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Abstract
It is now well-known that Newton–Cartan theory is the correct geometrical setting 
for modelling the quantum Hall effect. In addition, in recent years edge modes for 
the Newton–Cartan quantum Hall effect have been derived. However, the existence 
of these edge modes has, as of yet, been derived using only orthodox methodolo-
gies involving the breaking of gauge-invariance; it would be preferable to derive 
the existence of such edge modes in a gauge-invariant manner. In this article, we 
employ recent work by Donnelly and Freidel in order to accomplish exactly this 
task. Our results agree with known physics, but afford greater conceptual insight 
into the existence of these edge modes: in particular, they connect them to subtle 
aspects of Newton–Cartan geometry and pave the way for further applications of 
Newton–Cartan theory in condensed matter physics.

Keywords  Quantum Hall effect · Gauge symmetries · Newton–Cartan theory · 
Condensed matter · Edge modes

1  Introduction

Understanding the empirical content of gauge symmetries has long constituted 
a major topic in the foundations of physics. Physical systems with boundaries are 
of particular interest when probing this question as the presence of boundaries can 
break gauge invariance; the ways in which this is accounted for can lead to the 
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propagation of physical edge modes on the boundary. Recent work by Donnelly and 
Freidel has shown that we can account for these degrees of freedom on the boundary 
by enhancing the original symmetries of the system [6]. In particular, Donnelly and 
Freidel’s insight was that edge modes can be identified through using the covariant 
Hamiltonian formalism and demanding that the theory exhibit gauge invariance at 
the boundary through introducing new boundary fields. This effectively allows one 
to systematically identify and investigate edge modes and sheds light on the empiri-
cal significance of the system’s symmetries.

The quantum Hall effect (QHE) is one such system that exhibits this kind of bulk-
boundary correspondence of interest. The QHE refers to an effect that systems of 
electrons exhibit when confined to two dimensions at low temperatures and sub-
jected to an external magnetic field (see [32] for a review). Among the surprises is 
that the electrical conductivity of such a system takes quantised values that plateau 
in proportion to e2∕h and are functions of the magnetic field strength. These val-
ues can either be integers (in the case of the integer quantum Hall effect) or frac-
tions (in the case of the fractional quantum Hall effect). Furthermore, these systems 
exhibit striking behavior on their boundaries in the form of edge modes. These edge 
modes encode many of the system’s relevant physical properties and also feature 
prominently in the construction of conformal field theories using the Wess-Zumino-
Witten (WZW) model, where these conformal field theories can then be used to fur-
ther describe properties of these systems, such as their transitions between different 
quantised states [34].

While much of this behavior is well-established, recent work has demonstrated 
that there are additional features of these quantum Hall systems which go beyond 
these quantised conductivity values: these features include Hall viscosity and cor-
rections to the conductivity from electromagnetic perturbations [1, 27, 28, 33]. Son 
has pointed out that the standard Chern–Simons theory used to model quantum Hall 
systems does not encode these additional features and, furthermore, does not respect 
the appropriate symmetries of the microscopic theory. This necessitates finding an 
improved description. In particular, he has shown that such a description can be 
developed using Newton–Cartan theory, which has been studied previously as a geo-
metric reformulation of Newtonian gravity (see e.g. [12, 20, 26, 31] and references 
therein), because Newton–Cartan theory has the same non-relativistic symmetries 
as those possessed by systems of non-relativistic electrons [28]. This discovery has 
shown that this Newton–Cartan formalism is the correct way to model the QHE, 
in turn leading to a renewed interest in the subject, and opening the door to further 
applications in the study of non-relativistic holography and coupling matter to non-
relativistic backgrounds (see e.g. [12, 18]).

In the present article, we combine the insights of Donnelly and Freidel with 
those of Son in order to construct edge modes for this Newton–Cartan model of 
the QHE using the machinery developed by Donnelly and Freidel [6]. This will 
reveal that, rather than edge modes arising from constraints on gauge transforma-
tions at the boundary (this being the canonical explanation for their existence: see 
[32]), edge modes in this construction are the result of a new boundary field of the 
Newton–Cartan effective field theory for QHE. Additionally, this will shed light on 
the empirical significance of the familiar U(1) gauge symmetry of QHE models as 
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well as that of Milne symmetry, which is a new symmetry of the problem arising 
from the Newton–Cartan background. Having accomplished this work, we will draw 
on recent literature surrounding the direct empirical significance of symmetries (as 
discussed in [14, 30]) in addition to recent literature concerning the so-called dress-
ing field method and its implications for the significance of gauge symmetries (see 
e.g. [7]), in order to make clear the conceptual upshots and insights afforded by this 
approach to the QHE.

The structure of this article is as follows. In Sect. 2, we review Son’s application 
of the Newton–Cartan geometry to the QHE and the typical way in which one con-
structs edge modes for the theory. In Sect. 3, we review the role of Milne invariance 
in Newton–Cartan geometry and the subsequent reformulation of Son’s bulk model. 
In Sect. 4, we examine the Donnelly–Freidel programme for identifying boundary 
observables and apply this method to the Milne invariant model of the QHE. In 
Sect. 5, we discuss how this model of the Newton–Cartan QHE and the subsequent 
application of the Donnelly–Freidel programme informs the empirical content of the 
symmetries relevant in the construction.

2 � Newton–Cartan Geometry and the Quantum Hall Effect

In this section, we review Son’s original application of Newton–Cartan geometry to 
the quantum Hall effect (Sect. 2.1), as well as the subsequent construction of edge 
modes based on Son’s model (Sect. 2.2).

2.1 � Son’s Bulk Model

Quantum Hall systems are many-electron systems confined to two dimensions at 
low temperatures and subject to external electromagnetic fields. They exhibit two 
surprising and important topological properties: (i) the Hall conductivity and (ii) the 
Hall shift [12], which are, respectively,

Here �ij is the Hall conductivity, � is the filling factor (which is either an integer or 
fraction and is related to Landau levels occupied by the electrons in the system), Q 
is the charge of the system, N� is the magnetic flux B∕2� , and S is the shift. (We use 
units setting e2∕ℏ = 1 .) The Hall conductivity is the result that the electrical conduc-
tivity of these many-electron systems plateaus at quantised values that can be either 
integers or fractions, depending on the magnetic field strength. The Hall shift is a 
more recent discovery, and is related to the Hall viscosity, which is a non-dissipative 
transport coefficient. This effect means that the effective charge of the quantum Hall 
system is offset by the shift S.

We can describe these topological properties using topological quantum field 
theories. The standard way of exploring quantum Hall physics is via Chern–Simons 
theory, and is given by an effective action with the form

(2.1)�ij =
�

2�
, Q = �(N� + S) .
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where for now A� represents an emergent gauge field that arises from the collective 
behavior of the electrons in the system as well as their coupling to a background 
electromagnetic field where the dynamical degrees of freedom have been integrated 
out, and ���� is the Levi-Civita symbol in three dimensions. This is a topological 
quantum field theory that describes the low energy effective field theory of the quan-
tum Hall state and encodes the Hall conductivity �ij =

�

2�
 through Ji =

�S

�Ai

=
�

2�
�ijEi , 

where this is the expression for current Ji that arises from the topological 
Chern–Simons action [32].

