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Abstract

We provide sufficient conditions for semi-nonparametric point identification of a mix-
ture model of decision making under risk, when agents make choices in multiple lines
of insurance coverage (contexrts) by purchasing a bundle. As a first departure from the
related literature, the model allows for two preference types. In the first one, agents
behave according to standard expected utility theory with CARA Bernoulli utility func-
tion, with an agent-specific coefficient of absolute risk aversion whose distribution is
left completely unspecified. In the other, agents behave according to the dual theory of
choice under risk (Yaari 1987) combined with a one-parameter family distortion func-
tion, where the parameter is agent-specific and is drawn from a distribution that is left
completely unspecified. Within each preference type, the model allows for unobserved
heterogeneity in consideration sets, where the latter form at the bundle level — a second
departure from the related literature. Our point identification result rests on observing
sufficient variation in covariates across contexts, without requiring any independent
variation across alternatives within a single context. We estimate the model on data
on households’ deductible choices in two lines of property insurance, and use the re-
sults to assess the welfare implications of a hypothetical market intervention where the
two lines of insurance are combined into a single one. We study the role of limited

consideration in mediating the welfare effects of such intervention.
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1 Introduction

This paper is concerned with providing sufficient conditions for semi-nonparametric point
identification of risk preferences from observation of agents’ choices in property insurance
markets, and with assessing the welfare impact of policy interventions in these markets.
Property insurance includes a collection of lines of coverage (e.g., for automobiles: collision,
comprehensive, liability, etc.), and we refer to each of them as a context. Within each
context, a finite set of alternatives is offered for purchase. Researchers frequently observe
agents choosing (at the same time) one alternative in each context, hence choosing a bundle.
We assume that agents choose bundles based on preferences that are stable across contexts
(i.e., a single agent-specific parameterization of the model governs that agent’s choices in
each context).! Our model allows for unobserved heterogeneity in preference types, with
some agents behaving according to expected utility theory with CARA Bernoulli utility
function (EU types), and others behaving according to the dual theory of choice under risk
(Yaari 1987) combined with a one-parameter family distortion function (DT types). The
coefficient of risk aversion of the EU types, and the parameter of the distortion function
of the DT types, are random coefficients with unknown distribution functions that are left
completely unspecified. The model also allows for unobserved heterogeneity in the bundles
that agents consider before making a choice (their consideration set). In particular, whether
an alternative offered in one context is considered can depend in unrestricted ways on whether
another alternative offered in a distinct context is also considered.

Such rich unobserved heterogeneity makes identification analysis challenging. The multi-
ple preference types, random coefficients within type, and agent-specific consideration sets,
contribute three layers to a mixtures problem that we need to disentangle. Moreover, because
we allow the consideration sets to form at the bundle level, even within a single preference
type the choice problem does not inherit the standard single crossing property of Mirrlees
(1971) and Spence (1974), central to important studies of decision making under risk (e.g.,
Apesteguia et al. 2017; Chiappori et al. 2019), that Barseghyan et al. (2021b) show plays
a key role in allowing for semi-nonparametric point identification of single preference type
models. Our main methodological contribution amounts to showing how to resolve each of
these challenges. In doing so, we also confront the fact that due to the structure of insur-
ance markets and of data resulting from a single insurance company, while the covariates
x characterizing products in each context do exhibit independent variation across contexts,

they do not exhibit independent variation across alternatives within a context.?

IThis assumption is sometimes viewed as an aspect of rationality (e.g., Kahneman 2003), and is credible
in our empirical study of demand in very similar contexts (collision and comprehensive deductible insurance).
2Within a single insurance company, typically in a given context if an agent faces a larger price than
another agent for one alternative, the first agent faces a (proportionally) larger price for all other alternatives.



One may wonder whether some aspects of unobserved heterogeneity that are present in
our model could be dispensed with, thereby simplifying the identification problem. We ar-
gue that this is not the case, both in our empirical application and more broadly. A large
literature in experimental economics documents that while some people exhibit behavior con-
sistent with standard EU theory, others exhibit behavior that systematically deviates from
it (e.g., Starmer 2000). And it reports substantial heterogeneity in risk preferences within
type; see, e.g., Choi et al. (2007) and references therein. Moreover, people routinely make
or stick to sub-optimal choices (Handel 2013; Bhargava et al. 2017; Barseghyan et al. 2016),
or make choices across contexts that imply incompatible levels of risk aversion (Barseghyan
et al. 2011; Einav et al. 2012). The traditional additive error random utility model (Luce-
McFadden model), or a “trembling hand” alternative (reviewed in Wilcox 2008) that is
sometimes used to study insurance demand, often do not remedy the problem, as the model
implied choice probabilities can be incompatible with their empirical counterpart. These in-
compatibilities are not specific to a particular utility model, but to an entire class of models
that satisfy properties that are typically viewed as desirable.?> On the other hand, models of
decision making under risk with limited consideration can rationalize agents’ choices.

We illustrate the relevance of the rich unobserved heterogeneity that we allow for, by
estimating risk preferences from data on household’s choices in two contexts, auto collision
and auto comprehensive. While currently U.S. property insurance companies offer these
two lines of coverage as two separate products, we investigate the implications of offering
a combined auto insurance product at a price that equals the sum of the prices for the
two separate coverages. Such pricing arises if firms operate under perfect competition or
if they use a constant markup rule. This counterfactual exercise is of substantive interest
as combined lines of coverage already exist elsewhere (e.g., in Israel; see Cohen and Einav
(2007)) and even in the U.S. auto insurance industry. For example, property damage and
bodily injury coverage can be offered both as separate lines of coverage, as well as combined
in the form of single limit liability coverage. The exercise has the virtue of illustrating the
potentially different predictions of the EU model and of the DT model, as we explain in
Section 6, and the extent to which these predictions interact with whether consideration
increases or decreases after the intervention. Moreover, the exercise informs the debate on
the need to simplify insurance choice, and it clarifies how limited consideration interacts
with the behavioral responses associated with this type of market intervention.

