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Risk-Based Hosting Capacity Analysis in
Distribution Systems

Avinash N. Madavan ', Nathan Dahlin ™

Abstract—Solar hosting capacity analysis (HCA) assesses the
ability of a distribution network to host distributed solar generation
without seriously violating distribution network constraints. In
this paper, we consider risk-sensitive HCA that limits the risk of
network constraint violations with a collection of scenarios of solar
irradiance and nodal power demands, where risk is modeled via
the conditional value at risk (CVaR) measure. First, we consider
the question of maximizing aggregate installed solar capacities,
subject to risk constraints and solve it as a second-order cone
program (SOCP) with a standard conic relaxation of the feasible
set of the power flow equations. Second, we design an incremental
algorithm to decide whether a configuration of solar installations
has acceptable risk of constraint violations, modeled via CVaR. The
algorithm circumvents explicit risk computation by incrementally
constructing inner and outer polyhedral approximations of the
set of acceptable solar installation configurations from prior such
tests conducted. Our numerical examples study the impact of risk
parameters, the number of scenarios and the scalability of our
framework.

Index Terms—Hosting capacity analysis, distributed solar,
conditional value at risk.

I. INTRODUCTION

CCORDING to a recent study in [1], usable rooftop space
A in the United States can accommodate solar energy pro-
duction sufficient to meet the nation’s current electricity de-
mands. Bolstered by federal and state level renewable portfolio
standards and legislation, both utility and small-scale distributed
installation projects are slated to expand and bring this potential
capacity to realization [2]. Given this anticipated rapid growth,
we ask: is the grid ready to host distributed solar at scale?

In the absence of careful planning, high levels of distributed
generation can lead to unacceptable voltage rise and imbalances,
protection system malfunction and excessive harmonics [3], ne-
cessitating real-time curtailment. For example, solar production
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curtailments, exceeding 15% of total potential output, have often
been necessary in California [4] to avoid violation of system con-
straints. Today, these interventions typically target utility-scale
solar installations. Soon, similar measures may be required in the
context of distributed solar installations in low/medium-voltage
distribution networks as well, if the impacts of such projects are
not properly assessed as they proliferate. Thus, reliable analysis
and planning tools are required. The focus of this paper lies in
answering how much installed solar capacity can a distribution
network host, without jeopardizing safe operational limits for the
network? Such quantification studies are categorized as hosting
capacity analyses (HCA). In developing HCA as a planning tool
for evolving distribution systems, one must account for the range
of operational conditions such systems may face over a planning
horizon. By operational conditions, we mean the spatio-temporal
characteristics of load and solar irradiance scenarios. Planning
for a future system cannot rely solely on historical operating
conditions, as future characteristics can substantially differ from
the past. Aside from the aforementioned penetration of renew-
ables on the generation side, network load characteristics are
expected to change significantly with the increasing adoption of
new technologies such as at-home batteries and electric vehicles.
To account for such a breadth of operating conditions, stochastic
HCA approaches, as surveyed in [5], are more appropriate
for planning purposes than deterministic methods that perform
analysis based on one or a few historical scenarios, e.g., those
studied in [6], [7], [8].

Stochastic HCA assesses acceptibility of solar capacity in-
stallations on the basis of system constraint violation sfafistics.
Evaluation of such statistics often incurs both modeling and
computational challenges. For example, the probability of con-
straint violation considered in existing approaches, e.g. [9], [10],
requires identification of a suitable probability distribution over
operating conditions. As illustrated in [11], solar generation is
not well characterized by parametric distributions. Even when
an accurate parametric distribution is available, outside of a
limited collection of distribution families, solution of stochastic
optimization problems with parametric families is generally dif-
ficult. This difficulty can arise from the nonconvexity introduced
by stochastic constraints, e.g., those that seek to restrict the prob-
ability of violation. The challenge can also arise due to the need
to compute suitable expectations that require computationally
intensive numerical integration, as argued in [12].

The computational difficulties associated with exact calcula-
tion of statistics can be alleviated by instead relying on a com-
bination of scenarios sampled from generative models and/or
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historical datasets. However, in order to obtain reliable HCA
results, a large number of samples need to be used. Therefore,
under scenario-based stochastic HCA, scalability of the pro-
posed tools becomes a critical consideration.