The Hall shift and viscosity terms can be described by adding the following 
Wen–Zee term to the effective action:

This is a mixed Chern–Simons term, where �� is the SO(2)-spin connection for 
local spatial rotations. This Wen–Zee term encodes both the Hall shift S and viscos-
ity �H = �SB∕8� , which was derived in [27].

While these topological effective actions are enormously successful at describ-
ing many aspects of quantum Hall systems, they have some limitations. Consider, 
as Son does in [16], a microscopic theory corresponding to the initial topological 
Chern–Simons theory. This will be a theory of a system of non-relativistic elec-
trons � coupled to an external electromagnetic field A� and metric hij,

where hij is a spatial metric, time is absolute, and D� = �� − iA� is the covari-
ant derivative. This theory is invariant under the following coordinate 
reparametrizations:

Here, these transformations of the fields correspond to introducing a diffeomor-
phism x� → x� + ��(x, t) . These transformations can be thought of as the non-rela-
tivistic limit of general coordinate invariance [29].

(2.2)SCS[A] =
�

4� ∫ d3x����A���A�,

(2.3)SWZ[A,�] =
�S

4� ∫ d3x��������A�.

(2.4)S = ∫ d3x
√
h

�
i

2
�†

↔

Dt� −
hij

2m
Di�

†Dj�

�
,

(2.5)�� = −�k�k� ,

(2.6)𝛿A0 = −𝜉k𝜕kA0 − Ak𝜉̇
k
,

(2.7)𝛿Ai = −𝜉k𝜕kAi − Ak𝜕i𝜉
k − m(hik𝜉̇

k),

(2.8)�hij = −�k�khij − hij�i�
k − hik�j�

k
.
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Considering that this topological theory describes a system of non-relativistic 
electrons, it should likewise be invariant under such transformations. However, 
under these same transformations, the Chern–Simons action (2.2) transforms as

This indicates that we need to find a better effective field theory description for such 
quantum Hall systems. Indeed, there are at least four reasons why we are interested 
in finding a more satisfactory effective field theory: (i) as mentioned, the standard 
Chern–Simons theory for the QHE should be invariant under coordinate transforma-
tions, but does not possess these standard non-relativistic symmetries; (ii) when one 
considers further interaction terms for both microscopic and topological theories 
such as those including the electron g-factor, it turns out that this failure of coordi-
nate invariance is even more dramatic and the topological theory can only account 
for situations in which m → 0 and g → 0 ; (iii) Son demonstrates that the topologi-
cal theory doesn’t behave correctly in the appropriate limits—so, clearly, the prior 
Chern–Simons theory cannot be the complete effective action for generic m and g 
(see [28, Sect.  2] for further discussion on this point); (iv) a more general effec-
tive field theory for the QHE must also incorporate the additional Wen–Zee term to 
account for the Hall shift and viscosity while also respecting the above symmetry 
considerations.

Newton–Cartan theory then enters the picture in the following way. A New-
ton–Cartan geometry is a structure (M, n� , h�� , ∇ ) where M is a smooth manifold, 
n� and h�� define a degenerate metric structure with n�n� being the temporal metric 
(asssuming temporal orientability) and possessing a signature (1, 0, 0, 0) and h�� 
being the spatial metric and possessing a signature (0, 1, 1, 1), and ∇ is a derivative 
operator [20, ch. 4]. Both metrics are compatible with the derivative operator and 
orthogonal to each other, such that

Furthermore, one can also define a velocity vector field v� that satisfies v�n� = 1 . 
One can also uniquely define a global time function t such that n� = (dt)� and this 
fixes the temporal metric while still leaving freedom to transform the spatial met-
ric. One of Son’s key observations is that the spatial metric of this Newton–Car-
tan geometry h�� transforms under spatial diffeomorphisms x� → x� + ��(x) in the 
same way that the metric transforms under transformations that correspond to the 
non-relativistic limit of general coordinate transformations in (2.8). Additionally, the 
velocity vector v� transforms in the following way:

The fact that the metric transforms in this way suggests that a Newton–Cartan back-
ground is the most natural framework for modelling a system respecting these kinds 
of symmetries. Furthermore, Son asks us to consider the following objects, which he 
calls the ‘improved gauge potentials’:

(2.9)𝛿SCS[A] =
𝜈

2𝜋 ∫ d3x𝜀ij
(
mEi

)
hjk𝜉̇

k
.

(2.10)∇�n� = 0 , ∇�h
�� = 0 , n�h

�� = 0 .

(2.11)𝛿vi = −𝜉k𝜕kv
i + vk𝜕k𝜉

i + 𝜉̇i .
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Using (2.6), (2.7) and (2.11), one finds that these improved gauge potentials trans-
form as a one form and we can use these gauge potentials to define an effective 
quantum Hall action that possesses the required symmetries [28]. That is, the 
improved gauge potentials now properly transform in such a way that they are invar-
iant under the same transformations as those under which the microscopic theory is 
invariant. Son then goes on to write an effective action and demonstrates that this 
action behaves appropriately under salient limits and that one can compute addi-
tional features such as the Hall viscosity and corrections to the conductivity from 
the electromagnetic response.

2.2 � Edge Modes from Son’s Bulk Model

For our purposes, it will be most illuminating to look at the work in [22] undertaken 
by Moroz et al., as these authors use Son’s construction to examine the edge states of a 
quantum Hall system respecting the above symmetries (cf. [15] for further discussion 
of edge states of the Newton–Cartan QHE). Their action is

where a� now corresponds to the emergent gauge field referenced in Son’s model 
and Ã𝜇 ∶= Ã𝜇 + S𝜔̃𝜇 . Here Ã𝜇 is equivalent to Son’s improved gauge potentials that 
transform correctly under non-relativistic spatial diffeomorphisms, and S𝜔̃𝜇 comes 
from the Wen–Zee term that encodes the Hall shift and includes the shift S and spin 
connection �� . 𝜔̃𝜇 symbolizes that the spin connection has also been modified to 
transform properly under non-relativistic spatial diffeomorphisms, and is given by

The action (2.13) corresponds to (2.2), save for the fact that the external gauge 
potentials have been modified to manifest the desired transformation proper-
ties and we have included an additional Wen–Zee term. In order to examine what 
happens on a boundary and explore the physics of edge modes, we first note that 
under a U(1) gauge transformation a� → a� + ��� the action (2.13) is invariant up 
to a total derivative term. Normally we can throw away total derivative terms, but 
in the presence of a boundary this term will not necessarily vanish. This is con-
cerning because it seems to indicate that our theory is not gauge invariant in the 
presence of a boundary. One way to solve this problem—and the way this prob-
lem has been traditionally approached in the original papers on the subject such as 
[33]—is to restrict the gauge choices in such a way to kill the boundary term and 
ensure invariance under gauge transformations. For instance, under the above gauge 
transformation (and identifying ��� = �a� ), the action (2.13) changes by a term 
proportional to �SM = ∫ d3x������(a��a�) . In the presence of a boundary at y = 0 

(2.12)Ã0 = A0 −
m

2
v2 −

g

4
eij𝜕ivj , Ãi = Ai + mvi .

