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In brief

Spatially resolved single-cell RNA
sequencing was achieved by segmenting
3D tissues into concentric layers via the
uptake and steady-state distribution of a
small-molecule dye. Ovarian cancer
models were analyzed to reveal spatial
variations in gene expression across
tissue depths. The method is rapid, highly
adaptable, and optimized for non-
specialized laboratories.
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SUMMARY

Single-cell RNA sequencing (scRNA-seq) is a powerful technique for describing cell states. Identifying the
spatial arrangement of these states in tissues remains challenging, with the existing methods requiring niche
methodologies and expertise. Here, we describe segmentation by exogenous perfusion (SEEP), a rapid and
integrated method to link surface proximity and environment accessibility to transcriptional identity within
three-dimensional (3D) disease models. The method utilizes the steady-state diffusion kinetics of a fluores-
cent dye to establish a gradient along the radial axis of disease models. Classification of sample layers based
on dye accessibility enables dissociated and sorted cells to be characterized by transcriptomic and regional
identities. Using SEEP, we analyze spheroid, organoid, and in vivo tumor models of high-grade serous
ovarian cancer (HGSOC). The results validate long-standing beliefs about the relationship between cell state
and position while revealing new concepts regarding how spatially unique microenvironments influence the
identity of individual cells within tumors.

INTRODUCTION geneity exists within tumors, arising both from distinct clones
and the response of these clones to their environment.* Tissue

High-throughput single-cell RNA sequencing (scRNA-seq) is  architectures impact disease induction and progression and

used to describe complex tissues by characterizing the tran-
scriptional states of individual cells. scRNA-seq yields unparal-
leled granularity with regards to understanding cellular identity
and function in complex tissues as well as informing on mecha-
nisms of pathology in disease.”> Common high-throughput
scRNA-seq methods, however, require tissue dissociation prior
to sequencing and, consequently, decouple cells from their orig-
inal positions within tissues.'~ Defining a cell location, relative to
tissue margins, vascularization networks, and social context, is
essential for understanding the variables that influence its tran-
scriptional identity. In cancer, significant spatial genomic hetero-
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are used for morphological classifications of disease pathology
via immunohistochemistry and immunocytology.*°

Ideally, methods for correlating spatial cell position with tran-
scriptional identity would couple methods accessible to most
laboratories with next-generation sequencing technologies.
Methods are emerging to extend the flexibility, breadth, and res-
olution of spatially resolved transcriptomic profiling. Technolo-
gies that integrate scRNA-seq data onto in situ hybridization
(ISH) gene expression data of similar tissues have been success-
fully applied to tissues with organized morphology but are less
applicable for tumors.”® Slide-based methods capture mRNA
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Figure 1. Segmentation by exogenous perfusion overview

(A) Cartoon schematic of the SEEP workflow for spheroid cultures. Visualized steps include calcein AM bathing, dissociation, sorting, binning, sequencing, and
analysis.

(B) Example image showing the difference in fluorescent intensity of a representative HGSOC spheroid across a time course (5 and 60 min) resolved using
confocal microscopy. At t = 60 min, cells on the surface are over 700 relative fluorescent units (RFU) brighter than core cells.

(C) At t = 60 min, spheroids were segmented into four concentric shells using a convoluted neural network.

(D) The fluorescence intensity of each layer (n = 60 spheroids) was monitored in time. At t = 60 min, each layers’ mean fluorescence differed by over 5% and
remained stable for over 100 min. Linear fits from 0 — 50 min (gray, R® values > 0.97) show a linear accumulation of calcein as predicted by the integrated form of
Equation (3) CsxAt + Bwhere A = k;1C. A=(0.015, 0.0093, 0.0054, 0.0044) and B = (0.053, —0.0012, —0.0046, —0.0034) for the surface, outer, inner, and center
layers of the spheroids respectively.

(E) Example image showing the fluorescent intensity of a representative HGSOC spheroid at t = 60 min resolved using confocal microscopy (top). An intensity
profile of an individual spheroid (middle) and a FACS profile of 192 dissociated spheroids (bottom) show the distribution of fluorescence intensities across in-
dividual cells and the thresholds (dashed blue lines) used for segmentation. A hyperbolic sine fit to the middle panel (red, R? > 0.99) shows a fluorescence

distribution profile predicted by Equation (2). The fit corresponds to the equation, C = ACgr Rsinh(e:7/R) , B where Aand B are the scaling factors 119501 RFU and

4150 RFU respectively. Scale bars, (B and C) 150 um, (E) 100 um.

on spatially patterned grids of pre-defined barcodes and are
useful for spatially resolving 2D tissue slices with increasing
fine resolution.®~"" These methods can be performed iteratively
on consecutive tissue slices to reveal three-dimensional (3D) tis-
sue architectures. Other innovative methods include multiplexed
error-robust fluorescence in situ hybridization (MERFISH) and
fluorescent in situ sequencing (FISSEQ) that enable highly multi-
plexed ISH and de novo sequencing in intact tissues.'*'® These
approaches provide high-resolution spatial maps but are limited
in their ability to interrogate 3D tissue architectures and require
significant laboratory specialization.

Here, we describe Segmentation by Exogenous Perfusion
(SEEP), an integrated method for correlating environmental
accessibility of cells within 3D disease models with scRNA-seq
data. SEEP utilizes the diffusion kinetics of the small-molecule
dye, calcein acetoxymethyl (AM), to establish a stable dye
gradient within 3D tissues that varies in intensity according to
radial-spatial cell position as a function of accessibility to the tis-
sue surface. This gradient is used with fluorescence-activated

r sinh(e;)

cell sorting (FACS) to sort and bin dissociated cells by diffusion
distance to tissue surfaces. Single cells are then barcoded and
sequenced using any standard scRNA-seq protocol (Figure 1A).
The method can define the surface accessibility and radial-
spatial positions of cells in both symmetric and asymmetric cell
cultures (e.g., spheroids and organoids) and linear tissue sam-
ples (e.g., punch biopsies). We use SEEP to study the transcrip-
tional architecture of high-grade serous ovarian cancer (HGSOC)
cells located at defined layers of three different 3D HGSOC
models including spheroids, organoids, and patient-derived
xenograft (PDX) tumors. We explore how transcriptional identity
is dependent on cells’ surface accessibility in HGSOC disease
models arising from both individual clones (e.g., cultured spher-
oids) and ascites-derived cell populations (e.g., organoid and
PDX models). In doing so, we show how cellular identity varies
along an axis defining tissue margins and nutrient accessibility. '

HGSOC, the most lethal gynecological cancer, is character-
ized by genomic instability from ubiquitous TP53 mutations
and a high percentage of BRCA1/2 mutations.'>'® Despite
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advancements in the genomic characterization of HGSOC, sig-
nificant improvements in disease outcomes have not emerged
over the past 30 years. In particular, metastatic disease remains
a significant clinical challenge and is associated with resistance
to therapy and decreased life expectancy.'®”'” HGSOC cells
disseminate into patients’ ascites and natively cluster into 3D
spheroid-like bodies that are believed to be responsible for met-
astatic disease found in the peritoneum and beyond.'® HGSOC
cell clusters persist in the peritoneal cavity years after a primary
tumor is removed and are capable of surviving both immune
recognition and chemotherapy.'” Understanding the transcrip-
tional architectures of these 3D cell clusters and the metastatic
lesions they form will provide insights into HGSOC disease pro-
gression and potentially inspire new therapeutic concepts to
combat this disease.

RESULTS

Diffusion-mediated accessibility staining for spatial
segmentation

To preserve surface and environmental proximity information
from 3D HGSOC models throughout a high-throughput
scRNA-seq assay, we developed a perfusion method capable
of segmenting tissues into concentric shells and an inner core
based on cellular accessibility to a cell-permeable fluorescent
dye. In this way, cells could be sorted and binned as a function
of their diffusion distance from a tissue surface (Figures 1A-
1D). Although SEEP can be performed using a variety of small-
molecule dyes, we established the method using calcein AM, a
non-fluorescent analog of calcein that utilizes an AM ester moi-
ety to allow for passive diffusion across cell membranes.'®*°
Once inside a cell, intracellular esterases convert calcein AM
to the pH-independent fluorescent calcein and trap the dye in-
side cells.”’ To properly enable the SEEP methodology, it was
critical to define the diffusion parameters of each model upon
exposure to calcein AM. With no barriers to diffusion, calcein
AM and calcein (diffusivity, D, = 260 and 500 um2/s in media,
respectively) would diffuse into a spherical cavity in time, t =
(r?)/6D, (the equivalent of 58 and 30 s to diffuse into a 600 pm
diameter sphere). 3D cell cultures and tissue samples, however,
create heterogeneous and complex barriers to diffusion which
complicate the parameters that govern inward flux and dye up-
take.?? For calcein AM, uptake into a spherical cell cluster is
dependent on both its effective diffusion through the complex
barrier and the reaction rate for converting calcein AM to calcein.
The reaction-diffusion equation for C (calcein AM) undergoing
diffusional transport and conversion into the fluorescent product
calcein in a spherically symmetric system is:

oC D, 0 [ ,0C .
S (r E) — KkC. (Equation 1)
Given the large excess of calcein AM in the media surrounding
our samples, we estimate the external dye concentration to be
fixed at the surface of the sphere, r = R. That is, we impose
C(R) = Cg, and Equation (1) will attain a steady state given by:

R sinh (‘%r)

€=Cn r sinh(g4)

(Equation 2)
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and illustrated by the hyperbolic sine curve fit to the radial fluo-
rescent profiles observed in the spheroid dye accumulation (Fig-
ure 1E, red line, R?>0.99). In equation (2), ¢ = R\/g:‘e. Thisis a
special case (for the first-order reaction n = 1 of calcein AM —
calcein) of the Thiele modulus, ¢2, where ¢2 = k,R?C}3; 1 /De.
Here, k is the rate constant of an n order reaction, R is the radius
of the sphere, C4s is the concentration of calcein AM at the sur-
face of the spherical cell cluster, and D, is the effective diffu-
sivity.”*2° 2 describes the ratio of a systems rate of reaction
to rate of diffusion. When the reaction is slower than the effective
diffusion, @2 << 1, calcein (the product) fills the entire volume of
the spherical cell cluster. When the reaction is faster than the
effective diffusion, cp,z, >> 1, calcein cannot reach the core of
the spherical cell cluster and a non-uniform steady state is
reached. Achieving a steady state in dye distribution is critical
for the SEEP method and facilitates the correlation of cell bright-
ness with exogenous accessibility and, by extension, radial-
spatial cell positioning. Experimentally, we found that for each
of the ascites-derived HGSOC samples analyzed, ¢2 >> 1 and
a steady state was achieved and maintained for time scales
appropriate for tissue processing (Figures S1 and S2). Non-fluo-
rescent calcein AM constantly diffuses into the system at a
steady state and is converted into calcein. Because of this, the
accumulation of fluorescent dye, Cs is linear and satisfies the
following equation:

oCr

o= kiC.

(Equation 3)

Therefore, once the steady state of C is realized, the model
predicts a linear accumulation in the fluorescent form, calcein.
Indeed, we observe a linear accumulation of calcein from 0 —
50 min (Figure 1D, gray lines, R? > 0.97). Above ~50 min, we attri-
bute the fall of fluorescent calcein accumulation to calcein
degradation within the live cells. This decrease in fluorescence
is clearly observed from 160 — 300 min; however, the mean
fluorescent stratification between layers remains resolved
throughput this time period. By fitting Equation (2) to the fluores-
cence distribution across the spheroids as a hyperbolic sine
curve (Figure 1E), we found the ratio of k;/D, to be
0.0004 pm~2 and #? to be 31.36 corresponding to the fluores-
cence profile of Figure 1E. The uptake and conversion of calcein
AM into calcein were determined by fitting the integration of
Equation (3) to the linear accumulation of fluorescence on the
surface layer of the spheroids (Figure 1D).

