
Risk Preference Types,

Limited Consideration, and Welfare∗

Levon Barseghyan

Department of Economics

Cornell University

lb247@cornell.edu

Francesca Molinari

Department of Economics

Cornell University

fm72@cornell.edu

July 10, 2023

Abstract

We provide sufficient conditions for semi-nonparametric point identification of a mix-

ture model of decision making under risk, when agents make choices in multiple lines

of insurance coverage (contexts) by purchasing a bundle. As a first departure from the

related literature, the model allows for two preference types. In the first one, agents

behave according to standard expected utility theory with CARA Bernoulli utility func-

tion, with an agent-specific coefficient of absolute risk aversion whose distribution is

left completely unspecified. In the other, agents behave according to the dual theory of

choice under risk (Yaari 1987) combined with a one-parameter family distortion func-

tion, where the parameter is agent-specific and is drawn from a distribution that is left

completely unspecified. Within each preference type, the model allows for unobserved

heterogeneity in consideration sets, where the latter form at the bundle level – a second

departure from the related literature. Our point identification result rests on observing

sufficient variation in covariates across contexts, without requiring any independent

variation across alternatives within a single context. We estimate the model on data

on households’ deductible choices in two lines of property insurance, and use the re-

sults to assess the welfare implications of a hypothetical market intervention where the

two lines of insurance are combined into a single one. We study the role of limited

consideration in mediating the welfare effects of such intervention.
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1 Introduction

This paper is concerned with providing sufficient conditions for semi-nonparametric point

identification of risk preferences from observation of agents’ choices in property insurance

markets, and with assessing the welfare impact of policy interventions in these markets.

Property insurance includes a collection of lines of coverage (e.g., for automobiles: collision,

comprehensive, liability, etc.), and we refer to each of them as a context. Within each

context, a finite set of alternatives is offered for purchase. Researchers frequently observe

agents choosing (at the same time) one alternative in each context, hence choosing a bundle.

We assume that agents choose bundles based on preferences that are stable across contexts

(i.e., a single agent-specific parameterization of the model governs that agent’s choices in

each context).1 Our model allows for unobserved heterogeneity in preference types, with

some agents behaving according to expected utility theory with CARA Bernoulli utility

function (EU types), and others behaving according to the dual theory of choice under risk

(Yaari 1987) combined with a one-parameter family distortion function (DT types). The

coefficient of risk aversion of the EU types, and the parameter of the distortion function

of the DT types, are random coefficients with unknown distribution functions that are left

completely unspecified. The model also allows for unobserved heterogeneity in the bundles

that agents consider before making a choice (their consideration set). In particular, whether

an alternative offered in one context is considered can depend in unrestricted ways on whether

another alternative offered in a distinct context is also considered.

Such rich unobserved heterogeneity makes identification analysis challenging. The multi-

ple preference types, random coefficients within type, and agent-specific consideration sets,

contribute three layers to a mixtures problem that we need to disentangle. Moreover, because

we allow the consideration sets to form at the bundle level, even within a single preference

type the choice problem does not inherit the standard single crossing property of Mirrlees

(1971) and Spence (1974), central to important studies of decision making under risk (e.g.,

Apesteguia et al. 2017; Chiappori et al. 2019), that Barseghyan et al. (2021b) show plays

a key role in allowing for semi-nonparametric point identification of single preference type

models. Our main methodological contribution amounts to showing how to resolve each of

these challenges. In doing so, we also confront the fact that due to the structure of insur-

ance markets and of data resulting from a single insurance company, while the covariates

x characterizing products in each context do exhibit independent variation across contexts,

they do not exhibit independent variation across alternatives within a context.2

1This assumption is sometimes viewed as an aspect of rationality (e.g., Kahneman 2003), and is credible
in our empirical study of demand in very similar contexts (collision and comprehensive deductible insurance).

2Within a single insurance company, typically in a given context if an agent faces a larger price than
another agent for one alternative, the first agent faces a (proportionally) larger price for all other alternatives.
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One may wonder whether some aspects of unobserved heterogeneity that are present in

our model could be dispensed with, thereby simplifying the identification problem. We ar-

gue that this is not the case, both in our empirical application and more broadly. A large

literature in experimental economics documents that while some people exhibit behavior con-

sistent with standard EU theory, others exhibit behavior that systematically deviates from

it (e.g., Starmer 2000). And it reports substantial heterogeneity in risk preferences within

type; see, e.g., Choi et al. (2007) and references therein. Moreover, people routinely make

or stick to sub-optimal choices (Handel 2013; Bhargava et al. 2017; Barseghyan et al. 2016),

or make choices across contexts that imply incompatible levels of risk aversion (Barseghyan

et al. 2011; Einav et al. 2012). The traditional additive error random utility model (Luce-

McFadden model), or a “trembling hand” alternative (reviewed in Wilcox 2008) that is

sometimes used to study insurance demand, often do not remedy the problem, as the model

implied choice probabilities can be incompatible with their empirical counterpart. These in-

compatibilities are not specific to a particular utility model, but to an entire class of models

that satisfy properties that are typically viewed as desirable.3 On the other hand, models of

decision making under risk with limited consideration can rationalize agents’ choices.

We illustrate the relevance of the rich unobserved heterogeneity that we allow for, by

estimating risk preferences from data on household’s choices in two contexts, auto collision

and auto comprehensive. While currently U.S. property insurance companies offer these

two lines of coverage as two separate products, we investigate the implications of offering

a combined auto insurance product at a price that equals the sum of the prices for the

two separate coverages. Such pricing arises if firms operate under perfect competition or

if they use a constant markup rule. This counterfactual exercise is of substantive interest

as combined lines of coverage already exist elsewhere (e.g., in Israel; see Cohen and Einav

(2007)) and even in the U.S. auto insurance industry. For example, property damage and

bodily injury coverage can be offered both as separate lines of coverage, as well as combined

in the form of single limit liability coverage. The exercise has the virtue of illustrating the

potentially different predictions of the EU model and of the DT model, as we explain in

Section 6, and the extent to which these predictions interact with whether consideration

increases or decreases after the intervention. Moreover, the exercise informs the debate on

the need to simplify insurance choice, and it clarifies how limited consideration interacts

with the behavioral responses associated with this type of market intervention.

The rest of the paper is organized as follows. Section 2 lays out the model, using our

application as motivating example. Section 3 presents our sufficient conditions for its semi-

nonparametric point identification. Section 4 describes our empirical model and the data.

3See Barseghyan et al. (2021b) for a formal discussion and Section 4.3 below for further details.
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Section 5 reports the results of our estimation exercise. Section 6 reports the results of the

welfare exercise. Section 7 concludes by contextualizing our work in the broader literature.

2 Discrete Choice Under Risk in Multiple Contexts

Our starting point is the random utility model in McFadden (1974), applied to study choices

over risky alternatives with monetary outcomes. We further adapt the model to analyze the

behavior of agents who make choices under risk in multiple distinct contexts.

2.1 Lotteries as objects of choice in property insurance

We use our empirical application as motivating example for the discrete choice framework

that we analyze. We study deductible choices in two contexts: auto collision (context I) and

auto comprehensive (context II). In each context j “ I, II, we assume that there are two

states of the world: one that has probability µj
i , where an accident happens and agent i faces

a loss; and the other that has probability 1´ µj
i , where no accident happens. Auto collision

coverage can be used to insure against loss in context I: it pays for damage in excess of

the deductible to the insured vehicle caused by a collision with another vehicle or object,

without regard to fault. Auto comprehensive coverage can be used to insure against loss in

context II: it pays for damage in excess of the deductible to the insured vehicle from all

other causes (e.g., theft, fire, flood, windstorm, or vandalism), without regard to fault. In

each context, a finite set Dj of alternatives (insurance contracts) is offered.

Conditional on risk level, i.e., given µj
i , each alternative ℓ P Dj is fully characterized by

the pair pdℓj,xℓj
i q. The first element is the insurance deductible, which is the agent’s out

of pocket expense if a loss occurs. All deductibles are assumed to be less than the lowest

realization of the loss and d1j ą d2j ą ¨ ¨ ¨ ą dM
jj, with M j the total number of deductibles

in context j. In collision, MI “ 5 and dI P t$1000, $500, $250, $200, $100u; in comprehensive,

MII “ 6 and dII P t$1000, $500, $250, $200, $100, $50u, for a total of 30 bundles of offered

coverages in D “ DI ˆDII.

The second element in pdℓj,xℓj
i q is the price (insurance premium), and varies across agents.

It is important to understand the sources of such variation, because to obtain our point

identification result we assume that premiums are exogenous to preferences (Assumption 2.1

below) and exhibit substantial variation across households (Assumptions 3.3-3.4 below).

First, we note that an insurance company’s rating plan is subject to state regulation and

oversight. In particular, the regulations require that a company receive prior approval of
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its rating plan by the state insurance commissioner, and they prohibit the company and its

agents from charging rates that depart from the plan.

Second, we describe the procedure applied by the company from which we obtained

our data to rate a policy in each line of coverage.4 Under the plan, within each context j

the company determines a household’s base price xj
i according to a coverage-specific rating

function, which takes into account agent i’s coverage-relevant characteristics and any ap-

plicable discounts. Using the base price, the company then generates the agent’s pricing

menu Mj ” tpdℓj,xℓj
i q : ℓ P Dju, which associates a premium xℓj

i with each deductible dℓj in

the coverage-specific set of alternatives in Dj, according to an agent-invariant and coverage-

specific multiplication rule, xℓj
i “ pgℓj ¨ xj

i q ` δj, where δj ą 0 and gℓj is increasing in ℓ and

strictly greater than zero, so that x1j
i ă x2j

i ă ¨ ¨ ¨ ă xMjj
i (dℓj is decreasing in ℓ, so lower

deductibles provide more coverage and cost more).5 As tgℓj : ℓ P Dj; δju are agent-invariant,

there is no independent variation in covariates across alternatives within a context.

With this as background, for given µj
i , alternatives can be represented as lotteries:

Lpdℓj,xj
i q ”

´

´xℓj
i , 1´ µj

i ;´xℓj
i ´ dℓj, µj

i

¯

, (2.1)

where pxj
i , µ

j
i q is observed by the researcher for each agent i and context j. Throughout,

we implicitly condition on µj
i . We do not use variation in µj

i to establish our identification

results, although doing so is potentially useful and the subject of ongoing research.

2.2 Preference types with unobserved heterogeneity within type

We allow the population of agents to be a mixture of preference types.6 The literature has put

forward many models of decision making under risk which can generate demand for insurance

at actuarially unfair prices, including the workhorse expected utility theory model and a

host of non-expected utility theory models. Each of these models has relative (de)merits

in rationalizing observed choices, and may deliver different predictions for counterfactual

policies (see Barseghyan et al. 2018a, for a review). We hence think it important to provide

identification results for a model where multiple preference types are allowed for, and where

unobserved heterogeneity within type is also present.