(2.13)S̃QH = −
1

4𝜋 ∫ d3x𝜖𝜇𝜈𝜆
(
1

𝜈
a𝜇𝜕𝜈a𝜆 + 2a𝜇𝜕𝜈Ã𝜆

)
,

(2.14)𝜔̃t = 𝜔t +
1

2
𝜖ij𝜕i(hjkv

k) , 𝜔̃i = 𝜔i .
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along the x-direction, we can use Stokes’ theorem to turn this into a surface integral 
�S�M = ∫ dxdt(at�ax − ax�at) . Using the gauge fixing condition at + vax = 0 (where 
v is a parameter with units of velocity), as the authors of [22] do, clearly kills this 
boundary term. One then plugs this gauge fixing condition back into the bulk action 
(2.13), examines what happens at the boundary y = 0 , and finds the action for a chi-
ral boson on the boundary see [32, p.205]. The traditional interpretation, as stated by 
Wen and often repeated in the physics literature, is that “the Chern–Simons action 
is not invariant under gauge transformations ... due to the boundary effects. To solve 
this problem we will restrict the gauge transformations to be zero on the boundary. 
... Due to this restriction some degrees of freedom of a� on the boundary become 
dynamical” [33]. In essence, this restriction of gauge choice is understood to mani-
fest itself as the resulting dynamics on the boundary.

Moroz et al. follow a similar procedure and substitute this gauge fixing condition 
into their bulk action (2.13) and use it to eliminate the temporal components. They 
then use the equations of motion for the gauge field as well as Gauss’s law to write 
the gauge field as ai = 𝜕i𝜃 − 𝜈Ãi =∶ D̃i𝜃 , integrate by parts using Stokes’ theorem 
as before, and find the boundary action for a chiral boson that lives on y = 0:

Here � is the chiral boson and Ẽx = Ẽx + sẼ𝜔x , where Ẽx = 𝜕tÃx − 𝜕xÃt and 
Ẽ𝜔x = 𝜕t𝜔̃x − 𝜕x𝜔̃t.

This gives the action for the chiral boson at the boundary of a quantum Hall sys-
tem that is invariant under non-relativistic diffeomorphisms and also encodes addi-
tional phenomena such as the Hall shift and viscosity [22].1 While certainly use-
ful in describing the physics of quantum Hall systems, this was all derived in the 
language of non-relativistic diffeomorphism invariance and not in the language of 
explicit Newton–Cartan objects. That is, the action here respects the same trans-
formation rules for diffeomorphisms as the background Newton–Cartan geometry 
does, but the actual roles of the Newton–Cartan objects are obscured by this lan-
guage. Furthermore, as we shall see, this formalism has an important limitation.

3 � Milne Invariant Effective Action

In this section, we demonstrate how Son’s bulk model can be reformulated using an 
approach more natural to the Newton–Cartan structures based on a Milne invariant 
effective action.

Jensen points out that Son’s non-relativistic diffeomorphism invariance can 
actually be understood as special cases of a Milne boost [18]. Milne boosts are 
a symmetry of the Newton–Cartan structure and when Newton–Cartan theory is 

(2.15)S𝜃 =
1

4𝜋 ∫ d2x
[
1

𝜈

(
D̃t𝜃 + vxD̃x𝜃

)
D̃x𝜃 − 𝜃Ẽx

]
.

1  In calculating certain quantities from this action such as the longitudinal electric conductivity, as 
undertaken by the authors of [22], it was pointed out in [17, 23] that one must pay careful attention to 
whether the velocity field is a dependent or independent quantity.



	 Foundations of Physics (2023) 53:3

1 3

3  Page 8 of 24

cast in the vielbein formalism, one sees that Milne boosts are nothing other than 
local Galilean boosts [12]. To explain further, first note that the velocity vector v� 
introduced when we discussed Newton–Cartan geometry satisfies v�n� = 1 and 
is ambiguous up to (v� + h����)n� = 1 , where �� is a spatial one form such that 
v��� = 0 . In order to preserve the defining Newton–Cartan relationships (2.10), 
we demand that these Newton–Cartan objects transform in the following way and 
these define the Milne boosts:

Notice also that h�� does not transform the same way as its inverse h�� , where the 
latter transformation involves the quantity P�

� ∶= h��h
�� = �

�
� − n�v

� . The transfor-
mations taking this form can be traced to the degenerate metric structure. Alterna-
tively, these transformations can be equivalently formulated such that (v�, h��) are 
invariant while (n�, h��) instead transform under the Milne boosts [2].

There is another piece to this story. For Newton–Cartan geometry (and unlike 
Lorentzian geometry) the metric compatibility conditions only pick out a space of 
connections. A particular connection within this class is then by further specify-
ing a two-form F. That is,

where we identify this two-form as the field strength corresponding to what is called 
the ‘mass gauge field’ a� . In order to preserve invariance under Milne boosts for the 
connection, there is a unique way that the mass gauge field must transform. This is 
given by

For this reason, the mass gauge field is often taken to be part of the Newton–Cartan 
data along with (M, n�, h

�� ,∇) , and later on we will associate this mass gauge field 
with the emergent gauge field seen in the QHE.

We can now better understand why there is something unsatisfactory about 
using the improved gauge potentials constructed from non-relativistic diffeomor-
phism transformations. Defining Ã𝜇 as Son does effectively picks out a special 
coordinate system because Son’s non-relativistic diffeomorphism invariance is a 
special case of Milne boosts where the velocity parameter is held under particular 
constraints (see [18, Sect. 2.7] for a discussion on the relationship between Milne 
boosts and non-relativistic coordinate invariance). This is problematic because it 
is unnatural to demand that these background electromagnetic fields transform in 
a way which picks out a specific coordinate system and we seek a construction 
that better clarifies the role of this symmetry of the Newton–Cartan geometry.

(3.1)

n� → n�
�
= n�, h�� → h��� = h�� ,

v� → v�� = v� + h���� ,

h�� → h�
��

= h�� −
(
n�P

�
�
+ n�P

�
�

)
�� + n�n�h

������ .

(3.2)Γ�
�� = v���nv +

1

2
h��

(
�vh�� + ��hv� − ��hv�

)
+ h��n(vF�),�

(3.3)a�
�
= a� + �� −

1

2
n��

2
.
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Geracie et al. tackle in [12] the same problems as Son, but take up the above chal-
lenge. Rather than imposing diffeomorphism invariance by hand as Son does with 
his modified diffeomorphisms, which are subject to the aforementioned constraints, 
they ‘dress’ the gauge field to be invariant under Milne boosts. (Note that Geracie 
et al. do not explicitly identify their approach here as one case of the general ‘dress-
ing field’ methodology described in e.g.  [7]; we discuss this methodology further 
below.) In order to do this, they define an effective gauge field,

where A� is the background electromagnetic field and m
I
a� is the dressed mass gauge 

field from the Newton–Cartan construction. What does this ‘dressing’ amount to? 
As we have seen above with (3.3), the mass gauge field a� is sensitive to Milne 
boosts and is not invariant under these transformations. To address this, they dress 
the mass gauge field to be invariant under Milne boosts and this dressed up mass 
gauge field will be denoted 

I
a� . How is this achieved? Consider a Milne invariant 

vector field u� that is timelike and normalized such that n�u� = 1 . We can lower 
the index using u� = h��u

� , and this lowered u� will inherit its Milne transformation 
properties from h�� in (3.1). One finds that we can find a combination of terms using 
this object that transforms in the exact opposite way as the mass gauge field a� . In 
particular, one finds that the following object transforms under Milne boosts in this 
way [19]:

We then use this object to dress the mass gauge field, which is given by

One can easily see that this dressed mass gauge field is invariant under Milne boosts 
as the transformations of a� and u� exactly cancel out each other.

