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ARTICLE INFO ABSTRACT

Keywords: Material architecture provides an opportunity to alter and control the fracture process zone
Architected materials shape and volume by redistributing the local stresses at a crack tip. Properly designed structures
Plas“]:"fy can enlarge the plastic zone and enhance the effective toughness. Here, we use a pillar array as
Toughness

a model structure to demonstrate how variations in geometry at a crack tip control the size and
shape of the plastic zone and can be used to engineer the effective toughness. Elastic—plastic
finite element simulations are used to quantify how the pillar width, spacing, and height can
be varied to tailor the size and shape of the plastic zone. A set of analytical mechanics models
that accurately estimate the shape, volume, and resulting toughness as a function of the base
material properties and geometry are also presented. A case study extends the analysis to sets
of non-regular pillar arrays to illustrate how architecture can be used to alter toughness along
the crack path.

Finite element analysis

1. Introduction

During fracture, high stresses near a crack tip result in a region of inelastic material damage, designated as the fracture process
zone. For many materials, this region results from plastic deformation and is referred to as the plastic zone, with larger plastic zones
dissipating more energy and resulting in higher fracture toughness. For homogeneous materials, the radius of the plastic zone, r,,
is directly tied to the yield strength of the material, o,, such that r, « (zry)‘2 (Irwin, 1957). The fracture toughness of a material
is often tailored by changing the material composition and microstructure to reduce the yield strength, which increases the plastic
zone radius and enhances the toughness. However, there is a trade-off with this approach as there is a loss in strength (Ritchie,
2011). Fine-scale architecture, enabled by additive manufacturing (Bertoldi et al., 2017; Walia et al., 2015; Wegst et al., 2014;
Yang et al., 2018; Vyatskikh et al., 2018; Saccone et al., 2022; Gross and Bertoldi, 2019), offers a new mechanism for toughening
materials by using geometry to alter the shape and size of the plastic zone. Material architecture has been leveraged to great success
in enhancing material properties (Messner, 2016; Ostoja-Starzweski, 2002; Schaedler et al., 2011; Meza et al., 2014; Zheng et al.,
2014; Ramachandramoorthy et al., 2020; Ashby, 2005; Pham et al., 2019; Abedi et al., 2021), but has mostly been used to increase
stiffness- and strength-to-weight ratios (Schaedler et al., 2011; Meza et al., 2014; Zheng et al., 2014; Ramachandramoorthy et al.,
2020; Bauer et al., 2016; Mueller et al., 2018; Park et al., 2020; Compton and Lewis, 2014), or to create materials with high
energy absorption under compressive loading (Ashby, 2005; Pham et al., 2019; Abedi et al., 2021; Mohsenizadeh et al., 2018).
Most approaches for designing and optimizing mechanical properties have relied on elastic analyses, and material architecture has
not yet been widely exploited to increase the fracture toughness of materials, with only some recent works having considered the
topic (Heide-Jorgensen et al., 2020; Fulco et al., 2022; Mateos et al., 2019; Zhang and Mao, 2018; Shaikeea et al., 2022; Hossain
et al., 2014; O’Masta et al., 2017; Hsueh et al., 2018; Athanasiadis et al., 2021; Luan et al., 2022; Cui et al., 2020; Muro-Barrios et al.,
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2022). These works have successfully related the topology of the architecture to the failure (Zhang and Mao, 2018; Shaikeea et al.,
2022; Cui et al., 2020; Muro-Barrios et al., 2022) and demonstrated use of homogenization methods (Heide-Jorgensen et al., 2020;
Mateos et al., 2019), but are limited in that most consider microstructures that fail in an elastic-brittle manner. Many structural
materials, including those utilized in additive manufacturing, exhibit significant plasticity during failure. As microstructures are
fabricated at increasingly smaller characteristic length scales (Vyatskikh et al., 2018; Saccone et al., 2022; Gross and Bertoldi,
2019) - well below r, of the material - failure is unlikely to be accurately described by elastic-brittle mechanisms. This limits the
applicability of these models to design structures with enhanced fracture properties. As plastic deformation at the crack tip is one
of the primary contributions to toughness in homogeneous materials, understanding and leveraging plasticity in structured and
architected materials represents a significant opportunity to design materials with enhanced toughness.

Without a better understanding of the role of plasticity in architected materials, potential opportunities for enhancing toughness
may be missed. Our recent work (Fulco et al., 2022) is the first we are aware of that examined elastic—plastic fracture of an
architected system. Predicting where plasticity will occur, or potentially localize, is complicated in architected systems. Plasticity that
is isolated to a particular feature of the structure may lead to a very different failure phenomena and load than if large portions of
the structure yield. These failure regimes are controlled by the geometry, the micromechanics of the architecture, and the material’s
characteristic fracture length scale (Fulco et al., 2022; Kanninen, 1973).

Expanding on the well-established fracture mechanics analyses of homogeneous materials, where the plastic zone shape is known,
the objective of this work is to investigate how architecture can be used to intentionally alter the plastic zone shape, and how
particular design choices can result in larger plastic zones and increased toughness. A pillar array is used as a model system, which
has been discussed on several occasions, including our recent work (Heide-Jorgensen et al., 2020; Fulco et al., 2022). In Fulco
et al. (2022), it was shown experimentally that introducing a pillar array along the crack plane of a ductile material could alter
the plastic zone shape and enhance the toughness, but the analysis was confined to a limited set of array geometries. Here, the
problem is considered in a more general analysis, without limitations to elasticity, as was the case in Heide-Jorgensen et al. (2020),
or specific array geometries, as in Fulco et al. (2022). A general framework is developed that can be utilized for materials with
a range of elastic—plastic behavior or adapted to other architectures. It is validated through numerical modeling using a material
model based on previous experiments that demonstrated how toughness can be enhanced through architecture (Fulco et al., 2022).
A pillar array was chosen as a model geometry as the micromechanics are more tractable for predicting the size and shape of the
plastic zone, although the fundamental approaches taken in this work are agnostic to the micromechanics and could be applied
to more complicated geometries in future investigations. This work presents a general energy analysis for structured elastic—plastic
materials, which depends on predicting the plastic zone size and shape. This is achieved for the pillar array through a set of analytical
mechanics models that provide an algorithm for predicting the plastic zone size for any array geometry. Results are illustrated and
validated through a set of finite element simulations of varying pillar geometries, which demonstrate the ability to vary the plastic
zone size and the resulting toughness through changes in pillar width, spacing, and height, and show good agreement with the
analytical predictions. Finally, a case study is presented to extend the model to non-regular pillar arrays and demonstrates how
toughness can be tuned locally as the crack propagates.