4See Section 4.2 below for additional information on the data.
5The multiplicative factors tgℓj : ℓ P Dju are known as the deductible factors and δj is a small markup

known as the expense fee.
6Multiple preference types are a focus of the literature that estimates risk preferences using experimen-

tal data (e.g., Bruhin et al. (2010); Conte et al. (2011); Harrison et al. (2010)), although preferences are
homogeneous within each type, at most conditioning on some observed demographic characteristics.
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For notational simplicity, we detail here the case with two preference types. The results

extend to more than two types (even when one observes choices only in two contexts). Let

each agent i draw a preference type ti as follows:

ti “

#

1 with probability α,

0 with probability 1 ´ α,
(2.2)

with α P p0, 1q the unknown mixing probability.

Each realization of ti is associated with a family of utility functions with distinct func-

tional forms, denoted U1 “ tUν , ν P r0, ν̄su for ti “ 1, and U0 “ tUω, ω P r0, ω̄su for ti “ 0.

Functions in each family are known up to a scalar random coefficient that depends on type,

denoted νi (with support r0, ν̄s) for agents with ti “ 1, and ωi (with support r0, ω̄s) for agents

with ti “ 0. For example, in our empirical application U1 is the collection of expected utility

functions associated with preferences that exhibit constant absolute risk aversion (CARA)

with agent-specific Arrow-Pratt coefficient νi,
7 and U0 is a family of non-expected utility

functions that do not nest expected utility as a special case and are parametrized by ωi (see

Eqs. (4.1)-(4.2) and Assumptions 4.2 & 4.3 below). As the preference types are distinct,

each agent either receives a draw of νi or a draw of ωi, hence by construction the two ran-

dom coefficients are independent. We do not impose any parametric restrictions on their

distributions. Rather, in Section 3 we provide nonparametric point identification results for

the two marginal distributions of preferences and for the share of each type.

Assumption 2.1 (Restrictions on distribution of random coefficients): The random co-

efficient νi (respectively, ωi) is distributed according to a cumulative distribution function F

(respectively, G) that satisfies the properties of CDFs, and admits a density function f that is

continuous and strictly positive on V ” r0, ν̄s (respectively, g strictly positive on W ” r0, ω̄s).

Both νi and ωi are independent of xi.
8

We make three fundamental assumptions about utility functions in both families. First,

we assume that households’ preferences are stable across contexts, which allows us to leverage

variation in observed choices and covariates across contexts (recall that we have no covariate

variation within each context).

Assumption 2.2 (Stability): The utility function Uνi of each agent i with ti “ 1 (respec-

tively, Uωi
for agents with ti “ 0) is context-invariant.

7Other preferences that are characterized by a scalar parameter include ones exhibiting constant relative
risk aversion (CRRA), or negligible third derivative (NTD; see, e.g., Cohen and Einav 2007; Barseghyan
et al. 2013). Under CRRA, it is required that agents’ initial wealth is known to the researcher.

8Recall that our analysis conditions on µj
i , hence the distribution of preferences may depend on it.
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Second, we need to take a stand on how agents make choices in multiple contexts. To

this end, it is important to introduce notation for bundles of alternatives. Denote bundles

as Iℓ,q, where the first index refers to the alternative in context I and the second one to that

in context II. Let CEνipLpdℓj,xjqq (respectively, CEωi
pLpdℓj,xjqq) denote the certainty

equivalent of lottery Lpdℓj,xjq (see, e.g., Mas-Colell et al. 1995, Definition 6.C.2) in context

j for an agent of type ti “ 1 (respectively, ti “ 0). We impose a standard, albeit sometimes

implicit, assumption in the literature,9 according to which agents’ choices are made without

taking into account any background risk (e.g., Read et al. 1999).

Assumption 2.3 (Narrow Bracketing): Agent i’s certainty equivalent for the lottery as-

sociated with bundle Iℓ,q is equal to CEζipLpdℓI,xIqq ` CEζipLpdqII,xIIqq, with ζi “ νi if

ti “ 1 and ζi “ ωi if ti “ 0.

Third, we assume that each preference type satisfies the classic Single Crossing Property

(SCP) of Mirrlees (1971) and Spence (1974), central to important studies of decision making

under risk (see, for example Apesteguia et al. 2017; Chiappori et al. 2019).10 Formally,

Assumption 2.4 (Single Crossing Property): For a given context j and any two lotteries

Lpdℓj,xq and Lpdkj,xq, ℓ ă k, there exists a continuously differentiable and strictly monotone

function Zℓ
k : supppxq Ñ Rr´8,8s, with supppxq “

Ť

j“I,II supppx
jq, such that

UζpLpdkj,xqq ă UζpLpdℓj,xqq @ζ P p´8,Zℓ
kpxqq,

UζpLpdkj,xqq “ UζpLpdℓj,xqq ζ “ Zℓ
kpxq,

UζpLpdkj,xqq ą UζpLpdℓj,xqq @ζ P pZℓ
kpxq,8q.

where ζ “ νi for agents of type ti “ 1 and ζ “ ωi for type ti “ 0. We refer to Zℓ
kp¨q as the

cutoff between Lpdℓj,xq and Lpdkj,xq, and denote it Vℓ
kp¨q for ti “ 1 and Wℓ

kp¨q for ti “ 0.11

Within a single context, the expected utility theory framework generally satisfies the

SCP, which requires that if an agent with a certain degree of risk aversion (the random

coefficient νi) prefers a safer lottery to a riskier one, then all agents with higher risk aversion

also prefer the safer lottery.12 The same is true for the non-expected utility theory model

that we use in our empirical analysis in Section 4. The SCP implies that within a single

context, the household’s ranking of alternatives is monotone in νi for ti “ 1 and in ωi for

ti “ 0, yielding vertical differentiation of alternatives within each preference type.

9All papers that estimate risk preferences in the field as reviewed in Barseghyan et al. (2018a) impose it.
10The SCP is satisfied in many contexts, ranging from single agent models with goods that can be unam-

biguously ordered based on quality, to multiple agents models (e.g., Athey 2001).
11We assume that while ν and ω have bounded support, the utility functions in U1 and U0 are well defined

for any real valued ν and ω, respectively.
12For a discussion of possible failures of SCP, see Apesteguia and Ballester (2018).
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2.3 Unobserved heterogeneity in consideration sets

Across contexts, the subset of alternatives actually available to each agent is unknown to the

researcher, due, e.g., to unobserved budget constraints, liquidity constraints, etc. Moreover,

agents face an overall large and potentially overwhelming universe of feasible alternatives,

leading to choice overload, cognitive ability constraints, etc. Hence, we allow for unobserved

heterogeneity in consideration sets, i.e., in the collection of alternatives that the agents

evaluate when making their choices. We denote the overall universe of alternatives across

contexts as D ” DI ˆDII, with Iℓ,q denoting each of the bundles in D.

Assumption 2.5 (Consideration set formation mechanism): Conditional on ti, agent i

draws a consideration set Ci Ď D independently from its random coefficient and from xi s.t.

Q1pKq ” PrpCi “ K|ti “ 1q “ PrpCi “ K|xi, νi, ti “ 1q, K Ď D,

Q0pKq ” PrpCi “ K|ti “ 0q “ PrpCi “ K|xi, ωi, ti “ 0q, K Ď D.

The fundamental restrictions imposed in Assumption 2.5 are that conditional on prefer-

ence type, consideration is independent of the agent’s random coefficient and of the observed

covariate x.13 However, the distribution of consideration sets may depend on preference

type. Importantly, we allow consideration to be broad, as it is determined at the bundle

level instead of within context. A significantly more restrictive approach would posit that

consideration is narrow : agent i draws a pair of consideration sets Cj
i P Dj, j “ I, II in-

dependently across contexts, and forms Ci “ CI
i ˆ CII

i . As we further discuss in Section

2.4, allowing consideration sets to be drawn at the bundle level substantially complicates the

identification analysis, but delivers a more realistic model.

2.4 Optimal choice within the consideration set

Once the consideration set is drawn, each agent chooses the best alternative in each context

according to their preferences.

I˚
” rℓ˚, q˚s “ arg max

rℓ,qsPC
CEζpLpdℓI,xI

qq ` CEζpLpdqII,xII
qq, (2.3)

where ζ “ ν if t “ 1 and ζ “ ω if t “ 0. The bundle choice I˚ depends on the agent’s

preference type, random coefficient, consideration set, associated premium-deductible tuples,

and claim probabilities µj, j “ I, II.

13Recall that our analysis conditions on µj
i , hence the distribution of consideration sets may depend on it.
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The flexible model of consideration set formation that we allow for has important im-

plications for the choice problem in Eq. (2.3). If we were to assume narrow consideration,

hence restrict agents to draw consideration sets independently across contexts, the choice

problems would break into independent, context-specific decisions, with

ℓ˚j “ argmax
ℓPCj

CEζpLpdℓ
j

,xj
qq. (2.4)

Each context-specific choice problem satisfies the SCP in Assumption 2.4. Barseghyan et al.

(2021b) offer a comprehensive analysis of the implications of the SCP for semi-nonparametric

identification of a model of discrete choice under risk that features a single preference type

and unobserved heterogeneity in consideration sets. Even in the simplified framework where

consideration is narrow, our analysis extends theirs as we allow for multiple preference types.

More importantly, a narrow model of consideration implies that very similar alternatives in

different contexts enter the consideration set independently.14 This assumption is unpalat-

able, particularly when analyzing demand for bundled products. We therefore allow for broad

consideration. In doing so, we overcome a substantial hurdle relative to Barseghyan et al.

(2021b). When consideration is broad and Ci is formed at the bundle level, the SCP may not

necessarily hold across tuples of alternatives, because alternatives may not be monotonically

ranked against each other (with respect to νi or ωi). Hence, here we develop a new approach

to obtain point identification of the distribution of preferences, shares of preferences types,

and features of the distribution of consideration sets given type.

3 Identification Results

We begin by describing the conditions under which we can prove our point identification

results.15 We index bundles as Iℓ,q and Ik,r, with ℓ, k P DI alternatives in context I and

q, r P DII alternatives in context II. We recall that in each context, d1j ą d2j ą ¨ ¨ ¨ ą dM
jj

and x1j
i ă x2j

i ă ¨ ¨ ¨ ă x
Mjj
i , see Section 2.1. We let Vℓ,q

k,rpxq and Wℓ,q
k,rpxq denote cutoff levels

for νi and ωi, respectively, at which the agent is indifferent between bundles Iℓ,q and Ik,r.