Now that we have a Milne invariant mass gauge field, we can construct an effec-
tive quantum Hall action given by2

where A� is our effective gauge field that is Milne invariant due to how 
I
a� has been 

dressed for Milne invariance and �� is the spin connection [12]. We see that the 
first term is the Chern–Simons term and the second term is the Wen–Zee term. This 
action corresponds to (2.13), but rather than having imposed diffeomorphism invar-
iance on the background electromagnetic fields, we have dressed the mass gauge 

(3.4)A� ∶= A� + m
I
a�,

(3.5)
(
u� −

1

2
u2n�

)�

= u� −
1

2
u2n� − �� +

1

2
n��

2
.

(3.6)m
I
a� = m

(
a� + u� −

1

2
u2n�

)
.

(3.7)L =
�

4�
����A���A� +

k

2�
��������A�,

2  Geracie et al.  include more terms in their action because they are interested in some non-topological 
effects. As we are only interested in the edge modes derived from the topological field theory, we retain 
only the topological terms.
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field to be Milne invariant. This has the conceptual advantage of separating out 
background electromagnetic fields defined only in a particular coordinate system 
from the local Milne boost invariance that a system of non-relativistic particles will 
have. That is, the emergent gauge field that arises from the collective, non-relativ-
istic behavior of the electrons is now identified with a Milne invariant mass gauge 
field from the Newton–Cartan structure and the background electromagnetic fields 
behave as normal. This action is now formulated explicitly in terms of Newton–Car-
tan objects and we will now apply the Donnelly–Freidel programme to look at the 
edge modes of this system.

4 � Newton–Cartan Edge Modes

In this section, we first recall the essential details of the Donnelly–Freidel approach to 
gauge symmetries in systems with boundaries (Sect. 4.1); then, we apply this machin-
ery to the above-described quantum Hall effective action of Geracie et al. (Sect. 4.2).

4.1 � The Donnelly–Freidel Programme

The Donnelly–Freidel programme in essence proposes that one must enhance the origi-
nal gauge symmetries on the boundary of systems in order to truly capture the empiri-
cal content of gauge symmetries [6]. Recall that the traditional way of understanding 
edge modes in the quantum Hall effect relies on restricting the gauge transformations 
in such a way that the theory is gauge invariant in the presence of a boundary, and 
physicists have traditionally interpreted these constraints as sourcing the dynamics of 
these edge modes. On the contrary, the Donnelly–Freidel programme shows that we 
can understand edge modes as resulting from the need to enhance the gauge symme-
tries on the boundary; i.e., our theory is incomplete and the failure of gauge invariance 
is telling us that we are missing something from the theory. The Donnelly–Freidel pro-
gramme then offers a systematic way of identifying what we are missing, completing 
the theory, and describing edge modes in the presence of a boundary without the need 
to ever place constraints on allowed gauge transformations.

Donnelly and Freidel make extensive use of the covariant Hamiltonian formal-
ism. In briefly reviewing this formalism, we follow the formal manipulations of [11], 
but direct the reader to [21] for a more precise construction. Consider a Lagrangian 
L[Φ] that is a function of fields Φ and a potential boundary term d b[Φ] . The varia-
tion of the Lagrangian is

Here the first term corresponds to the equations of motion and vanishes on-shell. 
The second term is the ‘pre-symplectic potential’. We can write �b,c as

This object is a (d − 1)-form in spacetime and a one-form in field space. We 
also notice that due to the exterior derivative in front of �b,c , its identification is 

(4.1)�Lb[Φ] = �(L[Φ] + db[Φ]) = E[Φ] ∧ �Φ + d�b,c[Φ, �Φ].

(4.2)�b,c[Φ, �Φ] = �[Φ, �Φ] + �b[Φ] + dc[Φ, �Φ].
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ambiguous up to a corner term c.3 We then define the ‘pre-symplectic form’ as 
follows:

Here � corresponds to a field space derivative. The pre-symplectic form is a (d − 1)

-form in spacetime and a two-form in field space.
These objects will be crucial for us in investigating the behavior on the bound-

ary of our quantum Hall system living in a Newton–Cartan spacetime. In antici-
pation, we note that we will generally find that our pre-symplectic potential 
�b,c[Φ, �Φ] will not be invariant under a gauge transformation Φ → Φ + d� . That 
is, �b,c[Φ + d�, �(Φ + d�)] ≠ �b,c[Φ, �Φ] . The key insight learned from this fact 
is that our pre-symplectic potential is incomplete and this suggests that there 
is an important piece of our physics missing. This suggests that we must intro-
duce a new field u on the boundary that transforms under the gauge transforma-
tion as u → u − � in order to successfully restore gauge invariance on the bound-
ary. That is, �b,c[Φ + d�, �(Φ + d�), u − �, �(u − �)] = �b,c[Φ, �Φ, u, �u] , and we 
have enhanced the gauge symmetry of our original system. We then can derive 
the pre-symplectic form and explore what this new field does on the bound-
ary. The pre-symplectic form �b,c can be integrated over field space such that 
ΩΣ,�Σ = ∫

Σ
�[Φ, �Φ] + ∫

�Σ
�[Φ, �Φ, u, �u] , where Σ is a ( d − 1)-dimensional hyper-

surface and the term on the boundary gives the resulting pre-symplectic form in 
terms of this new field that restores gauge symmetry and exists only on the boundary.

4.2 � Donnelly–Freidel and the Newton–Cartan Quantum Hall Action

Recalling that varying the Lagrangian takes the form (4.1), we will now be inter-
ested in looking at the boundary observables of a quantum Hall system in a New-
ton–Cartan background geometry. Following the Donnelly–Freidel programme, 
we will see how boundary observables for this system arise from demanding gauge 
invariance of the pre-symplectic potential.

The general action for a quantum Hall system in a Newton–Cartan geometry, 
given by the Lagrangian in (3.7), can be written equivalently in the notation of dif-
ferential forms as

where, again, A = A + m
I
a is the improved gauge field that is dressed to be Milne 

invariant. Varying the Lagragians associated with both pieces of this action, we have

(4.3)�b,c[Φ, �1, �2] = ��b,c[Φ, �Φ].

(4.4)S = ∫M

A ∧ dA + 2∫M

� ∧ dA =∶ SCS + SWZ ,

3  Later, we will fix the corner term by adding a boundary action as in [21].
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We identify the pre-symplectic potential from the action (4.4) to be 
dΘ = d�CS + d�WZ = d(�A ∧A) + d(� ∧ �A) . This action is still Milne invariant by 
virtue of the dressed gauge field 

I
a ; however, there is still the residual gauge freedom 

to make a U(1) transformation. Recall also that this pre-symplectic potential will not 
be invariant under such a gauge transformation. We want both Milne invariance and 
U(1) invariance; thus, we will now compute how this pre-symplectic potential trans-
forms under this gauge transformation in order to demonstrate how we can restore 
gauge invariance by introducing an additional field on the boundary along the lines 
suggested by Donnelly and Freidel.