2. Theoretical framework

For the pillar array, an elastic analysis (Heide-Jorgensen et al., 2020) previously demonstrated that arrays with increased
compliance result in a more uniform stress along the interface. This improves the effective toughness of the structured material, since
greater stress uniformity leads to a lower stress in the first pillar (i.e., the “crack tip”) for a given load. In our recent work (Fulco
et al., 2022), it was shown experimentally that this could be leveraged to an even greater degree when a material deforms plastically,
since the increased compliance results in a larger plastic zone, and proportionally more energy dissipation. That work was limited
to cases where plastic deformation only existed in the pillar array. Here, we build on the previous work by presenting a new general
elastic—plastic model that can predict the plastic zone shape and volume, as well as the resulting toughness, and is demonstrated
for a general set of pillar array geometries. These models are verified through finite element simulations (see Section 3).

2.1. Model geometry

This work considers the effect of the geometry of a structured region in the crack plane of a compact tension (CT) speci-
men (ASTM, 2020; ASTM International, 2007), as shown in Fig. 1(a). For homogeneous elastic—plastic materials, a plastic zone
will form around the crack tip, with the typical (plane strain) shape shown in Fig. 1(b). A regular pillar array, as shown in Fig. 1(c
& d), is introduced along the crack plane, and is parameterized by four dimensions: the pillar height, ¢, pillar width, I, pillar spacing,
sy, and fillet radius, r. In 2-D, this system looks like a pillar, although we note that the plane strain model can accommodate pillars of
varying width, b, and is not restricted to pillars with cross-sectional areas that have aspect ratios close to one. The length scale of the
pillar dimensions is on the order of the plastic zone radius of the material or smaller. Additional details of the range of dimensions
for each parameter used in this work are discussed in the finite element model description below. Due to the compressive region
near the far boundary of the CT specimen, if a crack is too long, or the pillar geometry results in a plastic zone that is too large,
the compressive field can impede the development of the plastic zone and artificially reduce the toughness (ASTM International,
2007). Throughout this work, geometries were limited to only those where the plastic zone was fully developed and away from the
boundary before failure.
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Fig. 1. (a) Homogeneous compact tension specimen with plastic zone shown (in red); (b) Plane strain plastic zone of a homogeneous mode I fracture specimen,

with the radius, r,, and the plastic zone extension, 4, indicated. (c) Compact tension specimen geometry with pillar interface. (d) Pillar interface in crack region

of CT specimen, corresponding to outlined region in (c), showing pillar spacing, s,, width, I, height, 7, and fillet radius, r.

2.2. Toughness of an architected material

Energy-based analyses of fracture define the toughness of a material as its critical energy release rate, G,, which for a brittle
material is equivalent to the rate of energy per unit crack area required to create the two surfaces of a crack. For a brittle material
with surface energy y, the critical energy release rate is G, = 2y (Griffith, 1921). In most cases there are additional dissipative
mechanisms, such as plasticity, and these significantly increase G.. In these cases, the toughness is then typically denoted instead
by J. To understand the role of plasticity, consider the potential energy, I7, of a specimen with domain Q as

H=/uedV+/updV+/ydA—W, (€Y
Q Q r

where u, is the elastic energy density, u, is the plastic energy density, W is the external work done, and I" = 24 is the crack surface
area, with A = ab, where a and b are the crack length and specimen width, respectively, as shown in Fig. 1(c). Taking the first
variation of the potential energy with respect to crack area and setting equal to zero (i.e., Z—A 0) and noting that the plastic
energy is confined to the plastic zone, Q, the toughness of the material, J*, is defined as

9 9
r=-Z av-w)==2 av ) +2y, 2
aA</Q”e ) aA</Qp”l’ > v @

where J* is used to indicate an effective toughness measurement, and % JrrdA = 2y. Note that the derivative of the plastic
integral is conservative only if the plastic zone size is unchanged during crack propagation, as is assumed here. This analysis of
the architected specimen follows that of the homogeneous case, but £, may not follow the plastic zone shape of a homogeneous
specimen, but instead will be a function of the pillar geometry. Given that the following analysis does not follow some assumptions
of traditional fracture mechanics such as continuity (Lubliner, 1990), we refer to J* as an effective toughness measurement.
Assuming the fracture is self-similar (i.e., 47 — ), which implies self-similarity of the plastic zone, the plastic energy term will
be proportional to the plastic zone volume, with fg u,dV = p,Q,, with 5, = [ Ke™de being the average plastic energy density,
where K and m are material properties, the plastic modulus and hardening exponent, respectively. For a regular and repeating pillar
interface, the assumption of a conservative plastic integral is assumed to be satisfied if the plastic zone is of the same volume for
any a = ay +i(l, + s,), for i = 1,2,...,n, with n being the number of repeated features and a, being the initial crack length. This
approach does not explicitly account for the elastic strain energy recovered from the plastic domain during unloading. This elastic
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energy is expected to be small compared to the plastic dissipation. The model can therefore be rigorously applied to predict crack
initiation. Under these assumptions, the toughness can be found through the relationship