Of practical importance, SEEP relies on the distance to the
environmental interface of tissue rather than on the distance to
the center of a tissue to segment populations into concentric
layers. This allows the assay to be performed on irregularly
shaped tissues rather than relying on tissue symmetry for accu-
rate segmentation. In addition, the method’s extension via
Punch-SEEP enables spatial segmentation to be performed on
biopsy punches harvested from a variety of tissue sizes and
geometries.

Calibrating diffusion kinetics

SEEP requires an imaging-based calibration step for observing
dye penetration kinetics and a measurement step for sorting
and sequencing cells based on their fluorophore accessibility.
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Each of the different 3D HGSOC cell models examined in this
study (spheroids, organoids, and PDX solid tumors) required a
unique collection of calibrating steps to define the specific diffu-
sion kinetics associated with each model. We exposed each
model to calcein AM dye and monitored dye penetration using
light sheet or confocal microscopy (Figures 1B-1E, S1A-S1C,
and S2A-S2E). The time that each model system needed to
reach a maximum change in the fluorescence intensity between
the center and surface was monitored and recorded across mul-
tiple replicates.

Fluorescence images acquired during the calibration step
were normalized to signal attenuation incurred with imaging
depth. High-content confocal microscopy imaged 100s of well-
defined and homogenously stained (ex/em: 353/466 nm, 492/
517 nm, and 630/650 nm) spheroid samples to calculate the
attenuation parameters (Figures S1D and S1E). Signal decay
for homogenously stained spheroid samples was calculated in
depth and described by the exponential y=1.11e=02™x _
0.018(residual standard error: 0.029 on 27° of freedom)
(Figures S1F and S1G). Attenuation was subtracted up to
~100 um. Beyond this point, signal normalization was no longer
an appropriate estimate for dye accumulation, and levels beyond
this threshold were not used in the segmentation calculations.
After sample attenuation was calculated, the fluorescence inten-
sity measurements of the diffusion kinetics were normalized for
signal attenuation. We then divided the 3D cell and tissue models
into concentric rings, or sections, of equal volume; the average
intensity () of each layer and the central core were calculated
(Figures STH-S1k). To ensure adequate fluorescence separation
between layers, volumes were segmented so that the Al be-
tween adjacent layers exceed 5% (Figure 1D). This parameter
also determined the binning process for equal volumetric sorting
based on fluorescent intensity. Similar methods were used to
define the calibration kinetics and binning parameters for the or-
ganoid and biopsy models (Figure S2).

Binning, sorting, sequencing, and clustering

For the measurement step, pre-calibrated 3D models were
stained, sorted based on fluorescent shell thresholds, and sin-
gle-cell barcoded for RNA sequencing. Briefly, following expo-
sure to a fixed concentration of calcein AM for the calibrated
time, the sample was washed of excess dye, dissociated using
Accutase and gentle agitation (spheroid and organoid) or the
gentleMACS dissociator (PDX biopsies), and sorted via FACS
into a pre-defined number of bins (Figures 1D and 1E). No calcein
diffusion between cells was observed post-dissociation, and im-
aging post-sorting confirmed accurate binning (Figures S1L and
S1M). We also reviewed potential confounding factors like cell
size and intracellular esterase expression patterns and found
that these variables were consistent across layers (Figure S1M).
We collected the sorted cells as aliquots of individual layers and
immediately processed the layers through the inDrop platform.®
We fabricated and quality controlled the necessary microfluidics
and barcoded hydrogel beads in house (Figure S1F; Tables S1A-
S1G). We indexed each layer independently, pooled the libraries,
and sequenced across 7 NextSeq 500/550 High-Output v2 Kits
(75 cycles). To control for possible technical bias incurred during
SEEP, we examined the effect of staining and sorting (via FACS)
on single-cell transcriptional patterns of HGOSC PEO1 cells (Fig-
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ure S3). We subjected cells from a PEO1 monolayer to conditions
imposed by SEEP and examined if these conditions affected sin-
gle-cell transcriptional patterns. We found that sorting, staining,
and sorting + staining had a negligible effect on global gene
expression patterns (Figures S3A-S3C), average gene expres-
sion among clustered transcriptional groups (Figures S3G-
S3l), and single-cell expression patterns across genes of signif-
icant variability in our HGSOC model systems (Figures S3J).
Additionally, we found that significant gene expression changes
existed between clustered transcriptional states within a single
condition (Figures S3D and S3E) but not between technical rep-
licates of a single condition (Figures S3F). The only gene found to
have significantly variable mean expression between conditions
was HIST1H4C that encodes for a replication-dependent histone
of the H4 family. HIST1H4C was found to be depleted in sort +
stain cells compared with control cells; however, HIST1H4C
was not one of the variable genes analyzed in this study. In addi-
tion, HIST1H4C was not a member of the key gene sets used to
define cells in this study.

To enable the identification of transcriptional state variations
with respect to positioning and environmental accessibility, we
first identified highly variable genes for each model and used
them to drive principal component analysis (PCA) for dimen-
sional reduction. Dimensionally reduced cell identities were
embedded in a k-nearest neighbor (KNN) graph of Euclidean
distances defined by the PCA. Jaccard similarity was used to
optimize the KNN graph, after which we used the Louvain algo-
rithm to cluster cells by optimizing the standard modularity
function (Figure S4).°°72® T-distributed stochastic neighbor
embedding (t-SNE) and uniform manifold approximation and
projection (UMAP) were used to visualize cell clusters in two
dimensions.?*"

We identified differentially expressed genes within each clus-
ter and used them to define transcriptional states via over-repre-
sentation analysis (ORA) and gene set enrichment analysis
(GSEA) (Tables S2A-S2f). We incorporated the environmental
accessibility information with the gene expression data by per-
forming a chi-square test for independence to determine the de-
gree of association between each spatially defined layer and
transcriptionally defined cell cluster. As a visualization aid, we
overlaid the positional information on top of t-SNE plots that rep-
resented gene expression data. This revealed correlations be-
tween cell positions and transcriptional patterns.

SEEP-enabled mapping of transcriptional states in
HGSOC spheroids

Although 2D (monolayer) cell culture methods remain a dominant
experimental platform, cells compelled into 3D (spheroid or
near-spheroid) cultures have re-emerged over the past decade
thanks to new methods and compelling evidence that 3D cul-
tures are superior models of many disease phenotypes.®**
Although spheroid cultures lack key elements of in vivo disease
(e.g., cell heterogeneity, stromal components), they have found
particular utility in modeling solid tumors including HGSOC.3**°
Here, we utilized the HGSOC cell line PEO1 to generate spher-
oids to assess the SEEP methodology and explore positional in-
fluence on cell identity. The PEO1 cell line was derived from a
malignant effusion from peritoneal ascites and revealed through
Tagged AMplicon deep sequencing (TAmM-Seq) to have an allele
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(A) Cartoon schematic of the dye perfusion of a solitary spheroid in a calcein AM bath and a confocal image of a spatially segmented HGSOC spheroid.
(B) Composition chart showing the seven transcriptionally defined cell clusters and the retrospective, layer-specific composition of each resolved cluster. Red,

core; green, inside; blue, outside; purple, surface.

(C) Bar-chart visualization of chi-square test of independence defined associations between gene expression clusters and spheroid layers. Blue, over-repre-
sentation; red, under-representation; gray, null hypothesis in the cross tabulation. Bar width illustrates relative cluster size (n = 1,178 center cells, n = 2,471 inside

cells, n = 2,736 outside cells, and n = 2,667 surface cells).

(D) t-SNE visualization of gene expression clusters (left) and radial cell position (right) (n = 7,908 cells).

(E) Heatmap visualization of selected gene expression clusters and their layer-specific composition (by %). Significant transcriptional Hallmark gene signatures
from gene ontology (GO) are highlighted for clusters #3 (77% core cells), #4 (29% inside, 52% outside cells), #5 (73% surface cells), and #6 (82% surface cells).
Color scale is linear. (Full accounting of Hallmark GO signatures can be found in Tables S3A-S3G, and Hallmark signatures from GSEA can be found in Figure S3

and Tables S3H-S3N.) Scale bar, (A) 100 um. GEO: GSE157299.

fraction > 99% mutated TP53 and BRCA2 genes signifying a
nearly pure tumor fraction.*®*” Spheroidal cultures of PEO1 offer
potential insight into the transcriptional programs that support
metastases, including dissemination, migration, invasion, and
seeding. We hoped that SEEP would reveal the radial-spatial dis-
tribution of transcriptional states across these spheroids.

We compelled PEO1 cells into compact spheroids and pro-
cessed the spheroids via SEEP by sorting cells into 4 different
layers based on the calibration parameters (surface, outer, inner,
and core) (Figures 2A and S1A). Following sequencing, we
aggregated the data from the 4 spheroid layers and identified
highly variable genes to establish principal components (PCs)
of transcriptional variation within the entire, aggregate spheroid
sample (Figure S4A). Once processed, the scRNA-seq data
revealed 7 clusters when grouped by functional state, each
occupying a distinct proportion of each spheroid layer
(Figures 2B-2D).
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These data revealed multiple associations between selected
transcriptional states and spheroid layers via a chi-square test
of independence (e.g., strong association between transcrip-
tional cluster #3 and the spheroid core) (Figure 2C). In addition,
t-SNE dimensional reduction revealed overlap of transcriptional
clusters with a positional layer of origin (Figure 2D). ORA, GSEA,
and gene set variation analysis (GSVA) were used to infer tran-
scriptional signatures and active pathways within individual
layers and clusters.®®*° We observed variable enrichments of
the Hallmark gene sets across layers (Figures 2E and S5;
Tables S3A-S3N). Clusters significantly associated with specific
layers via the chi-square test of independence are highlighted on
the heatmap. Enrichment in transcriptional programs associated
with hypoxia, mTORC1 signaling, and the unfolded protein
response (UPR) was found for cluster #3 which, as noted, had
a strong association with spheroidal core cells. Cluster #4, which
had a strong association with middle layer (inside/outside) cells,
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showed strong enrichments for cell cycle pathways including
G2/M checkpoints, E2F targets, and mitotic spindle. Histological
analysis of intact PEO1 spheroids confirmed the enrichment of
cycling cells in the outside layer using both Hematoxylin and
Eosin (H&E) and KI67 staining (fig. S6). Surface cells existed pri-
marily in clusters #5 and #6 and possessed transcriptional pro-
grams associated with the epithelial to mesenchymal transition
(EMT), suggesting a higher metastatic potential at spheroid sur-
faces. Surface cells also displayed immune-response-related
programs including TNFa via NFkB and interferon alpha and
gamma (IFNa, IFNYy) responses. We utilized histological analysis
to orthogonally confirm key SEEP outcomes. We first explored
antileukoproteinase (secretory leukocyte protease inhibitor,
SLPI), an emerging target of interest in metastatic cancer.*°
SLPI expression patterns visualized using a validated RNAscope
probe and detailed image analysis of multiple spheroids demon-
strated enriched expression on spheroid surface cells, consis-
tent with the SEEP profiling (Figures S7TA-S7D; Table S4). A sec-
ond histological survey of the IFNy responsive gene CXCL10
confirmed limited focal expression patterns as predicted by
SEEP (Figures S7E and S7F). Taken together, these data support
the accuracy of the SEEP method.