4.2.1 � Chern–Simons Term

We begin with the Chern–Simons term of eq. (4.5) and expand out the terms from 
the effective gauge field:

Considering a gauge transformation such that 
I
a →

I
a + d� gives

We now break this equation up into the parts that comprise the original pre-sym-
plectic potential and the parts coming from the gauge transformation:

(4.5)
�LCS[A] = �A ∧ dA +A ∧ d�A

= �A ∧ dA + d(A ∧ �A) − dA ∧ �A

= 2�A ∧ dA + d(�A ∧A),

(4.6)
�LWZ[�,A] = � ∧ d(�A)

= −d� ∧ �A + d(� ∧ �A).

(4.7)
�CS

[
A,

I
a, �

I
a

]
= �A ∧A

= �(A + m
I
a) ∧ (A + m

I
a) = m(�

I
a ∧ A) + m2(�

I
a ∧

I
a).

(4.8)

�CS

[
A,

I
a + d�, �(

I
a + d�)

]
= m(�(

I
a + d�) ∧ A) + m2(�(

I
a + d�) ∧ (

I
a + d�)).

(4.9)

�CS

[
A,

I
a + d�, �(

I
a + d�)

]
= m(�

I
a ∧ A) + m2(�

I
a ∧

I
a)

+ m2

[
�
I
a ∧ d� + �(d�) ∧ (

I
a + d�)

]
+ m[�(d�) ∧ A]

=∶ �CS

[
A,

I
a, �

I
a

]
+ �1

[
I
a, �

I
a, �, ��

]
+ �2[A, ��]
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We can thereby see that the gauge-transformed part of the pre-symplectic potential 
originating from the Chern–Simons term can be written as

4.2.2 � Wen–Zee Term

We now do the same for the Wen–Zee term:

We likewise consider the gauge transformation 
I
a →

I
a + d� and write the gauge 

transformed Wen–Zee term as,

where

(4.10)

�1

[
I
a, �

I
a, �, ��

]
= m2

[
�
I
a ∧ d� + �(d�) ∧ (

I
a + d�)

]

= m2

[
�
I
a ∧ d� + d(�� ∧ (

I
a + d�)) − �� ∧ d

I
a

]

= m2

[
�(

I
a ∧ d�) −

I
a ∧ �d� + d(�� ∧ (

I
a + d�)) − �� ∧ d

I
a

]

= m2

[
�(

I
a ∧ d�) − �� ∧ d

I
a + d(�� ∧

I
a) + d(�� ∧ (

I
a + d�)) − �� ∧ d

I
a

]

= m2

[
d(�� ∧ (2

I
a + d�)) + �(

I
a ∧ d�) − 2�� ∧ d

I
a

]

(4.11)�2[A, ��] = m[�(d�) ∧ A] = m[−�� ∧ dA + d(�� ∧ A)]

(4.12)

�
CS

[
A,

I

a + d�, �(
I

a + d�)

]
= �

CS

[
A,

I

a, �
I

a

]
+ �1

[
I

a, �
I

a, �, ��

]
+ �2[A, �, ��]

= m(�
I

a ∧ A) + m
2(�

I

a ∧
I

a)

+ m
2

[
d(�� ∧ (2

I

a + d�)) + �(
I

a ∧ d�) − 2�� ∧ d
I

a

]

+ m[−�� ∧ dA + d(�� ∧ A)].

(4.13)�WZ

[
�, �

I
a

]
= � ∧ �A = � ∧ �(A + m

I
a) = m

[
� ∧ �

I
a

]
.

(4.14)

�WZ

[
�, �(

I
a + d�)

]
= m

[
� ∧ �(

I
a + d�)

]
= m

[
� ∧ �

I
a

]
+ m[� ∧ �(d�)]

=∶ �WZ

[
�, �A, �

I
a

]
+ �3[�, ��],

(4.15)�3[�, ��] = m[� ∧ �(d�)] = m[d(� ∧ ��) − d� ∧ ��].
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4.2.3 � Gauge‑Transformed Pre‑symplectic Potential

We can finally write the gauge-transformed pre-symplectic potential as

As noted before, this is clearly not invariant under a gauge transformation, but we 
can restore gauge invariance by introducing a new field on the boundary. This will 
be a dressing gauge field u that transforms as u → u − � and effectively dresses the 
pre-symplectic potential to be invariant under U(1) gauge transformations. This is 
analogous to what we did before in dressing the mass gauge field to be Milne invari-
ant. In fact, by replacing every � with a u in the pre-symplectic potential, we then 
find that this new pre-symplectic potential is gauge-invariant. Let us write down this 
new pre-symplectic potential Θ̃:

This new pre-symplectic potential is now invariant under U(1) gauge transforma-
tions such that 

I
a →

I
a + d� because the new field u transforms as u → u − � , which 

kills all the additional terms that result from the transformation on the original pre-
symplectic potential �CS + �WZ.4 That is, our addition of u into Θ̃ has successfully 
restored gauge invariance under this U(1) symmetry.

As we anticipated before, the introduction of this new field has interesting and 
important consequences on the boundary. Recall that the pre-symplectic current is 
defined as �b,c = ��b,c [11, eq. 2.3]. Computing this object by taking 𝜔b,c = 𝛿Θ̃ and 
integrating ΩΣ,�Σ = ∫

Σ
� + ∫

�Σ
� , we find the bulk and boundary contributions,

(4.16)

Θ = �CS

[
A,

I
a, �

I
a

]
+ �1

[
I
a, �

I
a, �, ��

]
+ �2[A, ��] + �WZ

[
�, �

I
a

]
+ �3[�, ��]

= m(�
I
a ∧ A) + m2(�

I
a ∧

I
a) + m2

[
d(�� ∧ (2

I
a + d�)) + �(

I
a ∧ d�) − 2�� ∧ d

I
a

]

+ m[−�� ∧ dA + d(�� ∧ A)] + m

[
� ∧ �

I
a

]
+ m[d(� ∧ ��) − d� ∧ ��]

(4.17)

Θ̃ = 𝜃CS

[
A,

I
a, 𝛿

I
a

]
+ 𝜃WZ

[
𝜔, 𝛿

I
a

]
+ 𝜃1

[
I
a, 𝛿

I
a, u, 𝛿u

]
+ 𝜃2[A, 𝛿u] + 𝜃3[𝜔, 𝛿u]

= 𝜃CS

[
A,

I
a, 𝛿

I
a

]
+ 𝜃WZ

[
𝜔, 𝛿

I
a

]

+ m2

[
d(𝛿u ∧ (2

I
a + du)) + 𝛿(

I
a ∧ du) − 2𝛿u ∧ d

I
a

]

+ m[−𝛿u ∧ dA + d(𝛿u ∧ A)] + m[d(𝜔 ∧ 𝛿u) − d𝜔 ∧ 𝛿u].

4  E.g., a term such as m(�(
I

a + d�) ∧ A) would be replaced with m(�(
I

a + du) ∧ A) . This would now trans-
form as m(�(

I

a + du) ∧ A) → m(�(
I

a + d� + du − d�) ∧ A) = m(�(
I

a + du) ∧ A) . All the terms in the new 
pre-symplectic potential Θ̃ transform in this way, which makes it now U(1) gauge invariant.
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This agrees with Geiller’s derivation of the symplectic structure for standard 
Chern–Simons theory (ours being different in that the gauge field a� has been 
dressed to be Milne invariant and that the gauge field is coupled to two background 
fields representing the electromagnetic field and spin connection). Furthermore, 
we see that the background fields present in the pre-symplectic potential drop out 
of the pre-symplectic form due to the application of the field space derivative in 
calculating the pre-symplectic form. Notice also that the new field u lives only on 
the boundary. Additionally, both [6] and [11] note that this construction leads to 
the emergence of a new symmetry on this boundary. That is, there is a symmetry 
that acts on the original fields as 

I
a →

I
a , A → A , � → � , and the boundary field as 

u → u + B , where B is a constant shift. Furthermore, they note that this new bound-
ary symmetry is actually generated by the new boundary field, which corresponds to 
the observable edge modes of the theory. We will discuss the empirical implications 
of this symmetry in the following section.