J*= deiA (8,) +2r, 3)
which shows that the toughness can be predicted from three values: @, 5,, and y. Note that 2y is typically much smaller than
the plastic term for materials with significant plasticity. Since j, and y depend on the constitutive behavior and intrinsic material
properties, they would have to be uniquely identified for every material. However, if the toughness of the array is considered relative
to that of a homogeneous specimen of the same material with toughness J;, = .Qo% (8,) +2v, where &, is the plastic volume of the
homogeneous specimen, and 5, and y are identical to the pillar case, the relative effective toughness can be approximated as

e 2,

T ~ 2 +6,, “4)
where 6, = 2y/J, and 2y is assumed to be negligible relative to the plastic energy. This assumption results in a linear scaling of
toughness with respect to plastic domain, where 6, is a small offset due to elastic energy. This analysis follows that for a homogeneous
material, but is novel in its application when considering the case of an architected material where the size and shape of the plastic
zone may be altered. If the toughness of the homogeneous material, J;,, and the size of the plastic zones of the homogeneous and
architected specimens are known, the toughness can be predicted.

In our recent work on pillar arrays (Fulco et al., 2022), it was shown that there exists a critical pillar height, 7., above which
plasticity becomes isolated to the pillar array. For planar structures, this critical pillar height, ¢,, was found to be 7, = O(4), where
Ao is the plastic extension during fracture of a homogeneous specimen (Kanninen, 1973) (see Fig. 1(b)). In the case of ¢t > ¢, Eq. (4)
is simplified as the plastic zone is confined to the plastic region of the pillar array and @, = N,/,th, where N, is the number of
plastically deforming pillars in the array. As discussed in Fulco et al. (2022), in this case the toughness could be estimated even
more simply, and scaled with plastic area in the crack plane, or N,/,b. This estimation was found to be effective when the process
zone was confined to the interface and the effective stiffness of the system was reduced proportionally to the pillar height, ¢. Thus,
in the case of plasticity being fully confined to the pillar region, we can approximate the toughness as

Jr Nyl

~

Jo Ao

+ 8, (5)

where §, is an offset due to elastic effects. This analysis is only valid when ¢ > 7, and the pillars are far enough apart so as not to
interact (Fulco et al., 2022). For geometries which result in a plastic zone that is not confined to the array, a different analysis is
required to predict the plastic zone volume.

2.3. Plastic zone geometry

For an isotropic homogeneous fracture specimen under mode I loading, the shape of the plastic zone (assuming plane strain
conditions) can be defined in polar coordinates as the domain R € {r <r,(6),0 < 0 <2z} (Lubliner, 1990), with

Koo\2
rp=<£> cos® (£)15-3cos @)1, )
oy 2
where r, is the plastic radius, K, is the critical mode I stress intensity factor (the fracture toughness), o, is the yield strength, and
0 is the angle measured from the plane of the crack, directed ahead of the crack tip. This plastic zone shape is shown in Fig. 1(a
& b). We will refer to extent of the plastic zone along the crack path in a homogeneous specimen, 4, = r,(0), as the plastic zone
extension.

2.3.1. Foundation model for predicting plastic extension

In the case of a pillar array, the plastic zone extension, 4,, can be predicted using a foundation model, specifically, a modified
Winkler (Dillard et al., 2018) foundation, where the CT bulk is modeled as a Timoshenko beam supported by a piece-wise foundation
that is either un-bonded, perfectly plastic, or elastic, corresponding to the three regions of the CT specimen: the traction-free cracked
region, the plastic zone near the crack tip, and the elastic region outside the plastic zone, respectively. In the case that plasticity is
localized to the pillar array (i.e., no plasticity exists in the CT bulk) this model would be a suitable homogenization of the problem. In
cases where the plastic zone includes regions outside the pillar array, the foundation model is a reasonable approximation, provided
the plastic zone areas in the CT bulk do not cause significant deviations from elastic beam theory. However, the model no longer
provides a route to directly calculate the plastic volume, £, but can be used in conjunction with other models to determine its
value, as shown in Section 2.3.2.

The elastic-perfectly plastic foundation model considered here has (Dillard et al., 2018) equilibrium equations
dM dVv

E'{'V:O, E—bo‘(x):O, (7)

where M = ET % is the bending moment, V' = kGA, (% — q‘)) is the shear force with w the beam deflection and ¢ the rotation, E is

the Young’s modulus, I = bh3/12 is the moment of inertia with 4 the beam height and b the beam width, G is the shear modulus, 4,
is the cross-sectional area of the beam, and « ~ 5/6 is the shear coefficient. o(x) is a piecewise function describing the foundation,
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where o(x) = 0 in the cracked region, ¢(x) = fbo,, in the perfectly plastic region, where f = [, /(I +s,) is the pillar array area
fraction, and o(x) = kw in the elastic region, where k = <¥E> f is the foundation stiffness.

As indicated in Fig. 1, the cracked region extends from the loading point (x = 0) to the crack tip (x = a). The perfectly plastic
region then extends from the crack tip to the furthest extent of the plastic zone along the crack plane (x = a+4,), with the remaining
region corresponding to the elastic foundation. As has been shown previously (Heide-Jorgensen et al., 2020), in the cracked region,
the bending moment is M = —Px and the shear force, V = —P, which results in rotation

) =——x"+A4,, ®)
where A, is a constant of integration, and the subscript (); refers to the solution in the ith region, (1) the cracked domain, (2) the

plastic domain, and (3) the elastic domain. The deflection in the cracked region can then be found to be

P 5. P
w = —x>+ ——x+A;x+ B, 9

TRl TkgaT TR )
where B, is another constant of integration. In the perfectly plastic region, the shear force can be found via integration to be
V = fbo,x*+ A,, and the moment is then found to be M = —% fbo, x> — Ayx+ By, where A, and B, are also constants of integration.