The choice of statistic impacts the nature and utility of results
obtained via stochastic HCA. While existing approaches control
for the probability of violations under candidate installations,
they do not necessarily capture the exfent or severity of said
violations. Clearly, both the frequency and extent of violations
are relevant to the health of distribution network components,
and should be considered in the development of stochastic HCA
methods.

In view of these central aspects of stochastic HCA, the key
innovation of our work lies in the use of the conditional value
at risk (CVaR) measure to process the statistics of constraint
violation, as we explain in Section III. Already popular in finance
(e.g., see [13], [14]), the favorable mathematical properties of
CVaR are popularizing its use in engineering domains, including
power systems. For example, CVaR is used to encode risk aver-
sion in objectives of multi-stage renewable investment planning
and economic dispatch problems in [15] and [16], respectively.
As will become evident, these mathematical properties allow
efficient algorithm design to tackle the scalability challenge of
HCA.

A variety of methods have been proposed for estimation of
distribution network hosting capacity. Under an EPRI approach
widely recognized and adopted by many utilities, Monte Carlo
simulation is first used to generate installation configurations
consistent with PV adoption patterns and increasing levels of
renewable penetration. Hosting capacity is then assessed by
considering constraint violations under min and max midday
loading levels [17]. This method was examined in detail across a
number of distribution feeder case studies in [18]. Similarly, [19]
randomly generates installation configurations for each of a
number of penetration levels and assesses hosting capacity via
evaluation of the probability of voltage constraint violations at
each level under historical load time series. In [20], hosting
capacity is determined via the outcome of a mixed integer
linear program which jointly optimizes network investment and
emission costs together with hosting capacity. Acceptable gen-
eration configurations satisfy network constraints, e.g. voltage
level across each of a set of renewable generation and loading
level scenarios. Due to the combinatorial nature of the problem,
heuristics are introduced to reduce the search space size.

The specific contributions of this paper are as follows. First
in Section IV, we propose a CVaR-sensitive hosting capacity
maximization problem that seeks to identify the maximum ag-
gregate capacity of solar installations in a distribution network,
and describe a scenario-based approach to solve it via convex
optimization. This convexity follows from our use of CVaR,
as well as a standard second-order cone programming-based
relaxation of the DistFlow power flow model. The vast ma-
jority of risk measures introduce nonconvexity, and require
explicit evaluation of the risk of constraint violations across
scenarios in order to assess the risk of a particular installation
configuration. As a result, one must consider solar installations
one at a time, assess the risk level for each, and update the
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configuration suitably to optimize hosting capacity. In contrast,
CVaR preserves the convexity of our power flow model and
allows for formulation of an optimization problem that directly
optimizes over realizable installations according to risk level,
defined through scenarios, and quality as captured by the chosen
objective function. Convexity allows us to leverage mature off-
the-shelf convex optimization tools and avoids the pitfalls of con-
straint linearization, mixed integer programming, or the design
of complex, parameter-sensitive algorithms to explore the space
of capacity configurations that require careful parameter-tuning,
e.g.,in [18], [19], [20]. Our numerical experiments demonstrate
the impact of risk parameters and the number of scenarios on
the solution quality and runtime.

Second, we propose a method in Section V to quickly de-
termine whether a candidate solar installation configuration has
acceptable risk of network constraint violations, as evaluated
via CVaR. Our proposed method is incremental, i.e., we uti-
lize the results of prior tests to expedite determination as to
whether a new candidate capacity configuration is acceptable.
The properties of the CVaR measure dictate that the resulting set
of acceptable configurations is convex. Thus, we construct and
refine convex inner and outer approximations to this set as more
configurations are tested. These approximations often permit
us to quickly certify whether a new candidate configuration
is acceptable, without having to explicitly test for it using all
scenarios. Our numerical examples illustrate that acceptability
certification time decreases rapidly, as the knowledge accumu-
lates over time from prior tests. We end the paper in Section VII
with concluding remarks.