Hence, under Assumption 2.3, the cutoff Vℓ,q
k,rpxq is such that (and similarly for Wℓ,q

k,rpxq):

CEVℓ,q
k,rpxq

pLpdℓI,xI
qq ` CEVℓ,q

k,rpxq
pLpdqII,xII

qq

“ CEVℓ,q
k,rpxq

pLpdkI,xI
qq ` CEVℓ,q

k,rpxq
pLpdrII,xII

qq. (3.1)

14For example, a $500 deductible at price xI in collision insurance and a $500 deductible at price xII in
comprehensive insurance would enter the consideration set independently.

15The results extend easily to more than two contexts, at the cost of heavier notation.
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Relative to the cutoffs introduced in Assumption 2.4, which compared alternatives within a

single context and we denoted Vℓ
kpxq (single superscript and subscript for a single context

of choice), we have Vm,q
m,r pxq “ Vq

r pxq and Vℓ,s
k,spxq “ Vℓ

kpxq for all m P DI and s P DII (and

similarly for W ¨,¨
¨,¨ pxq). While cutoffs Vℓ,q

k,rpxq and Wℓ,q
k,rpxq for ℓ ‰ k, q ‰ r depend on both xI

and xII, cutoffs Vℓ,s
k,spxq and Wℓ,s

k,spxq depend only on xI, while cutoffs Vm,q
m,r pxq and Wm,q

m,r pxq

depend only on xII. These properties will be used to establish our identification results.

We remark that the cutoffs Vℓ,q
k,rpxq and Wℓ,q

k,rpxq may not be unique if ℓ ą k but q ă r

(or vice versa). However, they are unique whenever I1,1 is compared with any other bundle

(and similarly whenever IMI,MII is compared with any other bundle).

Throughout, we assume that the researcher has access to data that identify the joint dis-

tribution of chosen bundles and covariates. The consideration set, however, is not observed.

Assumption 3.1 (Observed data): A random sample tpI˚
i ,x

I
i ,x

II
i q : i “ 1, . . . , nu is

observed, with I˚
i , as defined in Eq. (2.3).

3.1 Restrictions on variation in xj across contexts

Identification of the model’s functionals rests on the interplay between the model and the

variation in the observed covariates. We only require the covariates xi ” pxI
i ,x

II
i q to vary

across agents and contexts, as formally stated below, but allow xI
i (respectively, xII

i ) to

be constant across alternatives within DI (respectively, DII). Hence, one needs sufficient

variation across contexts to obtain point identification results.

Assumption 3.2 (Preferred within a triplet): In each context j P tI, IIu, for any x and

triplet td1j, dkj, dpk`1qju, @k P t2, ...,M j ´ 1u, there are values of ν (and ω) at which each

alternative in this triplet is strictly preferred to the other two.

Assumption 3.2 requires that given three coverage levels including the cheapest, each

one is preferred by at least some agent. As shown in Barseghyan et al. (2021b), under

Assumption 2.4, this condition is satisfied for agents of type ti “ 1 within context I if and

only if ´8 ă V1,1
2,1 px

Iq ă V1,1
3,1 px

Iq ă V1,1
4,1 px

Iq ¨ ¨ ¨ ă `8 (and similarly for agents of type

ti “ 0, and for context II with appropriate modifications in the compared bundles and

evaluation at xII instead of xI), with Vℓ,q
k,r defined through Eq. (3.1). So, any agent of type

ti “ 1 who draws ν ă V1,1
2,1 px

Iq unambiguously prefers alternative ℓ1I to any other in DI.

In what follows, an important role is played by the values of x “ pxI,xIIq at which the

indifference cutoff for an agent of type ti between alternatives ℓ1I and ℓ2I (the two cheapest

alternatives in context I) is equal to that agent’s indifference cutoff between alternatives ℓ1II
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and ℓ2II (the two cheapest alternatives in context II). We first define these values of x, and

then make assumptions on the support of x to guarantee that it includes them.

Definition 3.1 (Covariate values delivering indifference): Given ti, fix a value of ν P

r0, ν̄s if ti “ 1 and of ω P r0, ω̄s if ti “ 0. Let the set of covariate values at which the agent

has preference ν (respectively, ω) and is indifferent between bundles I1,1, I1,2, and I2,1, be:

X1
pνq ” tpxI,xII

q : V1,1
2,1 px

I
q “ V1,1

1,2 px
II
q “ νu,

X0
pωq ” tpxI,xII

q : W1,1
2,1 px

I
q “ W1,1

1,2 px
II
q “ ωu.

The covariate values X1pνq (respectively, X0pωq) are the values of x “ pxI,xIIq at which

an agent with preferences ν (respectively, ω) is indifferent between the two cheapest coverage

levels in context I and, at the same time, also in context II. In other words, the agent is

indifferent between I1,1, I1,2, and I2,1 (and, hence, I2,2). Given the single crossing property

in Assumption 2.4, within each context it is immediate to see that both elements of X1pνq

(the covariate value in context I and the covariate value in context II) are strictly monotone

in ν (and, similarly, both elements of X0pωq are monotone in ω). For example, the higher

is ν, the higher is the base price in context I at which the agent with random coefficient

ν is indifferent between I1,1 and I2,1. Hence, we can represent X1pνq (respectively, X0pωq)

as a strictly monotone function on the support of pxI,xIIq.16 We assume that these strictly

monotone functions intersect on a set of measure zero.

Assumption 3.3 (Distinct contexts): The contexts are distinct, in the sense that:

(I) X1pνq ‰ X0pωq a.e.

(II) The following four conditions are satisfied:

V1,1
ℓ,q pX

0
pωqq ‰ V1,1

k,r pX
0
pωqq a.e. (3.2)

W1,1
ℓ,q pX

1
pνqq ‰ W1,1

k,r pX
1
pνqq a.e. (3.3)

V1,1
ℓ,q pX

1
pνqq ‰ V1,1

k,r pX
1
pνqq a.e. @tℓ, q, k, ru s.t. tℓ, q, k, ruzt1, 2u ‰ H. (3.4)

W1,1
ℓ,q pX

0
pωqq ‰ W1,1

k,r pX
0
pωqq a.e. @tℓ, q, k, ru s.t. tℓ, q, k, ruzt1, 2u ‰ H. (3.5)

Assumption 3.3-(II) implies Assumption 3.3-(I), as Eqs. (3.2)-(3.3) for ℓ, q “ 2, 1 and

k, r “ 1, 2 imply X1pνq ‰ X0pωq a.e. Both conditions require that at any value of pxI,xIIq

at which indifference across I1,1, I1,2, and I2,1 occurs for an agent of type ti “ 1, such indif-

ference cannot occur for an agent of type ti “ 0. Additionally, Assumption 3.3-(II) requires

that at any value of pxI,xIIq at which indifference across I1,1, I1,2, and I2,1 occurs, no other

16See Figure 3.1 and its discussion below.
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Figure 3.1: X0pωq and X1pνq in our application, with data in the background.

triplet of bundles including I1,1 can generate a three-way tie in utility ranking. Given the

data and utility models across preference types, one can directly check whether Assumption

3.3 is satisfied. Finally, we require that the support of x is sufficiently rich, as point identi-

fication of fpνq and gpωq can only occur at values of ν and ω that belong, respectively, to

intervals rν˚, ν˚˚s Ď r0, ν̄s and rω˚, ω˚˚s Ď r0, ω̄s satisfying the next assumption.

Assumption 3.4 (Independent variation in x): Let rν˚, ν˚˚s Ď r0, ν̄s and rω˚, ω˚˚s Ď

r0, ω̄s be intervals such that, for some ϵ ą 0, the random vector x “ pxI,xIIq has strictly

positive density on the sets S1
ϵ pν

˚, ν˚˚q Ă R2 and S0
ϵ pω

˚, ω˚˚q Ă R2, with

S1
ϵ pν

˚, ν˚˚
q “

␣

BϵpX
1
pνqq, ν P rν˚, ν˚˚

s
(

,

S0
ϵ pω

˚, ω˚˚
q “

␣

BϵpX
0
pωqq, ω P rω˚, ω˚˚

s
(

.

where Bapcq denotes a ball in R2 of radius a centered at c.

Assumption 3.4 guarantees that for each ν P rν˚, ν˚˚s there are values of x such that

X1pνq is non-empty and that there is an ϵ-neighborhood around X1pνq with positive density

(and similarly for X0pωq and all ω P rω˚, ω˚˚s). This yields sufficient observed variation in

x to identify the functionals that we are after. We illustrate the notion of distinct contexts

and independent variation in x via Figure 3.1, which depicts X0pωq and X1pνq drawn for

different pairs of µ’s. First, X0pωq and X1pνq intersect only at a single point.17 Second, these

17In our empirical model described in Section 4, this intersection point corresponds to ν “ 0 and ω “ 1,
i.e., respectively, no risk aversion and no probability distortions.
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ν
V1,1
2,1 px

I1q V1,1
1,2 px

I1q

I˚ “ I1,1 I˚ “ I2,1 I˚ “ I2,2

(a) ti “ 1

ω
W1,1

2,1 px
II1qW1,1

1,2 px
II1q

I˚ “ I1,1 I˚ “ I1,2 I˚ “ I2,2

(b) ti “ 0

Figure 3.2: Stylized depiction of regions where, under full consideration, I˚ “ I1,1.

curves are both monotone. We present them with a scatterplot of unconditional data from

our empirical application in the background, to highlight the fact that even when variation

in x does not cover the entire R2
`, identification is attainable since Assumption 3.4 requires

variation in x only to cover respective neighborhoods of X0pωq and X1pνq.

We next explain why, under full consideration, our assumptions suffice for identification

of the share of preference types and the distributions of the respective random coefficients.

Fix a value of ν P rν˚, ν˚˚s at which one wants to learn fpνq. Under Assumption 3.4, X1pνq

is non-empty and there is an ϵ-ball of positive density around it. Along with Assumption 3.3,

this implies that there is a vector pxI1,xII1q P BϵpX
1pνqq such that ν “ V1,1

2,1 px
I1q ă V1,1

1,2 px
II1q

and W1,1
2,1 px

I1q ą W1,1
1,2 px

II1q. Then, as shown in Figure 3.2, under Assumptions 2.4 and 3.2,18

PrpI˚
“ I1,1|x

1
q “ αF pV1,1

2,1 px
I1
qq ` p1´ αqGpW1,1

1,2 px
II1
qq. (3.6)

In turn, owing to the fact that V1,1
2,1 px

I1q depends on xI but W1,1
1,2 px

II1q does not, this yields

B PrpI˚ “ I1,1|x
1q

BxI
“ αfpνq

BV1,1
2,1 px

I1q

BxI
, (3.7)

where the term
BV1,1

2,1 px
I1q

BxI is a known function of xI and is different from zero due to Assumption

2.4 (where cutoff functions are assumed to be strictly monotone in x). If rν˚, ν˚˚s “ r0, ν̄s,

one can repeat the above argument for all ν on the support and then use the fact that fpνq

integrates to one to learn α. One can similarly learn gpωq, ω P rω˚, ω˚˚s.