Spheroid cultures represent a moderately “controlled” cell
culture format, and the presence of hypoxia and UPR character-
istics in core cells supports long-held beliefs that core cells,
separated from oxygen and nutrients, exist with relatively height-
ened oxidative and proteolytic stress. Enrichments in cell cycling
signatures among outside cells suggest that growth and turn-
over are supported in this region of the spheroid culture at the
time of analysis. The inside/outside spheroid regions also
showed enrichment for gene targets of the transcriptional regu-
lator YAP1 (Figure S8). YAP1 is regulated by the Hippo signaling
pathway and is a key mediator of cell proliferation. Its activation
within the intermediate spheroid layers sheds light on the aber-
rant and broader activation of YAP1 in cancer models and in
situ disease.”’ Interestingly, surface cells demonstrate an upre-
gulation in apoptotic programs suggesting surface-related cell
death events that would require replenishment from those layers
directly underneath. Furthermore, the presence of EMT, inflam-
mation, and immune response signatures found on the surface
layer suggested that these cells, even when devoid of the host
microenvironment, are primed for possible dissemination and
broader exposure to the immune system.

SEEP-enabled mapping of transcriptional states in
HGSOC organoids

To expand our initial SEEP findings to a more physiologically
relevant disease model, we collected sphere-forming tumor
cells from the ascitic fluids of HGSOC patients and grew
them in Matrigel-media for several passages to establish
HGSOC organoids. TAm-Seq revealed a > 99% allele fraction
of TP53 mutated HGSOC within the sample, confirming a highly
pure tumor fraction within the ascites-derived organoids. We
gently bathed individual organoids in calcein AM for 55 min at
37°C (Figure 3A). For organoid samples, pre-calibration sup-
ported the collection of 3 concentric shells of equal volume
(surface, middle, and core). As in the spheroid samples, we pro-
cessed the organoids via SEEP and analyzed the transcrip-
tional states of single cells on 3D radial positions. Organoid
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samples separated into 7 natural clusters when grouped by
gene expression (Figures 3B and S4C).

Using the chi-square test of independence, we found strong
associations between distinct transcriptional clusters and or-
ganoid layers. Clusters #3, 4, and 5 were associated with sur-
face cells, cluster #2 with middle cells, and cluster # 1 with
core cells (Figure 3C). t-SNE dimensional reduction visualiza-
tions revealed an overlap between transcriptional clusters
and a positional layer of origin (Figure 3D). Furthermore, we
used ORA, GSEA, and GSVA to reveal key transcriptional sig-
natures enriched in each layer (Figures 3E and S9;
Tables S5A-S5N). Several spatial transcriptional characteris-
tics paralleled those found in the spheroid model. We found
the expression of MTORC1 genes was enriched in the organoid
core, and all organoid surface clusters included signatures
involving inflammatory and immune-response-related pro-
grams. These included TNFa via NFkB, IFNa/IFNy responses,
and estrogen responses (early and late). Compared with the
spheroid model, however, there was less variance between
the middle and core of the organoid model, with both regions
showing enrichments among MYC targets V1 and cell cycle
signatures (e.g., G2M checkpoint in core cells, E2F targets,
and mitotic spindle genes in middle cells).

The organoids, unlike the spheroids, possibly retained ele-
ments of their in vivo origin. Due to the smaller size and increased
complexity of this model, the clustering was performed using a
3-shell layering and each cluster was more homogenous relative
to those determined for the spheroid samples. Nevertheless,
there were coherent signature enrichments found for each posi-
tional domain. The organoid surface demonstrated compelling
evidence of inflammation, stress, and immune responsiveness
traits. This may relate to a cellular “memory” of exposure to
the host microenvironment. However, the existence of similar
characteristics in the spheroid models, where no such ‘memory’
would exist, suggests that the stress/inflammation/immune
responsiveness traits were cell intrinsic and derived solely from
surface positioning.

SEEP-enabled mapping of transcriptional states in
HGSOC PDX biopsies

Finally, we applied SEEP to punch biopsies from HGSOC PDX
models with the aim of understanding how transcriptional states
vary according to surface accessibility in HGSOC in vivo tumor
models. In addition to extending the applicability of SEEP and
exploring the transcriptional architecture of a solid tumor grown
from ascites-derived cells, we wanted to develop a method
capable of preserving spatial information from samples collected
in a clinical setting while adding negligible experimental burden.
The collection and characterization of biopsy samples is a stan-
dard first-line approach to gain insight into abnormal or diseased
tissues. When anatomically possible to collect, biopsies provide
physical samples for histopathology and genomic analysis.
Although histopathology retains positional relationships via vi-
sual analysis, the diagnostic breadth of data is limited.
Conversely, the various genomic analyses done on biopsy tis-
sues offer more information while sacrificing the spatial context
of the sample. In hopes of combining elements of both methods,
we evaluated the ability of SEEP to provide spatial context to
transcriptional evaluations of punch biopsies.
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Figure 3. Positional analysis of HGSOC cultured organoids derived from patient ascites
(A) Cartoon schematic of the dye perfusion of a solitary organoid in a calcein AM bath and a confocal image of a spatially sesgmented HGSOC organoid.
(B) Composition chart showing the seven transcriptionally defined cell clusters and the retrospective, layer-specific composition of each resolved cluster. Red,

core; green, middle; blue, surface.

(C) Bar-chart visualization of chi-square test of independence defined associations between gene expression clusters and organoid layers. Blue, over-repre-
sentation; red, under-representation; gray, null hypothesis in the cross tabulation. Bar width illustrates relative cluster size (n = 2,285 center cells, n =2,819 middle

cells, and n = 2,667 surface cells).

(D) t-SNE visualization of gene expression clusters (left) and radial cell position (right) (n = 7,771 cells).

(E) Heatmap visualization of selected gene expression clusters and their layer-specific composition (by %). Significant transcriptional Hallmark gene signatures
from GO are highlighted for clusters #1 (64% core cells), #2 (76% middle cells), #4 (62% surface cells), and #5 (65% surface cells). Color scale is linear. (Full
accounting of Hallmark GO signatures can be found in Tables S5A-S5G, and Hallmark signatures from GSEA can be found in Figure S4 and Tables S5H-S5N.)

Scale bar, (A) 50 pm. GEO: GSE157299.

Several up-front challenges were encountered, including the
reality that biopsies are often taken from large, asymmetric tis-
sue masses. The subcutaneous HGSOC PDX tumors we used
for the Punch-SEEP method were derived from ascites samples
and revealed to have a >99% TP53 mutated allele fraction via
TAmM-Seq. Biopsies were taken as a single plug from the surface
of carefully resected tumor samples to explore the radial-spatial
distribution of cells states within solid tumors formed from asci-
tes-derived cells. Simple immersion of biopsy samples in a cal-
cein AM bath would expose core cells and surface cells simulta-
neously, failing to produce a dye gradient descriptive of cells’
original positions. To mimic the radial-like diffusion of spheroid
and organoid methods (i.e., surface exposure of the tissue
model) we preloaded a calcein AM-saturated gelatin plug into
a punch biopsy and allowed the plug to melt following contact
with the tumor sample. Thus, exposure of the tumor surface to
the calcein AM payload followed by diffusion through the sample
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provided an imitation of the spheroid and organoid protocols.
The dye loading was performed immediately prior to tissue har-
vesting, and after biopsy-punching and dye exposure the sam-
ple was incubated for 75 min at 37°C (Figure 4A). Gelatin plugs
melted completely during the incubation period which was fol-
lowed by tissue ejection from the punch biopsy, washing, disso-
ciation, sorting, and sequencing.

The accuracy associated with the biopsy pre-calibration was
coarser relative to the spheroid and organoid samples, likely
due to inhomogeneities in vasculature and tissue density.
Furthermore, because of necrosis within the tumors we
analyzed, the number of cells that passed scRNA-seq filtering
criteria was variable per layer. Thus, although we segmented tu-
mors to contain equivalent numbers of cells per layer, the num-
ber of cells analyzed per layer was different. Specifically, cells
characterized as surface more often passed scRNA-seq filtering
and, therefore, appeared to be more prevalent than cells in other
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(A) Cartoon schematic of the dye perfusion of a punch biopsy in a calcein AM bath and a confocal image of a spatially segmented HGSOC biopsy sample.
(B) Composition chart showing the six transcriptionally defined cell clusters and the retrospective, layer-specific composition of each resolved cluster. Red, core;

green, middle; blue, surface.

(C) Bar-chart visualization of chi-square test of independence defined associations between gene expression clusters and biopsy layers. Blue, over-repre-
sentation; red, under-representation; gray, null hypothesis in the cross tabulation. Bar width illustrates relative cluster size (n = 280 center cells, n = 677 middle

cells, and n = 1,010 surface cells).

(D) t-SNE visualization of gene expression clusters (left) and radial cell position (right) (n = 1,967 cells).

(E) Heatmap visualization of selected gene expression clusters and their layer-specific composition (by %). Significant transcriptional Hallmark gene signatures from
GO are highlighted for clusters #2 (43% middle cells), #5 (59% surface cells), and #4 (83 % surface cells). Color scale is linear. (Fullaccounting of Hallmark GO signatures
can be found in Tables S6A-S6G and Hallmark signatures from GSEA can be found in Figure S5 and Tables S6H-S6N.) Scale bar, (A) 400 um. GEO: GSE157299.

layers. In addition, most oxygen-deprived cells collected from
the center of the biopsies did not pass scRNA-seq filtering due
to necrosis. This led to depleted hypoxia signatures within the bi-
opsy cores. SEEP pre-calibration supported a three-shell seg-
mentation (surface, middle, and core) that revealed 6 clusters
with organized gene expression patterns (Figures 4B and S5C).
Mouse cells and mouse-human doublets were identified and
removed from downstream analysis. Using the chi-square test
of independence, we found associations between distinct tran-
scriptional clusters and the biopsy layers. Clusters #1, 4, and 5
were associated with surface cells, clusters #2 and 3 with middle
cells, and clusters # 0 and 3 with core cells (Figure 4C). Despite
the coarse segmentation, t-SNE dimensional reduction visuali-
zations revealed an overlap between transcriptional clusters
and positional layer of origin (Figure 4D). As with the spheroids
and organoids, we used ORA, GSEA, and GSVA to reveal key
transcriptional signatures enriched in each layer (Figures 4E
and S11; Tables S6A-S6L). Surface cluster #4 (83% surface

cells), like those in spheroid and organoid models, was enriched
for EMT and inflammatory and immune-response-related pro-
grams, including TNFa via NFkB, IFNa/IFNy responses, and
IL6 JAK/STATS signaling gene sets.

The Punch-SEEP data, derived from the most sophisticated
and relevant HGSOC model, was also the most complex to inter-
pret due to inhomogeneities in bin size. Surface-associated clus-
ters #1 and 4 possessed similar traits to the surface cells noted in
both the spheroid and organoid cultures. These included inflam-
matory-, immune-, and EMT-related gene sets. Genes associ-
ated with apoptosis also emerged on the surface of the biopsy
sample akin to both the spheroid and organoid surfaces.

