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Stability in a group

Gabriel Conant!

Abstract. We develop local stable group theory directly from topological dynamics, and
extend the main tools in this subject to the setting of stability “in a model.” Specifically,
given a group G, we analyze the structure of sets A € G such that the bipartite relation
xy € A omits infinite half-graphs. Our proofs rely on the characterization of model-
theoretic stability via Grothendieck’s “double-limit” theorem (as shown by Ben Yaacov),
and the work of Ellis and Nerurkar on weakly almost periodic G-flows.
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1. Introduction

One of the most well established and fruitful areas of model theory is the study
of groups definable in stable first-order theories, which connects mathematical
logic to algebraic geometry, topological dynamics, and combinatorial number
theory. At the heart of this connection is the notion of a generic subset of a group.
Given a group G, we say A C G is generic if G can be covered by finitely many
left translates of A. An important fact in stable group theory is that the generic
definable subsets of a stable group are partition regular, i.e., the union of two non-
generic definable sets is non-generic. Consequently, there exist generic types (i.e.,
ultrafilters of generic definable sets), which provide a model theoretic analogue of
generic points in the sense of algebraic groups and of group actions on compact
Hausdorff spaces.

Let us recall the basic definitions of stability theory (although we note that no
model theory will be required for our main results). Given a complete first-order
theory T in a language £, we say that an L-formula ¢(x, y) is stable in T if for
some k > 1, there is no model M = T containing tuples ay, ..., ag, b1, ..., by
such that M = ¢(a;, bj) if and only if i < j (in this case, we also say ¢(x, y)
is k-stable in T'). A theory T is stable if every formula is stable in 7. A stable
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group is a group whose underlying set and group operation are definable in a stable
theory.

A canonical example of a stable theory is the complete theory of an alge-
braically closed field. So algebraic groups provide natural examples of stable
groups. The model-theoretic study of algebraic groups motivated much of the
early work in stable group theory, and has now developed into an entire industry
focusing on groups of “finite Morley rank.” Another important example of a stable
group is any abelian group (in the pure group language). These are special cases
of “1-based” groups, whose theory was developed by Hrushovski and Pillay [21].
This notion is related to the Mordell-Lang Conjecture which, in model-theoretic
language, says that if G is a finite rank subgroup of a semiabelian complex vari-
ety, then the first-order structure on G induced from the complex field is stable and
1-based. In [18], Hrushovski combined the study of 1-based groups and groups
of finite Morley rank to prove the Mordell-Lang Conjecture for function fields in
all characteristics.

A great deal of stability theory can also be developed “locally,” i.e., for a sin-
gle stable formula (see, e.g., Shelah’s “Unstable Formula Theorem” [37, Theo-
rem 2.2]). In [22], Hrushovski and Pillay use stable formulas to prove that any
group definable in a pseudofinite field F' (whose complete theory is necessarily
unstable) is virtually isogenous with G(F'), where G is an algebraic group defined
over F. An especially spectacular display of the effectiveness of local stability is
Hrushovski’s work from [19] on the structure of approximate groups, which uses
a very general “Stabilizer Theorem” modeled after early work of Zilber on groups
of finite Morley rank.

More recently, interactions with functional analysis have motivated the study
of stability “in a model.” Given a first-order structure M, we say that a formula
@(x, y) is stable in M if there do not exist sequences (a;);es and (b;)iey from M,
indexed by an infinite linear order /, such that M |= ¢(a;, b;) if and only ifi < j.
This is weaker than stability of ¢(x, y) in a theory T (which is equivalent to sta-
bility in an Ry-saturated model of T'). In [3], Ben Yaacov established a direct con-
nection between stability in a model and Grothendieck’s characterization in [14]
of relatively weakly compact sets in certain Banach spaces. A natural question,
which we address here, is how this connection applies to stable group theory.

Topological dynamics has played a major role in the model theory of groups
since the work of Newelski [27], which provided a model-theoretic interpretation
of the “Ellis semigroup” of a G-flow (i.e., a compact space with an action of G
by homeomorphisms). Moreover, certain parts of a recent preprint of Hrushovski,
Krupinski, and Pillay [20] indicate a close connection between stable group the-
ory and results of Ellis and Nerurkar [11] on weakly almost periodic G-flows. In
this paper, we will develop stable group theory entirely from [11] and in the more
general setting of local stability “in a model.” It is interesting to note that the orig-
inal development of (global) stable group theory was roughly contemporaneous
with [11] and related work on almost periodic minimal flows (e.g., [2], [10]).
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Given a group G, we call a set A C G stable in G if there do not exist
sequences (a;)ies and (b;);es from G, indexed by an infinite linear order /, such
that a;b; € Aif and only if i < j (i.e., the “formula” xy € A is stable in the
structure (G, A) obtained by expanding G with a predicate naming A). One of our
main results is the following structure theorem for stable subsets of groups.

Theorem 1.1. Let G be a group, and suppose that B C P(G) is a left-invariant
Boolean algebra such that every set in B is stable in G.

(a) There is a unique left-invariant probability measure |1 on B.
(b) If A € B, then u(A) > 0 if and only if A is generic.

(c) Suppose A € B. Then there is a finite-index subgroup H < G, which is
in B, and a set Y < G, which is a union of left cosets of H, such that
w(AAY) = 0. So if C is the set of left cosets of H contained in Y, then
p(4) = w(¥) =1C|/[G : H].

Moreover, if B is bi-invariant then p is bi-invariant and is also the unique right-
invariant probability measure on B; and in part (b) one may choose H to be a
normal subgroup of G.

Although we have focused on left-invariant Boolean algebras in previous theo-
rem, note that if B is a right-invariant Boolean algebra of stable sets in G then, by
applying Theorem 1.1 to the left-invariant Boolean algebra B! = {4°1: 4 € B},
one can obtain analogous results for B. Theorem 1.1 is modeled after [8, Theo-
rem 2.3], which focuses on the case of a single k-stable invariant formula. The mo-
tivation in [8] was to prove a “stable arithmetic regularity lemma” for finite groups,
which qualitatively generalized a combinatorial result of Terry and Wolf [39]
on 7.

T?) prove Theorem 1.1, we apply various results from [11] (see Theorem 2.5)
to the action of G on the Stone space S(B) of “types” (or ultrafilters) over the
Boolean algebra B. We will use a combinatorial formulation of the “fundamental
theorem of local stability theory” (Theorem 2.18) to show that every function in
the Ellis semigroup of S(B) is continuous, and so S(B) is weakly almost periodic
by aresult of Ellis and Nerurkar [11]. Moreover, S(B) has a unique minimal closed
G-invariant subset, which is precisely the space S&(B) of generic types in S(B)
(i.e., types containing only generic sets in B). These results form the foundation
for the proof of Theorem 1.1.

Note that Theorem 1.1 includes the “global” setting where G is a group
definable in a stable theory and B is the Boolean algebra of definable subsets
of G. It also includes the case where B is the Boolean algebra of sets A € G
that are k-stable for some k > 1 (i.e., xy € A is k-stable with respect to the
theory of (G, A)). The “k-stable case” generalizes the local setting of Hrushovski
and Pillay [22], which applies to the Boolean algebra generated by the instances
of a single left-invariant stable formula in an ambient theory 7. This is also the
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setting for the weaker version of Theorem 1.1 from [8] mentioned above. Thus our
results extend (and in some sense complete) the work in [8] on k-stable subsets of
groups. In addition to Theorem 1.1, we also analyze local connected components,
stabilizers of generic types, and measure-stabilizers of sets, along the lines of
the results obtained in [7] for “k-NIP” sets in pseudofinite groups. Among other
things, we prove:

Theorem 1.2. Let G be a group, and suppose B C P(G) is a left-invariant
Boolean algebra. Suppose that every set in B is stable in G, and B contains a
smallest finite-index subgroup of G, denoted G%. Given p € S(B), set

Stab(p) = {g € G: gp = p}.

(a) There is an action-preserving bijection between S€(B) and the set G/ G, of
left cosets of G, which sends p to the unique left coset of G in p.

(b) If p € S&(B), and aGY € p then Stab(p) = aGYa™'.
Moreover, if B is bi-invariant then G% is normal, the map in part (a) is a group
isomorphism, and Stab(p) = G, for any p € S&(B).

We also show that the previous theorem applies when B is defined from a
single left-invariant stable relation or “formula” (see Definitions 2.15 and 5.6).

Theorem 1.3. Let G be a group, and suppose ¢(x, y) is a left-invariant stable
relation on G XV for some set V. Let B C P(G) be the Boolean algebra generated
by all sets of the form {a € G:¢(a,b)} forallb € V. Then every set in B is stable
in G, and B contains a smallest finite-index subgroup of G.

The paper is organized as follows. In Section 2, we recall preliminaries from
topological dynamics, as well as the combinatorial formulation of definability of
types and symmetry of forking for stable formulas in terms of bipartite graphs.
In Section 3, we establish some initial results on the Ellis semigroup of a Stone
space.

Theorems 1.1, 1.2, and 1.3 are proved in Sections 4 and 5. For Theorem 1.1,
part (a) is Theorem 4.4(e), part (b) follows from Theorem 4.7(d), part (c) is
Corollary 4.15, and the final statement follows from Lemma 4.6. Theorem 1.2 is an
abridged version of Theorem 5.4, and Theorem 1.3 appears again as Theorem 5.8.

Finally, in Section 6, we make some remarks on additive combinatorics of
stable subsets of groups.

2. Preliminaries

2.1. Topological dynamics. Let G be a (discrete) group. In this subsection,
we briefly recall the material from topological dynamics necessary for our main
results.
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Definition 2.1. (1) A G-flow is a nonempty compact Hausdorff space S together
with a (left) action of G on S by homeomorphisms.