3.2 Restrictions on the consideration set formation mechanism

In the presence of limited consideration, the above argument does not directly apply, as one

needs to account for all possible consideration sets in which bundle I1,1 is included. We

therefore need to introduce additional notation and some restrictions.

18Recall that these assumptions, jointly, imply that any agent who draws ν ă V1,1
2,1 px

I1q ă V1,1
1,2 px

II1q

unambiguously prefers alternative ℓ1I to all other alternatives in DI, unambiguously prefers alternative ℓ1II

to all other alternatives in DII, and therefore unambiguously prefers bundle I1,1 to any other bundle in D.

12



For any K1,K2 Ď D, K1 X K2 “ H, denote the probability that all elements of K1 are

included in the consideration set while all elements of K2 are excluded from it, by

O1pK1;K2q ”
ÿ

K: K1ĂK, K2XK“H

PrpCi “ K|ti “ 1q “
ÿ

K: K1ĂK, K2XK“H

Q1pKq,

and define O0pK1;K2q similarly, where QtpKq, t “ 0, 1, was introduced in Assumption 2.5.

Denote by BpIℓ,q,x; ζq the collection of bundles that, at a given value of ζ, strictly

dominate bundle Iℓ,q, with ζ “ νi for agents of type ti “ 1, and ζ “ ωi for ti “ 0:

BpIℓ,q,x; ζq ” tIk,r s.t. CEζpIk,r,xq ą CEζpIℓ,q,xqu.

Then, for a given value of x, any bundle Iℓ,q P D is chosen if and only if it is considered and

every bundle that dominates it is not:19

PrpI˚
“ Iℓ,q|xq “ α

ż

O1pIℓ,q;BpIℓ,q,x; νqqdF ` p1´ αq

ż

O0pIℓ,q;BpIℓ,q,x;ωqqdG. (3.8)

Eq. (3.8) with pℓ, qq “ p1, 1q shows that I1,1 is chosen when it is the bundle in Ci with the

highest certainty equivalent, i.e., no bundle that yields a higher certainty equivalent (those

in BpI1,1,x; ¨q) is considered. Hence, an agent choosing I1,1 switches to or from a different

bundle Ik,r if and only if (i) they are indifferent between I1,1 and Ik,r; and (ii) they do not

consider any bundle in D that dominates I1,1 and Ik,r. As the indifference cutoffs involving

bundle I1,1 are unique, differentiating Eq. (3.8) we have

B PrpI˚ “ I1,1|xq

BxI
“ α

ÿ

pk,rq‰p1,1q

O1ptI1,1, Ik,ru;BpI1,1,x;V1,1
k,r qqfpV

1,1
k,r q

BV1,1
k,r

BxI

` p1´ αq
ÿ

pk,rq‰p1,1q

O0ptI1,1, Ik,ru;BpI1,1,x;W1,1
k,r qqgpW

1,1
k,r q

BW1,1
k,r

BxI
. (3.9)

The summation in Eq. (3.9) collects all relevant consideration sets across preference types

and indifference points (cutoffs), weighted by the density function at these indifference points

and taking into account how the change in xI affects the indifference points themselves.20

19Equivalently, bundle Iℓ,q is chosen if and only if it is the first best among the ones considered:

PrpI˚ “ Iℓ,q|xq “ α
ÿ

Iℓ,qPK
Q1pKq

ż

1pCEνpIk,r,xq ď CEνpIℓ,q,xq @Ik,r P K|x; νqdF

` p1´ αq
ÿ

Iℓ,qPK
Q0pKq

ż

1pCEωpIk,r,xq ď CEωpIℓ,q,xq @Ik,r P K|x;ωqdG.

20For
B PrpI˚

“I1,1|xq

BxII , the right-hand-side of Eq. (3.9) remains as is, with BxII replacing BxI.
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We impose the following restrictions on the consideration set formation mechanism:

Assumption 3.5 (Minimally informative consideration): One of the following holds:

(I) O1ptI1,1, I2,2, I2,1u;Hq “ O1ptI1,1, I2,2, I1,2u;Hq ą 0.

(II) O1ptI1,1, I2,2, I2,1u;Hq ´O1ptI1,1, I2,2, I1,2u;Hq ‰ 0, and

O1ptI1,1, I2,1u;Hq “ O1ptI1,1, I2,1u; tI2,2, I1,2uq.
21

One of these two restrictions also holds with O0 replacing O1.

Assumption 3.5-(I) requires symmetry in the probability with which the triplets pI1,1, I2,2, I1,2q

and pI1,1, I2,2, I2,1q are included in the consideration set, and that each probability is strictly

positive, so that information can be extracted through the differentiation in Eq. (3.9). As-

sumption 3.5-(II) requires that if such symmetry is absent, then alternatives I1,1 and I2,1

can only be considered together when neither I1,2 nor I2,2 are considered (a trivial case that

would guarantee this condition is that I2,1 is never considered when I1,1 is). The conditions

in Assumption 3.5 are sufficient (together with the other assumptions listed above) for our

identification results. However, they can be replaced by technical yet verifiable assumptions

on the behavior of the cutoffs involving comparisons of alternatives I1,1, I2,1, I1,2, I2,2.
22

3.3 Point identification results

We next state our main identification results, whose proofs are in the Appendix.

Theorem 3.1: Let Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 3.1, 3.2, 3.3, 3.4, 3.5 hold. Then

1. fp¨q is identified up to scale on any interval rν˚, ν˚˚s satisfying Assumption 3.4.

2. gp¨q is identified up to scale on any interval rω˚, ω˚˚s satisfying Assumption 3.4.

3. If rν˚, ν˚˚s “ r0, ν̄s and rω˚, ω˚˚s “ r0, ω̄s, then fp¨q and gp¨q are identified.

Theorem 3.1 shows that under limited consideration, despite the lack of independent

variation in observed covariates across alternatives (within a single context), it is nonetheless

possible to identify the distribution of the random coefficient for each preference type without

21Alternatively, O1ptI1,1, I1,2u;Hq “ O1ptI1,1, I1,2u; tI2,2, I2,1uq can replace the last condition in As-
sumption 3.5-(II). In our application this alternative restriction is satisfied because bundle I1,2 (which is the
deductible bundle t$1000, $500u) is chosen with probability zero, and hence both probabilities are zero.

22These conditions are available from the authors upon request, and require that BV1,1
1,2 pxq{Bx

II does not

equal a specific linear function of BV1,1
2,1 pxq{Bx

I.

14



relying on identification at infinity arguments.23 While to pin down the entire distribution of

preferences large support is required, our approach identifies (up to scale) the density function

of each random coefficient conditional on a given interval. Let V̄ (respectively, W̄ ) denote

the union of all intervals rν˚, ν˚˚s (respectively, rω˚, ω˚˚s) satisfying Assumption 3.4. If V̄ is

a proper subset of r0, ν̄s (respectively, W̄ is a proper subset of r0, ω̄s), partial identification of

the entire distribution of preferences is still possible, by collecting the probability distribution

functions that have density equal to fpνq for all ν P V̄ (respectively, gpωq for all ω P W̄ ).

For a general treatment of partial identification of preferences in discrete choice models with

limited consideration, see Barseghyan et al. (2021a).

One can point identify the shares of preference types under a mild additional restriction,

where the probability of including one specific pair of bundles in the consideration set and

excluding another specific bundle (or pair of bundles) is independent of preference type.

Corollary 3.1: α is identified if all Assumptions of Theorem 3.1 hold, and either:

(i) Assumption 3.5-(I) holds for both agents with preference types ti “ 1 and ti “ 0, and

O1ptI1,1, I2,1u;Hq´O1ptI1,1, I2,1u; tI2,2, I1,2uq “ O0ptI1,1, I2,1u;Hq´O0ptI1,1, I2,1u; tI2,2, I1,2uq.

(ii) Assumption 3.5-(II) holds for both agents with preference types ti “ 1 and ti “ 0, and

O1ptI1,1, I2,2u; I2,1q ´O1ptI1,1, I2,2u; I1,2q “ O0ptI1,1, I2,2u; I2,1q ´O0ptI1,1, I2,2u; I1,2q.

Given the distributions of the random coefficients, F p¨q and Gp¨q, the system of equations

defined in Eq. (3.8) (LˆM equations for a given x) is linear in the consideration probabilities

across the two types, weighted by their respective shares α and 1´ α. This in turn implies

that we have a continuum of L ˆ M linear equations to pin down 2LˆM`1 parameters.

In general, with sufficient variation in x, these parameters are over-identified, subject to

standard non-redundancy assumptions.24 However, depending on the specific models of

preferences assumed, and on the richness of variation in the data observed, it may not be

possible to identify some parts of the distribution of consideration sets. Nevertheless, for a

specific model, given the data, one can test whether a full rank system of equations results

across observed values of x (see., e.g., Chen and Fang 2019).

More broadly, our limited consideration model has several testable implications. We high-

light two: one specific to our broad consideration case, the other more general. First, suppose

23If one had variation in xj across alternatives and unbounded support, letting the observed covariate
(say, price) for a given alternative go to infinity would be akin to assuming that one observes agents repeated
choices in context j while facing feasible sets that include/exclude each single alternative.

24For example, if for type ti “ 1 alternative Iℓ,k dominates alternative Iq,r, Q1ptIℓ,k, Iq,ruq cannot be
separately identified from Q1ptIℓ,kuq.
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Assumption 2.3 holds. Then under full or narrow consideration, the marginal distribution of

choices in context I is invariant to changes in xII and vice versa. Under broad consideration

this is not the case, as can be seen through a simple example where cardpDjq “ 2 for both

j “ I and j “ II, and a positive share of agents consider only the two bundles tI1,1, I2,2u.

Hence, one can test for violations of a narrow consideration model by checking whether the

marginal distribution of choices in context I (respectively, II) responds to changes in xII

(respectively, xI). A second testable implication of the model is obtained as follows. Re-

call that our identification argument focuses on the cheapest bundle, I1,1, and is built by

looking at how its share responds to changes in xI and xII. An identical argument can be

constructed by focusing on the most expensive bundle, IMI,MII . Hence, the density functions

fpνq and gpωq can be recovered through two different channels. If they do not coincide, this

implies that at least one modeling assumption is violated.

