted sum of two contributions, one of which is computed with a reduced integration.
That is, we write k,,, as

a /Q dA hAM e, (Wepe(v) + (1 — a) /Q dA hATH 2, (w)e g (v)

and compute the second integral using a reduced quadrature rule of order 2. The shear term kg
is similarly modified. The splitting parameter « is chosen as h?/6% a~ 0.05 where § is a typical
element circumradius for the mesh, as suggested in [25]. Discretizing equation (33) in the manner
just described yields a (generalized) matrix eigenvalue problem which we solve using the SLEPc
implementation of the Krylov-Schur algorithm [26]. The numerical method just described is imple-
mented in a custom code based on the FEniCS-Shells library[27] and using the open-source finite
element computing platform FEniCS[28]. The code is included in the supplementary material [29].

(b) Steelpan model and numerical experiments

In a real steelpan, the crafting process introduces inhomogeneities in the thickness and material
properties. While these effects may influence the sound of the instrument, as we show, they are
not necessary for studying mode localization and can be neglected for our purposes. For the same
reason, the skirt of the pan is not included in our model.

To investigate mode confinement in a simplified model of the steelpan, we performed two numerical
experiments. In the first part of our analysis, we consider how the strength of localization near a note
varies with the pan geometry. In the second part, we test the predictions of the landscape theory
developed in §2. In each case, the modes of the structure are computed by numerically solving the
eigenvalue problem (33) using the finite element method as described in §4(a). Since the localized
modes under considerations are insensitive to boundary conditions, we restrict the analysis to shells
with a fully clamped boundary. In all cases, we use a triangular mesh, with the mesh size chosen so
that the modes of interest have adequately converged; the number of elements is ~ 15000. We take
the constant thickness of the shell to be h = 1 mm, which is commonly used for these instruments.
In our simulations, we fix the radius of the pan at Ry, = 0.3m, approximately the radius of a
traditional steelpan. The material properties are Y = 200 GPa, o0 = 0.3 and p = 7850 kg/m?, typical
for mild steel.

In the first experiment, we consider how the localization strength varies with the note and bowl
curvatures. For simplicity, we consider a radially symmetric geometry with a single note in the
center, shown in figure 3a. The shape is chosen so that the inner note region and outer bowl regions
each have constant Gaussian curvature, which we define as k? and 2 respectively. Specifically, the
inner note region 0 < r < a and outer bowl region b < r < 1 are segments of spheres with radii
R; = K, Vand R, = Kk, respectively (figure 3b). In the transition region a < r < b we choose a
smooth interpolation between the inner and outer spherical segments to ensure that the curvature is
everywhere defined and continuous. In our experiments, we take a = 0.05m, b = 0.06 m, so that the
note area is less than 5% of the total area of the pan. As we vary the curvatures x; and k,, we use
two different measures to quantify the localization strength of the so-called (0,0) mode, which has
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cross section

-=-==inner sphere

-===outer sphere

FIG. 3. (a) The idealized steelpan geometry with the diameter of the note indicated. (b) Cross section of
an idealized steelpan geometry which smoothly interpolates between an inner sphere of radius R; for r < a
and an outer sphere of radius R, for » > b. The width b— a of the transition region is exaggerated for clarity.

no nodal lines (see figure 4b). The first is the inverse participation ratio (IPR), which for a mode
u = (u, 0) of the Naghdi shell is defined by

IPR = area(S) /||u||4dS (/||u||2 dS> - (37)

If |Ju|| is approximately constant on a subregion D C § and vanishing outside of D, then the par-
ticipation ratio is area(S)/ area(D). We also use another, somewhat ad hoc measure of localization,
which measures the proportion of the mode that lives in the note region A in an L'-norm sense. If
we assume that the mode has been normalized so that [[ul| has L'-norm 1, then this is simply

lllzs ) = /N Jul dA. (38)

We refer to this measure as the L'-norm ratio (LNR). We note that while the LNR is bounded
above by 1 (achieved by any mode that vanishes outside N'), the IPR can be arbitrarily large.
These two measures of localization strength are complimentary: The LNR is more sensitive to small
amplitude oscillations outside of the note region, but unlike the IPR, it gives no information about
how narrowly peaked the mode is inside of N.

In the second experiment, we use the vector landscape of §2 to study mode confinement in two
idealized steelpan geometries, each consisting of a hemispherical bowl with one or more flat note
regions where the curvature vanishes. The (nondimensionalized) Gaussian curvature of the bowl is
(hko)? = 8.2-107% in both cases. The first pan shape, depicted in the top left of figure 5a, has
a single, circular note of radius 0.05m in the center. The second geometry, which more closely
resembles the elaborate designs of real steelpan instruments, has four notes. Three of those are
elliptical inner notes of varying size and eccentricity, placed close together near the center. The
fourth note is an approximately rectangular outer note near the boundary (figure 5b). For each of
the two pan shapes, we compute the vector landscape £ and several low-frequency eigenmodes. To
compute the value of £ at a point y on the shell, we solve the Dirichlet problem LG(-,y) = d,I for
G(+,y) using the finite element method and compute the integral in equation (13).
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FIG. 4. (a) Inverse participation ratio (left) and L'-norm ratio (right) of the (0,0) mode as a function
of the nondimensionalized note and bowl curvatures. A sharp transition from localized to extended modes
is seen near the diagonal ko, = k;. (b) Representative mode shapes corresponding to the points marked in
(a). Color indicates the normalized displacement and grid lines are shown for clarity. While modes ii and
iii haves approximately the same L'-norm ratio, the latter has a much larger inverse participation ratio.