The equilibrium equations (Eq. (7)) can then be solved to find the rotation
1
&, = 12ET (—gfbayx3 — A+ 2B2x) +C, (10)
and the deflection

wy = 124E1 (12B)x? — 44,x° — fbox*) +

1
SAcK (fbo,x® +24yx) — Cyx + Dy, an
where C, and D, are constants of integration. Finally, the elastic region can be solved by combining the equilibrium equations into
a fourth-order differential equation (Heide-Jorgensen et al., 2020) for the deflection,

d*w  EIk d*w
EI=—= =k 12
Tt oA a2 w(x) 12)

which has a general solution of the form

w3 = Aze” " 4 Bye!'* 4 C3e7 2% + Dyel?* (13)

1/4 —
where A3, Bs, C3, and D; are unknown constants, y; = A\/2(e + Vez — 1), y, = A\/2(e — Ve — 1), with A = (%) and ¢ = Z:GE/{.

The significance of these constants has been discussed previously in Heide-Jgrgensen and Budzik (2017) and Salem et al. (2013).

To simplify the problem, the specimen is assumed to be infinitely long with no deformation at the boundary, implying B, =
D, = 0. This assumption will lead to a slight over-prediction of the plastic zone length compared to the compact tension specimen,
where compression must be present near the boundary. The remaining unknown constants can be solved for by requiring continuity
of the deformation, rotation, and shear angle.

To find the plastic zone length, 4, the stress in the elastic region of the foundation is calculated from the deflection, and the
position where it equals the effective yield strength, fo,, can then be determined. For comparison to finite element results, it is
useful to convert this length to the number of plastically deforming pillars, as N, = 4,/(I, + s,). For the case where plasticity is
isolated to the pillar array, the plastic zone volume can then be directly predicted as the number of plastically deforming pillars
multiplied by the volume of a pillar:

/
Q,= N, th=A,——tb. (14)
PP s,
For geometries where the plasticity is not confined to the array, this model can be extended to account for the plastic domain outside
of the array.

2.3.2. Perturbation model for predicting plastic domain outside the pillar array

To account for plasticity outside of the pillar array, we propose a simple model based on the following assumptions: (1) the
stress state in the bulk is agnostic to the micromechanics inside the pillar array and depends only on the applied stress state along
the boundaries between the array and the bulk, and (2) if the pillar array geometry were to converge towards a solid material
(i.e., s, /I, — 0), the shape of the plastic zones in the bulk would resemble that of a homogeneous specimen. Under these assumptions,
the analysis of the plastic domain can be considered in two parts, the plastic domain in the pillars and the plastic domain in the CT
bulk. The total plastic volume is the sum of the plastic volume of the pillar array and the plastic volume in the bulk.

To predict the size of the plastic domain in the CT bulk, we propose a perturbation analysis for estimating the area of the plastic
zone, which is proportional to the volume through the thickness. The pillar array is taken as a foundation (that is infinitely thin)
between the two CT bulk regions with a prescribed stress state (i.e., a uniform yield stress for an elastic-perfectly plastic material)
over the length of the plastic zone along the crack path. This length must be equivalent to the number and length of the plastically
deformed unit cells of the pillar region, N,(/, + s,). Thus, in polar coordinates with the origin at the crack tip (Fig. 1(b)), a new
plastic radius in the bulk, r*(9) is achieved, with the form r* = r, +r,,,, where r,,, is a perturbation of the original plane strain
plastic zone radius, r,, given in Eq. (6). Since the length of the new plastic zone is known, it is clear that r*(0) = 4, = N,(/, +s,).

5
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Fig. 2. Regions of bulk plasticity for pillars with spacings (a) s, = 1.5/,,(b) 1.2/, and (c) 0.5/,. The black lines correspond to the pillars, which are taken as
infinitely thin regions with prescribed stress states. It is clear that at s, = 1.2/, the regions above two pillars combine into a continuous region. For all plots,
o, =20,

A quadratic perturbation in 6 is considered, with the perturbation decaying to 0 as # — = to ensure that the plastic area converges
to the crack tip. This results in a new plastic radius of the form

K2
* __IC 2 Q — + - 2
=, e, = 471'0'5 [cos <2>(5 3cos(0)) + ¢(x —|6]) ] (15)

where ¢ is a weighting parameter for the perturbation. To ensure that r*(0) = Nyl + sy), it is prescribed that ¢ = 4N,y +

0.2
Sy) ( 2 > - ”—22 The area of the plastic zone in the bulk, Q7, can be then found by integrating, giving

I[K;C
1 [ K%c 1 2 4.2
@ =1 dp = 1€ [— 1845 + 40(39 + 14 96 ] . 16
. 2'/0 r 0_3 76807r( +40(39 + 147°)¢ +9677¢7) (16)

The total size of the plastic zone, £, is then equal to the sum of the bulk plastic domain and the array plastic domain, 2, =

Nyl b+ Q7. Considered relative to the plastic volume of a homogeneous specimen results in

Q, _ Nyb)

e 2

2

+ [1 +%(39+14n2)¢+ (%)gz]. 17)
2.3.3. Plastic zone domains

The two previous analyses allow for a prediction of the plastic zone domain in two cases, when the plastic zone is isolated to the
pillar array (22, = 4,/,1b/(I, + 5,)) and when it includes plasticity in the CT bulk (2, = (4,/,1b/(I, + 5,)) + 7). In order to estimate
the domain, it must be determined under which conditions plasticity exists in the CT bulk. In the region of the bulk above any
plastically deforming pillar, there will be some additional region of plastic deformation. Predicting the exact shape of this region
is difficult and would require a full plasticity analysis that is beyond the scope of this work, but the shapes can be approximated
using an elastic analysis. Treating the stresses transferred by the pillar as a traction applied to an (2-D) elastic half-space (the CT
bulk) (Timoshenko and Goodier, 1934), the stresses will be

o, == [a + sin(@)] 18)
* T

6, = -4 [a — sin(a)] (19)
z T

where a(x, z) is the angle between two lines drawn from the edges of the pillar to an intersecting point (x, z) (following coordinate
system shown in Fig. 2), and ¢ = o,/ /b, where ¢, is the applied traction due to the pillar, with ¢, < 6, < o, where o, is the yield
strength and o, is the failure strength of the material.