We conclude by comparing the amount of variation in x “ pxI,xIIq that we require

for our point identification results, with that required in the closely related prior work of

Barseghyan et al. (2021b) to obtain semi-nonparametric point identification of a model with

a single preference type. Barseghyan et al.’s results are derived for an environment where

agents are observed making choices only in a single context and with a single source of

independent data variation, say context I with variation in xI. The covariate xI is assumed

to vary independently across agents; however, for a given agent there is no requirement of

independent variation in xI across alternatives in DI (similarly to this paper). Due to the

less rich choice environment observed, to recover the conditional distribution of preferences,

Barseghyan et al. (2021b) impose stronger restrictions than we do here on the consideration

set formation mechanism.25

4 Model & Data on Choices in Automobile Insurance

4.1 Empirical model

As introduced in Section 2.1, we model agents’ choices in two contexts of insurance coverage,

where each coverage provides full insurance against covered losses in excess of a deductible

chosen by the agent. In our data, the decision maker is a household; hence, we refer to agents

as households. As a reminder, µj
i denotes the probability of household i experiencing a claim

25For example, Barseghyan et al. (2021b) require that whenever ℓ1I is considered, ℓ2I is also considered.
They do so because there is not a one-to-one mapping between BPrpI˚ “ I1|xq{BxI and the (up-to-scale)
density function evaluated at a single point. Rather, BPrpI˚ “ I1|xq{BxI maps into a linear combination of
the density function evaluated at cutoffs V1

kpx
Iq, k ą 1. In contrast, here by properly utilizing variation in

xII we are able to create such a mapping even though there can be multiple preference types.
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in context j; for each coverage j P tI, IIu, household i faces a menu of premium-deductible

pairs, Mj
i ” tpdℓj,xℓj

i q : ℓ P Dju, where xℓj
i is the household-specific premium associated

with deductible dℓj and Dj is the set of deductible options offered in context j. As discussed

in Section 2.1, for each context j P tI, IIu the ratio of the price of deductible dℓj to the price

of deductible dkj is constant across households for all dℓj, dkj P Dj.

We make assumptions, that are widespread in the literature on property insurance, re-

lated to filing claims and their probabilities:

Assumption 4.1 (Restrictions Related to Claim Probabilities): line

(I) Households disregard the possibility of experiencing more than one claim during the

policy period.

(II) Any claim exceeds the highest available deductible; payment of the deductible is the only

cost associated with a claim; the household’s deductible choice does not influence its

claim probability.

We assume that the two types of preferences described in Section 2.2 result from either

Expected Utility Theory (EU) or Yaari’s (1987) Dual Theory (DT). Within EU, a single-

context lottery is evaluated through

UipLpdℓj,xℓj
i , µ

j
i qq ” p1´ µj

i quipwi ´ xℓj
i q ` µj

iuipwi ´ xℓj
i ´ dℓjq, (4.1)

where wi is the household’s wealth and uip¨q is its Bernoulli utility function, which under

Assumption 2.2 is the same for each context. In the EU model, utility is linear in the

probabilities and aversion to risk is driven by the shape of the utility function uip¨q.

Yaari’s (1987) DT model aims at decoupling the decision maker’s attitude towards risk

from her attitude towards wealth. Within DT, a single-context lottery is evaluated through

UipLpdℓj,xℓj
i , µ

j
i qq ” p1´ Ωipµ

j
i qqpwi ´ xℓj

i q ` Ωipµ
j
i qpwi ´ xℓj

i ´ dℓjq, (4.2)

where Ωip¨q is the household’s probability distortion function, which under Assumption 2.2

is the same for each context. In the DT model, utility is linear in the outcomes and aversion

to risk is driven by the shape of the probability distortion function Ωip¨q.
26 We remark that

in our setting (as well as in many others where subjective beliefs data are not collected and

the analysis relies on an often implicit rational expectations assumption), the DT model

is indistinguishable from one in which agents’ subjective loss probabilities systematically

deviate through the Ωip¨q function from the objective ones.

26Probability distortions are featured also in, e.g., prospect theory (Kahneman and Tversky 1979; Tversky
and Kahneman 1992), rank-dependent expected utility theory (Quiggin 1982), Gul (1991) disappointment
aversion theory, and Kőszegi and Rabin (2006, 2007) reference-dependent utility theory.
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To strike a balance between model generality and its empirical tractability, we impose

shape restrictions on uip¨q and Ωip¨q, respectively. We assume uip¨q exhibits constant absolute

risk aversion (CARA):

Assumption 4.2 (CARA): uipyq “
1´expp´νiyq

νi
for νi ‰ 0 and uipyq “ y for νi “ 0.

Assuming CARA has two key virtues. First, uip¨q is fully characterized by a single pa-

rameter: the Arrow-Pratt coefficient of absolute risk aversion, νi ” ´u2
i pwiq{u

1
ipwiq. Second,

νi is a constant function of wi, and hence we need not observe wealth to estimate uip¨q.

To keep the EU model and the DT model on “equal footing,” we need Ωip¨q to be as

parsimonious as uip¨q. This suggests a single-parameter specification. The literature contains

many examples, and we run our analysis with the following one due to Prelec (1998):

Assumption 4.3 (Prelec’s Ωp¨q function): Ωipµq “ expp´p´ lnµqωiq, ωi ą 0.

We also carry out our analysis using other utility functions for the EU type (one proposed

by Cohen and Einav (2007) and one by Barseghyan et al. (2013)) and other probability

distortion functions for the DT type (one put forward by Tversky and Kahneman (1992)

and one by Barseghyan et al. (2016)). The results confirm the main takeaways reported here,

and are available from the authors upon request.27

The EU and DT models are true alternative theories of decision making under risk.28

Neither model is a special case of the other. DT preferences depart from EU preferences

in two key ways. First, risk averse behavior is driven by distortions of probabilities for

households with DT preferences, but by nonlinear evaluation of wealth for households with

EU preferences. Second, narrow bracketing has behavioral implications for households with

DT preferences, but not for households with EU preferences. In our framework, where the

lotteries are independent across the brackets,29 the choices of a household with EU preferences

and CARA utility are independent of the scope of bracketing (e.g., Rabin and Weizsacker

2009). The well-known reason is the absence of wealth effects with CARA utility. In contrast,

the choices of a household with DT preferences are not independent of the scope of bracketing,

because of the rank-dependent nature of how probability distortions are applied.

Within context j, the resulting utility function is

UipLpdℓj,xℓj
i , µ

j
i qq “

#

p1´ µj
i quipwi ´ xℓj

i q ` µj
iuipwi ´ xℓj

i ´ dℓjq if ti “ 1 (EU),

p1´ Ωipµ
j
i qqpwi ´ xℓj

i q ` Ωipµ
j
i qpwi ´ xℓj

i ´ dℓjq if ti “ 0 (DT).

(4.3)

27Vuong tests comparing the various models confirm the good fit of our preferred specification.
28Except when both degenerate into net present value calculations with νi “ 0 and ωi “ 1.
29Independence results from the assumption that claims follow a Poisson distribution, which is imposed

in estimating the probability of a claim (see Barseghyan et al. 2013, 2018b).
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While we obtain conditions for nonparametric point identification of F p¨q and Gp¨q, for

tractability we estimate a fully parametric model via Maximum Likelihood.30

Assumption 4.4 (Heterogeneity Restrictions): a

(I) Conditional on ti “ 1, νi follows a Beta distribution on r0, 0.025s with parameter vector

pγν1, γν2q and is independent of rpµj
i ,x

j
i q, j “ I, IIs.

(II) Conditional on ti “ 0, ωi follows a Beta distribution on r0, 1s with parameter vector

pγω1, γω2q and is independent of rpµj
i ,x

j
i q, j “ I, IIs.

Assumption 4.4 specifies that the distributions of ν and ω are Beta distributions. The

main attraction of the Beta distribution is its flexibility (e.g., Ghosal 2001). Its bounded

support is a plus given our setting. A lower bound of zero rules out risk-loving preferences

and seems appropriate for insurance markets that exist primarily because of risk aversion.

Imposing an upper bound enables us to rule out absurd levels of risk aversion. The choice of

0.025 for CARA is conservative both as a theoretical matter and in light of prior empirical

estimates in similar settings (e.g., Cohen and Einav 2007; Sydnor 2010; Barseghyan et al.

2011, 2013, 2016). Similarly, for the probability distortion function, the upper bound of 1

insures over-weighting of probabilities; the lower bound of 0 insures that it is a well-behaved

function. None of these constraints is binding in our analysis.

We close the empirical model by restricting how Ci Ď D “ DI ˆDII is drawn:

Assumption 4.5 ((Broad) Alternative-Specific Consideration): Household i draws a

consideration set Ci Ď D s.t.

PrpCi “ Gq “
ź

IPG
ϕI

ź

ĨRG

p1´ ϕĨq, @G Ď D,

where ϕI ” PrpI P Ciq “ PrpI P Ci|tiq ě 0, I P D, and ϕI1,1 “ 1.

Assumption 4.5 strengthens Assumption 2.5 by requiring consideration to be independent

of type (in addition to being independent of households’ preferences given type). This is not

needed to establish identification, but we think it prudent to impose it in our application

because, as further discussed below, |D| “ 30 and allowing for type-dependent considera-

tion would add 60 rather than 30 consideration parameters to the model. Assumption 4.5

also adapts the Alternative-specific Random Consideration (ARC) model first proposed by

Manski (1977) and later axiomatized by Manzini and Mariotti (2014), to hold over bundles

of insurance deductibles across contexts. Each bundle I P D appears in the consideration

set with probability ϕI independently of other bundles. To avoid empty consideration sets,

30Inspection of Eqs. (A.2)-(A.3)-(A.4) in the Appendix shows that under Assumption 4.4, fp¨q and gp¨q
are identified, provided the intervals rν˚, ν˚˚s and rω˚, ω˚˚s in Assumption 3.4 are not singletons.
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following Manski (1977), we assume that one bundle is always considered, and further im-

pose that the always-considered bundle is the cheapest one.31 Once the consideration set is

drawn, the household chooses the best alternative according to its preferences as in Eq. (2.3).

4.2 Data Description

We obtained the data from a large U.S. property and casualty insurance company. The

company offers several lines of insurance, including auto. As explained in Section 2.1, we

focus on deductible choices in auto collision and auto comprehensive. Our analysis uses a

sample of 7,736 households who purchased their auto and home policies for the first time

between 2003 and 2007 and within six months of each other (this is the same sample used

by Barseghyan et al. (2021b)).32 We observe households’ deductible choices in auto collision

and auto comprehensive, and the premiums they paid for these coverages. We also observe

the household-coverage specific menus of deductible-premium combinations—i.e., the pricing

menus—that were available to the households when they made their deductible choices.