This result gives the pre-symplectic form for the boundary of the theory. How-
ever, as is noted in [21, 25], the symplectic structure is an output of a dynamical 
variational principle, yet the Donnelly–Freidel programme as originally construed 
does not tell us the action that produces the symplectic structure noted above that 
contains this new boundary field that restores the gauge invariance of the theory. In 
this spirit, we propose the following action:

Here the bulk terms are just the action for the bulk Newton–Cartan QHE model in 
(4.4), the boundary term is the proposed contribution from the new boundary field, 
and ∗ is the boundary Hodge star operator. This is similar to the proposal in [21], 
where they examine edge modes for standard Chern–Simons theory along the lines 
of the Donnelly–Freidel programme. If one follows the procedures for deriving the 
pre-symplectic form, the bulk terms of course give rise to the normal symplectic 
structure on Σ , whereas the boundary term reproduces the symplectic structure on 
�Σ given in (4.18). Furthermore, the boundary term restores the gauge invariance 
of the action as the terms with the new boundary field cancel the terms in the bulk 
when a gauge transformation is introduced, and this leaves us with a theory for the 
Newton–Cartan QHE that is both Milne and U(1) gauge invariant.

With this action in hand, we can readily study the dynamics of the resulting edge 
modes. Consider a variation of the boundary action:

When the variation vanishes, we obtain 
I
a+ ∗ 2(du +

I
a) + 2(� + A) = 0 . Notice 

also that a variation of the field 
I
a provides a constraint on the boundary such that 

(4.18)ΩΣ,�Σ = ∫Σ

�
I
a ∧ �

I
a + ∫

�Σ

�u ∧ �(2
I
a + du).

(4.19)

S = ∫M

A ∧ dA + 2∫M

� ∧ dA + ∫
�M

du ∧
I
a + (du +

I
a)∧ ∗ (du +

I
a) + du ∧ 2(� + A).

(4.20)

�S�M = ∫
�M

�(du) ∧

[
I
a+ ∗ 2(du +

I
a) + 2(� + A)

]
+ �(

I
a) ∧

[
du+ ∗ 2(du +

I
a)

]
.
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du+ ∗ 2(du +
I
a) = 0 . We can then use the second equation to re-write the first as 

I
a − du + 2(� + A) = 0 . This is precisely the equation that Moroz et al. use in [22] 
to write down the form of their emergent gauge field. We can then look at the action 
for the edge modes,

and when one identifies u as the chiral boson, 
I
a as the emergent gauge field, � as the 

spin connection, and A as a background electromagnetic field as these objects are 
understood in [22], and likewise uses the gauge fixing conditions found therein, we 
find that our proposal agrees with (2.15).

To summarise: in this section, we have applied the Donnelly–Freidel programme 
to a bulk model of the Newton–Cartan QHE. This model is a reformulation of Son’s 
original bulk model of the Newton–Cartan QHE and was specifically formulated in 
terms of Milne invariant Newton–Cartan objects. In applying the Donnelly–Freidel 
programme to this model, we enhanced the symmetries of the model in the pres-
ence of a boundary by adding a new boundary field that restores the U(1) gauge 
invariance of the theory without ever resorting to gauge fixing. This allowed us to 
construct the resulting edge modes of this Newton–Cartan QHE model by comput-
ing the pre-symplectic form, examining the boundary contributions, and building a 
new action that includes the boundary field and respects the symmetry requirements 
of the theory.

5 � Empirical Significance of Symmetries

As mentioned above, both the QHE and the existence of the resulting edge modes 
have been sources of puzzlement in the past. The original justification for the exist-
ence of edge modes was that we must restrict the allowed gauge transformations in 
such a way that the boundary term vanishes and gauge invariance is restored (recall, 
for example, the above-presented quote from Wen). Then, the thinking goes, we can 
understand that these constraints on the allowed gauge transformations source the 
physical degrees of freedom that we see in the form of edge modes. However, hav-
ing now followed the Donnelly–Freidel programme, we can see that it is not con-
straints on the gauge transformations which lead to the existence of edge modes, but 
rather that these are the result of the additional boundary fields that restore the U(1) 
gauge invariance of the theory in the presence of the boundary. Furthemore, we also 
note that the introduction of these boundary fields generates a new boundary sym-
metry that is only apparent after enhancing the original symmetries of the system by 
adding a boundary field to restore U(1) gauge invariance of the model. With all of 
this in mind and considering that this Newton–Cartan model of the QHE required 
introducing a further symmetry related to the Milne invariance of the Newton–Car-
tan structure, the question we address in this section is this: how does this all fit into 
our understanding of the empirical significance of the relevant symmetries in this 
model?

(4.21)S�M = ∫
�M

du ∧
I
a + (du +

I
a)∧ ∗ (du +

I
a) + du ∧ 2(� + A)
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The traditional view on the empirical significance of symmetries distinguishes 
between global symmetries—such as rigid Galilean boosts—and local symme-
tries—such as the U(1) symmetry in electromagnetism or in our present model. 
The traditional view holds that global symmetries—those symmetries which act 
identically at each spacetime point—have ‘direct empirical significance’ (a defi-
nition of which will be offered below), whereas local symmetries—those which 
can act differently from spacetime point to spacetime point—do not. (For impor-
tant introductions to this literature, see [3, 14].)

Consider, for example, the well-known thought experiment of Galileo’s ship. 
Imagine that you are in the interior of the ship while it is at rest, performing 
various experiments and noticing the relative positions and motions of objects in 
the interior with respect to you. Now imagine that the ship is moving at a con-
stant velocity. Your experience in the interior will be indistinguishable from your 
experience when the ship was at rest because a velocity boost is a symmetry of 
the system. Yet, these are distinct physical states, for someone on the shore will 
notice whether the ship is at rest or moving with uniform velocity. Here we see 
that the velocity boost is a symmetry of the subsystem, but when the boost is 
applied to the subsystem alone it is no longer a symmetry of the whole world and 
we will be able to know that these are physically different states when we inter-
act with any part of the world that is not within the subsystem. That is, a global 
symmetry applied to a subsystem generates an empirically distinct state of the 
world, whereas a global symmetry applied to the whole world would not generate 
a empirically distinct state of the world.

