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Abstract. In light of a gap found by Krupiński, we give a new proof of

associativity for the Morley (or “nonforking”) product of invariant measures
in NIP theories.

Let T be a complete first-order L-theory, and fix a sufficiently saturated monster
model U . Given a tuple of variables x, we let Mx(U) denote the space of global
Keisler measures on Defx(U). Recall that Mx(U) also corresponds to the space of
regular Borel probability measures on the Stone space Sx(U) of global types in x.

A measure µ ∈Mx(U) is invariant if there is a small model M ≺ U such that,
for any L-formula φ(x, y) and b, b′ ∈ Uy, b ≡M b′ implies µ(φ(x, b)) = µ(φ(x, b′)).
If µ ∈ Mx(U) is M -invariant, and φ(x, y) is an LM -formula, then we have a well-
defined function Fφµ : Sy(M) → [0, 1] such that Fφµ (q) = µ(φ(x, b)) for some/any

b |= q. Then µ is Borel-definable (over M) if Fφµ is a Borel function for any
φ(x, y). If each of these maps is continuous, then µ is called definable over M .

Now fix measures µ ∈Mx(U) and ν ∈My(U), and assume µ is Borel-definable
(over some small model). The Morley product µ ⊗ ν (originally defined by
Hrushovski and Pillay in [3]) is constructed as follows. Given an LU -formula φ(x, y),
let M ≺ U be a small model that contains the parameters in φ(x, y), and is such
that µ is Borel-definable over M . Then

(µ⊗ ν)(φ(x, y)) =

∫
Sy(M)

Fφµ dν.

One can verify that this does not depend on the choice of M , and yields a well-
defined Keisler measure in Mxy(U). Moreover, if ν is M -invariant then so is µ⊗ ν.

Now assume T is NIP. In this case, any M -invariant Keisler measure is auto-
matically Borel-definable over M (see [3, Corollary 4.9] or [6, Proposition 7.19]),
and so one can iterate the Morley product. This naturally raises the question of
associativity. In [6, Chapter 7], a proof of associativity is sketched, but a gap in
the proof was recently found by Krupiński. The purpose of this note is to provide
a new proof, which relies heavily on fundamental properties of smooth measures
(summarized in Section 1). In Section 2, we review the proof of associativity for
types (which motivates the proof for measures) and then prove the main result.
In Section 3, we sketch a second proof of associativity, and then we explain the
subtlety in the proof sketch from [6]. This topic is further explored in [2] (joint
with J. Hanson) where, among other things, we show that the Morley product of
Keisler measures can fail to be associative outside of the NIP setting.
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1. Preliminaries on smooth measures

Given a tuple ā ∈ (Ux)n, define Av(ā) ∈Mx(U) such that

Av(ā)(φ(x)) = 1
n |{1 ≤ i ≤ n : U |= φ(ai)}|

for any LU -formula φ(x). Given r, s ∈ R and ε > 0, we write r ≈ε s if |r − s| < ε.

Definition 1.1. Fix µ ∈Mx(U) and M ≺ U .

(1) µ is smooth over M if µ is the unique measure in Mx(U) extending µ|M .
(2) µ is finitely approximated in M if for any L-formula φ(x, y) and ε > 0,

there is a tuple ā ∈ (Mx)n such that Av(ā)(φ(x, b)) ≈ε µ(φ(x, b)) for any
b ∈ Uy. In this case, we call ā a (φ(x, y), ε)-approximation for µ.

Given measures µ ∈ Mx(U) and ν ∈ My(U), we say that λ ∈ Mxy(U) is a
separated amalgam of µ and ν if λ(φ(x) ∧ ψ(y)) = µ(φ(x))ν(ψ(y)) for any LU -
formulas φ(x) and ψ(y).

Proposition 1.2. Suppose µ ∈Mx(U) is smooth over M ≺ U .