(2) Given a G-flow S, a subflow is a nonempty closed G-invariant subset of S.
(3) A G-flow is minimal if it has no proper subflows.
(4) Let S be a G-flow, and consider S with the product topology.

(i) Given a € G, define n,: S — S such that 7,(p) = ap.

(i) Define E(S) to be the closure of {r,:a € G} in S¥.

Proposition 2.2 (Ellis). Let S be a G-flow. Then E(S) is a semigroup under
composition of functions, and a G-flow under the action (a, )+ mgz o f.

Proof. This is an exercise (or see [10, Proposition 3.2] or [16, Theorem 2.29]).
O

Definition 2.3. The Ellis semigroup of a G-flow S is (E(S), o).

Definition 2.4. Let S be a G-flow and let C(S) be the space of continuous
complex-valued functions on S. A function f € C(S) is weakly almost periodic
if the set { f%:a € G} is relatively compact in the weak topology on C(S) where,
givena € Gand p € S, f%(p) := f(ap). The flow S is weakly almost periodic
if every f € C(S) is weakly almost periodic.

Although the previous definition is rooted in functional analysis, we will
not need to delve further into these underlying notions, thanks to the following
theorem.

Theorem 2.5 (Ellis and Nerurkar [11]). Let S be a G-flow.
(a) S is weakly almost periodic if and only if every f € E(S) is continuous.
(b) If S is weakly almost periodic then
(i) E(S) has a unique minimal subflow C C E(S);
(ii) C contains a unique idempotent u, and fou = uo f forany f € E(S);
(iii) (C, o) is a compact group with identity u;

(iv) if S has a unique minimal subflow then there is a unique G-invariant
Borel probability measure on S (i.e., S is uniquely ergodic).

Proof. See Propositions 11.2, IL.5, and I1.10 of [11]. |

Definition 2.6. Let S be a G-flow.
(1) Aset X C S is genericif S = FX for some finite F C G.

(2) A point p € § is generic if every open set containing p is generic.
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Proposition 2.7 (Newelski [27]). Let S be a G-flow. The following statements are
equivalent.

(i) S has a unique minimal subflow.
(ii) There is a generic point in S.
(iii) The set of generic points in S is the unique minimal subflow of S.

(iv) Every generic open set in S contains a generic point.

Proof. (i) = (ii) and (iii)) = (iv) follow from [27, Lemma 1.7]. (ii) = (iii)
is [27, Corollary 1.9]. (iii) = (i) and (iv) = (ii) are trivial. O

2.2. Stone spaces and generic types

Definition 2.8. Let U be a set, and let B € P(U) be a Boolean algebra. A subset
p € BisaB-typeif @ ¢ p, p is closed under finite intersections, and for any
A € B either A € p or U\A € p. The Stone space of B, denoted S(B), is the set
of all B-types. Given A € B, define S4(B) :={p € S(B): A € p}.

In the setting of the previous definition, if B = P(U) then B-type is also
called an ultrafilter on U. So one can think of B-types as ultrafilters relativized to
an arbitrary Boolean algebra B. A “trivial” example of a B-type is p? := {4 €
B:a € A}, where a € U, which we call the principal B-type on a.

We now state some basic exercises, which justify our use of the word “space”
in Definition 2.8, and connect Stone spaces over groups to topological dynamics.

Exercise 2.9. Let U be a set, and let B € P(U) be a Boolean algebra.

(a) S(B) is a totally disconnected compact Hausdorff space under the topology
with basic open sets of the form S4(B) for all A € B.

(b) A subset of S(B) is clopen if and only if it is of the form S4(B) for some
A e B.

(c) The set {p2:a € U} of principal B-types is dense in S(B).

A standard fact is that a topological space is profinite (i.e., a projective limit
of finite discrete spaces) if and only if it is compact, Hausdorff, and totally
disconnected [34, Theorem 2.1.3]. Thus the Stone space of a Boolean algebra
is profinite.

Exercise 2.10. Let G be a group, and suppose B € P(G) is a left-invariant
Boolean algebra. If p € S(B) and g € G, then gp := {gA: A € p} isin S(B).
Moreover, S(B) is a G-flow under the action (g, p) — gp.
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Note that in the previous exercise, if B is instead right-invariant, then we have
a corresponding right action pg = {Ag: g € G}. Although our focus is on left-
invariance, we will also use this right action on a few occasions.

Recall that in Definition 2.6, we defined generic subsets and points in G-flows.
The next definition defines genericity for subsets of groups, and the subsequent
exercise explains the connection to flows arising from Stone spaces.

Definition 2.11. A subset A of a group G is generic if G can be covered by finitely
many left translates of 4, i.e., G = FA for some finite F C G.

Exercise 2.12. Let G be a group, and let B € P(G) be a left-invariant Boolean
algebra. Then a set A € B is generic if and only if S4(B) is a generic subset of
S(B). Moreover, a type p € S(B) is generic if and only if every A € p is generic.

Definition 2.13. Let G be a group, and suppose B C P(G) is a left-invariant
Boolean algebra. Define S€(B) to be the set of generic B-types. Given A € B,
define Sj(B) :={p e S&B): A € p}.

Let G be a group, and let B € P(G) be a left-invariant Boolean algebra.
Then S&(B) is a closed subset of S(B) since, if p € S(B) is not generic then,
by choosing some non-generic A € p, we obtain an open neighborhood S4(B)
of p disjoint from S&(B). In the subsequent work, we will focus on S&(B) as
a topological space in its own right. So we point out that S€(B) is a profinite
space with a basis consisting of the clopen sets Sj(B) for all A € B (note that
S3(B) = S4(B) N S&(B)).

It will be helpful for later results to have the following restatement of Proposi-
tion 2.7 in the setting of Stone spaces.

Corollary 2.14. Let G be a group and suppose B is a left-invariant Boolean
algebra of subsets of G. The following statements are equivalent.

(i) S(B) has a unique minimal subflow.

(ii) S&(B) is nonempty.
(iii) S&(B) is the unique minimal subflow of S(B).
(iv) If A € B is generic then S f(B) is nonempty.

(v) If F C B is closed under finite intersections and contains only generic sets,
then there is some p € S&(B) such that F C p.

Proof. By Exercise 2.12, properties (i) through (iv) are translations of the corre-
sponding properties in Proposition 2.7. Clearly (v) = (iv). For (iv) = (v),
note that {Sﬁ(B): A € F}is a collection of nonempty closed subsets of S&(B)
with the finite intersection property. So the result follows from compactness of
S&(B). O
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2.3. Stable relations. Let U and V be fixed sets, and fix a binary relation ¢(x, y)
onU x V. Given (a,b) € U x V, we write ¢(a, b) to denote that the relation holds
on (a,b). If b € V then ¢(U, b) denotes the fiber {a¢ € U:¢(a,b)}. Dually, if
a € U then ¢(a,V) = {b € V:¢(a,b)}. Combinatorially, one can view ¢(x, y)
as a bipartite graph on U x V, and the fibers of ¢(x, y) as edge neighborhoods.

Definition 2.15. (1) Let / be a linearly ordered set. Then ¢(x, y) codes I if there
are sequences (a;)ics in U and (b;);er in V, such that ¢(a;, b;) if and only if
i<j.

(2) ¢(x, y) is stable if it does not code an infinite linear order.

(3) Given k > 1, ¢(x, y) is k-stable if it does not code a linear order of size k.

Remark 2.16. In the model-theoretic setting, U and V' would typically be sorts
in some first-order structure M (e.g., U = V = M), and ¢(x, y) would be a
first-order formula. In this case, our definition of stability for ¢(x, y) is referred
to as stability “in a model.” If M is Ry-saturated, then ¢(x, y) is stable (as defined
above) if and only if it is k-stable for some k > 1, and this can be expressed
as a first-order property of the theory of M. On the other hand, if M is not R,-
saturated, then there may be formulas that are stable but not k-stable for any k > 1.
Thus stability in a model is more general than what is usually considered in model-
theoretic literature. So we caution the reader that when we use the word “stable”
in this paper, we will mean the weaker notion of stability in a model.

Next we use the fibers of ¢(x, y) to define Boolean algebras on U and V.

Definition 2.17. (1) Let B, be the Boolean algebra generated by {¢(U,b):b € V'}.
(2) Let B, be the Boolean algebra generated by {¢(a, V):a € U}.
(3) Givena type p € S(By), setdy,p = {b € V:p(U,b) € p}.
(4) Given a type p € S(By),setd;p ={a € U:¢(a,V) € p}.

Note thatif p € S(B,), then the set d, p uniquely determines p by definition of
B, This notation draws from the model-theoretic notion of type definitions. One
of the fundamental results of model-theoretic stability theory is that, when ¢(x, y)
is stable, the sets d, p are themselves “definable” using ¢(x, y). We now state this
result precisely, along with a second important fact related to the model-theoretic
notion of “forking” (which we will not need to discuss here).

Theorem 2.18. Suppose ¢(x, y) is stable, and fix p € S(By) and q € S(By).
(a) (definability of types) d,p € B, and d;q € B,,.
(b) (symmetry of forking) dy, p € q if and only if d;q € p.
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In the model-theoretic context, part (a) of Theorem 2.18 is evident from work
of Pillay [29]. However, in [3], Ben Yaacov proves Theorem 2.18(a) as a corollary
of Grothendieck’s characterization in [14] of relatively weakly compact sets in the
Banach space of bounded continuous functions on some fixed topological space.
See also [30] and [38] for expositions of this result. Part (b) of Theorem 2.18 fol-
lows easily from the Grothendieck approach to part (a) (see [38]). It is also worth
noting that Grothendieck’s work is a key ingredient in the proof of Theorem 2.5(a).

When ¢(x, y) is k-stable for some k > 1, part (a) of Theorem 2.18 was proved
by Shelah (see [37, Theorem I1.2.2]) and, given part (a), part (b) is not hard to
prove directly (see, e.g., [22, Lemma 5.7]).