5. RESULTS

(a) Effect of geometry on mode localization

Figure 4a shows the IPR and LNR of the (0, 0) mode as a function of the bowl and note curvatures.
In the region x; > k,, both localization measures are small and approximately constant, indicating
that the mode is extended over most of the pan. Near the diagonal k; = k,, there is a sharp transition
from extended to localized modes which is reflected in both the IPR and LNR. Three representative
mode shapes, corresponding to the indicated points i-iii in parameter space, are shown in figure 4b.

In the localized region, k; < k,, the two localization measures diverge. The L'-norm ratio seems
to increase monotonically with the difference x, — k; between the outer and inner curvatures. The
IPR, in contrast, is approximately independent of k; in this region, but increases with ,. This
difference can be seen by comparing modes ii and iii in figure 4b, which are both confined to the note
region with similar L' norm ratios, but have substantially different values of the IPR. Therefore,
the inverse participation ratio gives more fine-grained information about the shape of the localized
mode in the note region.
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FIG. 5.  The vector landscape and several eigenmodes were numerically computed for two steelpan-like
geometries, shown in figures (a,b) i with the flat note regions highlighted in red. Figures (a,b) ii show the
norm of the vector landscape £ of equation (13) for the two geometries. The first two numerically computed
eigenmodes are shown in iii-iv, exhibiting strong localization to the regions predicted by the vector landscape.
Color indicates the normalized displacement (white grid lines are shown for clarity). The geometry in figures
(a) has a single circular node in the center with a = 0.05m, b = 0.06 m, R; = 350m (see figure 3). The
geometry in (b) has four flat notes K = 0: A circular note of radius 0.03 m centered at (z,y) = (—0.075,0) m;
an elliptical note with semi-major axis 0.03m and eccentricity v/2/2 centered at (x,y) = (0.075,0) m; an
elliptical note with semi-major axis 0.23m and eccentricity v/2/2 centered at (x,y) = (0,0.075) m; a note in
the shape of a polar rectangle defined by r > 0.215m, || < 7/18 in polar coordinates. For both geometries,
the bowl has radius of curvature R, = 0.35m.

(b) Illustration of the vector landscape

The vector landscape and several lowest eigenmodes were computed for the two shell geometries
described in §4. The results for the single-note pan are shown in figure 5a. The norm || £|| of the
vector landscape is almost vanishing outside of the note region, where it has a sharp peak. Based
on this, we predict that the shell supports one or more localized modes in the note region, and only
high-frequency modes can have substantial amplitude in the outer bowl region. This is confirmed
in the lower half of figure 5a, which depicts the two lowest-frequency modes of the shell. The pan
has several more strongly localized modes which are not shown here.

Figure 5b shows the more interesting case of a steelpan with multiple notes of varying size and
shape. The vector landscape || £]| has several peaks, each located at note region where the curvature
vanishes. The tallest peak coincides with the large, circular inner note, followed by a peak at the
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rectangular outer note. As explained in §2, the landscape inequality (14) guarantees that any low-
lying modes must be confined to the union of the notes regions. While this is an interesting result,
it raises the question of whether the vector landscape has the same predictive power as the scalar
landscape, which is much stronger than what is guaranteed by the inequality alone. In fact, we
observe that each mode is strongly localized to a single note region and that the mode shape is
reflected in the shape of the corresponding peak of the landscape. Moreover, the relative heights
of the peaks is an indicator of the order in which the localized modes appear. For example, the
lowest-frequency mode is localized near the tallest peak of the landscape.

6. CONCLUSIONS

The possibility of creating independent, geometrically tunable localized modes has been utilized by
makers of steelpans since the early 20th century, but a general quantitative theory for how geometry
can lead to effective localization has so far been missing. Inspired by this spectral problem for the
steelpan, we first generalized a recent geometric theory for Anderson localization for linear scalar
operators to a vector-valued version. We then used the resulting localization landscape theory
to predict the locations and order of localized modes in doubly-curved elastic shells by solving a
single Poisson-like problem rather than an eigenvalue problem. Our results show an interesting
connection between curvature and mode confinement in doubly curved elastic shells: shells with
flat regions separated by regions of positive Gaussian curvature support localized modes, and the
strength of localization increases with curvature. It might be pertinent to note that our results are
size and material independent, as the geometric theory of elastic shells is only predicated on having
a large aspect ratio (R/h > 1). Thus they apply equally to micro- or nanoscale systems, and and
suggestive of applications to high quality resonators [30]. More generally, our generalization of the
landscape theory to vector-valued systems opens up applications to a much larger class of systems
than previously possible.
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