Considering two neighboring pillars with the corner of one pillar at the origin, then, by superposition, the stress field in the bulk
will be

I 31,
o, =0, (¢, x— > z)+ 0, (¢, x — > + 5y, 2) + 0,(x, 2) 20)
and
lX 31)(
6,=0,(q,x— 5,z)+0'pz(q,x— 7+sx,z), (@3]
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Fig. 3. Graphical representative of the algorithm used in this work to determine the plastic domain. Geometric parameters, ¢,s,, and /, and material properties,
E and o, are provided to the foundation model, which calculates the plastic extension, 4,, and the critical pillar spacing, s.. If 5, > s, as determined in
Section 2.3.3, plasticity is assumed to be isolated to the pillars and the area can be calculated via Eq. (14); if s, <s,, it is assumed that plasticity exists in the
CT bulk, which is then calculated via the perturbation model (Eq. (16)).

where 6,(x,z) = Mz/I is the bending stress in the CT bulk. Since the stresses decay away from the pillars, if the pillars are spaced
sufficiently far apart their fields will not interact; but as the spacing decreases, the two fields will combine. As noted above, as the
spacing of the pillars goes to zero, it is assumed that a continuous region of plasticity exists along the interface between the pillars
and the CT bulk. To identify the critical spacing such that a continuous plastic region exists between two pillars, we identify the
case where the von Mises stress, calculated by the superimposed fields, is greater than or equal to the yield strength for at least
one value of z at every x coordinate between the pillars. This depends on the value of the applied traction, o,. Assuming o, = ¢,
and o; =20, (which is a good model for the material considered in this work, as discussed below in Section 3), three example
spacings are shown in Fig. 2, with s, = 1.5/,,1.2] , and 0.5/,.. It is clear how two separate plastic zones (i.e., s, = 1.5/,) combine
into a continuous region for smaller spacings. The critical value where a continuous region exists can be solved for numerically
as s, ~ 1.2/, as shown in the figure. This model is an approximation, and does not account for how plasticity in the bulk might
affect the stress decay or for effects from stress concentrations at the corners of the pillars. The corners in this work are filleted
(r = 0.2 mm) to minimize the effect of stress concentrations. If a perfectly sharp corner were used, it is possible that failure would
occur at the pillar-bulk interface, limiting the toughness of the system, but this analysis is outside the scope of this work.

Thus, to predict the plastic domain, we use a simple algorithm that takes as input the geometric parameters, b,/,,s,, and ¢, and
material properties, E and o, and calculates the plastic extension using the foundation model and the critical spacing, s.. If s, > s,
the plastic volume is just 2, = 4,/,tb/(I, +s,). If 5, < 5., then we assume there is significant plasticity in the CT bulk and the plastic
volume is calculated as Q,= [/lplxtb/(lx + 5]+ Q; (see Eq. (16)). This process is summarized in Fig. 3.

2.3.4. Strength and toughness of pillar arrays
It is important to contextualize any change in toughness in a system by the effect it has on the strength, which are typically
inversely related (Ritchie, 2011). As noted in Fulco et al. (2022), architected materials provide opportunities to overcome these
traditional trade offs. For a pillar array, the effective tensile strength, ¢*, relative to the strength of a solid material, o, is simply
the relative area of the pillars to the whole, f, or
* 1

[ X
o _ - ) 22
of 4 I + 5y (22)

Choices of pillar geometries will impact the strength of the system, but may not affect the toughness in the same way. As found
in Fulco et al. (2022), pillar height can affect the toughness of the array, but does not affect strength (Eq. (22)). This provides the
opportunity to alter the strength and toughness independently through variations in geometry.

3. Numerical model

Implicit finite element simulations of the CT specimen (Fig. 1) were performed using Abaqus-v6.9 (Dassault Systemes, Velizy-
Villacoublay, FR) in 2-D under assumed plane-strain conditions. A spectrum of geometries of the pillar array were considered
following a 3-D parameter space with the dimensions varying between 0.5 < s, <4 mm, 0.5 </, <2.5mm, and 1.5 <t <5 mm, all in
step sizes of 0.5 mm. The largest pillar width was chosen so as to remain smaller than the process zone extension of a homogeneous
specimen. Geometries that resulted in the pillar at the far boundary being less than the prescribed width were rejected (25 of the
possible 96 geometries), resulting in a total of 71 unique geometries. The corners of all pillars were filleted with r = 0.2 mm to
ensure failure occurs in the pillar, not at the pillar-bulk interface.
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Table 1

Tensile and fracture properties of SLS PA 12 used for all numerical models in this work (Fulco
et al., 2022).

Modulus, E (GPa) 1.54
Yield strain, €, =) 0.02
Yield stress, o, (MPa) 24.8
Hardening, n (-) 8.075
Failure strain, € =) 0.11
Failure stress, o, (MPa) 61.8
Toughness, J, (kJ/m?) 6.0
Plastic zone volume, £, (mm?) 251.5

A rate-independent elastic—plastic material was simulated using a J, deformation plasticity (nonlinear elasticity) model (Lubliner,
1990), which is sufficient for this case since unloading is not considered. The following 1-D power law model is used of the form

|O'| n—1
Ee=o0+te¢, <—> o, (23)
%0

where E is the Young’s modulus, € is the uniaxial strain, o is the uniaxial stress, ¢, is the yield offset, o, is the effective yield
stress, and n is the hardening exponent. Since the introduced architecture eliminates a sharp crack and the crack propagates by
pillar rupture, the model does not require a damage model. Failure is defined through the constitutive relationship in Eq. (23),
and a failure strain, e,. This simulation approach removes possible bias introduced through tuning of failure models, and is more
computationally efficient.