We refer to Section 2.1 for a discussion of how households’ pricing menus are determined

by the company in each context. As explained there, in each context the premium xℓj
i

associated to deductible dℓ, ℓ P Dj, is a household-invariant affine function of a household-

specific base price xj
i , and the company determines this base price applying a coverage-

specific rating function to household i’s coverage-relevant characteristics. Naturally, the

base prices xI
i and xII

i may exhibit substantial correlation due to common factors entering

the rating function (this correlation equals 0.74 in our data), highlighting the importance of

our weak requirement on variation in x stated in Assumption 3.4 – which in particular can

hold when xI and xII are strongly correlated (see Figure 3.1 and its discussion).

Table 4.1 reports the deductible choices of the households in our sample. In each context,

the modal choice is $500. Interestingly, virtually no household purchases a comprehensive de-

ductible larger than their collision deductible. As we discuss in more detail below, this choice

pattern cannot be rationalized by standard discrete choice models under the assumption of

full consideration, but can easily be explained once one allows for limited consideration.

The top panel of Table 4.2 shows that base premiums vary dramatically in our sample.

The ninety-ninth percentile of the $500 deductible is more than ten times the corresponding

first percentile in each line of coverage. While not reported in the table, here we summarize

31Alternatively, we could assume that if the realized consideration set is empty, agents choose one of the
alternatives in D uniformly at random. Our estimation results are robust to this modeling assumption.

32As explained in Barseghyan et al. (2021b), the dataset is an updated version of the one used in Barseghyan
et al. (2013). It contains information for an additional year of data and puts stricter restrictions on the timing
of purchases across different lines. These restrictions are meant to minimize potential biases stemming from
non-active choices, such as policy renewals, and temporal changes in socioeconomic conditions.
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Table 4.1: Collision and Comprehensive Deductible Choices, in %

Comprehensive
Collision $50 $100 $200 $250 $500 $1,000

$100 0.7 0.2 0 0 0 0
$200 1.8 1.1 10 0 0.1 0
$250 0.9 1.3 4.6 5.4 0 0
$500 1.0 1.3 17.8 6.5 41 0

$1,000 0 0.1 0.4 0.2 1.9 3.7

Table 4.2: Descriptive statistics for premiums of $500 deductible and claim probabilities

Mean Std. Qunatiles
Dev.

0.01 0.05 0.25 0.50 0.75 0.95 0.99

Premiums
Collision 187 104 53 74 117 162 227 383 565

Comprehensive 117 86 29 41 69 99 141 242 427

Claim probs
Collision 0.081 0.026 0.036 0.045 0.062 0.077 0.096 0.128 0.156

Comprehensive 0.023 0.012 0.005 0.008 0.014 0.021 0.030 0.045 0.062

the pricing menus. The cost of decreasing the deductible from $500 to $250 is on average

$56 in collision and $31 in comprehensive. The saving from increasing the deductible from

$500 to $1,000 is on average $42 in collision and $23 in comprehensive.

The claim probabilities µj
i stem from Barseghyan et al. (2018b), who estimated them

using coverage-by-coverage Poisson-Gamma Bayesian credibility models applied to a large

auxiliary panel of more than one million observations. We treat estimated claim probabilities

as if they were observed data. Predicted claim probabilities (summarized in the bottom panel

of Table 4.2) exhibit substantial variation: the ninety-ninth percentile claim probability in

collision (comprehensive) is 4.3 (12) times higher than the corresponding first percentile.

Finally, the correlation between claim probabilities and premiums for the $500 deductible is

0.38 for collision and 0.15 for comprehensive. Hence, there is independent variation in both

(although our identification results only require independent variation in premiums).
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4.3 Evidence in support of unobserved heterogeneity in Ci

As discussed in, e.g., Barseghyan et al. (2016, 2021a,b), standard models of risk preferences

fail to rationalize some salient data patterns. First, in our data the pricing rule in collision

coverage is such that (virtually) no household, regardless of their preference type and ran-

dom coefficient, should choose the $200 deductible under full consideration. The reason is

that for agents with lower risk aversion (probability distortions) it is dominated by the $250

deductible, and for agents with higher risk aversion (probability distortions) it is dominated

by the $100 deductible.33 A limited consideration model, even in the case where the consid-

eration set forms narrowly (i.e., with CI
i drawn independently from CII

i and Ci “ CI
i ˆCII

i )

has no problems explaining such a pattern, because it allows for the $200 deductible to be

considered without either $100 or $250. Under Assumption 2.5 (consideration sets drawn at

the bundle level), that is not necessary, because utility comparisons are at the bundle level.

Second, the joint probability mass function of choices across contexts (see Table 4.1)

exhibits a striking pattern where virtually none of the 7,736 households purchase a deductible

in comprehensive that exceeds the deductible they purchase in collision. Unless prices (and

claim probabilities) exhibit strong negative correlation, a feature that does not occur in our

data, standard models (e.g., a Mixed Logit with full consideration) under the assumption of

context invariant preferences will struggle to replicate this pattern.

A final note pertains to modeling limited consideration as operating at the bundle level,

rather than independently across contexts. A model where limited consideration operates

independently across contexts may be successful in matching the marginal distribution of

choices within each context, but not the joint (see the working paper Barseghyan et al. 2019,

Section 7.3.3). The limited consideration model studied in this paper, by operating on the

bundles, does have the capacity to match the joint distribution of choices. By doing so,

it also resolves the preference stability debate discussed in, e.g., Barseghyan et al. (2011);

Einav et al. (2012); Barseghyan et al. (2016). This debate is centered around the fact that

while households’ risk aversion relative to their peers is correlated across lines of coverage,

implying that households preferences have a stable component, analyses based on revealed

preference reject the standard models: under full consideration, for the vast majority of

households one cannot find a level of (household-specific) risk aversion that justifies their

choices simultaneously across all contexts. Limited consideration allows the model to match

the observed joint distribution of choices, and hence their rank correlations. Under limited

consideration, testing for preference stability amounts to asking whether one can find a

consideration set and a random coefficient (preference parameter) which jointly rationalize

33An analogous fact can be established even if an i.i.d., type-specific, noise term were added to the utility
function in Eq. (4.3) at the coverage level or, more broadly, for any model that abides a notion of generalized
dominance formally defined in Barseghyan et al. (2021b).
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Table 5.1: Estimated Probability of Considering each Deductibles Pair

Comprehensive
Collision $50 $100 $200 $250 $500 $1,000

$100 0.05 0.01 0.00 0.00 0.00 0.00
[0.04 0.06] [0.01 0.01] [0.00 0.00]

$200 0.12 0.04 0.29 0.00 0.00 0.01
[0.1 0.13] [0.04 0.05] [0.27 0.3] [0.00 0.00] [0.00 0.00] [0.00 0.01]

$250 0.04 0.03 0.08 0.09 0.00 0.00
[0.03 0.05] [0.02 0.03] [0.07 0.08] [0.09 0.10] [0.00 0.00]

$500 0.13 0.06 0.46 0.18 0.83 0.00
[0.11 0.15] [0.05 0.07] [0.44 0.47] [0.18 0.20] [0.81 0.84]

$1000 0.04 0.03 0.18 0.07 0.47 1.00
[0.02 0.07] [0.01 0.05] [0.14 0.22] [0.05 0.10] [0.43 0.52]

Notes: 95% confidence intervals obtained via subsampling in square brackets.

an agent’s choice, which is inherently weaker then asking whether one can find preferences

that rationalize the agent’s choice under full consideration (see, e.g., Barseghyan et al. 2021a).

5 Estimation Results

We begin our discussion of the estimates that we obtain through MLE by focusing on the

type of limited consideration that we uncover, and its role in the results one obtains when

estimating preferences. Table 5.1 reports the estimated consideration probabilities for each

bundle (these are the ϕI coefficients in Assumption 4.5), along with 95% confidence intervals

obtained by subsampling.34 The estimated model is very far from a full consideration one.

Bundles where the collision deductible is strictly lower than the comprehensive one are almost

never considered (the probability that the bundle p$200, $1000) is considered is 1/100, and all

others are zero).35 The cheapest bundles, excluding the one where the collision deductible is

lower than the comprehensive one, are considered most often (the consideration probabilities

for p$500, $500q and p$1000, $500q are, respectively, 0.83 and 0.47).36

The presence of limited consideration alters inference about preference types and about

the distribution of the random coefficient within each type in essentially every possible way.

To illustrate these effects, we estimate preferences in a pure random coefficients model under

three scenarios for the consideration set formation mechanism: limited consideration as in

34We use subsampling because the parameter vector is on the boundary of the parameter space.
35Given the choice patterns in the data discussed in Section 4.3, this is not surprising, as MLE sets the

consideration probability of never-chosen bundles to zero.
36Recall that we assume that p$1000, $1000q is considered with probability one.
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Figure 5.1: The function Ωpµq when ω equals its estimated mean, 25th, 50th, or 75th quantile, in
a model with limited (left), triangular (middle), or full (right) consideration.

Assumption 4.5 (our proposed model); triangular consideration, where for I “ rℓI, qIIs,

ϕI “ 0 when ℓI ă qII and ϕI “ 1 when ℓI ě qII; and full consideration, where ϕI “ 1 for

all I P D. In all cases, we estimate a model where households choose their optimal bundle

according to Eq. (2.3) with the utility function in Eq. (4.3).37

Figure 5.1 depicts the resulting Prelec distortion function in Assumption 4.3 when ωi

equals the mean, median, 25th and 75th quantile of the distribution Gpωq estimated in the

limited consideration model (left panel), in the triangular consideration model (center panel),

and in the full consideration model (right panel), each with a mixture of types. As the figure

illustrates, there is substantial variation in the function across these different values of ω,

and all functions are substantially far from the 45o line, indicating substantial over-weighting

of small probabilities. Of notice is the fact that the over-weighting is larger in the limited

consideration model than in the triangular or in the full consideration model.

Figure 5.2 depicts the cumulative distribution function F p¨q in our limited consideration

model (left panel), in the triangular consideration model (middle panel), and in the full

consideration model (right panel). Each panel depicts F p¨q for a model that assumes that

all households are of the EU type (blue line), for our model with a mixture of EU and

DT types (red line), and, for the mixture model, also the implied cumulative distribution

37Under full consideration, the likelihood of observing non-zero shares of never-the-first-best alternatives
is zero. Due to this, in estimation we set the consideration probability of each bundle to 0.99 instead of 1.00.
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Figure 5.2: Estimated F pνq in a model that assumes limited (left), triangular (middle), or full
consideration (right).

function for the entire population, where the p1´αq share of DT households has ν “ 0. The

important feature to notice is that in all panels of Figure 5.2, the risk aversion displayed is

much higher for the EU households in the mixture model than in the single-type model, and

the discrepancy grows from the limited to the triangular to the full consideration model.