II. THE HOSTING CAPACITY ANALYSIS PROBLEM

To formulate HCA formally, we begin by presenting the
equivalent single-phase power flow model of an n-bus three-
phase balanced radial distribution network.! Let V denote the
set of all n buses, and V denote the same set, save the feeder bus.
Derived from Kirchhoff’s laws, the power flow equations iden-
tify voltages and real/reactive power flows over distribution
lines that can sustain real and reactive power injections given
by /vpinj(w) € R™! and gjnj(w) € R™! across buses in
V, where w encodes an injection scenario. To describe these
equations, we introduce additional notation. For the n — 1 (di-
rected) distribution lines, let R(w) € R™! and X (w) € R*!
collect their resistances and reactances. Define P(w) € R™!
and Q(w) € R™ ! as the sending-end real and reactive power
flows in scenario w over said lines. Also, let L(w) € R™!
describe the squared current magnitude over these lines. Let
W (w) € R" collect the squared voltage magnitudes in scenario
w across buses in V.

Let B € R(™~1)*" denote the edge-to-node incidence matrix,
i.e., By; =1 and By; = —1 if nodes 7 and j denote the sending
and receiving ends of edge /, respectively. Let the edges be or-
dered by receiving end node index. We let B € R(n-1)x(n-1) pe

"While we present risk-sensitive HCA with a balanced three-phase distribu-
tion network, we remark that the generalization to unbalanced systems offers no
additional conceptual difficulty.

Authornized licensed use limited to: University of lllinois. Downloaded on Apnl 16,2024 at 14:47:58 UTC from IEEE Xplore. Restrictions apply.



MADAVAN et al.: RISK-BASED HOSTING CAPACITY ANALYSIS IN DISTRIBUTION SYSTEMS 357

the reduced incidence matrix B with the column corresponding
to the feeder bus removed.

With this notation, we write the power flow equations via the
“DistFlow” model as

Pii(w)=B'Pw)+ROL(w), (la)
Ginj(w) =B'Qw)+ X ©L(w),  (1b)
BW (w) =2[RG P(w) + X @ Q(w)]
—(R*+ X*») o L(w), (lc)
[ByW(w)] © L(w) = [Pw)]* + [Q(w)], (1d)

where © denotes the Hadamard, or element-wise, product. Here,
B, is the matrix resulting from taking max{ By;, 0} for all £ and
i, and B, W (w) is used to capture the sending-end voltage.
This form of the power flow equations for radial distribution
networks has been derived in [21]. The first two relations encode
power balance at each bus, excluding the feeder. The last two
equations describe Kirchhoff’s voltage law, expressed in terms
of squared line currents and real/reactive power flows. For
simplicity, we use

(P(w), Q(w), W (w), L(w)) € Z(Pinj(w), Ginj(w)),  (2)

to describe the setof all (P(w), Q(w), W (w), L(w)) that satisfy
(1) for a specified power injection profile defined by pinj(w) and
Qinj (w)

An injection scenario, w specifies the profiles of solar ir-
radiance, real power demand, and reactive power demand
across buses in V), given by a(w) € R" !, pp(w) € R™ 1, and
gn(w) € R™1, respectively. If ¢ € ]R’_;_1 describes the vector
of installed capacities of PV panels across buses in V in terms of
surface area, then the real and reactive power generation from
solar panels across the same buses in scenario w is given by

Pe(w) =aw) oy, gew)=ncoa(w)oy, (3)

where 1 € ]R’j”__1 is the ratio of reactive to real power produced
by a solar panel. The value of 1 can be computed directly
from the power factor (pf) according to ng = (1/pf2 —1)1/2.
Today’s inverters typically operate at unit power factors, for
which ng = 0. The generation profile assumes a direct scaling
of the irradiance with the installed capacity—a premise that
holds when inverters connecting solar panels track the maximum
power point [22]. Given a configuration of installed capacities
1 across the distribution network, a single scenario w of solar
irradiance and power demands identifies the net real and reactive
power injections into buses in V, respectively, as

Pinj(w) = p6(w) — pp(w), Ginj(w) = gc(w) — gp(w). (4)

Suppose (2 defines a set of scenarios. Per Fig. 1, the solar
installation configuration 7 and €2 then yield a set of nodal
power injection vectors,

Sinj = {(Pinj(w), Ginj(w)) : w € O}. (5)