We have now reviewed all of the preliminaries needed to prove Theorems 1.1
and 1.2. For Theorem 1.3, we will also need a result on measures. Given a
Boolean algebra B (on some set U), let M(B) denote the compact Hausdorff
space of probability measures on B (i.e., finitely additive functions pu: B —
[0, 1] with u(U) = 1), with the subspace topology from [0, 1]5. We may view
S(B) as a closed set in M(B) by identifying p € S(B) with a {0, 1}-valued
measure. A well-known result of Keisler [23] is that if ¢(x, y) is k-stable, then
any i € M(B,) is a weighted sum of countably many B,-types (see also [31,
Fact 1.1]). In [13], Gannon uses Theorem 2.18(a), together with the Sobczyk—
Hammer Decomposition Theorem from measure theory, to generalize this to the
case that ¢(x, y) is stable.

Theorem 2.19. Suppose ¢(x,y) is stable and @ € M(By). Then there are
Pn € S(By) and oy, € [0, 1), for n € N, such that p =Y v, &tn P

3. Semigroups on Stone spaces

Throughout this section, we let G be a fixed group. The goal of this section is to
formulate assumptions on a left-invariant Boolean algebra B € P(G) under which
E(S(B)) is isomorphic to a more natural semigroup. So let us first precisely define
the kind of semigroup we are interested in.

Definition 3.1. A G-semigroup is a G-flow S equipped with a semigroup opera-
tion -, so thatif g € G and p,q € S then g(p-q) = (gp) - q.

Example 3.2. If S is a G-flow then (E(S), o) is a G-semigroup by Proposition 2.2.
Our aim is to give a more natural description of E(S(B)) as a G-semigroup,

under certain assumptions on B. To motivate these assumptions, we first recall a
well-known example of a Stone space with a canonical G-semigroup structure.



1306 G. Conant

Example 3.3. The Stone space S(P(G)) is denoted SG and is called the Stone-
Cech compactification of G. Given p,q € BG, set

pxq={ACG{xeG:x'4eq)ep).

Then * is a well-defined semigroup operation on G and, moreover, (B8G, *) is a
G-semigroup under the usual action of G. We will prove a generalization of this
fact in Proposition 3.6 below. See also [16, Section 4.1] for further details.

Toward adapting the previous example to more general situations, let us first
redefine * for an arbitrary left-invariant Boolean algebra.

Definition 3.4. Let B C P(G) be a left-invariant Boolean algebra.
(1) Given p € S(B) and A € B, define dp(A) = {x € G:x'4 € p}.
(2) Given p,q € S(B),define pxq = {4 € B:dq(A) € p}.

The set dp(A) above can be connected to the “type definitions” discussed in
Section 2.3. In particular, let B € P(G) be the Boolean algebra generated by the
left translates of a fixed set A € G, and let ¢(x, y) be the relation x € y 14 on
G x G. Then B = B, and, given p € S(B), we have d, p = dp(A).

Remark 3.5. In the context of Definition 3.4, we view dp asamap dp: B — P(G).
As a good warm-up exercise, the reader may verify that dp is a left-invariant
homomorphism of Boolean algebras.

Note that if B € P(G) is a left-invariant Boolean algebra, and p,q € S(B),
then p x ¢ is only defined to be a subset of P(B). There is no reason to expect
that p * g is a B-type, let alone that * determines a semigroup operation on S(B).
Indeed, given A € B, the set dg(A) may not even be in B. However, if we impose
this assumption, then we can recover a semigroup structure on S(B) as in the case
of BG.

Proposition 3.6. Let B C P(G) be a left-invariant Boolean algebra such that
dp(A) € Bforall p € S(B) and A € B. Then (S(B), x) is a G-semigroup.

Proof. Given our assumptions on B, it follows easily from Remark 3.5 that S(B)
is closed under *. To prove associativity, fix p,q,r € S(B) and A € B. Then
digsr)(A)={xeG:x1Adeqgxr)
={x € G:dr(x'A4) e q}
={x € G:x'dr(4) € ¢}
= dq(dr(A)).
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Therefore

Aepx(gxr) < d(gxr)(A)ep
< dq(dr(A)) e p
< dr(A) € p*q
< Ae(px*xq)x*r.

Finally, given p,q € S(B) and g € G, we have g(p * q) = gp * g by similar
calculations (in particular, the fact that dq(g"! A) = g''dq(A) forany 4 € B). O

We will soon see that in the setting of the previous proposition, (S(B), %) and
(E(S(B)), o) are isomorphic as G-semigroups. So a natural question is how easily
one can find Boolean algebras satisfying the hypotheses of this result. In light of
the discussion after Definition 3.4, Theorem 2.18(a) looks promising for the case
of Boolean algebras of stable sets (see Definition 4.1), which will be our main
focus. However, there is one concrete obstacle. In particular, suppose B € P(G)
is a left-invariant Boolean algebra. Given A € Band g € G, if p = p? is the
principal B-type on g, then dp(A) = Ag!. Therefore, any left-invariant Boolean
algebra satisfying the hypotheses of Proposition 3.6 is automatically bi-invariant.
Let us record this conclusion, along with some other basic observations (left to
the reader).

Proposition 3.7. Let G be a group, and suppose B C P(G) is a left-invariant
Boolean algebra such that dp(A) € B forall p € S(B) and A € B. Then B
is bi-invariant. Moreover, if p € S(B) and g € G, then p:g,B * p = gp and

p*py = pg.

Our task now is to find a weaker version of the assumption in Proposition 3.6,
which does not force B to be bi-invariant, but still leads to control of £(S(B)). To
motivate this investigation, we first consider an example.

Example 3.8. Fix a finite-index subgroup H < G, and let B be the Boolean
algebra generated by all left cosets of H. Then a subset of G is in B if and only
if it is a union of such cosets. Also, B is bi-invariant if and only if H is normal.
Indeed, if H is not normal then some conjugate aHa™' does not contain H. So
aHa! is not in B since any set in B containing the identity must contain H .
Now consider the Stone space S(B). From basic properties of types, one
can see that any p € S(B) contains a unique left coset of H, which completely
determines p. So S(B) is in bijection with the set X of left cosets of H. Since
S(B) is finite, E(S(B)) = {ny:a € G} where n,: p — ap. Altogether, E(S(B))
isomorphic to the image of G under the left regular representation in Sym(X),
and so E(S(B)) is the group G/K, where K = (¢ gHg! is the kernel of
this representation. The appearance of K can also be predicted by analyzing
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the maps dp for p € S(B). In particular, given a¢,b € G, if p € S(B) is the
unique type containing bH, then dp(aH) = aHb™'. So dp(B) is contained in
the Boolean algebra generated by the cosets of N, which is also the smallest bi-
invariant Boolean algebra containing B.

Definition 3.9. Given a left-invariant Boolean algebra B C P(G), define B¥ to be
the smallest bi-invariant Boolean algebra containing B.

Motivated by Example 3.8, we now study left-invariant Boolean algebras
B C G such that dp(B) € B¥ for all p € S(B). This will be a natural weakening
of the assumption in Proposition 3.6 suitable for left-invariant Boolean algebras
that are not necessarily bi-invariant.

Lemma 3.10. Suppose B C P(G) is a left-invariant Boolean algebra such that
dp(A) € B forall A € B and p € S(B).
(@) If A € B* and p € S(B*), then dp(A) € B¥, and so (S(B¥), ) is a G-semi-
group.
(b) Given p € S(B*) and q € S(B), define f,(q) = {A € B:dq(A) € p}. Then
fp € S(B)S® forall p € S(BY).

Proof. (a) Note that the second claim follows from the first and Proposition 3.6. So
fix p € S(B*¥) and 4 € BF. We want to show dp(A4) € B*. By Remark 3.5, we may
assume A is of the form Bg for some B € Band g € G. Letqg = pg™' | B € S(B).
Then dp(A) = dgq(B), and dq(B) € B* by assumption on B.

(b) Note the similarity between f,(g), as defined here for p € S(B*) and
qg € S(B), and p * q for p,q € S(B) as in Definition 3.4. With this in mind, the
verification that f,(q) € S(B) for any ¢ € S(B) is essentially the same as the first
part of the proof of Proposition 3.6. |

We can now prove the main result of this section.

Theorem 3.11. Suppose B C P(G) is a left-invariant Boolean algebra such that
dp(A) € B forall A € B and p € S(B). Then the map ®:p Jp, where
Jp is as in Lemma 3.10, is a G-semigroup isomorphism between (S (B*), %) and

(E(S(B)).0)

Proof. By Lemma 3.10(b), ® is a map from S(B¥) to S(B)S®). We first show ®
is continuous. Fix ¢ € S(B)and A € B,andlet U = {f € S(B)S®: 4 € f(q)}
be the corresponding sub-basic open set in S(B)S™®). Then f, € U if and only if
dq(A) € p,and so @1 (U) = Sz,04)(B"), which is open in S(B¥).

Recall that E(S(B)) is the closure in S(B)S® of {n,:a € G} where 7,: p >
ap. One easily checks that ®(p2*) = m, for any a € G. Since {p2":a € G} is
dense in S(B*) and ® is continuous, it follows that {7,:a € G} is a dense subset
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of ®(S(B¥)). Therefore ®(S(B*)) € E(S(B)). Since ® is continuous, and S(B¥)
is compact, it follows that ®(S(B¥)) is compact, and hence closed in S(B)S®).
Altogether, ®(S(B*)) = E(S(B)).

From now on, we view ® as a surjective function from S(B*) to E(S(B)). To
show @ is injective, fix p,q € S(B*) such that Jp» = f4. To show that p = ¢, it
suffices to fix A € B and g € G, and show Ag € p if and only if Ag € g. To see
this, let r = pf_l, and note that Ag = dr(A). Therefore,

Agep < dr(A)ep
= A€ fp(r)
= A€ fu(r)
< dr(A) eq
< Ag eq.