In Table 5.2 we analyze the same interplay between consideration and preferences from

a different angle. We report the estimated excess willingness to pay (WTP) of households in

our sample to avoid a lottery where with probability 10% the household loses $500 (hence,

the total WTP equals $50 plus the values reported in the table).

A first feature to notice is that the estimated share of EU types is much higher when the

model allows for limited consideration than in models that assume triangular or full consid-

eration (almost a half versus 30% and 20% respectively). The implied degree of aversion to

risk changes for households of both preference types, but in opposite directions. The top left

panel of Table 5.2 shows that if one disregards limited consideration, one infers that the risk

aversion of EU types is much higher (more than 40% according to our metric) than under

limited consideration, but the aversion to risk of DT types is about one third lower under full

consideration (and similarly for triangular consideration). The cumulative effect of limited
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Table 5.2: Excess willingness to pay to avoid lottery where with probability 10% agent loses $500
Mean Median 1st Quar. 3rd Quar. Mean Median 1st Quar. 3rd Quar.

Mixture: All Population EU share
Limited Consideration 82.10 79.95 61.82 100.49 α “ 0.46
Lower Triangular 73.27 72.38 42.33 101.64 α “ 0.30
Full Consideration 73.49 72.42 54.31 191.72 α “ 0.20

EU type DT type
Limited Consideration 110.74 104.47 169.29 146.60 57.95 56.73 39.70 75.11
Lower Triangular 155.56 148.83 150.94 255.07 38.47 32.59 15.54 56.49
Full Consideration 194.83 205.93 127.16 267.12 42.88 38.72 21.52 60.59

Single Type: All Population EU All Population DT
Limited Consideration 181.74 169.72 139.58 113.45 74.01 75.03 51.79 97.15
Lower Triangular 176.19 137.61 118.64 121.29 43.07 37.26 17.60 63.90
Full Consideration 180.87 149.17 115.01 127.35 47.16 42.99 23.38 67.57

Notes. Top panel: excess WTP in our model for the overall population and within each preference type.

Bottom panel: excess WTP for a single-type model, where all agents are either EU or DT.

consideration in the overall population results in a near 12 percent higher willingness to pay

to avoid the simple lottery relative to a model that imposes full consideration.38

We conclude by observing that both the full and the triangular consideration model

cannot rationalize the choices of a substantial fraction of households in our data and in

general deliver a poor fit, as shown in Figure 5.3. Even adding an Extreme Value Type I

error term to the utility function in Eq. (4.3) and estimating a Mixed Logit model does not

remedy this problem. Indeed, the Mixed Logits do not fit our data well, while our limited

consideration model essentially replicates the observed shares.

For completeness, in the figure we also display the fit of a limited consideration model

where consideration is narrow and choice follows from Eq. (2.4). While this model fits the

data well relative to the Mixed Logit models with full or triangular consideration (compare

the third panel to the top two panels in Figure 5.3), it falls short of our benchmark model.

This is not surprising: by construction, this model is restrictive in how bundles enter the

consideration sets. As a result, it cannot, e.g., set the shares of bundles with dI ă dII to

zero, or match certain features of the joint distribution of chosen alternatives in the two

contexts, such as rank correlations of choices across the two different coverages.39

38These results are sensitive to the choice of the simple lottery to benchmark willingness to pay. Changing
the stakes will induce a non-linear response by the EU types but a linear one by the DT types. Changing
the loss probability will induce a non-linear response by the DT types but a linear one by the EU types.

39The narrow consideration model implies a rank correlation of .42 while in the data and under the broad
consideration model this coefficient equals .61 and .62, respectively. In comparison, in the Mixed Logit model
with full consideration this correlation is .45, while with lower triangular consideration it is .65.
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consideration model with narrow and with broad consideration (third and forth panel).
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6 Implications for Welfare Analysis

In our setting, there are three channels for potential welfare losses. First, limited considera-

tion may prevent agents from choosing their first best. Second, if the probability distortions

are capturing a mismatch between subjective and objective beliefs about loss probabilities,40

agents may not choose their objective first best, even if they consider it. Third, non-expected

utility maximizing households (the DT type in our model) may be open to nudging, whereby

modifications of market features that leave the behavior (and welfare) of EU households

mostly unchanged may trigger large changes in behavior (and welfare) of DT households.

We therefore conduct two welfare exercises aimed at assessing the impact of each of these

channels on the welfare of households purchasing auto deductible insurance. In the first

exercise, we estimate the impact on welfare of all households having full consideration. To

do so, we take the preferences estimated using our limited consideration model, predict each

household’s optimal choice from the entire menu D, and compute each household’s utility

gain (in certainty equivalent terms). To carry out this exercise, we need to take a stand on

how does the household value alternatives. For the EU type, we use their choice utility (also

called decision utility), i.e., the CARA utility function (with ν distributed according to our

estimate of the distribution F ). For the DT types, we report results both for their choice

utility, i.e., using the Prelec distortion function in Eq. (4.2) (with ω distributed according

to our estimate of the distribution G); and for the case where the probability distortion

function is completely removed, so that Ωpµq “ µ and the household values alternatives

based on their net present value (NPV). This also allows one to think about the effect of

eliminating the mismatch between subjective and objective beliefs about loss probabilities,

if this is what the probability distortion function captures.

In the second exercise, we propose a restructuring of the auto insurance market where

collision and comprehensive coverage are offered as a single auto insurance product with

Dauto
“ t100, 200, 250, 500, 1000u

µauto
“ µI

` µII

xℓ auto
“ xIℓ

` xIIℓ

where µauto is the probability of experiencing a claim in either collision or comprehensive (we

disregard the probability that a claim occurs in both contexts within the policy period as

this probability is extremely low in our data) and xℓ auto is the premium charged for an auto

coverage that offers the same deductible in collision and comprehensive when firms operate

under perfect competition or if they use a constant markup rule.

40See, e.g., the model with imperfect information in Gualdani and Sinha (2023, Example 2).
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Again, we take the preferences estimated using our limited consideration model, predict

each household’s optimal choice, and compute the household’s utility gain/loss (in certainty

equivalent terms). However, to carry out the exercise not only do we need to take a stand on

how does the household value alternatives, but, importantly, also on how does the household

draw its consideration set after the intervention. For the former, we proceed as in our first

welfare exercise, and report results where the EU types value alternatives based on their

choice utility, and DT types based on both their choice utility and on the alternatives’ NPV.

For the latter, we report our results under several scenarios, detailed below. This exercise

may help inform the debate on the need to “simplify insurance choice,” and clarify the role

of limited consideration in mediating nudging effects.

Before presenting the results of these two exercises, we explain why EU and DT house-

holds may respond differently to an intervention that combines collision and comprehensive

into a single coverage. A defining feature of the DT model is that it is non-linear in proba-

bilities. Hence, offering insurance as a bundle or as a single product may have a first order

impact on DT households’ choices and welfare. To see why, suppose the probability distor-

tion function is strictly sub-additive (as is the case in our estimated model). Then, under

the maintained assumption of narrow bracketing (Assumption 2.3), the agent’s willingness

to pay to avoid a $500 loss which occurs with a 10 percent chance, is strictly lower than twice

their willingness to pay to avoid the same loss with 5 percent chance. Put differently, a single

insurance product against two (mutually exclusive) identical losses, instead of a bundle of

two products, reduces the degree of over-weighting of loss probabilities. At the same time,

combining insurance products into one line of insurance limits choice, and may eliminate the

first best alternative. Ceteris paribus, for a fully rational agent making choices according

to the EU model, this can only be welfare reducing. Interestingly, there are examples of

insurance products that are indeed sold both as a single coverage and as a bundle, such as

single limit liability coverage versus bodily injury and property damage in auto insurance. In

summary, our first welfare exercise addresses the question: what is the (average) welfare cost

associated with limited consideration? Our second welfare exercise addresses the question:

what are the welfare implications of combining collision and comprehensive into a single

product, and how does the presence of limited consideration alter these implications?

The top panel of Table 6.1 reports our estimates of the welfare losses due to limited

consideration. Using the choice utility for each preference type, the welfare losses are about

$30, or 12.7% of the average price of the cheapest bundle. The effect is smaller ($18 or

7.6%) if for DT types we use the alternatives’ NPV as their value (i.e., we shut down the

probability distortion). This is expected, since all utilities and utility differences decrease.

The bottom panel of Table 6.1 reports estimated welfare changes associated with combin-

ing collision and comprehensive insurance into a single product. We carry out the exercise
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Table 6.1: Welfare implications of limited consideration and of combining collision and com-
prehensive into a single coverage (95% confidence intervals in square brackets)

Choice CARA As a % of Average price
Utility NPV for (1000,1000) ($238)

All at Full Consideration 30.1 18.2 12.7 7.6
[28.3 31.9] [16.0 20.3] [11.9 13.4] [6.7 8.5]

Bundled Auto Insurance:

Worst Case Consideration -3.2 -18.7 -1.3 -7.9
[-8.0 1.5] [-22.2 -15.2] [ -3.4 0.6] [-9.3 -6.4]

Middle Case Consideration 48.1 26.5 20.2 11.1
[45.9 50.3] [25.4 27.7] [19.3 21.1] [10.7 11.7]

All at Full Consideration 52.3 29.6 22 12.5
[50.0 54.7] [28.2 31.1] [21 23] [11.8 13.1]

for three different ways in which consideration sets may be drawn after the market interven-

tion. In the worst case scenario, in the sense that consideration is lowest, the probability

that deductible d is considered equals the estimated consideration probability for bundle

pd, dq, d P Dauto. In this case, the impact of the intervention is negative, although the magni-

tude of the effect depends substantially on how the welfare of DT types is evaluated. This is

because under choice utility, following the intervention, DT types overweight the overall loss

probability to a lesser degree than they did with separate coverages, and this effect attenu-

ates substantially the welfare reduction from not being able to choose from a larger menu.

On the other hand, when welfare of DT types is evaluated according to NPV, although the

overweighting of loss probabilities affects choice, it does not enter the welfare calculations.

Under full consideration, the best case scenario, the welfare gains for both evaluation

approaches are positive and large. Relative to the worst case scenario, this is, of course,

expected. What is more interesting is that the welfare gains are higher than those obtained

in the counterfactual of full consideration that maintains the status-quo separation between

collision and comprehensive insurance. This is because under full consideration, the EU

types are worse off when the collision and comprehensive are combined into a single product

(for them, the choice set is being reduced without any associated benefit); however, the DT

types, despite facing a smaller choice set, benefit from such a reduction because in making

choices they overweight losses by a smaller degree. The latter effect dominates, more so

when welfare is computed based on choice utility rather than on NPV.