Elements of Sj,; identify voltage magnitudes and power flows,
per the DistFlow model in (2). As Fig. 1 portrays, the range of
operational conditions over {2 produces a statistics of voltage

Solar capacity

configuration s
g / San \_@
. Set of nodal ~
[ Q [ power injections V\
f L.
) : ) CVaR/ Statistics of
Scenarios of operational voltages/flows

Risk of network #~
constraint violation

conditions

Fig. 1. The work-flow of risk-sensitive solar HCA.

magnitudes and power flows. HCA amounts to processing if the
range of voltage magnitudes and power flows “adequately” sat-
isfy engineering constraints of the distribution grid in aggregate.

To define the notion of sufficiency, we say that a scenario w
respects the network constraints, if

W<Ww) <W, P?+Qw?<S, (©
for any (P(w),Q(w), W(w),L(w)) € Z(Pinj(w), Ginj(w))-

Here, W € R™ and W € R" are the lower and upper squared
voltage limits of each bus in V, and 'S € R™ ! is the vector of
line flow capacities. As the scenario w ranges over {2, there are a
variety of ways in which one can define when the range of voltage
magnitudes and power flows adequately satisfy the network
constraints. For example, one can require that each scenario in
(2 respects the constraints in (6). Such a stringent enforcement
of network constraints is generally considered overly conser-
vative for a planning problem such as HCA. Instead, several
authors (e.g., [19], [23]) have considered probabilistic constraint
enforcement, i.e., they call the network constraints adequately
satisfied, if

PW; < W, <v, PW; > W, <v,P[P2+ Q2 >T ] <~

foreach: = 1,...,n — 1. Probabilistic constraint enforcement
suffers from two major drawbacks. First, it simply restricts the
probability of violation, but not the severity of that violation.
Large violations can have significant implications, especially
in the context of line flow capacity limits, which can typically
be temporarily exceeded by small amounts. Second, the sets of
feasible solutions that satisfy probabilistic constraints are often
non-convex. Non-convexity typically makes it difficult to design
efficient algorithms that come with feasibility and optimality
guarantees. And, such algorithms often require careful parame-
ter tuning. In the following section, we propose a risk-sensitive
approach to HCA that is able to regulate both the probability and
the severity of violations, while retaining convexity, allowing us
to leverage existing techniques for solving convex optimization
problems with provable guarantees.

III. ConNDITIONAL VALUE AT RiSK (CVAR) IN HOSTING
CAPACITY ANALYSIS

Our key modeling innovation to HCA is the use of the condi-
tional value at risk (CVaR) measure to process the statistics
of constraint violations across power injection scenarios, as
depicted in Fig. 1. We begin by explaining this risk measure
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Mean\"x\ 1-96
E[C] \  CVaRs[(]
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Fig. 2. Example of relationship between the mean and conditional value at
risk (CVaR) with parameter & for a random variable .

for a general scalar random variable ¢ with a smooth probability
distribution as in Fig. 2. Interpret ¢ as a random loss that a
decision-maker might face. Parameterized by 6 € [0, 1), CVaR
measures the average over the 1 — § fraction of worst-case sce-
narios. Stated precisely, letting F- be the cumulative distribution
function,

CVaR;[(] = E[¢[¢ > F(6)],

where E[] is the expectation with respect to the probability
distribution over (. Selection of § allows expression of a toler-
ance towards high potential values. For example, setting 6 = 0,
CVaRg[¢] = E[(], while as 6 T 1, CVaRs[¢] approaches the
highest value (essential supremum) that ¢ can take. For general
distributions, CVaR can be written as

CVaRs (] := mirimum {t + B[ - tm} . @

where [z]. = max{0,z} for any scalar z. CVaR also bears a
close relationship with probabilistic constraint enforcement. In
fact one can show, as Fig. 2 suggests,

CVaR;s[¢] < 0= P[> 0] <1-4. ®)

Thus, CVaR-based constraint enforcement automatically limits
the violation probability of network constraints. Furthermore,
in computing the expectation over all constraint violations, it
regulates the severity of said violations as well.