Since @ is a continuous bijection between compact Hausdorft spaces, it is
a homeomorphism. So to show that ® is an isomorphism of G-flows, we just
need to check that it preserves the actions of G on S(B*) and E(S(B)), i.e.,
®(ap) = 74 0 D(p) forany a € G and p € S(B¥). Sofixa € G and p € S(BY).
Then, given ¢ € S(B), we have that for any A € B,

A€ fap(q) & a'dq(A) e p < dq@'A) e p < Acaf,(q),
and s0 fap(q) = afp(q) = 7a(fp(q)). This shows O(ap) = 74 © P(p).

Finally, we show that ® preserves the semigroup operations on S(B*) and

E(S(B)). Fix p,q € S(B¥). Forany r € S(B) and A € B, we have dq(dr(A)) =
d(f4(r))(A) (similar to the proof of Proposition 3.6) and so

A€ fouq(r) &= dr(A) e pxq = d(fy(N)(A) ep = A€ f(f4(r).

Therefore ®(p * q)(r) = (P(p) o ®(q))(r) for any r € S(B). |

4. Stable subsets of groups
Throughout this section, we work with a fixed group G.
Boolean algebras of stable sets

Definition 4.1. A set A C G is stable (in G) if the relation xy € A on G x G is
stable (see Definition 2.15). Define Bg to be the collection of stable subsets of G.

The following fact is well known and left as an exercise.
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Fact 4.2. BY, is a bi-invariant Boolean algebra, which contains all subgroups of
G and is closed under A — AL

The primary goal of this paper is Theorem 1.1, which gives a structure theorem
for arbitrary left-invariant sub-algebras of B;. The main reason we consider sub-
algebras of B, rather than just working with B, itself, is due to issues with
“definability.” In particular, Theorem 1.1 shows that if B is a left-invariant sub-
algebra of B, then any set in B can be approximated by cosets of a finite-index
subgroup of G, which is also in B. So a stable subset of G can be approximated
by a subgroup that has some connection to original set. This kind of control is
important in applications. For example, [8] uses stable subsets of pseudofinite
groups to prove results about stable subsets of finite groups. In order for this
to work, one needs restrict to the Boolean algebra of infernal stable subsets of
a pseudofinite group (e.g., so that an internal stable set is approximated by an
internal subgroup).

We will also focus on the general setting of left-invariant sub-algebras of B,
despite the fact that bi-invariant Boolean algebras are easier to work with. In
addition to an overall motivation for more general results, the main reason for this
focus is to capture the right notion of “local stability theory” as formulated in the
model-theoretic literature and, in particular, the work of Hrushovski and Pillay
[22, Section 5]. For example, unlike the “global” setting of groups definable in
stable theories, the “bi-stratification” of a left-invariant stable formula need not be
stable (see Example 5.11). A full analysis of this setting will be done in Section 5.

Let us now start the journey toward our main results. We first establish some
properties of left-invariant sub-algebras of Bg,. For instance, we show that they
satisfy the assumptions of Theorem 3.11, and they also behave nicely with respect
to a dual version of the dp map.

Lemma 4.3. Suppose B is a left-invariant sub-algebra of Bg. Fix A € B and,
given p € S(BY), set dp*(A) = {x € G: Ax! € p).

(@) If p € S(B) then dp(A) € BF.

(b) If p € S(B¥) then dp*(A) € B.

() If p € S(B*) and q € S(B), then dq(A) € p if and only if dp*(A) € q.

Proof. Let ¢(x, y) be the relation x € y' 4 on G x G. Then ¢(x, y) is stable, B,,
is the Boolean algebra generated by {gA: g € G}, and B is the Boolean algebra

generated by {Ag: g € G}. In particular, B, C B and B;, C BH.

(a) Fix p € S(B) and set pgp = p|B,. Then dp(A) = d,po, and so
dp(A) € B} < B by Theorem 2.18(a).

(b) Fix p € S(B¥) and set pyg = p IBy- Then dp*(A) = djpo, and so
dp*(A) € B, < B by Theorem 2.18(a).
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(c) Fix p € S(B¥) and ¢ € S(B), and set py = p B, and go = q | B,. Then
dp*(A) = d; po and dq(A) = dyqo. By Theorem 2.18(b), dyqo € po if and only
if dj po € qo. It follows that dy,qo € p if and only if d; po € g, i.e., dq(A) € pif
and only if dp*(A) € q. O

We can now prove our first main result on stable subsets of groups.

Theorem 4.4. Let B C B, be a left-invariant Boolean algebra.
(@) (S(B¥),x) is a G-semigroup, and is isomorphic to the Ellis semigroup
of S(B).
(b) S(B) is a weakly almost periodic G-flow.
(c) S&(B) is the unique minimal subflow of S(B).
(d) (S&(B¥), x) is a profinite group.
(e) There is a unique left-invariant probability measure on B.

Proof. Part (a) follows from Theorem 3.11 and Lemma 4.3(a).

(b) Given p € S(B*) and g € S(B), let Jp(q) = {A € B:dq(A) € p}. By
Theorem 3.11 and Lemma 4.3(a), every element of E(S(B)) is of the form f,
for some p € S(B*). Therefore, to show that S(B) is weakly almost periodic, it
suffices by Theorem 2.5(a) to show that f, is continuous for all p € § (B%). So
fix p € S(B*). We use the dual dp* notation from Lemma 4.3. Given ¢ € S(B),
it follows from Lemma 4.3(c) that f,(q) = {4 € B:dp*(A) € g} (recall also
that dp*(A) € B for any A € B by Lemma 4.3(b)). So for any A € B, we have
fp‘l(SA(B)) = Sap*(4)(B), which implies that f, is continuous.

(c) By parts (a) and (b) applied to B¥, S(B*) is weakly almost periodic and
(E(S(B%)), 0) = (S(B"), *). So by Theorem 2.5(b.i) and Corollary 2.14, S&(B*)
is the unique minimal subflow of S(B¥). Now, if p € S&(B*) then p B € S&(B).
So S&(B) is the unique minimal subflow of S(B) by Corollary 2.14.

Part (d) follows from Theorem 2.5(b.iii) since S(B*) =~ E(S(B¥)) is weakly
almost periodic, with unique minimal subflow S&(B¥).

(e) By Theorem 2.5(b.iv), and parts (b) and (c), there is a unique G-invariant
Borel probability measure on S(B). So the claim follows from the usual corre-
spondence between regular Borel (o-additive) probability measures on S(B) and
(finitely additive) probability measures on B (see, e.g., [12, Proposition 416Q)]).
One only needs to check that this correspondence preserves G-invariance. O

For later reference, we note the following consequence of Theorem 4.4(c) and
Corollary 2.14.

Corollary 4.5. Suppose B C BY, is a left-invariant Boolean algebra, and ¥ € B
is closed under finite intersections and contains only generic sets. Then there is
some p € S&(B) such that F C p.
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4.1. Measures and generic stable sets. Note that if B is a bi-invariant sub-
algebra of B!, then B¥ = B and so Theorem 4.4 provides a full picture of the
topological and algebraic behavior of the G-flow S(B). In particular, (S(B), %) is
a well-defined semigroup and (S8(B), ) is a profinite group. In this subsection,
we will use these results in the bi-invariant case to obtain some initial conclusions
about the behavior of stable subsets of G.

We start by noting that if B is a bi-invariant sub-algebra of B, then, since
(S8(B), *) is a profinite group, it admits a unique bi-invariant Borel probability
measure (i.e., the normalized Haar measure). The next lemma makes an explicit
connection between this measure and the measure given by Theorem 4.4(e).

Lemma 4.6. Let B be a bi-invariant sub-algebra of BE, and let p be the unique
left-invariant probability measure on B (which exists by Theorem 4.4(e)). Then
W is bi-invariant and, for any A € B, u(A) is the normalized Haar measure of
S ﬁ (B).

Proof. Let n denote the normalized Haar measure on S&(B), and define v: B —
[0, 1] such that v(A) = r](Sﬁ(B)). Then v is a probability measure on B (this
uses the fact that if A, B € B then SﬁnB(B) = Sﬁ(E) N S§(B) and SjuB =
Sf(B) U S§ (B)). We will show that v is bi-invariant. Given this, it will follow
from Theorem 4.4(e) that u = v, which gives us the desired results.

Toward proving that v is bi-invariant, fix A € B and g € G. We want to show
n(Sg%A(B)) = n(Sﬁ(B)) = n(Sjg(B)). Let u be the identity in S8(B). Given
p € S&(B), we have

peSﬁA(B) — Aecglp < Aecgluxp) < Aecgluxp.

Since glu € S&(B), it follows that S;% 4(B) =q * Sj(i%), where ¢ is the inverse
of g”lu in (S&(B), *). Similarly, Sjg (B) = SE(B) * r, where r is the inverse of
ug!. So we have the desired result by bi-invariance of . O

Note that if p is the unique bi-invariant probability measure on B, and B
is a left-invariant sub-algebra of B, then w | B must be the unique left-invariant
probability measure on B. So we can think of a stable set A as having a uniquely
defined measure j(A), which is independent of the ambient sub-algebra of B .

Theorem 4.7. Let (1 be the unique bi-invariant probability measure on B .
(a) If A, B € BE, and AU B is generic, then A is generic or B is generic.
(b) IfA e Bg then A is generic or G\ A is generic.

(c) If A € BE then p(A™) = u(A).
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(d) Given A € B, the following statements are equivalent:
(i) A is generic (i.e., G = FA for some finite F C G);
(ii) G = AF for some finite F C G;
(ili) G = EAF for some finite E, F C G;
@{iv) u(A) > 0.

Proof. (a) If AU B is generic, then by Corollary 4.5 there is some generic type
p € S(BE)suchthat AU B € p. Now A € p or B € p since p is a type.