(a) Let φ(x, y) be an L-formula and fix ε > 0. Then there are LM -formulas
θ−1 (x), . . . , θ−n (x), θ+1 (x), . . . , θ+n (x), ψ1(y), . . . , ψn(y), for some n ≥ 1, such that:

(i) the formulas ψ1(y), . . . , ψn(y) partition Uy,
(ii) for all i ≤ n, if U |= ψi(b) then θ−i (x) ⊆ φ(x, b) ⊆ θ+i (x), and

(iii) for all i ≤ n, µ(θ+i (x))− µ(θ−i (x)) < ε.
Moreover, this implies µ is definable over M .

(b) If ν ∈My(U) then µ⊗ν is the unique separated amalgam of µ and ν in Mxy(U).
In particular, if ν is Borel-definable, then µ⊗ ν = ν ⊗ µ.

(c) µ is finitely approximated in M .

Proof. See Lemma 2.3 and Corollary 2.5 of [4] for parts (a) and (b). As noted in
[4], the symmetry claim in part (b) follows since µ⊗ν and ν⊗µ are both separated
amalgams of µ and ν. See [6, Proposition 7.10] for part (c). �

Part (c) of Proposition 1.2 is also evident from the proof of [4, Corollary 2.6]
(see also [4, Corollary 2.8]). The next result is [7, Corollary 3.17], which is stated
without proof, and so we take the opportunity here to provide details.

Corollary 1.3. If µ ∈Mx(U) and ν ∈My(U) are smooth over M ≺ U , then µ⊗ν
is smooth over M ≺ U .

Proof. Suppose λ ∈Mxy(U) is such that λ|M = (µ⊗ ν)|M . We want to show that
λ = µ⊗ ν. By Proposition 1.2(b), it suffices to show that λ is a separated amalgam
of µ and ν. So fix LU -formulas φ(x) and ψ(y). Fix ε > 0. By Proposition 1.2(a),
there are LM -formulas θ−(x), θ+(x), χ−(y), χ+(y) such that:

(i) θ−(x) ⊆ φ(x) ⊆ θ+(x) and χ−(y) ⊆ ψ(y) ⊆ χ+(y);
(ii) µ(θ+(x))− µ(θ−(x)) < ε and ν(χ+(y))− ν(χ−(y)) < ε.

(For example, write φ(x) as φ0(x, b) for some L-formula φ0(x, z) and b ∈ Uz, and
obtain θ−i (x), θ+i (x), ψi(z) by applying Proposition 1.2(a) to φ0(x, z) and ε. Then
choose i such that ψi(b) holds, and let θ−(x) = θ−i (x) and θ+(x) = θ+i (x).)

Note that θ−(x)∧χ−(y) ⊆ φ(x)∧ψ(y) ⊆ θ+(x)∧χ+(y). Since λ|M = (µ⊗ν)|M ,
we have

λ(θ−(x) ∧ χ−(y)) = (µ⊗ ν)(θ−(x) ∧ χ−(y)) =: r, and

λ(θ+(x) ∧ χ+(y)) = (µ⊗ ν)(θ+(x) ∧ χ+(y)) =: s.
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So λ(φ(x) ∧ ψ(y)), (µ⊗ ν)(φ(x) ∧ ψ(y)) ∈ [r, s]. Morever,

s− r = µ(θ+(x))ν(χ+(y))− µ(θ−(x))ν(χ−(y))

= µ(θ+(x))

(
ν(χ+(y))− ν(χ−(y))

)
+ ν(χ−(y))

(
µ(θ+(x))− µ(θ−(x))

)
< 2ε.

Therefore λ(φ(x) ∧ ψ(y)) ≈2ε (µ ⊗ ν)(φ(x) ∧ ψ(y)). Since ε > 0 was arbitrary, we
have the desired result. �

Finally, we recall a main result about NIP theories, namely, the existence of
smooth extensions (see [5, Theorem 3.26] or [6, Proposition 7.9]).