While the theoretical analysis in this work could be applied to a variety of materials, it requires knowing either the average
plastic energy density, 5,, and the elastic fracture energy, y, or knowing the plastic zone volume, €, and the toughness, J,. In this
work, we will consider one representative material in the simulations, with properties obtained from measurements of selectively
laser sintered Polyamide 12 (SLS PA 12). The experimentally measured plastic zone volume and toughness of the material were
reported in our previous work (Fulco et al., 2022). The tensile and fracture properties reported in that work are summarized in
Table 1, and were used in Eq. (23) for all finite element simulations in this work.

Failure in the simulations was idealized through a strain-based criterion where the tensile strain in the pillars was equal to the
failure strain given in Table 1. Since each pillar was essentially under tensile loading and the pillar dimensions were constrained
such that the process zone always spanned the width of the first pillar, this was sufficient to capture failure. A maximum 5% of strain
energy is allowed as a stabilization damping energy during failure in all simulations, which has been shown to be sufficient when
simulating unstable decay (Gao and Bower, 2004). Simulation data was truncated to the onset of failure, which corresponded to the
first pillar of the array reaching its failure strain, so stabilization cannot have any significant effect on the results used. Simulations
were run under displacement boundary conditions with a prescribed maximum displacement of 5 mm (all specimens failed before
achieving this displacement). Simulations were run with a dynamic time step with a maximum step size corresponding to 0.1 mm
of displacement and a minimum step size of 10> mm. All simulations used 4-node quadrilateral elements with a mesh size in
the bulk of 0.25 mm, and a mesh size in the pillar region of 0.10 mm. The mesh in the bulk and the pillars was chosen through
a convergence study which resulted in less than 0.5% deviation in the potential energy of the system and the work applied, and
in the failure load. Reduced integration elements were used. A comparison between a simulated pillar array and an experimental
specimen tested in Fulco et al. (2022) is shown in Appendix and demonstrates the numerical model’s fidelity to the experimental
material.

The reaction load from the loading points in the CT bulk and the corresponding displacement were measured and saved for each
simulation. For both this work and Fulco et al. (2022), the effective toughness of the material is determined through the critical load
achieved immediately before the first pillar fails, F,. This is a measurable quantity that allows for relative comparisons between
geometries. We calculate the effective toughness as

Y2
J=F —), 24
¢ (E*b%u) (24)

where E* = ﬁ is the plane strain modulus, and Y = Y(%) is defined in ASTM International (2007) for a compact tension

geometry in mode I fracture. There is currently no accepted approach for evaluating the toughness of architected materials with
geometric length scales comparable to the fracture length scale. Linear elastic fracture mechanics and the J-integral assume a
continuous body (Lubliner, 1990) that is violated by these geometries. The effective toughness measurement, when normalized
by the toughness of a homogeneous specimen, reduces to J*/J, ~ (F,/F;)?, where F, is the failure load for the homogeneous
specimen. This normalized effective toughness is equal to the relative load capacity between the architected and homogeneous
specimens squared, thus providing a comparison between the performance of different designs.

4. Results and discussion

Results for three representative geometries (r = 2,/, = 1,5, = 2,1,0.5 mm) are given in Fig. 4, showing the von Mises stress
distributions (sub-figures a—c) and associated plastic zone shapes (sub-figures d—f). Plastic zone area was analyzed by taking an
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Fig. 4. Finite element simulations of three representative geometries, with pillar height 1 =2 mm, pillar width /, = 1 mm, and pillar spacings s, =2 (a & d), 1
(b & e), and 0.5 (¢ & f) mm. (a—c) show von Mises stresses in each geometry immediately before the first pillar fails. (d—f) show the regions of the specimens
where the von Mises stress is greater than the yield strength (i.e., the plastic zone). Plastic zones are compared for the specimens immediately before failure
of the first pillar and the length of the plastic zone extension for the homogeneous specimen, 4, is indicated. In (e & f), the plastic radii predicted from the
perturbation model (Eq. (6)) are shown.

image of the simulation after the plastic zone and using the Abaqus graphical feature to highlight all elements that were plastically
deformed. All plastic zones were taken immediately before specimen failure (i.e., when the plastic zones are fully formed). The
images were then analyzed using the open-source image processing tool, ImageJ-v1.53, to calculate the areas of the plastic zones. It
is clear that, as the pillar spacing decreases, the plastic regions above the pillars merge into a continuous domain, with a large amount
of plasticity observed as the pillars get very close together. This follows the assumptions of the theoretical model. In Fig. 4(e&f),
the predicted bulk plasticity using the perturbation model is shown. It is apparent that the perturbation model shows much better
agreement for Fig. 5(f) than (e). This is expected as Fig. 5(e) corresponds to the maximum pillar spacing that generates a continuous
bulk plastic zone and is the limiting case of the perturbation model. For Fig. 5(f), the perturbation model and FE result match much
more closely. No prediction is shown for case Fig. 5(d) as it does not have a continuous plastic zone.

The toughness is predicted to scale with the volume of the plastic zone (Egs. (4) & (5)). The toughness for each pillar geometry
is given in Fig. 5(a) as a function each geometry’s plastic zone volume. All values are normalized by their corresponding value in
the homogeneous case, given in Table 1. A linear fit with fixed slope of 1 results in an estimation of the non-plastic contribution,
8, = 0.26, with a 95% confidence interval of 0.20—0.31, and a good quality of fit (R?> = 0.98). Note that the prediction and confidence
interval for 6, is much smaller than the magnitudes of most of the effective toughness measurements, as assumed in the model. It
is apparent that the plastic zone volume is the dominant indicator of toughness for these systems, with the results from the entire
parameter space of geometries all roughly collapsing together.