Part (b) is immediate from part (a).

(c) By Lemma 4.6, A > j(A™") is a left-invariant probability measure on BE.
So the claim follows from Theorem 4.4(e).

e (i) = (iv) follows from left invariance and finite additivity of u.

e (iv) = (i). By Lemma 4.6, u(A) is the normalized Haar measure of
S$(BL). So if u(A) > 0 then S§(BY) is nonempty, and thus A is generic.

e (i) = (ii). Suppose 4 is generic. Then A! is generic by (i) <= (iv) and
part (¢). Thus G = FA! for some finite F € G, andso G = AF!.

e (ii) = (iii) is trivial.

e (iii) = (iv). If G = EAF for some finite £, F C G then, by finite
additivity, there are g,h € G such that u(gdh) > 0. So u(4A) > 0 by
Lemma 4.6.

Remark 4.8. In part (d) of the previous theorem, the equivalence of (i) and (ii) is
trivial if G is abelian. So we note that it is nontrivial in general. For example, let
G be the free group on two generators a and b, and let A be the set of words in G
that start with a. Then A is (left) generic since G = ba™' A U a’! A, but not right
generic (i.e., fails condition (ii)).

4.2. Algebraic structure of S¢(B). Let B be a left-invariant sub-algebra of Bg,.
We have seen that if B is bi-invariant then (S&(B), ) is a profinite group. The goal
of this subsection is to show that even without bi-invariance, S&(B) still exhibits
algebraic structure compatible with the topology. We first set some terminology.

Definition 4.9. Let C be compact Hausdorff group. A homogeneous C -space is a
Hausdorff space X together with a transitive continuous group action C x X — X.

Given an arbitrary group H and an arbitrary subgroup K < H, we let H/K
denote the set of left cosets of K in H. By the general theory, any homogeneous
C-space can be identified with C /K for some closed subgroup K (see, e.g., [17,
Proposition 1.10]). We will show that if B is as above, then S&(B) is a profinite
homogeneous S&(B*)-space. This will be a specific instance of the following
general fact, which is largely due to Auslander [2].
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Lemma 4.10. Let S be a weakly almost periodic G-flow, and X C S a minimal
subflow. Let C be the unique minimal subflow of E(S), and recall that (C, o) is a
compact Hausdor{f group (see Theorem 2.5). Then X is a homogeneous C -space,
witnessed by the action (f, p) — f(p). Therefore, if xo € X is a fixed point and
K = {f € C: f(x0) = xo} is the stabilizer of xo, then K is closed subgroup of C,
and C/K and X are isomorphic as homogeneous C-spaces via f o K — f(xp).

Proof. The G-flow X is “almost periodic,” and so this statement elaborates
slightly on [2, Theorem 3.6]. We include details for the sake of clarity. First,
note that since X is closed and G-invariant, it is closed under any f € E(S) by
definition of E(S). For the rest of the proof, we restrictto p € X and f € C.

To verify that (f, p) = f(p) is a group action, we just need to check that the
identity u € C is the identity map on X. We follow the proof of [11, Proposition
IL.8(1)]. Recall that for a € G, n, denotes the map p — ap, which is in E(S).
Now fix some p € X. Then, for any a € G, we have

u(au(p)) = (u o mg ou)(p) = (g ou ou)(p) = (w4 ocu)(p) = au(p),

where the second and third equalities use Theorem 2.5(b.ii). So u is the identity on
the G-orbit of u(p), which is dense in X since X is minimal. Since u is continuous
(by Theorem 2.5(a)), it follows that u is the identity on X.

Next, note that for a fixed f € C, p — f(p) is continuous by Theorem 2.5(a);
andforafixed p € C, f +— f(p) is continuous by definition of the topology on C.
So the action (f, p) — f(p) is separately continuous and thus continuous by a
result of Ellis [9]. (However, separated continuity will suffice for the remaining
claims here, and thus for all of our main results.)

We now prove transitivity. Fix p € X, andset Y = {f(p): f € C}. We show
that X = Y. Since f — f(p) is continuous, and C is compact, it follows that ¥
is closed in X. Since C is a G-flow via (a, f) — 7, o f, it also follows that Y is
G-invariant. So X = Y since X is minimal.

The rest now follows from basic statements about group actions, and only
requires continuity of f — f(xo) (see, e.g., [17, Proposition 1.10]). |

We now apply Lemma 4.10 to the G-flow S(B), where B is a left-invariant
sub-algebra of BF,. In order to obtain a more explicit statement, we will make a
special choice for the fixed point x referenced in the previous lemma.

Corollary 4.11. Suppose B is a left-invariant sub-algebra of B. Then S&(B)
is a profinite homogeneous S&(B*)-space. In particular, let u be the identity
in (S&(BY), %), and set K = {p € SE(B¥): p\B = u}B}. Then K is closed
subgroup of S&(B¥), and S&(B*)/K is isomorphic to S&(B), as a homogeneous
Se(B¥)-space, via the map p * K — p | B.
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Proof. By Theorem 4.4 and Lemma 4.10, S&(B) is a profinite homogeneous
S&(B#)-space. This goes through the G-semigroup isomorphism ®: S(B¥) —
E(S(B)) given by Theorem 3.11 (via Lemma 4.3(a)). In particular, let u be the
identity in S€(B¥), and set ug = u }B and K’ = {p € S(B¥): ®(p)(uo) = uo).
Then K’ is a closed subgroup of S&(B*), and S&(B*)/K’ is isomorphic to S&(B),
as a homogeneous S2(B#)-space, via the map p * K’ — ®(p)(uo). Therefore, to
prove the claim, we only need to verify that if p € S&(B¥) then ®(p)(uo) = p | B.
So fix p € S&(B¥) and 4 € B. Then duo(A) = du(A) by definition of u,. By
definition of ®, we have

A € ®(p)(ug) <= duo(A) € p
< du(A)ep
< Ae€pxu
< Aep.

Therefore ®(p)(uo) = p |'B. |

4.3. The structure of stable sets. We are now ready to start discussing sub-
groups of G. Let B C P(G) be a left-invariant Boolean algebra, and suppose H
is a finite-index subgroup of G, which is in B. Then G is partitioned into finitely
many left cosets of H, each of which is in B. Therefore, any type p € S(B) must
contain a unique left coset of H. This motivates the following notation.

Definition 4.12. Let B € P(G) be a left-invariant Boolean algebra. We write
H 5%3 G to denote that H is a finite-index subgroup of G and H € B. Given
p € S(B)and H 5%3 G, we let pH denote the unique left coset of H in p.

For example, if p = p2 is the principal B-type ona € G, then pH = aH.

Lemma 4.13. Let B be a bi-invariant sub-algebra of Bg. Fix p,q € S(B) and
H 5213 G. Then (p *x q)H = pH if and only if qH = H. Moreover, if H is
normal, then (pxq)H = pH -qH (where - denotes the group operation in G/H).

Proof. Fix a,b € G such that pH = aH and gH = bH. Note that dg(aH) =
aHb'. Soif aH € p * q, then aHb™! € p, which implies aHb! NaH # 0,
and thus » € H. Conversely, if b € H then dgq(aH) = aH € p, and so
aH € p * q. Finally, if H is normal then dg(abH) = abHb' = aH € p,
and soabH € p xq. O

We now state and prove the main technical result that will allow us to approx-
imate stable sets using finite-index subgroups of G.
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Proposition 4.14. Let B be a left-invariant sub-algebra of BY.. Then
(S5, (B):aeG, H<{ G}
is a basis for the topology on S&(B).

Proof. It suffices to show that for any nonempty open set U € S8(B) andr € U,
there is a subgroup H 5%3 G such that SrgH (B) € U. To do this, we will exploit
the description of S&(B) as a profinite homogeneous S2(B#)-space. So let u be
the identity in (S&(B*),*) and let K = {p € S&B":pB = u|B}. Then
K is a closed subgroup of S2(B¥), and S&(B*)/K is isomorphic to S2(B), as
a homogeneous space, via the map 7: p x K +— p ['B (see Corollary 4.11). Now,
if A € B then SE(B#) is K-invariant and, moreover, JT(S/%(B#)/K) = SE(B).
So this allows us to translate the main goal to S&(B¥)/K. In particular, we want
to show that for any nonempty open set U C S&(B¥)/K, and r € S&(B¥) with
r x K € U, there is some H 5%3 G such that S;gH/K C U. So fix such U and r.
Let V = {p € S&(B¥): p *+ K € U} be the pullback of U to S&(B*). Then V
is open in S&(B*), and r x K C V,i.e., K € r' % V. Since S2(B¥) is a profinite
group and K is a closed subgroup, it follows that K is the intersection of all open
subgroups containing K (see [34, Proposition 2.1.4]). Since r™! x V is open, and
any open subgroup is also closed, it follows that there is an open subgroup L of
Se(B¥) such that K < L C r™! % V. Note that L has finite index in S&(B*) since
S&(B*) is compact. Altogether, L is a finite-index clopen subgroup of S&(B#).
We will use L to obtain our desired subgroup H 5%3 G. To do this, we need to
represent S2(B¥) as a compactification of G. In particular, define o: G — S&(B¥)
such that o(g) = gu. Then o(G) is dense in S2(B¥) since S&(B¥) is a minimal
flow. Given g, h € G, if we let p = p?ﬁ be the principal B¥-type on g, then

o(gh)=ghu=pxhu=p*xuxhu=_guxhu=0(g)*xo(h).

So o is a homomorphism.

Since L/K is clopen in S&(B¥)/K, it follows that L/K = n‘l(Si(B)) for
some A € B. Let H = o"!(L). Then H is a finite-index subgroup of G. We show
that H = {g € G: A € gu}. First, if g € H, then gu * K = p % K for some
pE Sj(Bﬁ), and so A € gu since gu 'B = p ['B. Conversely, suppose A € gu.
Then gu € Sf(Bﬂ), and so gu * K € L/K. Therefore gu * K = p = K for some
peL,andthus p'xgue K <L.SogueclL,ie.,gecH.