Theorem 1.4 (Keisler). Assume T is NIP. Given µ ∈Mx(U) and M ≺ U , there
is ν ∈Mx(U) such that µ|M = ν|M and ν is smooth over some N �M .

2. Associativity

Before starting the proof, we briefly recall the argument for associativity of the
Morley product for invariant types (which holds in any theory).

Fix global types p ∈ Sx(U) and q ∈ Sy(U), and assume p is invariant over some
small model. Then an LU -formula φ(x, y) is in p ⊗ q if and only if φ(x, b) ∈ p for
some/any b |= q|M , where M ≺ U contains any parameters in φ(x, y) and p is M -
invariant. Now assume q is invariant, and fix a third type r ∈ Sz(U). Let φ(x, y, z)
be an LU -formula, and choose M ≺ U such that φ(x, y, z) is over M and p and q
are M -invariant. Let c |= r|M and b |= q|N , where N ≺ U contains Mc. Then it is
straightforward to show that (b, c) |= (q ⊗ r)|M , and thus φ(x, y, z) ∈ p⊗ (q ⊗ r) if
and only if φ(x, b, c) ∈ p. On the other hand, since φ(x, y, c) is over N ,

φ(x, y, z) ∈ (p⊗ q)⊗ r ⇔ φ(x, y, c) ∈ p⊗ q ⇔ φ(x, b, c) ∈ p.

The proof of associativity for measures follows the same rough strategy, although
the individual steps become more intricate. In the above argument, tp(b/U) and
tp(c/U) are isolated global types extending q|N and r|M , respectively. For the case
of measures, we will replace these by smooth extensions (recall that a global type is
smooth if and only if it is isolated). Thus we will need to make an NIP assumption
to know that such extensions exist (via Theorem 1.4). Also, in place of realizations
of isolated global types, we will use ε-approximations of smooth measures (via
Proposition 1.2(c)). Finally, when adapted to measures, several trivial maneuvers in
the argument for types require the results in Section 1. For example, the proof above
implicitly uses the obvious facts that isolated types commute with any invariant
type, and that the product of two isolated types is isolated.

Next, we record a few easy observations.

Remark 2.1.

(a) If µ ∈Mx(U) is Borel definable over M ≺ U , and ν, ν′ ∈My(U) are such that
ν|M = ν′|M then (µ⊗ ν)|M = (µ⊗ ν′)|M .

(b) If µ ∈ Mx(U) is finitely approximated in M ≺ U , φ(x, y) is an LM -formula,
and ā ∈ (Mx)n is a (φ(x; y), ε)-approximation for µ then, for any ν ∈My(U),

(µ⊗ ν)(φ(x, y)) ≈ε (Av(ā)⊗ ν)(φ(x, y)) = 1
n

n∑
i=1

ν(φ(ai, y)).

We now prove the main result.
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Theorem 2.2. Assume T is NIP, and suppose µ ∈ Mx(U), ν ∈ My(U), and
λ ∈Mz(U). If µ and ν are invariant, then µ⊗ (ν ⊗ λ) = (µ⊗ ν)⊗ λ.

Proof. Fix an LU -formula φ(x, y, z). We want to show

(µ⊗ (ν ⊗ λ))(φ(x, y, z)) = ((µ⊗ ν)⊗ λ)(φ(x, y, z)).

Let M ≺ U be a model such that φ(x, y, z) is over M , and µ and ν are M -invariant.

By Theorem 1.4, there are N � M and λ̂ ∈Mz(U) such that λ|M = λ̂|M and λ̂ is
smooth over N . Similarly, there is ν̂ ∈My(U) such that ν|N = ν̂|N and ν̂ is smooth

over some small model containing N . Note that ν̂ ⊗ λ̂ is smooth by Corollary 1.3.