The effective toughness for each geometry as a function of the plastic zone extension, N,/,, normalized by that of a homogeneous
specimen, 4, is given in Fig. 6(a). Specimens with isolated pillar plasticity are noted by open markers. As expected, these results
approximately follow a linear relationship (see Eq. (5)). A linear fit with fixed slope of 1 has R? = 0.97. However, specimens with
bulk plasticity (closed markers), do not follow this trend and scale nonlinearly, as expected. This results in significant increases in
toughness, such that a >3.5x toughness enhancement is achieved, compared to the homogeneous specimen. The highest-performing
geometries have arrays with small relative spacings and tall pillars. The maximum benefit possible will be much higher than
the result achieved here if taller pillars with smaller relative spacings are considered. However, this work only considered array
geometries with dimensions comparable to the plastic radius of the homogeneous specimen, for which our models are expected to
hold. Furthermore, there will likely be practical limitations on the feasible dimensions of the pillar arrays for most materials, such
as the minimum resolution of the fabrication method or that the intrinsic material strength may be lowered for small-scale features,
which would limit the possible benefits. The exact limits, however, would be material-specific and are not considered here. The
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(b) Effective toughness, J*/J,, as a function of effective strength ¢*/5,, which is equivalent to the pillar area fraction f =1 /(/, +s,). Open markers indicate
geometries where isolated pillar plasticity is observed, and closed markers indicate unconfined plasticity.
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Fig. 6. (a) Effective toughness as a function of the relative plastic extension, N,/./A,. Open markers indicate geometries where isolated pillar plasticity is
observed, and closed markers indicate unconfined plasticity. A linear fit to the open markers is indicated, following Eq. (5). (b) Effective toughness vs. relative
spacing of the pillars s, /I,. The dashed line indicates the transition point between the regimes is approximately at s,//, = 1.5 (theoretical value is 1.2).

previous experimental work considering fracture of SLS PA 12 pillar arrays achieved a maximum increase in toughness of ~2.25x
relative to the homogeneous specimen.

The properties of the pillar array are considered relative to that of the solid material, and the enhancements in toughness are
achieved by removing material. As noted in Eq. (22), this results in a reduction in strength. The effective tensile strength of all pillar
arrays ¢* /o, < 1. However, there is no strict trade-off between strength and toughness in this system, unlike for homogeneous
materials where any increase in strength or toughness usually results in a reduction in the other property. Fig. 5(b) shows the
effective toughness versus the effective strength of the material, as predicted by Eq. (22). It is clear that toughness and strength are
positively correlated in this system, with an increase in one value likely to result in an increase in the other. The two properties can
also be tuned independently from one another. For a given strength, a range of toughness values can be achieved through choices
in geometry. As noted in Fulco et al. (2022), one clear factor is pillar height, which can be changed independently from the strength
of the system, but affects the toughness. Changes in pillar width and spacing will affect both properties, but the relationship is not
uniform, as certain pillar widths and spacings will result in significant plasticity in the bulk, enhancing the toughness more.

10



S. Fulco et al. Journal of the Mechanics and Physics of Solids 184 (2024) 105548

3.5 = :
(@ . ® 35 () °
— 3.0 o 1 T | @ Analytic Model
+ «% 3 ‘ 8 | T30 ginry $
= ’ < 2V} @ FE Model o o,
< 2.5 ) o 1=
> oo R S 25 oS
: O... 3 % o s 0®
§ 2.0 0 ° 18
g7 [ K ] o ' 2 2.0r )
g 000 S 7 N
515 .‘ o - | s e
£ 1.0 1 Z 1.0 Yo ]
= S
A & 0.5 ]
0.5¢ @ Analytic Model ] R U
ool @FEModel ) oo ®OTP T
05 0.6 0.7 0.8 0.9 0.0 0.5 1.0 1.5 2.0
(L 2_b)1/4 Relative Plastic Extension, N,l,/Ag, (=)
Sp+ 1l t

Fig. 7. (a) The plastic extension, normalized by that of a homogeneous specimen for both the analytical foundation model and the finite element simulations,
versus a geometric parameter corresponding to the eigenvalue in Eq. (12). (b) Effective toughness, relative to a homogeneous specimen, versus the relative
plastic extension for the finite element simulations and the model.

Fig. 6(b) shows the toughness for the relative spacing s, //,. The results indicate if there was a continuous plastic zone (closed
markers) like in Fig. 4(e,f), or isolated plasticity (open markers), like in Fig. 4(d). The geometry of the plastic zone for all simulations
was identified from the image, as in Fig. 4. It is clear that there is a distinct transition between the two regimes around s, //, = 1.5,
as indicated by the dashed line in Fig. 6(b). This agrees reasonably with the prediction of the critical spacing value from the previous
analysis (s, = 1.21,). It is also apparent that the largest increases in toughness occur in the cases where significant plasticity in the
bulk exists, as would be expected.

Since the predicted critical spacing value was found to be accurate and that the toughness followed closely to Eq. (4), the
algorithm shown in Fig. 3 should be able to predict the toughness directly given the pillar geometry. Fig. 7(a) shows the plastic
extension, normalized by that of a homogeneous specimen, predicted by the foundation model and the finite element analysis, as a
function of the dimensionless eigenvalue of the foundation model, A!/4 = (% %)1/ 4. It is clear that the two predictions are close,
with the foundation model typically predicting slightly longer extensions, as expected. The predicted toughness results from the
algorithm and Eq. (4) are shown in Fig. 7(b), where the effective toughness is shown as a function of the plastic extension. The
finite element results and the results predicted by the algorithm are shown and match very closely. The algorithm provides no way
of predicting §,, so this is taken as O since the effect is expected to be small (finite element results predict §, = 0.26, as noted above).
Overall, the model works very well to predict the toughness and suggests that the toughness for any pillar array could be accurately
estimated.

While this work used a pillar array as a model system, the analytical model was essentially agnostic to the geometry and
micromechanics of structure and depended only on the effective stiffness and strength of the structure. Investigation of other
structures is outside of the scope of this work, but we suggest that the approach presented here, coupled with additional
micromechanical analyses of other structures to determine the effective mechanical properties from geometry, could be used to
predict the elastic—plastic fracture behavior of other structures.