For completeness we also report welfare changes for a case that we label “middle con-

sideration,” in which each deductible in the combined single coverage is considered with a

probability equal to the sum of the probability that it is considered either as collision or

comprehensive deductible (or with probability one if the sum exceeds one). The results are
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reported in the middle row of the bottom panel of Table 6.1. Even with this intermediate

consideration level, the welfare gains are substantial.

Based on these welfare exercises, we argue that the interplay between features of the

decision making process at the utility evaluation level and of the consideration mechanism

cannot be ignored when analyzing possible market interventions. In the second welfare

exercise carried out above, reducing the feasible set may lead to unambiguous welfare gains,

provided consideration increases. However, if consideration does not increase, the same

intervention can lead to welfare losses that exceed the gains stemming from nudging the

non-expected utility maximizers in the population.

7 Discussion

This paper provides semi-nonparametric point identification results for a model of discrete

choice under risk that allows for unobserved heterogeneity in preference types, unobserved

heterogeneity within each type, and unobserved heterogeneity in consideration sets, while

confronting the fact that the covariates x characterizing products do not exhibit indepen-

dent variation across alternatives within a context, but only across contexts. We apply our

method to study demand for deductible insurance in two lines of property insurance, and to

analyze the welfare implications of an hypothetical market intervention where the two lines

of insurance are combined into a single one. Our findings provide evidence of the importance

of allowing for the rich amount of unobserved heterogeneity that our model features.

The choice environment that we study in this paper is similar to that studied in Barseghyan

et al. (2021b). They offer a comprehensive analysis of the implications of the Spence-Mirlees

single crossing property for semi-nonparametric identification of a model of discrete choice

under risk that features a single preference type and unobserved heterogeneity in consider-

ation sets. They also illustrate the tradeoff between the common exclusion restrictions and

the restrictions on consideration set formation required for semi-nonparametric point iden-

tification. Their work is the closest to ours. However, in our model consideration sets are

formed at the bundle level (i.e., across contexts), and hence the single crossing property that

both Barseghyan et al. (2021b) and we assume to hold within a context, may not necessarily

hold across tuples of alternatives. This is because bundles may not be monotonically ranked

(with respect to preference parameters) against each other. Hence, the results in Barseghyan

et al. (2021b) do not apply and in this paper we develop a new approach to obtain point

identification of the distribution of preferences, of the shares of preferences types, and of
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features of the distribution of consideration sets given type.41 In Barseghyan and Molinari

(2023) we show that in a richer data environment where the researcher observes a character-

istic for each alternative that displays independent variation both across agents and across

alternatives, and that affects utility but not consideration, semi-nonparametric point iden-

tification holds for a flexible pure random coefficients model with unrestricted dependence

between the random coefficients and the consideration set formation mechanism.

The challenges posed to identification of discrete choice models by unobserved hetero-

geneity in consideration sets have long been recognized (e.g., Manski 1977).42 It is not

uncommon for the problem to be ignored, as a textbook assumption is that agents pick

an alternative to maximize their utility over the entire feasible set. When heterogeneity in

consideration sets is allowed for, point identification of the model often relies on the availabil-

ity of auxiliary information about the composition or distribution of agents’ consideration

sets, or on two-way exclusion restrictions, whereby certain variables impact consideration

but not preferences and vice versa. A third approach relies primarily on restrictions to the

consideration set formation process.43

When such assumptions may not be credible and one does not have access to auxiliary

data or valid exclusion restrictions, Barseghyan et al. (2021a) provide a method to obtain

informative sharp identification regions for the parameters of discrete choice models, even

when preferences and consideration sets may depend on each other, under the assumption

that agents’ consideration sets include at least two alternatives. Cattaneo et al. (2020, 2021)

provide revealed preference theory, testable implications, and partial identification results for

preference orderings and attention frequency, in very general models of limited consideration

but without heterogeneity in preferences, under the assumption that one observes agents

repeated choices (in a single context) while facing varying choice sets.

41As we allow for multiple preference types, our analysis extends that of Barseghyan et al. (2021b) even
in the simplified framework where consideration is independent across contexts.

42Many important papers in the theory literature—including papers on revealed preference analysis under
limited attention, limited consideration, rational inattention, and other forms of bounded rationality that
manifest in unobserved heterogeneity in consideration sets—also grapple with the identification problem
(e.g., Masatlioglu et al. 2012; Manzini and Mariotti 2014; Caplin and Dean 2015; Lleras et al. 2017; Cattaneo
et al. 2020). However, these papers generally assume rich datasets—e.g., observed choices from every possible
subset of the feasible set—that often are not available in applied work, especially outside of the laboratory.

43Examples for the first approach include De los Santos et al. (2012); Conlon and Mortimer (2013); Honka
et al. (2017); Honka and Chintagunta (2017); for the second, Goeree (2008); van Nierop et al. (2010); Gaynor
et al. (2016); Heiss et al. (2021). Recent examples for the third approach include Abaluck and Adams (2020);
Crawford et al. (2021); Lu (2022).
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A Appendix: Proof of Theorem 3.1 and Corollary 3.1

Proof of Theorem 3.1. Fix ν P rν˚, ν˚˚s and the corresponding X1pνq. By Assumption 3.4,

X1pνq is non-empty and there is an ϵ-ball around it of positive density. By Definition 3.1,

for any pxI,xIIq P X1pνq, V1,1
2,1 px

Iq “ V1,1
1,2 px

IIq “ ν. Along with Assumption 3.3, this implies

that there are vectors x1 “ pxI1,xII1q P BϵpX
1pνqq and x2 “ pxI2,xII2q P BϵpX

1pνqq such that

ν “ V1,1
2,1 px

I1q ă V1,1
1,2 px

II1q and V1,1
2,1 px

I2q ą V1,1
1,2 px

II2q. We claim that

lim
x1,x2Ñx

ˆ

B PrpI˚ “ I1,1|x
1q

BxI
´

B PrpI˚ “ I1,1|x
2q

BxI

˙

“ αfpνq ¨ h1px,O1q, (A.1)

where h1px,O1q is a function of x and of the consideration probabilities given by:

h1px,O1q “ O1ptI1,1, I2,1u;Hq
BV1,1

2,1 pxq

BxI
`O1ptI1,1, I2,2u; I2,1q

BV1,1
2,2 pxq

BxI

´

˜

O1ptI1,1, I2,2u; I1,2q
BV1,1

2,2 pxq

BxI
`O1ptI1,1, I2,1u; tI2,2, I1,2uq

BV1,1
2,1 pxq

BxI

¸

(A.2)

Under Assumption 3.5-(I), Eq. (A.2) simplifies to44

h1px,O1q “

´

O1ptI1,1, I2,1u;Hq ´O1ptI1,1, I2,1u; tI2,2, I1,2uq

¯BV1,1
2,1 pxq

BxI
‰ 0 (A.3)

Under Assumption 3.5-(II), Eq. (A.2) simplifies to

h1px,O1q “

´

O1ptI1,1, I2,2u; I2,1q ´O1ptI1,1, I2,2u; I1,2q

¯BV1,1
2,2 pxq

BxI
‰ 0 (A.4)

To derive the expression for h1px,O1q in Eq. (A.2), we return to Eq. (3.9), which states

B PrpI˚ “ I1,1|xq

BxI
“ α

ÿ

pk,rq‰p1,1q

O1ptI1,1, Ik,ru;BpI1,1,x;V1,1
k,r qqfpV

1,1
k,r q

BV1,1
k,r

BxI

` p1´ αq
ÿ

pk,rq‰p1,1q

O0ptI1,1, Ik,ru;BpI1,1,x;W1,1
k,r qqgpW

1,1
k,r q

BW1,1
k,r

BxI

Under Assumptions 3.3-(II) and 3.4, when x1 and x2 are sufficiently close to x, the relative

order of the cutoffs for type ti “ 0 preferences, W1,1
k,r , does not change. For type ti “ 1

44These derivations are based on repeated use of facts such as

O1ptI1,1, I2,2u;Hq “ O1ptI1,1, I2,2, I2,1u;Hq `O1ptI1,1, I2,2u; tI2,1uq “ O1ptI1,1, I2,2, I1,2u;Hq `O1ptI1,1, I2,2u; tI1,2uq
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preferences, it changes only for the cutoffs involving bundles tI2,1, I1,2, I2,2u. Hence,

B PrpI˚ “ I1,1|x
1q

BxI
“ αO1ptI1,1, I2,1u;HqfpV1,1

2,1 q
BV1,1

2,1 px
1q

BxI

` αO1ptI1,1, I2,2u; I2,1qfpV1,1
2,2 q

BV1,1
2,2 px

1q

BxI
`Rpx1

q (A.5)

B PrpI˚ “ I1,1|x
2q

BxI
“ αO1ptI1,1, I2,2u; I1,2qfpV1,1

2,2 q
BV1,1

2,2 px
2q

BxI

` αO1ptI1,1, I2,1u; tI1,2, I2,2uqfpV1,1
2,1 q

BV1,1
2,1 px

2q

BxI
`Rpx2

q (A.6)

where Rp¨q is a collection of terms that are continuous functions of their argument around

x. Consequently, in the limit where both x1,x2 tend to x, Rpx1q and Rpx2q are identical to

each other, and Eq. (A.2) follows by subtracting Eq. (A.6) from Eq. (A.5).

Next, observe that h1px,O1q equals a non-zero constant multiplied with
BV1,1

2,1 pxq

BxI (or
BV1,1

2,2 pxq

BxI ). The latter term is a known function of the data and is different from zero. Conse-

quently, the density function of the random coefficient for type ti “ 1 agents evaluated at ν,

fpνq, is identified up to a non-zero constant (α multiplied with a non-zero linear combination

of consideration probabilities that does not depend on ν). If rν˚, ν˚˚s “ r0, ν̄s, then using

that fpνq integrates to one over its support identifies α ¨ h1px,O1q, and consequently the

entire function fp¨q. The same argument applies to establish identification of gp¨q.

Proof of Corollary 3.1. Once αfpνq ¨ h1px,O1q and p1´ αqgpωq ¨ h0px,O0q are identified, so

are fpνq and gpωq provided there is large support. Under Assumption 3.5, h1px,O1q and

h0px,O0q can be decomposed into a product of two terms, one known and another entirely

dependent on consideration, see Eqs. (A.3)-(A.4). Moreover, these terms will be identical,

as long as O1p¨; ¨q “ O0p¨; ¨q for all relevant combinations of tI1,1, I1,2, I2,1, I2,2u in part

(i) (respectively, part (ii)) of the assumptions stated in Corollary 3.1. Hence, the ratio of

αfpνq ¨ h1px,O1q and p1´ αqgpωq ¨ h0px,O0q identifies α.
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