Claim: (ν̂ ⊗ λ̂)|M = (ν ⊗ λ)|M .
Proof: We have

(ν ⊗ λ)|M = (ν ⊗ λ̂)|M = (λ̂⊗ ν)|M = (λ̂⊗ ν̂)|M = (ν̂ ⊗ λ̂)|M ,

where the first and third equalities use Remark 2.1(a), while the second and fourth
use Proposition 1.2(b). aclaim

Now fix some ε > 0. Let φ1(z;x, y), φ2(y;x, z), and φ3(y, z;x) denote various
partitions of the variables in φ(x, y, z) into object and parameter variables. By
Proposition 1.2(c), we may let c̄ ∈ (Nz)n be a (φ1(z;x, y), ε)-approximation for

λ̂, and let b̄ ∈ (Uy)m be a (φ2(y;x, z), ε)-approximation for ν̂. A straightforward
calculation then shows that (bi, cj)i≤m,j≤n is a (φ3(y, z;x), 2ε)-approximation for

ν̂ ⊗ λ̂. Therefore we have

(µ⊗ (ν ⊗ λ))(φ(x, y, z)) = (µ⊗ (ν̂ ⊗ λ̂))(φ(x, y, z))

= ((ν̂ ⊗ λ̂)⊗ µ)(φ(x, y, z)) ≈2ε
1
mn

m∑
i=1

n∑
j=1

µ(φ(x, bi, cj)),

where the first equality uses Remark 2.1(a) (and the Claim), the second equality

uses Proposition 1.2(b) (and smoothness of ν̂⊗ λ̂), and the final approximation uses
Remark 2.1(b). On the other hand,

((µ⊗ ν)⊗ λ)(φ(x, y, z)) = ((µ⊗ ν)⊗ λ̂)(φ(x, y, z)) = (λ̂⊗ (µ⊗ ν))(φ(x, y, z))

≈ε 1
n

n∑
j=1

(µ⊗ ν)(φ(x, y, cj)) = 1
n

n∑
j=1

(µ⊗ ν̂)(φ(x, y, cj))

= 1
n

n∑
j=1

(ν̂ ⊗ µ)(φ(x, y, cj)) ≈ε 1
mn

n∑
j=1

m∑
i=1

µ(φ(x, bi, cj)),

where the first and third equalities use Remark 2.1(a), the second and fourth equal-
ities use Proposition 1.2(b), and the approximations use Remark 2.1(b).

Altogether, (µ ⊗ (ν ⊗ λ))(φ(x, y, z)) ≈4ε ((µ ⊗ ν) ⊗ λ)(φ(x, y, z)). Since ε > 0
was arbitrary, we have (µ⊗ (ν ⊗ λ))(φ(x, y, z)) = ((µ⊗ ν)⊗ λ)(φ(x, y, z)). �

3. Final Remarks

3.1. Alternate proof via associativity for smooth measures. A quicker sum-
mary of the proof of associativity for invariant types in arbitrary theories is as
follows. Fix p ∈ Sx(U), q ∈ Sy(U), and r ∈ Sz(U), and assume that p and q are
invariant. Let M ≺ U be an arbitrary model such that p and q are M -invariant,
and choose c |= r|M , b |= q|Mc, and a |= p|Mbc. Then one easily shows that
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((p⊗q)⊗r)|M = (p⊗ (q⊗r))|M = tp(a, b, c/M) (see also [6, Fact 2.20]). This argu-
ment essentially reduces associativity to the case of isolated types. We can make an
analogous reduction in the case of measures, and thus provide a proof of Theorem
2.2 that avoids explicit use of the fact that smooth measures are finitely approxi-
mated (Proposition 1.2(c)). We only need one general fact about associativity in
the presence of a smooth measure.

Proposition 3.1. Suppose µ ∈Mx(U), ν ∈My(U), and λ ∈Mz(U) are such that
µ is smooth, and ν and µ⊗ ν are Borel-definable. Then (µ⊗ ν)⊗ λ = µ⊗ (ν ⊗ λ).