Adopting the CVaR measure, we now present the method of
assessing whether network constraints are sufficiently satisfied
over §2. To thatend, consider the violation function of the voltage
upper limit, W (w) — W. We impose the constraint

CVaR, [W (w) —

where the constraint is interpreted element-wise. Per (8),

W] <o, 9

CVaR, [W (w) ~W] < 0 = P{Wi(w) 2 Wi} <1-6
(10)
forz =1,...,n.CVaR is translation-invariant, implying that (9)

holds, if and only if

CVaR, [W (w)] < W. (11)

Repeating the above exercise for the remaining network con-
straints in (6), we say that the vector of installed solar capacities,
1, is acceptable if

CVaR, [W (w)] < W,
CVaR, [-W (w)] < -W,

(12a)
(12b)
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CVaR,[P%(w) + Q)] < 5 (12¢)

where almost surely over €2,
Pinj(w) = a(w) © ¥ — pp, (13a)
inj(w) = N6 © a(w) © Y — g, (13b)
(P(w), Q(w), W(w), L(w)) € Z(Pinj(w), Ginj(w)).  (13¢)

The set of 1 that satisfy (12) is non-convex, due to the quadratic
equality constraint (1d) in (1). It is common practice to con-
vexify the power flow model, either via linearization or convex
relaxation. For example, linearization is used in [24]. We adopt
a convex relaxation of the set of feasible injections, similar to
that in [25], replacing (1d) in the definition of % with

[BLW ()] © L(w) 2 [PW)* + [QW)*.  (14)

Using this, we define the convex DistFlow model as
(P(w), Q(w), W (w), L(w)) € Z°(Pirj(w), Ginj (w)).  (15)
In effect, P° represents the convex set of all
(P(w),Q(w), W (w), L(w)) that satisfy (la)-(lc), (14)

with power injections Pigj(w), Ginj(w).

IV. FORMULATING ACCEPTABLE AND MAXIMAL HOSTING
CAPACITY PROBLEMS WITH SCENARIOS

We now cast CVaR-sensitive HCA as optimization programs
with a collection of samples defining {2, which characterizes the
variety of operational conditions that the distribution network
might face. Consider K independent and identically distributed
samples w!, ..., w’ from £2. Each of these K samples encode
solar irradiance, real and reactive power demands across the
buses in V, denoted by the tuple (a*, p§, gf) fork =1,... K.
With these samples, the convexified DistFlow model becomes

phi=ao* 0% —p§, (16a)
gy =ncoa* oy — g, (16b)
(Pku ijwk)Lk) € @C(pﬁlp qﬁ'}_]): (16{")

for each k =1,..., K. The risk-sensitive acceptability test re-
mains (12), now taken uniformly over the samples, e.g., using
(7), the scenario-based counterpart of (12a) becomes

minimize {w +— Z[VVk - w]+} <W. an

Imposing that the minimum over @ must be less than W
amounts to imposing the existence of a feasible T such that the
expression being minimized is less than W, i.e., the above in-
equality is equivalent to the same with the minimization dropped.
This constraint can further be written as a combination of the
following constraints,

]. k k
T4+ —m < S
w+K(1—v) E_t <W,t,>

(18)
for some 0, tu,, k=1,..., K. Thus, the CVaR constraints with

samples can be equwalently enforced via the above deterministic
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constraints (18). Repeating the same procedure for all constraints
in (12) results in the following sampled acceptability test, de-
fined by the feasibility of the following inequalities,

K
i b A k= <k E o
w + — t,<W,t,>W" -, (19a)
l—r}}r(k:1
P
wts—%) H<-W,t5>-Wr-w,  (19)

K
R B Yyt <8t > [P P+ Q2 -5, (19)

T >0,t8>0,t* >0, fork=1,...,K, (19d)

where (P*, Q% W*, L¥) is related to (pf;, gk,;) via (16) for
each k =1,..., K. For a given solar installation configuration
1, its acceptability can therefore be assessed by solving the
optimization problem,

ACC(%) : maximize 0, subject to (16), (19), (20)

over P*, QF, Wk L* w, w, ff’u, tE, tFfoek=1,...,. K.
Furthermore, ACC(%/) can be written as a second-order cone
program (SOCP),

maximize 0
T

b

subjectto  Cytp = Dyx + Ey, (21a)
Dz < E, (21b)
Fz-:l',' =+ Gi
€ Kso,
(f:—ﬁ: —l—g;) 50,
S — (21¢c)

where @ is the vectorized concatenation of all variables in (20).
Here, Ksg is the second-order cone, defined as