Position-defined transcriptional states conserved
across 3D HGSOC models

To examine transcriptional states that were consistently associ-
ated with a radial position in all three models (spheroid, organoid,
and PDX biopsy), we compared segmented gene expression

Cell Systems 14, 464-481, June 21, 2023 471




¢ CellP’ress

data from all layers in each model directly, irrespective of expres-
sion-defined clustering. We hoped to explore how the spatial
distribution of functional states might be retained across similar
positional microenvironments in different settings. This analysis
confirmed the presence of individual genes and gene signatures
consistently enriched in the surface and core layers of all the
models analyzed. A comparison of the log-normalized average
gene expression values between surface and core cells from
each model revealed several similarities (Figures 5A-5C, and
S10; Table S7). Surface cells in all models possessed upregula-
tion of genes associated with immune and inflammation-related
signatures including Hallmark gene sets for TNFa via NFkB and
EMT. There was also a strong overlap in IFNo/IFNy leading edge
genes on the surfaces of the spheroid and organoid cells
(Figures 2E, 3E, S5, S9, and S10). Although core cells had fewer
coherent trends, there was consistent increased expression of
several genes involved in mTORC1 and KRAS signaling (from
spheroid and organoid models, respectively) and genes involved
in the cell cycle process (Figures 2E, 3E, S5, and S9). Although
core-enrichment for a hypoxia gene set was noted in the
spheroid and organoid models only, we found upregulation of
selected hypoxia-related genes in the core cells of each model.

A more detailed examination of EMT-related genes
demonstrated a remarkable anti-correlation of epithelial and
mesenchymal markers, as expected. This is most prominently
demonstrated by the model-agnostic expression of the epithe-
lial-related E-cadherin (CDH1) in core cells relative to the expres-
sion of the mesenchymal-related N-cadherin (CDH2) on surface
cells (Figures 5D-5F). This trend was maintained for other epithe-
lial-related genes [e.g., desmoplakin (DSP) and tight-junction
protein 1 (TJP17)] and mesenchymal-related genes [e.g., matrix
metalloproteinases 3 and 9 (MMP3/9) and zinc-finger protein
SNAI1 (SNAIT)]. The biopsy model demonstrated an expanded
breadth of mesenchymal-related genes on surface cells
including fibronectin 1 (FNT), vimentin (VIM) and twist-related
protein 1 (TWIST1). We hypothesized that EMT marker genes
were enriched across tissue surfaces in response to the stress
and inflammatory signatures found to be upregulated on these
surfaces. This hypothesis was supported by in situ hybridization
data including the aforementioned surface layer enrichment of
antileukoproteinase (SLPI) (Figure S7).°

To better understand the pan-model relationship of enriched
gene sets, we employed single-cell GSVA across all samples.
Useful for visualizing small changes in gene expression but sig-
nificant changes in gene set expression, GSVA allowed us to
explore cell states independently from cluster identity and
explore correlative relationships among gene sets (Figures 5G-
51, S12, S13, and S14). Several trends were revealed across
each HGSOC model including correlations between IFNy and
EMT Hallmark gene sets and between inflammatory response
and apical surface Hallmark gene sets. Examining gene set cor-
relations across MSigDB gene sets, we found a variety of strong
correlations across single cells.*”**> Of note, in the spheroid
model, we found an inverse correlation (R = —0.63) between
Cell Cycle and IFNy Response gene sets (Figure S12B), a rela-
tionship found to be demonstrated in the slowly cycling sur-
face-residing spheroid cells that expressed many IFNe and
IFN<y response genes. In the organoid model, we found a positive
correlation (R = 0.87) between Cellular Response to Stress and
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Positive Regulation of EMT gene sets (Figure S13B). This rela-
tionship was found on surface-residing cells across all three
models with cells co-expressing both stress response genes
and EMT-associated genes. In the PDX-biopsy models, we
found a positive correlation (R = 0.58) between IL6 JAK/STAT3
signaling and TNFa via NF-kB signaling gene sets (Figure S14B).
This relationship was also noted in a survey of disseminated tu-
mor cell clusters in the ascites of HGSOC patients.** In the PDX-
biopsy models, we also found a positive correlation (R = 0.60)
between the P53 Pathway and a Positive Regulation of EMT.
As P53 was ubiquitously mutated across all our model systems,
this relationship suggests a possible connection between aber-
rant P53 signaling (known to cause broad genomic instability in
HGSOC) and EMT.*®> GSVA also confirmed that inflammatory
response, TNFa via NFkB, and EMT signatures were enriched
in surface cells, whereas mTORC1 and angiogenesis signatures
were enriched in core cells (Figures 5J-5L). These correlations
allowed us to explore the relatedness of gene expression signa-
tures found within various regions of the tumor models. Although
we did not perform experiments to reveal the causal nature of
these correlations, we hoped that this analysis could generate
hypotheses about the local effect of upregulated gene sets on
HGSOC tumors.

Next, we integrated each dataset to further extract spatially
resolved expression features conserved across the model sys-
tems. We utilized the Seurat integration algorithm®2° to identify
pair-wise mutual nearest neighbors (MNN) in a low-dimensional
space from canonical correlation analysis (CCA). We then
computed the anchor transformation matrix to align the
spheroid, organoid, and biopsy SEEP datasets and subse-
quently embedded the cells into a common space through
UMAP.®' The 2D UMAP projections of the corresponding inte-
grated model colored according to data source or layer source
are shown in Figures 6A, 6B, and S15A. Applying the multiscale
analysis methodology “Differentially Abundant-seq” (DA-seq) to
this integrated model revealed a subcluster of cells with differen-
tial abundance between surface and center compartments
(Figures 6C and S15A).° To reveal gene expression patterns in
the most regionally distinct cell populations (surface and center
cells), we isolated layer-specific differentially abundant (DA) sub-
populations with a DA-seq score >0.8 and used the Seurat gene
scoring method to identify enriched transcriptional signatures.”®

These analyses revealed three coherent surface layer cell pop-
ulations and a single center layer cell population from the joined
SEEP scRNA-seq models (spheroid, organoid, and biopsy data
collections) (Figures 6C, 6D, and S15B). Hallmark pathway anal-
ysis highlighted a surface subpopulation with strong enrichment
for IFN response and TNFa signaling via NF-«kB (surface cluster
#1) and a second subpopulation with strong enrichment in cell cy-
cle signatures (surface cluster #2). The third surface layer subpop-
ulation showed enrichment for Hallmark Apical Junction, EMT,
and estrogen responses. The center subpopulation was less
resolved with coherent enrichments for only Oxidative Phosphor-
ylation and MYC targets V1 (Figures 6D and S15B; Table S8).

SEEP-derived signatures are a conserved feature of
ascites isolated from HGSOC cells

Finally, we sought to compare the SEEP-derived spatially
dependent signatures with published observations from primary
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F) Expression trends for epithelial and mesenchymal marker genes across 3D layers in biopsy of HGSOC PDX models.
G) Correlation of key gene expression signatures across all cells using GSVA in HGSOC spheroid models (n = 7,908 cells).
H) Correlation of key gene expression signatures across all cells using GSVA in HGSOC organoid models (n = 7,771 cells).
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(E) Expression trends for epithelial and mesenchymal marker genes across 3D layers in HGSOC organoid models.
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(
(

1) Correlation of key gene expression signatures across all cells using GSVA in biopsy of HGSOC PDX models (n = 1,967 cells).

(J) Violin plots highlighting the distribution of all cells binned by 3D layer using GSVA signatures for EMT and IFNa response in HGSOC spheroid models (n= 1,178
center cells, n = 2,471 inside cells, n = 2,736 outside cells, and n = 2,667 surface cells).
(K) Violin plots highlighting the distribution of all cells binned by 3D layer using GSVA signatures for angiogenesis and mTOR signaling in HGSOC organoid models
(n = 2,285 center cells, n = 2,819 middle cells, and n = 2,667 surface cells).
(L) Violin plots highlighting the distribution of all cells binned by 3D layer using GSVA signatures for TNFa signaling via NFkB and IFNy response in biopsy of
HGSOC PDX models (n = 280 center cells, n = 677 middle cells, and n = 1,010 surface cells).

HGSOC samples. We mapped our signatures to scRNA-seq
profiles of primary HGSOC ascites samples to explore if these
spatial profiles were present in primary patient ascites. This

served to both validate our consensus signatures and to impute
spatial information onto a spatially naive HGSOC scRNA-seq da-
taset. To do this, we utilized a recent report by Izar et al. detailing
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the scRNA-seq signatures of malignant and non-malignant cell
clusters collected from the ascites of HGSOC patients.** In the
report, a total of 22 ascites specimens were isolated from 11 pa-
tients. scRNA-seq analysis revealed both intra- and inter-tumor
heterogeneity with subpopulations of cells enriched for immuno-
reactive and inflammatory pathway signatures. Spatial informa-
tion was not collected in this study. To map and compare the
pan-model SEEP signatures with this dataset, we refined the in-
tegrated HGSOC model to retain only highly DA subpopulations
(Figures 6C and 7A) and performed reference-based single-cell
data integration. This integration mapped our DA-seq subpopu-
lations to the primary HGSOC ascites dataset reported by lIzar
et al. We integrated our subpopulation signatures onto Izar’s “to-
tal ascites” dataset containing CD45" depleted ascites cells
(Figure 7B) and onto their “malignant ascites” dataset containing
stringently enriched EPCAM* and CD24* cancer cells
(Figure 7C).

Integration identified populations of cells within the total asci-
tes and malignant ascites datasets which mapped to our sub-
populations. Pathway analysis of these cells mirrored the SEEP
pathway enrichment outcomes (Figure 7D). The strongest align-
ments were noted for the surface cluster #1 population that was
strongly enriched for both IFN response and TNFa signaling via
NF-«B signatures in both the total and malignant ascites data-
sets. Surface cluster #2 also revealed a well-defined population
of cells that were enriched for cell cycling signatures in both da-
tasets. The alignment for surface cluster #3 revealed a small
population of cells enriched for EMT and apical surface signa-
tures, whereas the center cluster demonstrated a large popula-
tion of cells sporadically enriched for oxidative phosphorylation,
MYC targets, and MTORC1 signaling. A more granular compar-
ative assessment of the top 30 gene markers from the DA-seq
pan-model SEEP signatures reinforced a strong alignment with
the primary ascites HGSOC cell populations (Figure 7E). A com-
parison of the expression patterns for TNFa induced protein 2
(TNFAIP2) in the four pan-model SEEP clusters and the total as-
cites and malignant ascites cell populations illustrates the align-
ment of these data. Each dataset shows pronounced expression
in surface cluster #1 with progressively lower expression in sur-
face clusters #3, #2, and center cluster #1 (Figure 7F). TNFAIP2 is
a bona fide TNFa inducible gene with demonstrated associa-
tions to cell migration and metastasis. Utilizing the reference
UMAP projections to visualize subpopulations associated with
the Hallmark G2M-Checkpoint and E2F-Targets signatures
further demonstrated the strong overlap between the SEEP

¢? CellPress

and the primary ascites datasets (Figures S16A and S16B).
The comparative expression patterns for cell division marker
ZW10 interacting kinetochore protein (ZWINT) are illustrative of
this overlap with strong enrichment within surface cluster #2 in
the SEEP pan-model dataset and both the total ascites and ma-
lignant ascites cell populations (Figure S16C). Extracting the
Hallmark signature for IFNy response also exhibited a prominent
overlap between these datasets (Figure S16D).