Proof. Let ω = (µ⊗ ν)⊗ λ. Since µ is smooth, it suffices by Proposition 1.2(b) to
show that ω is a separated amalgam of µ and ν ⊗ λ. So fix LU -formulas φ(x) and
ψ(y, z), and let θ(x, y, z) := φ(x) ∧ ψ(y, z). Fix M ≺ U such that θ(x, y, z) is over
M , and µ, ν, and µ⊗ ν are Borel-definable over M . Then

ω(θ(x, y, z)) =

∫
Sz(M)

F θµ⊗ν dλ = µ(φ(x))

∫
Sz(M)

Fψν dλ = µ(φ(x))(ν ⊗ λ)(ψ(y, z)),

as desired. �

Remark 3.2. In fact, the conclusion of the previous proposition holds even under
the weaker assumption that µ is only definable (but the proof requires more work;
see [2, Theorem 2.18]). In the same result from [2], it is also shown that if µ is
definable and ν is Borel definable, then µ ⊗ ν is Borel definable. Thus the Borel
definability assumption on µ⊗ ν in Proposition 3.1 is superfluous.

Now assume T is NIP, and fix measures µ ∈Mx(U), ν ∈My(U), and λ ∈Mz(U),
with µ and ν invariant. Fix an LU -formula φ(x, y, z). Let M ≺ U be a small model,
such that φ(x, y, z) is over M , and µ and ν are invariant over M . By Theorem 1.4,

there are models N1 � N0 �M and measures µ̂ ∈Mx(U), ν̂ ∈My(U), λ̂ ∈Mz(U)

such that λ̂|M = λ|M , ν̂|N0
= ν|N0

, µ̂|N1
= µ|N1

, λ̂ is smooth over N0, ν̂ is smooth

over N1, and µ̂ is smooth over some model containing N1. By Corollary 1.3, ν̂ ⊗ λ̂
is smooth over N1. Now, using Remark 2.1(a) and Proposition 1.2(b) (as in the
Claim in the proof of Theorem 2.2), we have

(µ̂⊗ ν̂)|N0 = (µ⊗ ν)|N0 and (ν̂ ⊗ λ̂)|M = (ν ⊗ λ)|M .

So using Remark 2.1(a), Proposition 1.2(b), and Proposition 3.1, we have

((µ⊗ ν)⊗ λ)(φ(x, y, z)) = ((µ⊗ ν)⊗ λ̂)(φ(x, y, z))

= (λ̂⊗ (µ⊗ ν))(φ(x, y, z)) = (λ̂⊗ (µ̂⊗ ν̂))(φ(x, y, z))

= ((µ̂⊗ ν̂)⊗ λ̂)(φ(x, y, z)) = (µ̂⊗ (ν̂ ⊗ λ̂))(φ(x, y, z))

= ((ν̂ ⊗ λ̂)⊗ µ̂)(φ(x, y, z)) = ((ν̂ ⊗ λ̂)⊗ µ)(φ(x, y, z))

= (µ⊗ (ν̂ ⊗ λ̂))(φ(x, y, z)) = (µ⊗ (ν ⊗ λ))(φ(x, y, z)).

Note that in the previous argument, we only needed a weaker version of Propo-
sition 3.1 in which all three measures are smooth. Since smooth measures are
definable (by Proposition 1.2(a)), one could instead use associativity for definable
measures, which has a short and fairly elementary proof (see [1, Proposition 2.6]).
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3.2. Product measures of Borel sets. We finish with a discussion of the proof
sketch of associativity in [6]. The goal is to identify a certain unexpected subtlety
(namely, the potential failure of equation (††) below) that arises when fleshing out
the details.

Assume T is NIP. Fix invariant measures µ ∈ Mx(U) and ν ∈ My(U), and an
arbitrary measure λ ∈Mz(U). Toward proving µ⊗ (ν⊗λ) = (µ⊗ν)⊗λ, it suffices
by [6, Proposition 7.11] to assume that µ is an invariant type p ∈ Sx(U). Now fix
a formula φ(x, y, z). We want to show

(†) (p⊗ (ν ⊗ λ))(φ(x, y, z)) = ((p⊗ ν)⊗ λ)(φ(x, y, z)).