By Theorem 2.5(b.ii), gu = ug for any g € G. Using the notation of
Lemma 4.3, we now have H = {g € G:Ag' € u} = du*(A). So H € B
by Lemma 4.3(b).

Next, we show that SI% (B¥) € L. Suppose 51%1 (BY\L is nonempty. Since
Sfi} (B*)\L is open, and o(G) is dense in S&(B¥), there is some g € G such that
gu € SI%I(B”)\L. Since gu € SfI(B#), we have H € gu, and so gH = H by
Lemma 4.13. Since H = o"'(L), we have gu € L, which is a contradiction.
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We now have SI%,(Bﬁ) C L C r!'xV. By Lemma 4.13, we also have
K C SH(B*) and r * S5 (BY = S5, (BY. So S%,(BY) < V, and thus
S8, (BH/K CU. O

We again let .« denote the unique bi-invariant probability measure on BE. The
following is our main result on the approximate structure of stable subsets of G.

Corollary 4.15. Let B be a left-invariant sub-algebra of BE, and fix A € B. Then
there is a finite-index subgroup H < G, which is in B, and a set Y C G, which is
a union of left cosets of H, such that u(AAY) = 0. Consequently, if C is the set
of left cosets of H contained in Y, then u(A) = u(Y) = |C|/[G : H].

Proof. By Proposition 4.14, there are Hy, ..., Hy 5%3 Gandgi,...,gn € G such
that

Sﬁ(ﬁ) = Sggl H, B)u---u Sggan (B) = Sgl HU-UgnHp (B).

Let H = HiN---NH, andletY = g; H1U---Ug, H,. Then H 5%3 G, Y isaunion
of left cosets of H, and S§(B) = S§(B). If A2Y is generic then, by Corollary 4.5,
there is some p € S&(B) suchthat AaY € p, which contradicts S j (B) = S;"; (B).
So AAY is not generic, and thus u(AAY) = 0 by Theorem 4.7(d). The remaining
claims follow from invariance and finite additivity of p. |

4.4. A note on k-stable sets. We say that A C G is k-stable if the relation
xy € Aon G x G is k-stable (see Definition 2.15). Using similar methods as
in Fact 4.2, one can show that the collection of subsets of G that are k-stable for
some k > 1 forms a bi-invariant sub-algebra of B¢, which includes all subgroups
of G. (In fact, a nonempty subset of a group is 2-stable if and only if it is a coset
of a subgroup.) The next example demonstrates that the k-stable sets may form a
proper sub-algebra.

Example 4.16. Let G be the group of integers (7, +). For each n > 1, choose
an n-term arithmetic progression A, < Z, with common difference n, so that
min A, > max A,—; + n?. Let A = (J,2, An. Then A is stable but not k-stable
for any k > 1. (We leave this as an exercise for the reader.)

On the other hand, stable sets are “close” to k-stable sets.

Corollary 4.17. For any stable A C G there is Y C G such that u(AaY) =0
and Y is k-stable for some k > 1.

Proof. By Corollary 4.15, we have Y C G, which is a union of cosets of a fixed
finite-index subgroup H < G, such that u(AaY) = 0. It is easy to show that Y
is k-stable for some k < [G : H] + 1 (see, e.g., [36, Lemma 1.5]). O
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4.5. Profinite completions. In this subsection, we explicitly describe S&(B) as
a projective limit of finite coset spaces, where B C B, is a left-invariant sub-
algebra.

Definition 4.18. Given a Boolean algebra B C P(G), define

We first make some observations on the bi-invariant case. Suppose B C
P(G) is a bi-invariant Boolean algebra, and let N be the collection of all finite-
index normal subgroups of G in B. Then N is co-initial in the collection of all
H 51?15 G, and so @3 is a profinite group isomorphic to l(iilNeN G/N (see, e.g.,
[34, Lemma 1.19]). For example, note that if B contains all finite-index normal
subgroups of G, then G is the classical profinite completion of G. See [34,
Section 3.2] for details.

Corollary 4.19. Let B be a left-invariant sub-algebra of B..
(a) If B is bi-invariant then S&(B) and G are isomorphic profinite groups.

(b) S&(B) and G are isomorphic homogeneous @Ba—spaces.

Proof. We first show that $&(B) and Gy are homeomorphic. Let I denote the
collection of all H <P G. Define t: S&(B) — G such that t(p) = (pH)mesc.
It is straightforward to check that t is continuous. Moreover, t is injective by
Proposition 4.14 and surjective by Corollary 4.5.

Now suppose for a moment that B is bi-invariant, and let N be the collection
of all normal H € 3. As indicated above, any element of G is completely
determined by its restriction to N, and so we can identify G with the profinite
group LiilNeN G/N. In this case, t is a group isomorphism by Lemma 4.13.

Finally, we return to the case that B is only left-invariant. By the previous
arguments and Corollary 4.11, S&(B) is a homogeneous (A}Bu -space. Now redefine
N to be the collection of all finite-index normal subgroups of G in Bf. Given
N eN,let Hy = ({H € H: N < H}, and note that Hy € H. For any H € H,

if N = ﬂgeG gHg', then N € N and Hy < H. So any element of @3 is

completely determined by its restriction to { Hy: N € N}. Altogether, G can be
identified with l(iLnN G/Hp, which is a homogeneous Gg:-space isomorphic to

éBﬁ /K, where K = LiLnN Hy /N. Finally, one checks that the homeomorphism

7: S&(B) — (A}Bn is an isomorphism of homogeneous @Tsﬁ—spaces. |
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Next we make some remarks motivated by certain notions from the model
theory of groups. This will also be in preparation for the results in Section 5.

Definition 4.20. Given a Boolean algebra B € P(G), define G2 to be the
intersection of all finite-index subgroups of G that are in B.

Note that if B € P(G) is a bi-invariant Boolean algebra, then G, coincides
with the intersection of all finite-index normal subgroups of G that are in B (in
particular, G9, is a normal subgroup of G).

Remark 4.21. Suppose B is a bi-invariant sub-algebra of P(G), and let N denote
the collection of all finite-index normal subgroups of G in B. Then we have a
canonical homomorphism p: G — Gg such that p(a) = (aN)yen. Note that
kerp = G, and so G/ G% embeds as a dense subgroup of @3 via the induced
quotient map p*. The coarsest topology on G that makes p continuous is the
B-profinite topology, whose basic open sets are cosets of N € N. Note that
G is closed in this topology and, moreover, the topology on G/GY induced
from G by p* coincides with the quotient of the B-profinite topology. In fact,
p*:G/GY — G is a homeomorphism if and only if the B-profinite topology
on G is compact. Now suppose B C Bg. Then p = to, where 0: G — S&(B)
is as in the proof of Proposition 4.14 and t is as in the proof of Corollary 4.19.
So G/GY embeds as a dense subgroup of S&(B) via o* := v !p*. Once again,
0*:G/GY — S&(B) is a homeomorphism if and only if the B-profinite topology
on G is compact.

An example from model theory is when G is definable (say, over @) in some
model M of a stable theory 7', and B is the Boolean algebra of definable subsets
of G. Then GJ is an intersection of at most |T'| groups in N (see [32, Chapter 5];
this also follows from Theorem 5.8 below). Now suppose M is |T|*-saturated.
Then the B-profinite topology on G has a basis of cardinality at most |T'|, and
hence is compact. So G/GY is homeomorphic to S&(B) and Gxs.

Definition 4.22. Let B C P(G) be a left-invariant Boolean algebra. Given p €
S(B), define Stab(p) = {g € G: gp = p}.

Corollary 4.(23. Suppose B is a left-invariant sub-algebra of BE, and p € S4(B).
Given H ff’f G, let H? = aHa', where aH = pH. Then Stab(p) =
ﬂHszisG HP. Moreover, if B is bi-invariant then Stab(p) = G9,.

Proof. Note that the second claim follows from the first by the observation made
after Definition 4.20. For the first claim, fix p € S8(B) and g € G. By
Proposition 4.14, g € Stab(p) if and only if (gp)H = pH for all H 5%3 G.
Also, if H 5%3 G then (gp)H = pH ifandonly if g € H?. O
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5. Connected components

Let G be a group. As usual, we let u denote the unique bi-invariant probability
measure on BE. In this section, we analyze left-invariant sub-algebras of B, that
contain a smallest finite-index subgroup of G. Recall that for a Boolean algebra
B € P(G), GY denotes intersection of all finite-index subgroups of G in B.

Lemma 5.1. Let B C P(G) be a Boolean algebra. The following statements are
equivalent.

(i) B contains only finitely many finite-index subgroups of G.
(ii) B contains a smallest finite-index subgroup of G.
(iii) G is the smallest finite-index subgroup of G in B.
(iv) G has finite index in G.

Proof. The following implications are trivial: (i) = (ii)) = (iii)) = (iv).
For (iv) = (i), note that any subgroup H 5%3 G is a union of cosets of G%. O

As previously stated, the focus of this section will be on Boolean algebras
satisfying the equivalent conditions of the previous lemma. So, for the sake of
brevity, we will usually invoke these conditions using the formulation in (iv).

Definition 5.2. Let B be a left-invariant sub-algebra of B. Given X € B, define
Stab, (X) = {g € G: u(gX 2X) = 0}.

Remark 5.3. Note that in the context of the previous definition, Stab, (X) is a
subgroup of G. Moreover, by Theorem 4.7(d) and Corollary 4.5, we have

Stab, (X) = {g € G: gX A X is not generic} = ﬂ{g €eG:gXrX ¢ p}.
PESE(B)

The following is the main result of this section.

Theorem 5.4. Let B be a left-invariant sub-algebra of BY., and suppose G, has
finite index in G.