Given the significant enrichment of IFN response and other
immunoreactive pathways in our 3D HGSOC models and the pri-
mary HGSOC ascites samples, we sought to understand
whether immunoreactive expression was generally enriched in
3D models or a unique product of HGSOC models. To interro-
gate this question, we explored the well-studied IFNy gene prod-
uct indoleamine 2,3-dioxygnease 1 (IDO1) using gPCR analysis
of monolayer and spheroid models of HGSOC (PEO1, CIOVA1,
and CIOV3), melanoma (A375), and pancreatic cancer
(PANCH1). These data showed pronounce IDO1 expression in
each of the 3D HGSOC spheroid models, whereas the mela-
noma and pancreatic cell models did not display this trend
(Figures S16E). In addition, none of the monolayer cultures dis-
played pronounced IDO1 expression. These data suggest that
immunoreactive cell populations may be a unique feature of 3D
models of HGSOC and in situ disease and that these signatures
are driven by selected cell subpopulations that are enriched on
the surface of the 3D cell/tissue clusters. Collectively, these re-
sults show that recognizable cell populations within the primary
ascites samples reasonably align with SEEP-revealed spatially
distinct cell populations across model systems.

DISCUSSION

Modeling cancer using cultured cells or in vivo models offers a
non-invasive approach to study these diseases and gain insights
into their origin, progression, and treatment. Genomic character-
izations, including single-cell sequencing technologies, provide
a powerful tool to understand both in vitro and in vivo models
and compare them with human samples. It remains challenging,
however, to associate the transcriptional, proteomic, and meta-
bolic identity of cells with their contextual environment. To over-
come this challenge, various methods and technologies have
emerged, such as physically selecting cells from defined coordi-
nates within tissue sections, multiplexed fluorescence ISH,”'3
targeted in situ sequencing of RNA fragments,*° spatial recon-
struction of scRNA-seq data from ISH patterns,® and multimodal

Figure 6. Conservation of positional transcriptomics profiles across HGSOC models

(A and B) UMAP projections of cultured PEO1 spheroids, patient-derived organoids, and PDX-derived biopsy samples before (top) and after (bottom) scRNA-seq
integration by data source®’. Cell embeddings were color coded by data source (A) and spatial segmentation (B). Total cells from all models (center and surface):
n = 8,805.

(C) DA cell subpopulations identified in the integrated HGSOC model. Top: UMAP embeddings of cells were colored by DA-seq score*®; small/large values
indicate a high abundance of cells from the center/surface layers, respectively. Bottom: layer-specific DA subpopulations were detected by clustering cells with
absolute DA-seq score greater than 0.8. Total cells from all models in DA regions: n=2,105 (n = 1,019 center cells and n = 1,086 surface cells). Color scale is linear.
(D) Heatmap of layer-specific genes conserved across the three HGSOC models. The markers were selected using the FindConservedMarkers method*’ and
gene functional over-representation® in the MSigDB Hallmark collection (statistical test results are included in Table S8). Heatmap dimension: 364 genes x 2,002
cells. Color scale is linear.

(E) Gene-pathway network of Hallmark gene sets enriched in the integrated model (adjusted p value < 0.05). Size of the nodes depends on the number of
conserved markers overlapping a pathway. Gene set nodes are labeled circles, and gene nodes are squares without label. Nodes and edges are colored ac-
cording to the DA subpopulation clusters: blue, surface cluster 1; orange, surface cluster 2; green, surface cluster 3; red, center cluster 1. Details of the
enrichment analysis are included in Table S8.

Cell Systems 14, 464-481, June 21, 2023 475



¢ CellPress Cell Systems

OPEN ACCESS

A SEEP pan-Model Differentially B lzar et. al HGSOC Ascites scRNAseq Data ~ C lzar et. al HGSOC Ascites Tumor Cell Isolated
Abundant Subpopulation Map (Ref. 44) scRNAseq Data (Ref. 44)
4 Surface 4 4 @ Ref. Surface
Cluster 1 ~ ~ Cluster 1
a a
N Surf: < < _, Ref. Surface
g 0 > Crer 2 Zo = o0 ? Cluster 2
> Surface “Q. “9_‘} o Ref. Surface
-4 Cluster 3 -4 4 Cluster 3
Center Ref. Center
Cluster 1 Cluster 1
-10 5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10
UMAP1 ref. UMAP1 ref. UMAP1
D SEEP pan-Model Data Pathway Enrichements (Fisher’s p-value <0.05)
— 1
TN Sign. via NFKB Relative
IFNgamma Resp. i
IFNalpha Response Expression
FTargets (Cells)
3

2

MycTargets V1
Oxsphos.
MTORC1 Signaling

= 1]
G2M Checkpoint [
MycTargets V1 |
Apical Junction
Estrogen Resp. Early
Estrogen Resp. Late
EnT

Izar et. al HGSOC Ascites scRNAseq Data Pathway Enrichements (Fisher’s p-value <0.05)

TNF Sign. via NFKE
IFNgamma Resp.
1FNalpha Response
E2F Targets

G2M Checkpoint
MycTargets V1
Apical Junction
Estrogen Resp. Early
Estrogen Resp. Late
EMT

MycTargets Vi
Ox/Phos.
MTORC1 Signaling

Ref. Surface

L]
Clust. 1

TNE Sign. via NFKB
IFNgamma Rest

o Ref. Surface

Clust. 2
ENalph Response
o ;;me: Ref. Surface
Myc Targets V1 Clust. 3
Apial unction
e e Ref. Center
T Clust. 1
MycTargets V1
/phos.
MIORC1 Signaling
E SEEP pan-Model Data Conserved Markers (Top 30)(Fisher’s p-value rank)
Surface Clust. 1 o0 @PE000 0@ «J0000@E o ¢ GOOeQE - coce L] i ecceta@re [ £ e R SOt SRR E Ef::?s‘?in

SufaceClust.2¢(*€ @@+@o - 00:@90: :000: + [00 - ¢ - 000000000000 @P0-C 900900l ©- ¢ 000 ( G- @ - evc0ccne o ® @ °° (DAclusters)
Surface Clust. 3o - (@U@0 - 0@ L R T WU o™ 0 S, o

CenterClust. To|- s@)pe - @ - -o0 @eo -0l codos. o oo . .o @ ciieeciaer e @ -0 :@ -00@0@c0- ° -

Izar et. al HGSOC Ascites scRNAseq Data Conserved Markers (Top 30 from SEEP pan-Model Data)(Fisher’s p-value rank)

s @00 ooalecco@eoe : 1 . o - GD@EDre -0 . . 0 @@
Surface Clust. 2 « (@ @} e . X [ ¢ ° - W @00:0 0-1@0-008D-@8 @ ©
Surface Clust. 3« | @ @0 @ @@ @ @GP o0 QIUINS-*> @ @ «:@le- @ @CI@Pe- - . 10
Center Clust. 1« [0 ) @ s I 4 i AN SRLAR LA Percent
Izar et. al HGSOC Ascites scRNAseq Data (Tumor Cell Isolated) Conserved Markers (Top 30 from SEEP pan-Model Data)(Fisher’s p-value rank) Expressed
Sutace Cust.1«|SOEDE00 ¢ GPIGSIGEP0NEE-OL - -0 - 00000 e aB>o - +00- GE> @-¢ QLT 0« o € o« QIS € O QEIUGIN C ‘€« O
swtsecon 20 GIS-00 ¢@IIE"  @O6IE o8 HUSIGRININININNN0NNNNNNSE AFF: € ¢ (O (O @ O GUENI OO (M ™o

Surface Clust. 1

Surface Clust. 3 o [0a@ @@0+ - @B o0t/ 8" @ @ -0 ® 50%
Center Clust. 1 ; ®75%
@ 100%
F Izar et. al HGSOC Ascites scRNAseq Data
SEEP pan-Model Izar et. al HGSOC Ascites scRNAseq Data Tumor Cells Isolated
TNFAIP2 Expression Patterns TNFAIP2 Expression Patterns TNFAIP2 Expression Patterns
4 3 [

2 Z 3 )

[ [ [

S 3 ) S

o T T 2

> > 2 >

v v )

- 2 - -

c f=4 c

° ° °

2 7 21

a a 4 o

S S <4

[=% [=% o

x X x

w w —_— w

0 0f —=u 0 o
Surface  Surface  Surface  Center Surface  Surface Center Surface Surface  Surface Center Surface
Cluster 1 Cluster3 Cluster2 Cluster 1 Cluster 1 Cluster2 Cluster 1 Cluster 3 Cluster 1 Cluster3  Cluster 1 Cluster2

Figure 7. Conservation of integrated HGSOC spatial models in primary HGSOC ascites samples
(A-C) Reference-based transfer was used to map subpopulations from our integrated HGSOC model (n = 2,083; 812 surface cluster 1, 218 surface cluster 2, 42
surface cluster 3, 1,011 center cluster) (A) to primary single-cell data from total ascites collections (n = 7,144; 1,878 surface cluster 1, 247 surface cluster 2, 20
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spatial profiling.”® Each of these pioneering techniques have
yielded insights into the models they explore.

Here, we endeavored to add to these approaches using a
‘paint, sort, sequence’ method that combines the power of
scRNA-seq with positional stratification based on environmental
accessibility. Our method, called SEEP, is enabled by a cell
penetrant, pro-fluorescent dye (calcein AM) and a series of
pre-calibration steps that accurately and robustly define
positional layering of both in vitro culture models and in vivo
biopsy samples. Utilizing traditional FACS methods, volumetri-
cally defined cell layers can be collected and analyzed via
scRNA-seq.

We used SEEP to characterize the positional/transcriptional
heterogeneity of cells in three distinct HGSOC models (spher-
oids, organoids, and PDX tumor biopsies). Position-associated
transcriptional signatures were examined for each model individ-
ually and through comparative analyses across model types. The
spheroid model yielded the greatest level of accuracy in terms of
spatial resolution. A total of four distinct layers (surface, outside,
inside, and core) were captured and each possessed a unique
transcriptional identity. Several previously established concepts
in spheroid biology were confirmed including the hypoxic nature
of core cells. Cells in the middle domains (outside and inside)
were noted to be enriched for multiple gene sets related to cell
proliferation. Finally, surface cell identity was enriched for tran-
scriptional traits associated with inflammation (TNFe signaling
via NFkB), immune responsiveness (IFNa, IFNy), and genes
associated with EMT. Inflammation has been shown to be bene-
ficial for tumor seeding, invasion, and metastasis in ovarian and
other cancers but, to our knowledge, has not been reported to be
associated with tumor surfaces.”’* These features were
conserved among surface cells on an organoid and biopsy
model, suggesting that the surface microenvironment alone is
sufficient to drive these characteristics in an intrinsic fashion.
As cells from uniform spheroids cultures are driven into divergent
functional states based on cell position, it seems likely that intra-
tumoral position can determine cell state, and spatial heteroge-
neity across tumors cannot be fully explained by the migration of
pre-determined cell types to preferred positions.