On the contrary, local symmetries (recall: those which need not act identically 
at each point in spacetime) are not considered to be directly empirically significant 
because they are believed to encode mere descriptive redundancy in our physics. 
Thus, the thinking goes, it is impossible to have an analogue of the Galileo’s ship 
scenario for gauge symmetries (for literature defending and opposing this view, see 
[3, 10, 24]). This does not mean, however, that local symmetries are entirely devoid 
of empirial content. For example, the fact that a gauge theory has these symmetries 
implies conservation laws important conservation laws from Noether’s theorems. 
This suggests we can classify symmetries as having either direct or indirect empiri-
cal significance, which are defined in the following way:

Direct Empirical Significance (DES) A symmetry is said to have direct empiri-
cal significance if it is characterized by the following conditions [3]: (i) the trans-
formation of the subsystem with respect to a reference system leads to physically 
distinct scenarios; (ii) the transformation of the subsystem is a symmetry of the 
subsystem and is empirically indistinguishable from within the subsystem.
Indirect Empirical Significance (IES) A symmetry is said to have indirect 
empirical significance if there are empirical consequences associated with the 
symmetry. For example, the fact that these gauge symmetries exist places restric-
tions on the equations of motion, which implies that charges are conserved 
through Noether’s theorems [13]. Thus, these symmetries are still empirically 
meaningful in the sense that there are empirical consequences to the fact that 
physical laws possess these symmetries, even if they don’t possess DES in the 
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sense discussed above of being able to generate physically distinct states when 
solely applied to subsystems.

Much recent work—promulgated by Greaves and Wallace [14]—has clarified the 
extent to which symmetries can be empirically significant and shown that there are 
perhaps more similarities between these types of symmetries than the traditional 
view acknowledges. In particular, the present article intersects with two recent 
streams of thought regarding the empirical significance of symmetries: (a) the dis-
tinction between Type I and Type II DES articulated in [14], and (b) the distinction 
between ‘artificial’ and ‘substantial’ gauge symmetry as developed by François [7]. 
In the following subsections we explore how our model of the edge modes in the 
Newton–Cartan QHE intersects with these classifications.

5.1 � Type I and Type II Empirical Significance

Greaves and Wallace argue in [14] that gauge symmetries can indeed—contrary 
to the orthodoxy expressed in e.g.  [3]—possess DES in addition to IES. In order 
to do this, they illustrate how applying gauge symmetries to subsystems can create 
analogues to Galileo’s ship type scenarios. Furthermore, they propose the following 
two schemes for illustrating the DES of a symmetry: Type I scenarios and Type II 
scenarios.

Type I scenarios correspond to exactly what we have discussed regarding the 
standard Galileo’s ship type scenario. In a slightly more formal way of describing 
the situation, consider an ordered pair ⟨s, e⟩ , where s and e correspond to dynami-
cally allowed states for a subsystem and environment that are compatible with each 
other. Consider also that the universe possesses a set of dynamical symmetries � . A 
symmetry has Type I empirical significance when ⟨�(s), e⟩ is defined and instanti-
ates a physically distinct state of the universe from ⟨s, e⟩.5 That is, there is a rela-
tional difference between the subsystem and environment. Both [13] and [30] argue 
that we can indeed construct analogues to the Galileo’s ship scenario for Yang-Mills 
type gauge theories.

Type II scenarios, on the other hand, invite us to likewise consider a subsystem 
and environment pair, ⟨s, e⟩ , along with a set of boundary conditions for the subsys-
tem states Ce that is compatible with the environment states. Then imagine a sym-
metry � that is applied to one of these subsystem states such that �(Ce) = Ce� , where 
e and e′ are physically distinct environmental states representing different charged 
states. Here, we have ⟨�(s), e⟩ → ⟨�(s), e�⟩ , where we can see that the application 
of the symmetry has created a non-trivial change in the environment state itself. 
Furthermore, there is understood to be a ‘principled connection’ between the gauge 
symmetry and the change in environment state e → e′ . While the Greaves and Wal-
lace notion of a ‘principled connection’ is somewhat vague, as we shall see, other 
authors have proposed cashing out this idea in terms of the boundary charge that 

5  Here, the two states are related by the transformation �|
S
∗ �—i.e., the transformation which acts as � 

on the subsystem, and as the identity on the environment.
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corresponds to this change in environmental state generating the relevant symme-
try that can fulfill this role [25]. Type I scenarios change the subsystem state while 
keeping the environmental state the same, whereas Type II scenarios change both 
the subsystem and environment states.

Not surprisingly, the quantum Hall system we have considered in this paper will 
be interesting for the Type II scenario because it is concerned with this issue of 
gauge symmetries and the existence of edge modes on the boundary. Murgueitio 
Ramirez and Teh consider in [25] a related scenario in which they assess the Type II 
empirical significance of a U(1) gauge theory with boundary. In order to assess this 
situation, they introduce a boundary field to restore U(1) gauge invariance in anal-
ogy with the Donnelly–Freidel procedure used above and indeed find a new bound-
ary symmetry in addition to the U(1) gauge symmetry in complete analogy to the 
new boundary symmetry that emerged in our QHE model. They contend—contrary 
to Greaves and Wallace’s argument—that the U(1) gauge symmetry of the subsys-
tem could not be construed as having Type II empirical significance because (as 
indicated above) the most natural way of cashing out such a ‘principled connection’ 
is the traditional relationship between symmetries and conserved charges, where the 
charges generate the symmetries. The subsystem symmetry � on this U(1) theory 
is not generated by the boundary charges. Rather, the new boundary symmetry is 
generated by the boundary charges. They conclude that the Type II scenario for DES 
can’t be correct in the case of the U(1) gauge symmetry � ; however, the boundary 
symmetry does realize this notion of Type II empirical significance because it can 
affect a transition from e → e′.

Coming to our model of the Newton–Cartan QHE, there are three prominent 
symmetries of which we have made use: the Milne symmetry, the U(1) gauge sym-
metry, and the boundary symmetry. Recall that we dressed up the naïve mass gauge 
field of the Newton–Cartan structure to be Milne invariant in order both to provide 
invariance for the topological theory under the relevant non-relativistic symmetries 
that are exhibited by the microscopic theory and are necessary to more generally 
model the QHE, and to avoid the conceptual difficulties of imposing non-relativistic 
diffeomorphism invariance on the background gauge fields. Additionally, we intro-
duced a boundary field u to make the pre-symplectic potential gauge invariant under 
the U(1) symmetry and this allowed us to see clearly the existence of chiral boson 
propagating on the edge of the quantum Hall system. Finally, this construction 
allowed us to see a new boundary symmetry that is generated by the observables.

It is evident that the traditional view that constraints on the allowed gauge trans-
formations lead to the physical degrees of freedom manifested as the edge modes 
on the boundary is conceptually very different from the approach deployed in this 
article (for a clear comparison of such methodologies, see [11, p.  44]). Addition-
ally, we find that this scheme for understanding the empirical significance of sym-
metries maps well onto our model and the symmetries that have been relevant in its 
construction: 

1.	 We find that the Milne symmetry can clearly exhibit Type I DES if it is con-
strued as a spatiotemporal symmetry, and is applied to the subsystem. This is 
expected because this encodes well-known symmetries such as Galilean boosts 
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and demanding that our system be invariant under these is a simple physical 
requirement for non-relativistic systems. Similarly, when applied to the subsys-
tem, this will still be a symmetry of the subsystem and satisfy these physical 
requirements while also generating a distinct empirical state in relation to the 
rest of the universe. On the other hand, if the Milne symmetry is construed as 
an internal, gauge symmetry (involving rescalings of the Newton–Cartan fields, 
as presented in (3.1)—cf. standard U(1) gauge transformations in electromag-
netism), then its empirical significance is much more delicate (and, arguably, 
non-existent!), as is revealed in the following two points.6

2.	 We can see that the new boundary symmetry exhibited by this construction 
exhibits Type II DES in the sense that it can lead to distinct empirical states 
through shifting the charges in relation to the environment, yet be empirically 
indistinguishable from within the subsystem. Furthermore, the boundary sym-
metry exhibits a ‘principled connection’ with the change in environmental state 
through the fact that it is generated by the boundary observables.