(1) (Generic B-types and their stabilizers)
(@) The map p — pG% is an action-preserving bijection from S8 (B) to
G/GY.
(b) If p € S&(B) then Stab(p) = aG%a'lfor some/any a € pG%.
(2) (Structure for sets in B) If X € B then, for any left coset C of G, either

w(C N X)=0o0ru(C\X) = 0. Moreover, if C is the set of cosets C ofG%
such that W/(CNX) >0, andY = |JC, then u(X) = u(Y) = |C|/[G : G3].
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(3) (Stabilizers of sets in B) If X € B then Stab, (X) is a finite-index subgroup
of G in B Moreover,

G, = ﬂ aG%al = ﬂStab(p) = ﬂ Stab, (X),
acG pESE(B) XeB

and so G%11 is a finite-index normal subgroup of G in B*.

(4) (The bi-invariant case) Assume B is bi-invariant. Then G% is normal and
the map in (1a) is a group isomorphism. Moreover, if p € S&(B) then
Stab(p) = G%; and if X € B then Stab,(X) is a finite-index subgroup
of G in B.

Proof. (1) Claims (a) and (b) follow from Corollaries 4.19 and 4.23.

(2) For the first statement, it suffices to show that for any X € B and any left
coset C of G, exactly one of C N X or C\X is generic. For this, let p be the
unique type in S&(B) containing C (which exists by part (1)). By uniqueness and
Corollary 4.5,if Y € Band Y C C, then Y is generic if and only if Y € p.
Moreover, since C € p, we have that exactly one of C N X or C\X is in p, as
desired.

For the second statement, it follows from Corollary 4.15, that there is a set ¥,
which is a union of cosets of G such that £(X oY) = 0. So by finite additivity,
a coset C of GY is contained in Y if and only if 4#(C N X) > 0.

(3) We first prove the chain of equalities for G%n . By part (1) and the definition

of G2, we have G, C N, aGha = (Npese(m) Stab(p) . So it suffices to

show

() Stab(p) < () Stab,.(X) < G,
pESE(B) XeB

For the first containment, fix a € G, and suppose g ¢ Stab,, (X)) for some X € B.
Then gX A X is generic (recall Remark 5.3), and so there is some p € S&(B)
containing gX A X by Corollary 4.5. It follows that a ¢ Stab(p). For the second
containment, fix g € (\ycs Stab,(X). We claim that ¢ € Stab,(Y) for any
Y € B¥. To see this, it suffices by definition of B to assume Y = Xh for some
X € Band h € G. In this case, we have u(gX AX) by assumption, and so
n(gY AY) = 0 by right-invariance of u. So g € Stab,(Y). Now, notice that
G%ﬁ = mHng”G H = mHng”G Stab,, (H ), which yields the desired result.

Finally, fix X € B¥. Then Stab,, (X) has finite index in G since it contains
G%11 by the above. So it remains to show that Stab,, (X) is in B*. Since S&(B) is
finite (by part (1)), it suffices by Remark 5.3 to fix p € S8(B) and show that the
setA={geG:g'XaX e p)isinB¥ Let¢(x, y) be the relation x € y' X a X
on G x G. Note that ¢(x, y) is stable and B, C Bt Let po = p ['By. Then
A = dypo € By, by Theorem 2.18(a). So it suffices to show that p(a, G) € B* for
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any a € G. To see this, note that if @ € G then ¢(a, G) = G\Xa!ifa € X, and
oa,G)=Xa'lifadX.
Part (4) follows easily from parts (1) through (3). O

Corollary 5.5. Let B be a left-invariant sub-algebra of BE. The following state-
ments are equivalent.

(i) GY has finite index in G.
(i) S&(B) is finite.
(iii) G%11 has finite index in G.
(iv) S&(B¥) is finite.

Proof. (i) = (iii) = (iv) follow from Theorem 5.4(3) and Corollary 4.19.
(iv) = (ii). By Corollary 4.5, restriction from S g(Bﬁ) to S€(B) is surjective.
(ii) = (i). Suppose S&(B) is finite and fix p € S&(B). Then {p} is open in

S&(B) and so, by Proposition 4.14, there is some H Sfff G suchthat p is the unique

type in S&(B) containing pH. Without loss of generality, assume pH = H.

Toward a contradiction, suppose G% # H. Then some K 5%3 G is a proper

subgroup of H. Fix g € H\K. By Corollary 4.5, there are ¢,r € S2(B) such

that K € gand gK € r. So H € ¢, H € r, and ¢ # r, which contradicts the

uniqueness of p. O

We now focus on finding concrete examples of left-invariant Boolean algebras
B C B such that G has finite index in G. The following is a combinatorial
version of [22, Definition 5.13].

Definition 5.6. Let V be a set. A relation ¢(x, y) on G x V is left-invariant if, for
any g € G and b € V, there is some ¢ € V such that gp(G, b) = ¢(G, ¢).

Remark 5.7. The canonical example of a left-invariant relation is where V = G
and ¢(x, y) is defined by x € yA for some fixed A € G. More generally,
this is a natural setting for the study of a group G definable in some first-order
structure M. In this case, one often considers invariant formulas ¢(x, y) where
the variable x concentrates on G and the variable y is from an arbitrary sort in M
(e.g.,V=M?).

Theorem 5.8. Suppose ¢(x, y) is a left-invariant stable relation on G x V. Then
By is a left-invariant sub-algebra of BY, and G%w has finite index in G.

Proof. Let B = B, be the Boolean algebra generated by {¢(G,b):b € V}.
It is straightforward to show that B is left-invariant and contained in Bf. By
Theorem 2.19, there are p, € S(B) and o, € [0,1], for n € IN, such that
wlB = 3> Janpn. Fix n € N such that o, > 0, and let p = p,. For any
H <P G, we have u(pH) > ay, which implies that [G : H] < o;'. So we may
choose some H Sfff G of maximal index in G. It follows that H = G?B. O
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Remark 5.9. Gannon’s proof of Theorem 2.19 in [13] uses the Lowenheim—
Skolem Theorem to reduce to the case of countable structures. We can do the
same and give another proof of Theorem 5.8. In particular, suppose ¢(x, y) is
a left-invariant stable relation on G x V. By Corollary 5.5, it suffices to show
S&(By) is finite. So suppose S&(B,) is infinite. Without loss of generality,
we may assume G is countable (view (G, V) as a two-sorted structure in the
group language with a predicate for ¢(x, y), and apply Loweinheim—Skolem to
obtain a countable elementary substructure containing parameters for instances
of ¢(x, y) that distinguish infinitely many generic ¢-types). Now, the map p
dyp from S(By) to P(V) is injective by construction, and has image in B
by Theorem 2.18(a). Since G is countable, Bj is countably generated, and
thus countable. Altogether, S#(B,) is a countably infinite compact Hausdorff
homogeneous space. But such spaces do not exist.

We also note that if ¢(x, y) is actually k-stable for some k > 1, then S&(B,)
is finite by a result of Hrushovski and Pillay (see [22, Lemma 5.16]).

As an application, we now give an explicit structure statement for stable subsets
of groups, which is formulated entirely using genericity.

Corollary 5.10. Suppose A C G is stable, and set
H = {g € G:gxAaxA is not generic for any x € G}.

(a) H is a finite-index normal subgroup of G, and is in the Boolean algebra
generated by {gAh: g, h € G}.

(b) For any coset C of H, exactly one of C N A or C\A is generic. Moreover,
there is a set Y C G, which is a union of cosets of H, such that ArY is not
generic.

(c) If A is generic then H € AA N A1 A.

Proof. Let B be the Boolean algebra generated by {gA:g € A}. Then BF is
the Boolean algebra generated by {gAh:g,h € A}. Note also that if we define
¢(x,y) on G x G such that x € yA, then B = B,. Therefore, G%ﬁ has finite
index in G by Corollary 5.5 and Theorem 5.8 (via Remark 5.7). Note that H =
(Nyeq Stab, (xA). By definition of B, it follows that H = |y Stab,(X), and
so H = G%n by Theorem 5.4(3). So parts (a) and (b) follow from Theorem 5.4.

For part (c), suppose A is generic. So there is some p € S&(B¥) containing A
by Corollary 4.5. By Theorem 5.4(4), we have H = Stab(p). So if g € H then
gAe€gp=p,andsogANAc p,hence gAN A # @. It follows that H € AA™.
Moreover, if g € G then pg € S&(B¥) and so, by Theorem 5.4(4), pg = p if
and only if p and pg contain the same coset of H. By normality of H, we have
pg = pifandonlyif g € H. So H C A' A by a similar argument. O
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Part (c) of the previous corollary is reminiscent of results on stabilizers and
simple groups of finite Morley rank (see also Corollary 6.8), and was also moti-
vated by [24]. One might wonder why we did not try to apply Theorem 5.8 directly
to B¥ in the proof by choosing a different relation. More generally, if ¢(x, y) on
G x V is left-invariant then (B(,,)11 = B,s, where @*(x:y,z) is the relation on
G x (V x G) defined by (xz, ). So if ¢(x, y) is stable then B 4 is a bi-invariant
sub-algebra of BY,. However, ¢¥(x: y, z) may be unstable, as we see in the follow-
ing examples.

Example 5.11. (a) (from [7]) Let G = Sym(IN), and let
H={0eG:0(0) =0} <G.

Then ¢(x, y) := “x € yH” is 2-stable. Given i > 1, let a; be the transposition
(07) and let b; € G be any permutation that fixes j > 1if and only if j > i. Then
bj € a;Ha; if and only if j > i, and so ¢¥(x; v, z) is unstable.