Choose M ≺ U containing all parameters in φ, such that p and ν are invariant
over M . Since p is then Borel-definable over M , the set

B(y, z) = {s ∈ Syz(M) : φ(x, b, c) ∈ p for some/any (b, c) |= s}

is Borel. By direct computation, we have (p ⊗ (ν ⊗ λ))(φ(x, y, z)) = (ν ⊗ λ)(B).

On the other hand, ((p ⊗ ν) ⊗ λ)(φ(x, y, z)) =
∫
Sz(M)

Fφp⊗ν dλ by definition of the

Morley product. In order to compare these two values, we need to relate Fφp⊗ν to
the set B. In particular, given some c ∈ Uz, we can define the “fiber”

B(y, c) = {q ∈ Sy(U) : tp(b, c/M) ∈ B(y, z) for some/any b |= q|Mc},

which itself is Borel (e.g., apply Borel-definability of p to the formula φ(x, y, c)). So
we have a well-defined function FBν : Sz(M)→ [0, 1] such that FBν (r) = ν(B(y, c))
for some/any c |= r.

Claim. FBν = Fφp⊗ν .
Proof. Fix r ∈ Sz(M), c |= r, and N ≺ U containing Mc. Let ρ : Sy(U) → Sy(N)
be the restriction map. Note first that ν|N is the pushforward of ν along ρ (see, e.g.,
[2, Remark 1.2]). Moreover, ρ(B(y, c)) is Borel since it is precisely the preimage of

{1} under F
φ(x,y,c)
p (and p is Borel-definable). Finally, B(y, c) is “N -invariant” in

the sense that ρ-1(ρ(B(y, c))) = B(y, c). Combining these observations, we have

Fφp⊗ν(r) = (p⊗ ν)(φ(x, y, c)) =

∫
Sy(N)

Fφ(x,y,c)p dν = ν|N (ρ(B(y, c))

= ν|N (ρ-1(ρ(B(y, c)))) = ν(B(y, c)) = FBν (r). �

Altogether, (†) can be rewritten as the following equality:

(††) (ν ⊗ λ)(B) =

∫
Sz(M)

FBν dλ.

In the sketch from [6], this equality is asserted without further detail. Note that
if B is clopen (i.e., a formula), then (††) is precisely the definition of the Morley
product. However, as noted by Krupiński, this does not automatically imply that
the same equality should hold for arbitrary Borel sets. For example, if B is only
open, then a direct approach to (††) requires one to interchange an integral with a
limit over some net of functions (via regularity of ν⊗λ as a measure on Syz(U)). In
the setting of abstract integration, this is not always possible. On the other hand,
Theorem 2.2 implies (a posteriori) that (††) does indeed hold when T is NIP and
B is a Borel set arising as the φ-definition of an invariant global type p ∈ Sx(U),
for some formula φ(x, y, z).



ASSOCIATIVITY OF THE MORLEY PRODUCT IN NIP THEORIES 7

The obvious question at this point is what happens when T is not NIP. In fact,
several issues similar to those identified in the previous discussion were also noted by
the authors while considering Borel-definable measures in arbitrary theories during
the preparation of [1]. Ultimately, these obstacles were avoided by narrowing the
focus to definable measures, which sufficed for the main results (see [1, Remark
2.11]). Following an earlier draft of this note, we resumed the general investigation
of Borel-definable measures in [2] (joint with J. Hanson). In Section 3.3 of [2], we
work in the theory of the random ternary relation (which is not NIP), and construct
p ∈ S1(U), q ∈ S1(U), and λ ∈ M1(U) such that p ⊗ (q ⊗ λ) 6= (p ⊗ q) ⊗ λ, even
though all measures involved are Borel-definable. Using the same steps as above,
this can be rewritten as an example where both sides of (††) are well-defined, but
equality does not hold.
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Sergei Starchenko for many important ideological conversations.
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