Transcriptional signatures enriched in specific layers were
found to be correlated with each other including associations
of EMT with IFNvy responsive genes and apical surfaces with in-
flammatory response genes. Analysis of EMT-related genes
highlighted the epithelial-like nature of core cells and the mesen-
chymal-like nature of surface cells across each model. This sug-
gests that surface cells, with primed transcriptional states and
fewer physical barriers to dissemination, may play critical roles
in metastasis. Nonetheless, it is remarkable that the surface cells

¢ CellP’ress

of HGSOC models surveyed in this study natively adopt this
identity, particularly in spheroid models where there are no
host-related factors involved. Pan-model analysis added addi-
tional validation that cell subpopulations exist in all three models
including distinct surface subpopulations of either immunoreac-
tive cells or cells undergoing cycling and division. Many of the
pan-model transcriptional signatures found in this study broadly
align with previously reported bulk-sequencing and pathway
characteristics.®*** Izar et al. recently reported on a collection
of scRNA-seq data from ascites-derived HGSOC cells that re-
vealed a widespread inflammatory program among the most
common signatures associated with captured malignant cells.**
We utilized this study as a comparator to validate the accuracy of
the SEEP method, although also probing further the inflamma-
tory and immunoreactive nature of HGSOC cell clusters. Our
comparative analyses revealed distinct cell populations in the
captured ascites HGSOC cells similar to the pan-model cell pop-
ulations identified using the SEEP method. The results suggest
the presence of inflammatory/immunoreactive, cell cycle ma-
chinery, and cellular differentiation and organization pathways
on the surfaces of HGSOC tumors from patient ascites samples.
These data validate the SEEP method and demonstrate the abil-
ity of complex 3D models to replicate complex disease pheno-
types, such as intratumoral heterogeneity, although also high-
lighting the existence of distinct druggable phenotypes across
different cell subpopulations.

We believe that SEEP will be applicable to a variety of different
models not only as a stand-alone method but also as a comple-
ment to previously described techniques that relate transcrip-
tional identity to cell position. Furthermore, as SEEP does not
rely on transcriptional variation to infer position, it will comple-
ment and refine computational methods for defining spatial
genomic relationships. Unlike ISH methods, SEEP retains a link
between cDNA and cell barcodes enabling genotyping or the
identification of gene fusions using long-read sequencing. In
addition, the method can be performed at scale and is compat-
ible with high-throughput pharmacological testing (e.g., in
conjunction with CITE-seq to define screening conditions). Using
existing spatial methods, these experiments are arduous to
conduct across whole structures and many conditions. SEEP
does require extra steps in the binning, sorting, and indexing
stage. However, because these steps do not require niche
equipment or expertise, the SEEP method lowers the barrier
for non-specialized labs to acquire spatially resolved scRNA-
seq data. Thus, the SEEP method can enable studies designed
to identify variation in cell states as a function of environmental
accessibility and adaptation to perturbation as influenced by
the tissue shape. However, it is important to note that the

surface cluster 3, 4,999 center cluster) (B) and malignant-enriched ascites collections (n = 1,015; 463 surface cluster 1, 128 surface cluster 2, 20 surface cluster 3,
404 center cluster) (C) from HGSOC patients. From each data source, top 99% cells with the strongest contribution to the first UMAP dimension were used. In
addition, the ascites cells with maximal transfer score greater than 0.5, and a difference from the next largest score of at least 0.25 were selected. Data were
embedded and visualized across two UMAP dimensions, and the top 99% of cells with the highest contribution to the first UMAP dimension were used.

(D) Signature scores (69) calculated for the top Hallmark gene sets enriched in the integrated HGSOC model (p value rank < 3). Up to 2,000 top cells from each
cluster were used (the top 95% of cells with the strongest contribution to the first UMAP dimension). The signature scores displayed are scaled and centered to
zero mean and one SD across cells. Color scale is linear. (E) Dot plot showing the relative expression of the top 30 markers (p value rank) from the DA-seq pan-
model SEEP signatures. Expression is shown across the integrated SEEP data, the total ascites data, and the malignant ascites data. Color scale is linear.

(F) Violin plots overlaid with boxplots and averages (horizontal segments) of TNFAIP2 normalized expression from the integrated SEEP data, the total ascites data,

and the malignant ascites data.
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SEEP method does not reveal how transcriptional heterogeneity
is influenced solely by tissue shape. SEEP’s intrinsic ability to
permanently stain cells is advantageous for optimizing dissocia-
tion methods. Dissociation of complex tissue types is a limitation
for scRNA-seq experiments, and methods with stable spatial
demarcation strategies will be advantageous for optimizing the
dissociation protocol of a given tissue. The use of a multicolor
system may be able to extend the scope of SEEP where pulsed
additions of dye could allow for finer radial segmentation. Grid-
segmentation along cartesian coordinates may be possible by
two-dimensional staining (e.g., exposing a 3D tissue to dye
fronts from a perpendicular axis) and/or the embedding of
point-source dyes throughout a tissue (e.g., embedding fluoro-
phore releasing hydrogels throughout a 3D tissue). The diffusion
characteristics of calcein AM dye may be limiting for certain ap-
plications. Fortunately, a multitude of bio-orthogonal dyes exists
that greatly expand the range of the SEEP method when used
creatively to solve distinctive experimental goals.®® For instance,
the coupling of the SEEP method with the field of “activity-based
diagnostics” may greatly expand the data capture capacity of
the probes used in that emerging research platform.>®
Exchanging colored dyes for synthetic DNA oligos could be
used to segment 3D tissues and would eliminate the need for
FACS as synthetic oligo concentrations could be quantified dur-
ing sequencing. In addition, dissociating and reforming spher-
oids stained via SEEP may add insights into whether surface-
primed cells would retain their previous functional state, adopt
a new state, or migrate to the “new” spheroid surface. Expand-
ing the SEEP methods into more complex tissue and/or whole
tumor systems will be complicated by extensive vascularization
networks that will alter dye accessibility. This reality may, howev-
er, offer a means to correlate phenotypes associated with oxy-
gen, nutrient, or drug accessibility to cell transcriptional identity
and response following perturbation. Despite the inherent limita-
tions discussed above, the feasibility and flexibility of the SEEP
method can enable the creative expansion of spatial scRNA-
seq queries. For appropriate systems, the accuracy and robust
nature of SEEP should enable a variety of explorations and reveal
insights into environmental accessibility, spatial identity, hetero-
geneity, and the unique relationship of single cells with the
broader system.
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github.com/indrops/indrops

https://cran.r-project.org/web/
packages/Seurat/index.html

N/A
N/A
https://imagej.nih.gov/ij/
N/A
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

DAseq v1.0.0 Zhao et al.*® v1.0.0 https:/github.com/
KlugerLab/DAseq

Python (2.7) Python Software Foundation N/A

R (v3.6.3) The R Project for Statistical N/A

Computing

Additional R packages: dplyr, tidyr, Matrix, ggplot2, CRAN & Bioconductor N/A

colorRamps, reshape2, ggextra, GSVA, parallel, repositories

ComplexHeatmap, circlize, GetoptLong, grid, gridExtra,

stats, lattice, latticeExtra, fgsea, cogena, RColorBrewer,

SDMTools, ggrepel, scales, DT

In-house code for image analysis this study All code is available on this study’s;

(MATLAB, python, & R) GitHub repository: https://github.com/
davidbmorse/SEEP_image_processing;
https://doi.org/10.5281/zenodo.7765319

In-house code for sequencing data analysis (R) this study All code is available on this study’s;
GitHub repository: https://github.com/
davidbmorse/SEEP; https://doi.org/
10.5281/zenodo.7765315

Other

Photomasks (25400 DPI) CAD/Art Services Various designs

500 um thick test-grade silicon wafers University Wafer Various

of various diameters
Microtubing (i.d. 0.38 mm X o.d. 1.09 mm)
Disposable Biopsy Punches (various diameters)

Scientific Commodities
Integra Miltex

Cat#BB31695-PE/2
Various

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Craig J.
Thomas (craigt@mail.nih.gov).

Materials availability
This study did not generate new unique reagents.

Data and code availability

All data needed to evaluate the conclusions in the paper are present in the main text and/or the supplementary materials. The data-
sets generated in this study have been deposited in the Gene Expression Omnibus, a public functional genomics data repository,
under the accession number GSE157299. Codes used within this study are available on GitHub at https://github.com/
davidbmorse/SEEP_image_processing and https://github.com/davidbmorse/SEEP.

METHOD DETAILS

Cell culture and tissue handling

Several methods exist to create spheroidal cultures.®*°%% |n this study, PEO1 cells were cultured in a stem-cell based media in ultra-
low attachment (ULA) plates to compel spheroid formation. PEO1 (ECACC 10032308) cells were grown and sustained in adherent cell
culture flasks in RPMI media with 10% FBS before being transferred to ultralow attachment (ULA) 96-well plates for HGSOC spheroid
formation.®®®" 10,000 cells were seeded per well and allowed to grow for 14 days in spheroid media prior to harvesting.

Organoid cultures have emerged over the past decade as highly valuable cancer cell models. While there are diverging definitions,
most agree that an organoid model is an explant of cells resected from an in vivo model that self-organize into 3D cell clusters that
retain key elements of the tumor microenvironment.®>®® Several organoid models of HGSOC have been reported utilizing a variety of
methods including derivations from fallopian epithelial stem cells, surface epithelial cells, or cells collected from patient ascites.®*°”
Organoids were harvested from sphere-forming cells present in HGOSC patient ascites collections and grown in a custom Matrigel
solution for 14 passages prior to harvesting. Organoid size and cell number was dependent on natural ascites sphere formation. DNA
sequencing of the organoids revealed chromosomal aberrations and instabilities characteristic of p53 mutated HGSOC.
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HGSOC cells for PDX models were collected from patients undergoing interval debulking surgery or ascites drains at Adden-
brooke’s hospital in Cambridge, UK. PDX tumors were generated using cells that were rapidly thawed from cryopreservation, and
3 million cells were injected subcutaneously into NOD.CgPrkdcs®l12rg™Wi//SzJ (NSG) mice. Mice were monitored weekly, and
the tumor volume determined using caliper measurements. Once reaching a maximum volume of 1500 mm?®, mice were culled
and the tumor harvested. Serial transplants were performed to generate maximum of 3-4 generations. Animal procedures were con-
ducted in accordance with the local AWERB, NACWO and UK Home Office regulations (Animals (Scientific Procedures) Act 1986).

SEEP calibration staining

Symmetric staining on spheroids

HGSOC spheroids were imaged using both confocal and light sheet microscopy to quantify the kinetics of dye-uptake. High-content
confocal microscopy was performed on 96-well spheroid plates as follows: We removed exogenous esterases from mature spheroid
plates by performing a gentle media-exchange using fresh, serum free, and phenol-red free media, leaving a final volume of 50 pL of
fresh media per well after the exchange. We transferred spheroid plates to a high-content Opera Phoenix confocal microscope and
gently added 50 pL of a 2x concentration calcein-AM staining solution (in culture-matched media) to the wells using a multichannel
pipette. The final calcein-AM concentration was 0.5 pM. Spheroids were imaged every 5 min for 5 hours to monitor dye penetration.
Z-slices, 12 um apart were taken from the objective-facing surface of the spheroid through the spheroid’s midpoint. In addition, we
performed light-sheet microscopy on individual spheroids suspended in a 0.5 pM calcein-AM solution during imaging. 12 um spaced
z-slices were taken throughout the volume of the spheroids for 2 hours to monitor dye penetration. In both cases a 488 nm laser was
used to excite calcein, and fluorescence emission collection was centered at 522 nm. For the calibration step, imaging was per-
formed at 37 oC and 5% CO,; tissues were discarded after imaging.

Symmetric staining on organoids

HGSOC organoids were imaged using high content confocal microscopy to quantify the kinetics of dye uptake as follows: 4 wells of
organoids, grown in 24 well plates, were gently washed 3 times in RPMI with 10% FBS and allowed to gravity settle for 3 min between
washes to ensure Matrigel, debris, single-cells, and small cell clusters were removed. After the last wash, organoids were transferred
to flat bottom 96-well plates in 100 ul of fresh, serum free, and phenol-red-free media for imaging. We transferred organoid plates to a
high-content Opera Phoenix confocal microscope and gently added 100 ul of 2x concentration calcein-AM staining solution (in cul-
ture-matched media) to the wells using a multichannel pipette. The final calcein-AM concentration was 0.5 uM. Organoids were
imaged as a series of z-stacks every 10 min for up to 2 hours to monitor dye penetration.