3.	 The U(1) gauge symmetry—once featuring so prominently in this story of QHE 
edge modes (as it was believed that constraints on these transformations repre-
sented the physical degrees of freedom seen in edge modes)—is still present, but 
is not directly responsible for the empirical consequences of the symmetries of 
the system. While it still plays a role in the formalism of the model through the 
introduction of the field that restores the U(1) invariance of the theory and cor-
responds to the chiral boson on the edge of the system, it does not have the direct 
empirical consequences that much of the previous literature had ascribed to it.

5.2 � Artificial and Substantial Gauge Symmetries from the Dressing Field Method

Another line of thought regarding the empirical content of symmetries that has 
emerged recently is the distinction between ‘artificial’ and ‘substantial’ gauge 
symmetries and the idea that this can be seen through applying the ‘dressing field 
method’ [7]. Here an ‘artificial’ symmetry is one which simply represents surplus 
structure or descriptive reduncancy, without having direct physical signatures. 
A ‘substantial’ symmetry, on the other hand, is one that does encode real physi-
cal degrees of freedom that can’t be dispensed without trading off the non-local-
ity of the theory. We have relied on the dressing field method extensively in this 
paper in constructing the Newton–Cartan QHE model and in extracting the bound-
ary observables. We both dressed the mass gauge field to be invariant under Milne 
transformations and dressed the pre-symplectic potential to be invariant under U(1) 
gauge transformations on the boundary. What do these imply about the empirical 
content of these symmetries and can we understand them as being ‘artificial’ or 
‘substantial’?

6  Clearly, not all symmetries afford an interpretation both in terms of an external, ‘spatiotemporal’ sym-
metry and in terms of an internal, ‘gauge’ symmetry. Exploring when both such interpretations are avail-
able, and the foundational significance of this possibility, we will leave as a task for future exploration.
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Following [7], consider the familiar fields A, F, and � where A is a gauge 
potential, F is the field strength of the gauge potential, and � is a matter field. 
Furthermore, consider how the gauge transformation � (with a Lie group H) acts 
on the fields and covariant derivative D. In typical theories such as the Klein-
Gordon or Yang-Mills Lagrangians, one finds that their Lagrangians are gauge 
invariant under these gauge transformations:

The dressing field method comes into play by supposing that H has some subgroup 
where there is a field u that transforms as u� = �−1u . We can then dress the original 
fields with this new field u and form the dressing fields:

We see that, contrary to the original gauge-variant variables which transform under 
the gauge transformation � , these dressed fields are now gauge-invariant variables. 
That is, we have effectively erased the gauge symmetry in the Lagrangian because 
the new fields themselves are already manifestly gauge invariant. There is no longer 
a symmetry, there are just the dressed variables. This is exactly what we did in 
dressing the Newton–Cartan mass gauge field. That is, 

I
a is manifestly invariant 

under all Milne boosts and a gauge-invariant field. We did something slightly differ-
ent in introducing our u on the boundary. We introduced the dressing field u, which 
transforms in such a way that U(1) gauge transformations are a symmetry of the 
pre-symplectic potential. That is, these are still gauge-variant variables. However, 
we could just as easily and equivalently introduced 

I

au =
I
a + du , which transforms as I

au →
I
a + d� + du − d� =

I

au and is a gauge-invariant field. Here again, it seems like 
we can equivalently work in variables where the symmetry is evident or variables 
which do not transform under the symmetry.

François argues that the ability to find local dressing fields in this way is a 
powerful indicator that the gauge symmetry is artificial. That is, the gauge-invar-
iant variables represent the true physical fields and the symmetries correspond to 
these descriptive redundancies, which can be kept or dismissed without any con-
sequences. On the contrary, if the introduction of a dressing field requires that the 
dressing field be non-local, as is the case in the example of Dirac’s gauge-invar-
iant reformulation of electromagnetism (see [7]), this means that there is a price 
to pay for erasing the gauge symmetry in this way. Such a symmetry is considered 
to be substantial because it is said to probe genuine physical content. Again this 
does not preclude there from being some sense of IES in the sense of Noether 
charges, but this view holds that the symmetries themselves don’t have DES, but 
nevertheless reveal descriptive redundancy that can have indirect significance.

How does this artificial/substantial distinction map onto the symmetries of our 
Newton–Cartan QHE model? Here, our answers are as follows: 

(5.1)
A� = �−1A� + �−1d� , F� = �−1F� ,

�� = �
(
�−1

)
�, D�� = �

(
�−1

)
D�.

(5.2)
Au ∶= u−1Au + u−1du, Fu ∶= u−1Fu,

�u ∶= �
(
u−1

)
�, Du�u ∶= �

(
u−1

)
D�.
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1.	 This distinction maps quite well onto the discussion of DES and IES for the case 
of the U(1) symmetry. In the previous discussion, we found that the DES of the 
model was contained in the boundary symmetry because it is generated by the 
boundary charges and its application can lead to physically distinct states in the 
environment. On the contrary, the U(1) symmetry was not found to have DES. 
Similarly, with this framework we can freely dress away the U(1) of the pre-
symplectic potential and find that this is an artificial symmetry.

2.	 The case of Milne invariance is a little more involved. If Milne invariance is 
construed as a local gauge transformation, this amounts to a transformation of the 
Newton–Cartan structures and fields such as h�� , n� , and 

I
a� , and would seem to 

indicate that the symmetry is artificial in the sense that we can erase it by dress-
ing it away as we did with the U(1) symmetry. However, Milne symmetry can 
also be construed as an ‘external’ symmetry and applied to a subsystem, as in the 
case of Galileo’s ship. In this case we saw earlier that there is a clear case where 
it exhibits Type I DES. Yet, we can still dress away the symmetry. This seems to 
indicate that finding a dressing field does not universally indicate that there can 
be no DES to the symmetry in question—contrary to the claims made in [7].

6 � Conclusion

This work has constituted a further exploration into the application of Newton–Car-
tan theory to the study of non-relativistic systems, in particular the quantum Hall 
effect. Specifically, we have applied the Donnelly–Freidel program to the bulk 
model of the Newton–Cartan QHE in order to construct edge modes for the model. 
We have shown that one can describe the edge modes of the Newton–Cartan QHE 
by working with a model that both (i) respects the Milne symmetry of the New-
ton–Cartan structure that non-relativistic systems must obey, as well as (ii) satis-
fies the requirements for U(1) gauge invariance even in the presence of a boundary 
through the introduction of an additional boundary field that does not require any 
specific gauge fixing procedure. This construction offers key insights into the origins 
of these edge modes, as well as into the nature of the empirical significance of the 
symmetries relevant to this model, in particular the Milne symmetry, the U(1) gauge 
symmetry, and the new boundary symmetry that came into focus after enhancing the 
model through the addition of a new boundary field. It is our hope that, in turn, such 
methodologies will help to deliver further insights into à la mode contemporary top-
ics, such as non-relativistic holography (on which see e.g. [4, 5]), or edge modes in 
gravitational theories (on which see e.g. [8, 9]).
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