Kso={(y",v)T||lyll, < v},

where || - ||2 computes the 2-norm of a vector. The equalities
(16a) and (16b) are written compactly as (21a). The equality
in (1c) can be written as two inequalities. These, together with
(12a), (12b) and (19d) become examples of (21b). The nonlinear
constraints in (14) and (19c¢) are written as I second order cone
constraints (21c) using the procedure outlined in Appendix A.
Formulated as in (21), the acceptability assessment problem is
an instance of the widely studied class of convex optimization
problems, for which efficient off-the-shelf solvers exist. Beyond
testing candidate solar installation configurations, another inter-
esting question is to solve for the maximal solar hosting capacity.
That is, one seeks the maximal total installed solar capacity
over all acceptable configurations. Written mathematically, this
amounts to solving

(22)

OPT : maximize ILT'!,a’;, subject to (16), (19), (23)

over v, P*¥, QF Wk L* 0, w, fi,, =t or k=1, .., K.
The procedure used to derive (21) can be applied to OPT to

derive an SOCP over x, 9. Again, existing SOCP solvers can
then tackle OPT.

The scenario-based CVaR constraints provide a structured
framework to solve ACC(%y) and OPT as SOCPs for which
efficient algorithms come with provable guarantees. While there
are parallels between our approach and the BayesOpt framework
with probabilistic constraints in [26], there are also important
differences. To contrast the two methods, consider the optimality
problem with probabilistic constraint enforcement, i.e., replace
CVaR,[W]| < W with P{W —W >0} <1—v. Under a
scenario based approach, the probabilistic constraint amounts
to imposing

K
1
72 Lwe wsg <1-v, (24)

k=1

where [ is the indicator function that evaluates to unity when
its argument is true, and becomes zero otherwise. Tackling
such constraints with indicator functions within our framework
requires the solution of a nonconvex mixed-integer SOCP, which
is typically more computationally challenging than solving the
SOCP problem with CVaR-based constraints. The primary dif-
ficulty lies in the lack of convexity in the left-hand-side of
(24). This makes it challenging to find natural directions to
update 7, as feasibility information cannot be extrapolated to
additional points. Thus, each time the candidate installation
profile v is updated to ¢, the computed @C(pﬁlj,qf‘nj) for
each scenario w® and installation profile ¥» must be discarded
entirely and recomputed from scratch for installation profile
1" # 1). Essentially, lacking a convex structure for the set of
WF that satisfy (24) together with (16), it becomes difficult to
recycle computations across candidate installation profiles. The
Bayesian optimization framework in [26] tackles this challenge
through a combination of two steps. First, the constraint in
(24) is included through a penalty in the objective function
to construct an unconstrained optimization problem. Then, the
resulting objective is minimized via kernel smoothing of the
objective function. Running such algorithms requires careful
choice of the penalty factor and the kernel.

Our CVaR-based formulation is inherently convex, and thus
obviates the need for such manual tuning techniques. Further-
more, our proposed approach never requires explicit evaluation
of CVaR over scenarios for any . Rather, we leverage the
variational characterization of CVaR in (7) to formulate the
optimality problem over 1 and the other optimization variables
in (23), where a solver can exploit the convexity of the problem
to iteratively update these variables together, ensuring that the
solution guarantees acceptability.

Our formulation utilizes the SOCP-based relaxation of the
set of feasible injections, characterized by Kirchhoff’s laws.
The setup is flexible in that one can utilize any “convexified”
power flow model to obtain a convex programming formu-
lation of the CVaR-sensitive hosting capacity problem. This
approach offers a sharp contrast to those that rely heavily on
the choice of a particular power flow model. For example, the
sample reduction technique in [24] crucially depends on a linear
power flow model, where constraint violations are processed
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Fig.3. Inner(green) and outer (white) sets portray ¥, and ¥, respectively,
that approximate the set of acceptable installations ¥ (gray). The outer frame
encodes the set [0, 9]. The sets A, and U,;, comprise the points with green and
red borders, respectively.

through a quadratic penalty and optimized, permitting the use
of multi-parametric quadratic programming theory to assess the
feasibility of an installation configuration 7. Such a method does
not naturally generalize to SOCP-based power flow models.