Punch-SEEP on solid tumor biopsy

Punch-SEEP staining was performed using a prepared biopsy punch. Dye penetration was monitored at various time points by
confocal microscopy by ejecting tissue biopsies, washing, and imaging in media-filled glass-bottom dishes. Dye-loaded biopsy
punches were prepared using disposable, 1.5 mm wide punches, prefilled with a calcein-AM saturated hydrogel plug that melted
in cell-culture conditions. A 10% gelatin solution in sterile PBS was prepared and stored at 4 oC. Prior to biopsy loading, the gelatin
was melted in a warm water bath and 4 mL were pipetted into a small plastic weigh-boat to a height of 2 mm. The weigh-boat con-
taining the gelatin was then lyophilized for 24 hours. The lyophilized gelatin was cut into 1 cm squares and submerged in a 250 pL
solution of 2 mM calcein AM. After a few minutes, full absorption of the dye solution into the gelatin pieces was observed. The gelatin +
dye solution was kept onice and in the dark until use. Just before biopsy punching, the gelatin squares (now very soft and fragile) were
removed from the dye solution and placed within a weigh-boat or on an impermeable cutting surface. Biopsies were taken of the
gelatin squares and visually inspected to ensure a gelatin plug was flush with the surface of the biopsy punch. The gelatin plug
was then gently pushed 0.5 mm into the biopsy punch to ensure the circular blade had clear/direct access to the tumor surface. Bi-
opsies were immediately used to punch the dissected tumors. Punch-biopsies taken from subcutaneous HGSOC tumors grown in
PDX mouse models were imaged using confocal microscopy to quantify the kinetics of dye-uptake. Tissue acquisition, staining, and
imaging were performed as follows: Mice were sacrificed, and tumors were dissected and stored in ice-cold RPMI. Tumors were cut
in half and biopsies were taken from the tumor surface normal to the cross-sectional cut. Biopsies were taken using dye-loaded
1.5 mm diameter self-ejecting biopsy punches that were prepared in advance. After punching, the biopsies were not ejected from
the biopsy puncher and the entire puncher was placed at roughly a 20° angle in a 15 cm cell-culture dish prefilled with a few mm
of RPMI at 4 oC. The sharp tip of the punch was submerged in the media while the handle rested on the lip of the culture dish.
The lid was placed gently over the punches and the entire dish was incubated in a cell culture incubator at 37 oC and 5% CO..
We performed this procedure for multiple biopsies, and imaged dye propagation though the sample at various time points using
confocal microscopy. We ejected biopsies into 40 mL of RPMI to wash away excess dye. We placed washed biopsies on glass-bot-
tom imaging dishes filled with 2 ml of RPMI media and imaged the samples on a Leica SP5 confocal microscope. Multiple fields of
view were acquired to image the entire biopsy (Figures 4A, S3D, and S3E). Z-slices were taken every 10 um through the sample.

Imaging dye penetration

Confocal and light-sheet microscopy were performed to quantify the penetration of dye into tis- sues. To account for the attenuation
of signal with depth in the dense samples, attenuation was calculated and used to normalize measurements. We stained PEO1 cells
with cell tracker dyes green, violet, and deep red prior to spheroid formation. We formed 10,000-cell spheroids in ULA 96-well plates
as done in previous experiments. After spheroid maturation, signal attenuation was measured by taking z-slices 10 um apart begin-
ning from the objective-facing spheroid surface. For cell tracker green, of equivalent excitation/emission parameters to calcein,
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exponential decay was observed up to 100 pm into the spheroids, and a trend line, y = 14,425e%2°" fit to the data with R? = 0.999. This
attenuation factor was used to normalize the images monitoring dye penetration into both spheroids and organoids. After attenuation
normalization, dye penetration images for spheroids and organoids were computationally divided into n shells of equal volume. To
identify spheroid and organoid boundaries among hundreds of confocal images and segment them into concentric shells of equal
volume, the open-source convoluted neural network, Mask R-CNN, was implemented across image stacks.®® Once the tissue struc-
tures were localized, a custom image analysis pipeline was used to segment cell layers based on cells’ Euclidian distances from tis-
sue margins. An erosion strategy was used and implemented in MATLAB; the code can be found in the GitHub pages mentioned
below. n was calculated based on the % fluorescence difference between adjacent layers for each time point. The time needed
to reach the highest n, with the greatest change in intensity between surface and core fluorescence was noted. Spheroid optimal
penetration time was 60 min while organoid optimal penetration time was 55 min. For the biopsy samples, attenuation was not calcu-
lated as change in dye concentration was calculated perpendicular to the direction of attenuation. For biopsies, z-planes were flat-
tened into a single max-projection and change in fluorescence intensity between the surface of the biopsy and the core were
observed in time. n, the number of layers the biopsy would be divided into, was calculated based on the % fluorescence difference
between adjacent layers for each time point. At 75 min, change in intensity between biopsy surface and core had plateaued.

For all tissues, a maximum change in fluorescence intensity plateaued at specific times. Achieving a steady state of fluorophore
acquisition proved ideal for consistently segmenting tissues based on dye uptake as harvesting times were flexible. Beyond a critical
time, each tissue could be removed from its staining solution at a wide range of times without effecting segmentation performance.
Due to the desire to limit cell handling, tissues were harvested at the earliest time possible for proper segmentation.

SEEP controls for examining the effect of staining and sorting on transcription

To control for the potential accumulation of technical bias via calcein staining and/or FACS sorting, HGSOC PEO1 cells were exposed
to the staining and sorting conditions used in SEEP. PEO1 cells were grown as monolayers, gently dissociated, and either immedi-
ately sequenced (control group) or conditioned via sorting (sort only group), staining (stain only group), or staining and sorting (sort &
stain group). All experiments were performed twice to garner two technical replicates for each condition. All replicates and conditions
were processed via inDrop independently. All library preparation was performed independent. After library preparation, replicates
and conditions were indexed according to their identity, pooled, and sequencing on a 75 bp lllumina Nextseq 400M High output
kit with 5% PhiX as a spike-in control. In total, 4,574 cells passed filtering to explore possible technical bias. Cells of each condition
were processed and analyzed computationally as described in the below sections titled Indrop Deployment for scRNA-sequencing,
Data Preprocessing and Filtering, and Data Analysis and Visualization.

SEEP measurement, dissociation, and FACS

Samples were stained as previously described for optimal segmentation times (spheroid = 60 min, organoid = 55 min, and biopsy =
75 min). For each of the following systems, the experiments described below were repeated two times on different days and with
different cells giving us two biologically distinct (i.e., cultured at different times under identical conditions) replicates. Each biologi-
cally replicate was further split into two technical replicates just prior to performing FACS. Overall, each system had 4 replicates (2
biological replicates with 2 technical replicates each).

Spheroids

192 spheroids, from 2 ULA 96-well plates, were pooled in a 15 ml conical flask and washed 2x in fresh spheroid media. Spheroids
were allowed to settle to the bottom of the 15 ml conical for 2 min with no centrifugation before removing supernatant and cellular
debris. After the last wash, 2 ml of serum-free spheroid media was added to the spheroids. 2 uL of freshly made 500 uM calcein AM in
PBS + 0.05% BSA was gently added to the spheroid solution for a final calcein-AM concentration of 0.5 pM. The conical was gently
flicked 5x to resuspend the spheroids, the lid was vented, and the conical was stored in a cell culture incubator (37 oC and 5% CO2)
for 60 min. Every 10 min the conical was gently flicked 5x to re-suspend the settled spheroids. After 60 min, the spheroids were
washed 3x in 15 ml of PBS + 0.05% BSA and allowed to gravity settle between washes.

Samples were dissociated in 2 ml of Accutase at 37 oC for 30 min with intermittent pipetting every 10 min to encourage dissoci-
ation. Intermittent pipetting consisted of gently pipetting 20x using a 1000 pL pipette tip pre-blocked with 0.05% BSA. After 30 min
and the final dissociative pipetting, the spheroids were no longer visible, and the solution appeared cloudy and homogeneous. 13 ml
of RPMI with 10% FBS was added to the solution, inverted 5x, and centrifuged for 5 min at 400g. The cells were resuspended in 1 ml
of ice-cold PBS + 0.05% BSA and passed through a 40 um cell filter. The filter was gently rinsed with 10 ml of ice-cold PBS + 0.05%
BSA. 11 ml cell suspension was centrifuged at 400 g for 5 min, resuspended in 1 ml of ice-cold PBS + 0.05% BSA, and moved to a
polypropylene FACS tube. Cells were kept on ice and in darkness until FACS.

Organoids

4 wells of organoids grown in 24 well plates were gently washed 3x in RPMI with 10% FBS and allowed to gravity settle for 3 min
between washes to ensure Matrigel, debris, single-cells, and small organoids are removed. After Matrigel removal, organoids
were processed as spheroids, above, except for the following changes: the staining incubation time was 55 min and 2 mL of Tipple
E Express (Thermo) was used instead of Accutase as the dissociation agent.

PDX Biopsies

Individual Biopsies (n = 5) from subcutaneous PDX tumors were punched using the aforementioned method and dye-loaded biopsy
punches. They were incubated at 37 oC and 5% CO, for 75 min, and then ejected into 40 mL of room temperature RPMI + 10% FBS.
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Biopsies were centrifuged for 3 min at 500 g to collect. The supernatant was removed, and a scalpel was used to break up firm bi-
opsies at the bottom of the 50 mL conical. The biopsy was then dissociated and washed using a gentle-MACS dissociator according
to the 37 oC m_TDK_2 (mouse kit) protocol provided by the dissociation kit. m_imptumor_01 protocol was performed if visible biopsy
fragments remained after dissociation. Dissociated cells were centrifuge in a MAX tube at 350 g for 5 min and resuspended in
DMEM + 10% FBS filtered through a 70 um filter placed on a 50 mL conical. The strainer was washed in 50 mL DMEM + 10%
FBS. Finally, the cell suspension was centrifuge at 350 g for 5 min, resuspended in 1 mL of ice-cold PBS + 0.05% BSA, and moved
to a polypropylene FACS tube. Cells were kept on ice and in darkness until FACS.