(b) Let G = GL»(C), and let H = (({ 1)) = {(§%):n € Z} < G. Then

@(x,y) ;= “x € yH” is 2-stable. Let (p;)72, be an increasing enumeration of the
primes and, for j > 1, set#; = [];; pi. Then ((1) YY) e (B 0)H (% ‘1’)'1 if and

only if i < j, and so ¢*(x; y, z) is unstable.
In both examples, one can also show that ¢#(x; y, z) has the independence
property and the strict order property in the structure (G, -, H).

Remark 5.12. The use of Theorem 5.8 (and Lowenheim—Skolem in particular)
can be avoided in the proof of Corollary 5.10. In fact, given a finite set A C B,
if B is the Boolean algebra generated by {gA:g € G, A € A}, then one can
prove that G has finite index in G as follows. By Corollary 4.15, there is some
H 5%3 G such that, for any A € A, there is a union Y of left cosets of H such
that u(AaY) = 0. By induction, one can show that the same is true for any set B.
Now, if H # G, then there is some K 5%3 G which is a proper subgroup of H.
So u(K AY) = 0 for some union Y of left cosets of H, which is a contradiction.

6. Remarks on stable additive combinatorics

We say that a group G is amenable if there is a left-invariant probability measure
on P(G). A fundamental result is that G is amenable if and only if it admits a
Fglner net, i.e., anet F = (Fj)jes of nonempty finite subsets of G such that,
for any a € G, |aF; N F;|/|F;| — 1. For example, in (Z, +) any sequence of
intervals of diverging length is a Fglner net. Given 4 € G, we let §7(4) =
limsup;c; |4 N F;|/|Fi| and 85(A) = liminf;e; |[A N F;|/|F;|. The upper and
lower Banach density of a subset A of an amenable group G are (respectively)

§(A) = sup{87(A): F is a Fglner net for G}
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and
8(A) = inf{65(A): F is a Fglner net for G}.

A good exercise is to show that a subset A of an amenable group G is generic if
and only if §(4) > 0. In general, one has §(A4) < §(A), and this inequality may be
strict. However, for stable sets this does not happen.

Lemma 6.1. Suppose G is an amenable group and A € BYE. Then §(A) = §(A),
and this density is rational. In particular, if 5(A) > 0 then A is generic.

Proof. Let a1 = 8(A) and oy = 8(A). Fix t € {0,1}. Then there is a Fglner
net (F});er such that |F} N A|/|F}| — a; (see [15, Theorem 4.16]). Let u; be
a nonprincipal ultralimit of counting measures normalized on F}. Then pu, is a
left-invariant probability measure on P(G), and pu;(A) = or. So wo(A4) = pn1(A4)
by Theorem 1.1(a), and this value is rational by Theorem 1.1(c). O

It was shown in [6] that if A € N is definable in a (globally) stable expansion
of (Z, +), then A has upper Banach density 0. Since no subset of IN is generic (in
7)), the previous lemma generalizes this result to the “local and in a model” case.

Corollary 6.2. If A C N is stable in (Z, +), then it has upper Banach density 0.

The next proposition is motivated by Erdds’s sumset conjecture, which says
that if A C Z has positive upper Banach density, then there are infinite B, C C Z
such that B + C C A (this was recently proved in [25]). In [1], there is a short
proof that if G is a countable amenable group and A € B has positive upper
Banach density, then there are infinite B, C € G such that BC < A. Together
with Lemma 6.1, the next proposition gives a different proof this result, which
works for any amenable group and yields a much stronger conclusion.

Proposition 6.3. Let G be a group and suppose A € B, is generic. Then there
is a finite set F C G such that, for any infinite B,C C G, there are g € F and
infinite B € B and C' C C such that B'C’ C gA.

Proof. Fix a finite set F € G such that G = FA. Fix B = {b,}72, € G and
C={cn}g2g €S G. Let P ={(i,j) e NxN:i < j}. Given (i, j) € P, choose
some g; ; € F such that bijc; € g; jA. Define f: P — F x {0, 1} such that
fG.J) = (8,j.0) if bjc; & gi,jA and f(i,j) = (gi,j.1) if bjc; € gi,jA. By
Ramsey’s Theorem, there is an infinite set / € IN, and some (g,k) € F x {0, 1},
such that f(i,j) = (g, k) forall i,j € I withi < j. Since A is stable in
G, we cannot have k = 0. So k = 1, and we have b;c; € gA for all distinct
i,j € I.Partition I = I; U I, into two infinite sets, and let B’ = {b;:i € I} and
C’' ={c¢;:i € I}. Then B'C’ C gA. O
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Remark 6.4. The previous result does not hold without the assumption of stabil-
ity. For example, let B = 2x:x € Z, x > 0} and C = {2x:x € Z, x < 0}.
Then A = B U (C + 1) is generic in Z, but there do not exist infinite B’ C B and
C’' C C suchthat B'+ C’' € A + ¢ for some ¢ € Z.

We say that a subset 4 of a group G is
(1) thick if for any finite F' C G there is some g € G such that Fg C A4;
(2) weakly generic if FA is thick for some finite F C G;

(3) supergeneric if (N ger &A is generic for any finite F € G.

The first notion is standard in combinatorial number theory (where generic sets are
called syndetic and weakly generic sets are called piecewise syndetic), the second
is from [27], and the third is from [33]. It is not hard to show that A € G is generic
if and only if G\ 4 is not thick, and A C G is supergeneric if and only if G\ 4 is
not weakly generic. In particular, if a set is supergeneric then it is generic and
thick, and if a set is generic or thick then it is weakly generic.

In the model theoretic context, it was observed by Newelski and Petrykowski
in [28] (and later by Poizat in [33]) that ultrafilters of weakly generic sets always
exist. Indeed, weakly generic sets are partition regular, i.e., if A U B is weakly
generic then A or B is weakly generic. This fact is well known in combinatorial
number theory, and was shown by Bergelson, Hindman, and McCutcheon [4],
with origins in even earlier work of Brown [5]. It also yields the following
characterization of when genericity and weak genericity coincide (see, e.g., [28,
Lemma 1.5]).

Fact 6.5. Let G be a group, and suppose B C P(G) is a left-invariant Boolean
algebra. The following statements are equivalent.

(i) Forany A € B, A is generic if and only if it is weakly generic.
(ii) Forany A € B, A is supergeneric if and only if it is thick.
(iii) There is a generic type in S(B).

Let G be a group. By Theorem 4.4, the conditions in Fact 6.5 hold for Bg.
Let 1 be the unique bi-invariant probability measure on BE. Then A € B
is supergeneric if and only if G\ A is non-generic, and this also coincides with
n(A) = 1. Altogether, “non-genericity” is a canonical notion of smallness for Bg,.
Recall that B contains all subgroups of G (see the proof of Corollary 4.17).
The Boolean algebra generated by cosets of subgroups of G is also called the
“coset ring” of G, and a more quantitative account of stability for the coset ring
of an abelian group is given by Sanders in [36]. When G is abelian, its coset ring
coincides with the Fourier algebra of G, i.e., the algebra of subsets A € G such
that 14 = ¥ (the Fourier-Stieljtes transform of v) for some Borel measure v on the
compact group of characters on G as a discrete group (see [35, Theorem 3.1.3]).
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Theorem 1.1 says that, for arbitrary G, B is essentially controlled by the coset
ring of G “up to small sets.” By restricting p, we also obtain a bi-invariant
probability measure on the coset ring of any group G. In this way, we can view the
existence of u as an extension of the following classical result of B. H. Neumann
(see [26, Section 4]).

Proposition 6.6. Let G be a group and suppose G = C1 U --- U C,, where each
C; is a coset of a subgroup H; < G. Let I be the set of i < n such that H; has
finite index in G. Then G = | J;¢; Ci and |G : H;] < |I| for some i € I.

Proof. We have 1 = u(G) = Y7, w(Ci) = Y ic; w(Ci) = ¥, 1/[G = Hjl,
which immediately implies the latter claim. Without loss of generality, each C; is
a left coset of H; (note that any right coset of H; is a left coset of some conjugate
of H;). Let A = {J;¢; Ci. Then u(G\A) = 0, and so G = A since A is a union
of left cosets of the finite-index subgroup (;¢; H;. O

In model theory, a definable group is called definably connected if it has no
definable finite-index subgroups. We have a natural analogue of this notion in the
local setting. Given a group G and a left-invariant Boolean algebra B € P(G),
we say G is B-connected if no proper finite-index subgroup of G is in B (i.e.,
G = G). For example, G is BY-connected if and only if it has no proper
finite-index subgroups (equivalently, the profinite completion G of G is trivial).
Examples of B -connected groups include divisible groups and infinite simple
groups.

Corollary 6.7. Let G be a group and suppose B is a left-invariant sub-algebra of
B The following statements are equivalent.

(i) G is B-connected.

(i) G is B¥-connected.
(iii) There is a unique generic type in S(B).
(iv) If A € B then exactly one of A or G\ A is supergeneric.
(v) If A € B then A is generic if and only if it is supergeneric.
(vi) Then unique left-invariant measure on B is {0, 1}-valued.

Proof. (i) = (vi) follows from Corollary 4.15, and (vi) = (v) follows from
Fact 6.5 (and the subsequent discussion). For (v) = (i), note that any proper
finite-index subgroup of G in B is generic and not supergeneric. We have
(i) = (iii) by Theorem 5.4(1), (iii) = (ii) by Theorem 5.4(3), and (ii) = (i)
is trivial. Finally, (iv) and (v) are equivalent by Theorem 4.7(b). O

A classical result from the model theory of groups is that if G is a definably
connected group definable in a stable theory, then G = AB for any definable
generic subsets A, B € G. Let us prove this in our general setting.
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Corollary 6.8. Let G be a group, and suppose B is a left-invariant sub-algebra
of BE such that G is B-connected. Then G = AB™! for any generic A, B € B.

Proof. Suppose A, B € B are generic, and fix g € G. Let p € S&(B) be the
unique generic type. Then A,gB € p, and so A N gB # @, which implies
g€ AB. O
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