V. AN INCREMENTAL APPROACH TO ASSESS ACCEPTABILITY

For any given vector of solar hosting capacities 1>, acceptabil-
ity can be assessed by evaluating the feasibility of (20). However,
as the number of samples grow large, this can lead to exceedingly
large problem dimension, requiring significant computational
time. Instead, it would be beneficial to exploit existing informa-
tion regarding previously evaluated acceptable and unacceptable
hosting capacities to certify the acceptability of 1. In the sequel,
we develop an incremental algorithm to certify acceptability.
That is, we first attempt to leverage the knowledge of a list of
acceptable and unacceptable configurations to certify whether a
new candidate configuration is acceptable.

Our design is such that this check is often much faster than
solving (20). If unsuccessful, we then solve (20) and use the
new configuration to update the knowledge about acceptable
and unacceptable configurations. As will be evident, such a
method drastically reduces the instances of 1/’s for which (20)
must be solved to certify acceptability with more tests. Thus, the
more we test, the less we require to solve (20). Such a testing
paradigm is useful, especially to test acceptability of installation
configurations that are close to each other, e.g., those that lie on
likely solar adoption paths. Let ¥ denote the set of all acceptable
configurations of physically realizable installed solar capacities,
i.e., ¥ C [0, %)]. Thanks to the convexity of CVaR, ¥ is a convex
set, shaded in gray in Fig. 3. We maintain polyhedral inner and
outer approximations W;, and ¥, respectively, of ¥ satisfying

Ui, C ¥ C Py C [0,9]. (25)

These sets are visualized in Fig. 3. We construct ¥;, and ¥
incrementally from prior acceptability tests. For a new candidate
1, if ¢ € ¥y, then 9 is acceptable. On the other hand, if
1 & Wy, then 9 is unacceptable. If neither of these tests certify
the acceptability of 70, then we run (20). The result of the
optimization program either grows W;, or shrinks W, thus
expanding the space of 10’s where acceptability can be certified
without running (20). In the rest of this section. we outline
the incremental construction of ¥;, and ¥, and how we test
1 € Wy, or ¢ ¢ ¥,y The method for testing acceptability of
1 is summarized in Algorithm 1.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 39, NO. 1, JANUARY 2024

Withalist Ay, = {9°[1],...,9*[M]} of acceptable config-
urations, we construct ¥;, as their convex hull,

M
Uiy = conv(Ay) = {Zﬁﬁba[a‘] :BeR¥ 178= 1} .
i=1 (26)

Testing if 1 € ¥;, can be solved as a linear program over
B3 € RM_If 4 is certified acceptable from running (20), then
Ay + Ay U anddefine again ¥;, = conv(A ). We grow ¥,
incrementally, starting from the null set.

Next, we describe how we construct W, starting with [0, E]
In the event that (20) finds 1 unacceptable, we construct a
Seasibility cut, borrowing the idea from the generalized Benders’
decomposition in [27]. The cut generation technique makes use
of the following result. We use I =1 in (21) for notational
simplicity. The proof is deferred to Appendix B.

Proposition 1: 1f there exists (A, g, pt1, pt2) that satisfy

D p=DjA+ F s+ fuz, p >0, (], p2)" € Kso,
(27a)

(Cy¥— Ey)"A —E"p — Gy — pag > 0,
(27b)

then ACC(%)) is not feasible, i.e., ¥ is not an acceptable instal-
lation configuration.

Existence of a point satisfying the conditions delineated in
(27) certifies the unacceptability of 1. As the proof of Proposi-
tion 1 in Appendix B reveals, (X, p, pt1, o) satisfying (27a) is
a feasible point in the dual program of ACC(1)). Corresponding
to such a point, the ray characterized by (kX, kpt, Kpt1, Kpia)
for all k& > 0 is also dual-feasible. When this ray addition-
ally satisfies (27b), it provides a direction along which the
objective function of the dual program increases to infin-
ity. Assuming