FACS

Cells were sorted into 4 (spheroids) or 3 (organoids and biopsies) bins based on 515 nm emission from a 488 nm laser source. Debris,
dead cells, and cell clumps were conservatively removed based on forward/side scatter profiles. The sample was allowed to run for a
few minutes while laser power was adjusted to observe a Gaussian distribution of unstained cells followed by a leading tail of stained
cells. Bin widths were set to receive equal proportions of cells. After adjusting laser power and bin width, samples were collected in
1.5 mL protein LoBind Eppendorf tubes prefilled with 250 uL of ice-cold PBS + 0.05% BSA. Samples were kept on ice and imme-
diately barcoded via the inDrop protocol.®

Indrop deployment for scRNA-sequencing

For all tissues inDrop was performed as follows: Cells were suspended ina 1x PBS, 0.01% (v/v) BSA, and 15% (v/v) OptiPrep solution
at a concentration of 120,000 cells/ml and processed via the inDrop protocol with v3 barcoding design.®®°” Polyacrylamide bar-
coded hydrogel beads were fabricated in house and quality controlled using FISH and gPCR on the extended primers; the barcode
diversity for all experiments was 147,456. Capture efficiency and cross-contamination levels were quantified for each batch of hydro-
gels by species mixing experiments done on human HEK293 and mouse 3T3 fibroblasts and by fast imaging of the microfluidic
encapsulation events. To maintain a barcode collision rate of less than 1%, collection fractions were acquired at or below 2,949 cells.
Microfluidic handling and library preparation were carried out according to published protocols.®' Microfluidic flow rates, cell capture
rates, and optically observed doublet rates can be found in Table S1A. Libraries were amplified and barcoded via limited-cycle PCR
and inspected for quality on a BioAnalyzer HS kit. Library size distribution and concentration was measured on a BioAnalyzer HS and
Qubit HS respectively to inform sample pooling at equimolar ratios. The final library was purified on a 1.5x volumetric ratio of
AmpureXP beads and quantified using the Kapa NGS library quantification kit and a BioAnalyzer HS. The oligonucleotide sequences
used to barcode the final library can be found in Tables S1B and S1C. Libraries were sequenced using a 75 bp lllumina Nextseq 400M
High output kit with 5% PhiX was used as a spike-in control. Oligonucleotide barcode sequences were recorded in Tables S1B and
S1C, and sequencing parameters were recorded in Table S1D.

Data preprocessing and filtering

Fastq files were generated using lllumina’s bcl2fastq script (Table S1E). The data were filtered, quantified, and sorted using the in-
Drop analysis pipeline. The pipeline execution parameters can be found in Table S1E and parameters for a.yam/ file can be found in
Table S1F.

Raw counts matrices from the inDrop pipeline were converted into sparse matrices using a custom R script and loaded into the
Seurat®® tool using the Read70x function. The custom script for sparse matrix conversion can be found in Table S1E. Cells were
further filtered from empty droplets and quality controlled by analyzing the distribution of the number of UMIs per cell, the number
of genes per cell, and the fraction of mitochondrial genes per cell. Common scRNA-seq filtering criteria were assessed and imple-
mented on the individual cell collections and sequencing runs. As sample type, sample quality, cell-capture rate, and sequencing
depth varied across experiments, filtering thresholds sought to differentiate between high-quality and low-quality cells based on
the relative abundance of reads allocated to each cell barcode. To do this, we fit a mixture model to the data following a procedure
outlined by the Martin Hemberg Group (https://github.com/hemberg-lab/scRNA.seq.course) and identified where the higher and
lower distributions intersected. For the spheroid samples, cells were selected that contained between 200 and 2,500 unique genes
and between 0 and 18% mitochondrial reads. 7,908 cells remained after filtering. These were made up of 1,178 center cells, 2,471
inside cells, 2,736 outside cells, and 2,667 surface cells. For the organoid samples, cells were selected that contained between 580
and 5,000 unique genes, between 5 and 30% mitochondrial reads, and between 500 and 15,000 unique molecules. 7,771 organoid
cells remained after filtering. These were made up of 2,285 center cells, 2,819 middle cells, and 2,667 surface cells. For the PDX-bi-
opsy samples, cells were selected that contained between 200 and 3000 unique genes, between 0 and 40% mitochondrial reads,
and between 350 and 15,000 unique molecules. 1,967 PDX biopsy cells remained after filtering. These were made up of 280 center
cells, 677 middle cells, and 1,010 surface cells.

After filtering, cells were scored for cell cycle by the CellCycleScoring function. The data were then log normalized using a global-
scaling normalization via the NormalizeData function and a scale factor of 10,000. For the biopsy sample containing both human and
mouse cells, mouse cells (n = 151) and mouse-human doublets (n = 29) were identified and removed by aligning RNA-seq reads to
both human and mouse transcriptomes. These data were removed from the overall analysis.

69,57

Immunohistochemical evaluation of formalin-fixed paraffin-embedded spheroids (FFPE)
All slides were baked prior to staining. MIB-1 immunohistochemical staining was performed on an automated immunostainer
BenchMark Ultra (Roche). A 1:200 dilution of MIB-1 (Clone MIB-1, Dako, Cat No. M7240, RRID:AB_2142367) was applied and
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detected with an ultraView Universal DAB Detection Kit (Roche, Cat No. 760-500). The slides were dehydrated in graded alcohols,
treated with xylene (2 x 5 min), and cover slipped.

In situ hybridization-based detection of SLPI and CXCL10

The manual RNAscope® 2.5 High Definition (HD)- BROWN Assay kit (Advanced Cell Diagnostics, Cat No. 322300) was used accord-
ing to manufacturer’s instructions to perform ISH for Hs-SLPI Probe (Cat No. 531861) and Hs-CXCL10 (Cat No. 311851) in formalin-
fixed paraffin-embedded (FFPE) spheroids. Slides were deparaffinized in xylene (2 x 5 min), dehydrated in 100% EtOH (2 x 1 min), air
dried at RT, and incubated in RNAscope® Hydrogen Peroxide (Cat No. 322330, ACDBio) at RT for 10 min to quench endogenous
peroxidases. Slides were washed in DI water twice before being submerged in 700 mL of fresh boiling RNAscope® 1X Target
Retrieval Reagents solution (Cat No. 322000, ACDBIo) for 15 min and then washed twice in DI water, once in 100% EtOH, and air
dried at RT. A hydrophobic barrier was drawn around the tissue and RNAscope® Protease Plus (Cat No. 322330, ACDBIio) was
applied for 20 min in a HybEZ™ Oven at 40°C (ACDBiIo). Slides were then washed twice in DI water and incubated with the appro-
priate probe for 2 hours in the HybEZ™ Oven. RNAscope® signal amplification reagents (Cat No. 322310, ACDBio) AMP 1 (30 min),
AMP 2 (15 min), AMP 3 (30 min), AMP 4 (15 min), AMP 5 (75 min), and AMP 6 (15 min) were applied and incubated in the HybEZ™
Oven. Before adding each AMP reagent, the slides were washed twice with RNAscope® 1X Wash Buffer (Cat No. 310091, ACDBio).
RNAscope® DAB detection reagents (Cat No. 322310, ACDBIo) were applied and incubated for 10 min in the HybEZ™ Oven. Sec-
tions were counterstained with Harris-Mayer’s Hematoxylin, washed in tap water, placed in 0.02% ammonia water for 10 seconds,
and washed again with tap water. Sections were then dehydrated in graded alcohols, treated with xylene (2 x 5 min), and cover
slipped.

Spheroid image analysis

A semi-automated algorithm systematically analyzed gene expression in sub-regions of individual spheroids. An image analysis
script was created and executed in the Matlab scientific computing environment (Matlab version 2021a, Mathworks, Inc.). The script
functions performed RGB (red, green, blue) three-channel thresholding to isolate the image region pixels that contain the colorimetric
dye marker of gene expression. The same thresholding settings were applied to all images. The sum area of the binary masks from
these regions approximates the number of ‘expression positive’ cells, which exhibit detectable levels of gene expression. Intensity
differences were measured using script functions converting the RGB color space to grayscale values and then inverted the gray-
scale image so that dark regions correspond to higher intensity values. The integrated intensity of the inverted grayscale image in
the ‘expression positive’ cell binary mask was used to approximate total gene expression in these regions. The script applied a sepa-
rate threshold function to isolate the ‘whole spheroid’ region as a binary mask. Binary morphological functions were applied to fill any
internal gaps in the ‘whole spheroid’ region. The script distance transform function converted the pixels in the ‘whole spheroid’ binary
mask region producing output pixel values that represent the distance (in pixel count) to the edge of the ‘whole spheroid’ region.
Within each spheroid, the distance labeled pixels were sorted into radial band regions. The cut-off values for distance sorting pro-
duced four band regions per spheroid, and each of these bands had approximately the same width (in pixels). The ‘expression pos-
itive’ cell region was then measured in each of the radial band regions. The area of the ‘expression positive’ cell regions was also
normalized to the total area in the corresponding radial band.

Data analysis and visualization

Pairwise anchor-based single-cell data integration implemented in Seurat v4.1 was used to generate the HGSOC model from the
Center and Surface segmentation layers of cultured PEO1 spheroids, patient-derived organoids, and PDX-derived biopsy cells. The
top 2000 features most variable across the data sources were identified by the SelectintegrationFeatures function and subsequently
used for data alignment with the FindIntegrationAnchors and IntegrateData methods. The default integration parameters were
applied with log normalization and CCA dimension reduction. ScaleData (mitochondrial and cell cycle genes regressed out),
RunPCA, and RunUMAP were performed on the integrated dataset. Subsequently, the DAseq v1.0.0 algorithm*® was used to detect
distinct cell subpopulations in the regions of DA between the Center and Surface layers of the integrated HGSOC model (absolute
DA-seq score > 0.8 and cluster size of at least 50 cells). To characterize DA subpopulations, Seurat’s FindConservedMarkers (Wil-
coxon Rank Sum test) was performed to select genes upregulated in cluster vs all mode in each data source of the HGSOC model
(maximum p-value less than 0.05). Functional ORA was then run with the Hallmark Collection of MSigDB v6.2 using fgsea’s v1.18 fora
(Fisher's exact test) and CollapsePathwaysORA (an algorithm retaining over-represented non-redundant gene sets).*® Ucell
v1.99.77° and the AddModuleScore_Ucell function was used to calculate single-cell scores for the Hallmark signatures. The enriched
(adjusted p-value less than 0.05) and non-redundant gene sets, together with the significant conserved markers overlapping these
gene sets, defined the transcriptional signatures distinguishing the DA subpopulations. The reference HGSOC model was generated
with Seurat’s RunPCA (8 PCs) and RunUMAP dimension reductions using the integrated model and the identified DA subpopulations
and applied in the downstream analysis for mapping the single-cell patient HGSOC data.

47

Patient HGSOC Mapping

HGSOC single-cell RNA sequencing datasets published by Izar et al.** were downloaded from the Gene Expression Omnibus (GEO)
database (GSE146026) and analyzed with Seurat v4.1.1%%" after transforming the normalized count scale into Seurat’s default scale
using a 10k scale factor and the natural log. Seurat’s reference-based transfer of single-cell cluster information®“®*” was applied to
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predict Center and Surface DA subpopulation labels in the ascites cells collected from the HGSOC patients. FindTransferAnchors,
TransferData, and MapQuery functions were run with the k.anchors parameter set to 20, CCA dimension reduction, and the UMAP
projection model. A subset of ascites cells with maximal transfer scores greater than 0.5 and a difference from the next largest score
of at least 0.25 were used for validation of the transcriptional signatures’ characteristic of the reference DA subpopulations.

GSEA analysis

Pre-ranked GSEA was performed using the R Bioconductor fgsea package and the hallmark collection of the Molecular Signature
Database (MSigDB version 6.2).%%>""72 Genes were ranked based on the average expression in a cell cluster relative to the global
average. Permutation p-values for the enrichment scores were calculated based on 10000 gene set-wise runs and significantly en-
riched gene sets were identified with false discovery rate adjusted p-values less than 0.05. Common GSEA leading edge (LE) gene
sets were extracted for comparison of functional enrichment across ovarian spheroids, organoids, and biopsies.

GSVA analysis

GSVA implemented in the R cerebroApp package was applied to determine gene set activation (MSigDB version 6.2 collections) in
each cell.*®*%7® The GSVA scores were calculated with Gaussian kernel and the maximum difference parameters on Seurat log
normalized data and highly variable genes. The analysis utilized the computational resources of the NIH HPC Biowulf cluster
(http://hpc.nih.gov).
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