This model does have some limitations, such as those previously noted (over-prediction of the plastic extension, no way to
determine §6,), but we also note that the perturbation analysis for predicting the bulk plastic area does not account for details of the
process zone, such as the local affects near the pillar corners. The model also predicts an increased area of damage behind the crack
tip (% <6< 37”). While there will likely be some increase in plastic zone volume in this region due to the stress concentrations at
the pillar corners, predicting the precise effect here is difficult and small errors may be accumulated in this region. These details
contribute to the small discrepancies seen in the results compared to the finite element simulations.

5. Case study: Designing for non-similar crack growth

In the previous results, an assumption was made of a constant pillar geometry, which meant :—a [Qp] = 0, which we referred to as
self-similarity of the fracture process. While significant increases in toughness were achieved for repeating arrays, further opportunity
exists in choosing a varying pillar geometry, where the derivative of the plastic integral is no longer constant, resulting in changing

fracture properties as the crack propagates. As case studies, we present two geometries, one where pillar height increases from 2 mm
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Fig. 8. (a—d) Plastic zones preceding failure of pillars 1-4, respectively, for the case of varying pillar height. Pillar height increases from 2 mm to 5 mm (in
0.5 mm increments). (e) Effective toughness, J, normalized by the experimental homogeneous value, J;, as the crack propagates for the cases of increasing pillar
height and increasing pillar spacing. Dashed lines are added as a visual aid for the reader.

to 5 mm in increments of 0.5 mm (s, =/, = 1 mm throughout) to increase the toughness as the crack propagates, and one where
pillar spacing increases from 0.5 mm to 2.5 mm in increments of 0.5 mm (¢ =2 mm, /, = 1 mm throughout), to reduce toughness as
the crack propagates. This, in effect, creates either an increasing or decreasing R-curve, which is driven through geometry, rather
than material properties. Rising R-curves can be beneficial so that if a structure begins to fail through fracture under load control
conditions, stable or delayed fracture may be achieved, rather than unstable failure. While many materials exhibit non-flat R-curves,
here the process is driven purely through geometry, which leverages the architected plastic zone to tune the fracture behavior.

Fig. 8(a—d) show the growing plastic zone volume as the crack propagates for the first case of increasing pillar height. Up until
the plastic zone passes the tallest pillar, the toughness should be strictly increasing as the crack grows. This case was simulated using
the same CT model as in previous simulations. To simulate crack propagation, which was not considered in the previous results, a
sequence of four simulations were run, where each subsequent simulation deleted the front-most pillar, as if that pillar had failed.
This approach may introduce small errors as they do not consider the elastic unloading of the failed pillars, but we expect these
effects to be small. Toughness results for the two case studies are given in Fig. 8(e), and show the effective toughness as a function
of crack growth (a dashed line is indicated between points as a guide to the reader). It is clear that, for the case of increasing pillar
height, toughness increases as the crack propagates due to an increasing plastic zone size, while for the case of increasing pillar
spacing, the toughness decreases. This is an example of an architected material with engineered fracture resistance.

6. Conclusion

Architecture at the crack tip is shown to control and alter the plastic zone size and shape, and can be exploited to enhance the
effective fracture toughness. Analytical mechanics models predict the size and shape of the plastic zone for a pillar array from the
geometry and material properties, allowing for a prediction of the effective toughness. This is verified through a series of finite
element simulations, which match well with the analytical predictions of plastic zone shape, size, and the resulting toughness.
Toughness is enhanced by >3.5x through proper choices of geometry with only a modest reduction in strength. The model is further
extended to the case of non-regular array geometries with pillars of varying spacing and height, demonstrating how architecture
can be used to tailor fracture properties along the crack path.

These results demonstrate how elastic—plastic pillar failure and plastic zone shape is influenced by local geometry, and results
in altered, and in some cases significantly enhanced, toughness. A pillar array was presented as a model system, but the mechanics
models are agnostic to the micromechanics of the geometry and depend instead on homogenized properties like stiffness and
failure strength. This work acts as a framework for analyzing plastically-failing architected materials and can be extended to other
geometries, such as the non-regular pillar array considered as a case study in this work, and more complicated geometries. The
results are primarily geometrically controlled, meaning that they can be transferred to other materials with little modification.
Understanding and leveraging the role of plasticity in architected materials is shown to be highly valuable, as the designs considered
here achieved significant increases in toughness, with minimal loss of strength, and demonstrated tunable fracture properties along
the crack path, driven through geometry.
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Appendix. Numerical model validation

Fig. 9(a) shows a representative SLS PA 12 pillar specimen tested in Fulco et al. (2022). All numerical models in this work use
the constitutive behavior derived from SLS PA 12 as detailed in Table 1, as well as the same CT geometry and overall dimensions.
Fig. 9(b) shows the load-displacement curves for an experimental specimen tested in Fulco et al. (2022) and an FE model for a pillar
array, both having dimensions /, = s, = 1 mm, and # = 2 mm. Data for the finite element model up to the peak load was derived
from one simulation that followed the process described in Section 3. The final data point was derived from a second simulation
where the front-most pillar was deleted, following the process described in Section 5. The small discrepancy in stiffness between the
FE and experimental results for small displacements is due to the small bonded ligament ahead of the first pillar in the experimental
specimen, which was not present in the FE model. When this ligament fails at ~900 N, the FE model and experimental specimens
have identical geometries and the stiffness and peak load match closely. The second FE simulation also accurately captures the drop
in critical load as the crack begins to propagate (i.e., as pillars fail), demonstrating the fidelity of the FE model to the experimental
material.
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Fig. 9. (a) Representative experimental pillar CT specimen tested in Fulco et al. (2022). (b) Load-displacement data for an experimental specimen from Fulco
et al. (2022) and an FE model from this work for CT specimens with a pillar array /, = s, = 1 mm and 7 = 2 mm. The final FE data point is derived from a
second simulation where the front-most pillar is deleted. A dashed line is added to the FE data as a visual aid to the reader.
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