The rest of the paper is organized as follows. Section 2 lays out the model, using our
application as motivating example. Section 3 presents our sufficient conditions for its semi-

nonparametric point identification. Section 4 describes our empirical model and the data.

3See Barseghyan et al. (2021b) for a formal discussion and Section 4.3 below for further details.



Section 5 reports the results of our estimation exercise. Section 6 reports the results of the

welfare exercise. Section 7 concludes by contextualizing our work in the broader literature.

2 Discrete Choice Under Risk in Multiple Contexts

Our starting point is the random utility model in McFadden (1974), applied to study choices
over risky alternatives with monetary outcomes. We further adapt the model to analyze the

behavior of agents who make choices under risk in multiple distinct contexts.

2.1 Lotteries as objects of choice in property insurance

We use our empirical application as motivating example for the discrete choice framework
that we analyze. We study deductible choices in two contexts: auto collision (context I) and
auto comprehensive (context IT). In each context j = I,II, we assume that there are two
states of the world: one that has probability ,uf , where an accident happens and agent 7 faces
a loss; and the other that has probability 1 — ug , where no accident happens. Auto collision
coverage can be used to insure against loss in context I: it pays for damage in excess of
the deductible to the insured vehicle caused by a collision with another vehicle or object,
without regard to fault. Auto comprehensive coverage can be used to insure against loss in
context II: it pays for damage in excess of the deductible to the insured vehicle from all
other causes (e.g., theft, fire, flood, windstorm, or vandalism), without regard to fault. In
each context, a finite set D’ of alternatives (insurance contracts) is offered.

Conditional on risk level, i.e., given ,ug, each alternative ¢ € D’ is fully characterized by
the pair (dgj,xfj ). The first element is the insurance deductible, which is the agent’s out
of pocket expense if a loss occurs. All deductibles are assumed to be less than the lowest
realization of the loss and d¥¥ > d% > ... > dM’J_ with M7 the total number of deductibles
in context j. In collision, M* = 5 and d' € {$1000, $500, $250, $200, $100}; in comprehensive,
M™ = 6 and d' € {$1000, $500, $250, $200, $100, $50}, for a total of 30 bundles of offered
coverages in D = DI x D,

The second element in (d%, ij ) is the price (insurance premium), and varies across agents.
It is important to understand the sources of such variation, because to obtain our point
identification result we assume that premiums are exogenous to preferences (Assumption 2.1
below) and exhibit substantial variation across households (Assumptions 3.3-3.4 below).

First, we note that an insurance company’s rating plan is subject to state regulation and

oversight. In particular, the regulations require that a company receive prior approval of



its rating plan by the state insurance commissioner, and they prohibit the company and its
agents from charging rates that depart from the plan.

Second, we describe the procedure applied by the company from which we obtained
our data to rate a policy in each line of coverage.* Under the plan, within each context j
the company determines a household’s base price xg according to a coverage-specific rating
function, which takes into account agent i’s coverage-relevant characteristics and any ap-
plicable discounts. Using the base price, the company then generates the agent’s pricing
menu M’ = {(d%,x%) : £ € D7}, which associates a premium x'? with each deductible 4/ in
the coverage-specific set of alternatives in D7, according to an agent-invariant and coverage-
specific multiplication rule, ij = (g% - XZ ) + 87, where 7 > 0 and g% is increasing in ¢ and
strictly greater than zero, so that x;j < xfj << Xij (4% is decreasing in ¢, so lower
deductibles provide more coverage and cost more).> As {¢g% : £ € DJ; §} are agent-invariant,
there is no independent variation in covariates across alternatives within a context.

With this as background, for given ,uz , alternatives can be represented as lotteries:
P ' R
L’(dj,xg):(—xij,l—ug,—xij—dj,,ug), (2.1)

where (xg , /Lg ) is observed by the researcher for each agent ¢ and context j. Throughout,
we implicitly condition on z/. We do not use variation in  to establish our identification

results, although doing so is potentially useful and the subject of ongoing research.

2.2 Preference types with unobserved heterogeneity within type

We allow the population of agents to be a mizture of preference types. The literature has put
forward many models of decision making under risk which can generate demand for insurance
at actuarially unfair prices, including the workhorse expected utility theory model and a
host of non-expected utility theory models. Each of these models has relative (de)merits
in rationalizing observed choices, and may deliver different predictions for counterfactual
policies (see Barseghyan et al. 2018a, for a review). We hence think it important to provide
identification results for a model where multiple preference types are allowed for, and where

unobserved heterogeneity within type is also present.

4See Section 4.2 below for additional information on the data.

5The multiplicative factors {¢g%/ : £ € D’} are known as the deductible factors and 7 is a small markup
known as the expense fee.

SMultiple preference types are a focus of the literature that estimates risk preferences using experimen-
tal data (e.g., Bruhin et al. (2010); Conte et al. (2011); Harrison et al. (2010)), although preferences are
homogeneous within each type, at most conditioning on some observed demographic characteristics.



For notational simplicity, we detail here the case with two preference types. The results
extend to more than two types (even when one observes choices only in two contexts). Let

each agent ¢ draw a preference type t; as follows:

. { 1 with probability «, (2.2)

0 with probability 1 — «a,

with a € (0,1) the unknown mixing probability.

Each realization of ¢; is associated with a family of utility functions with distinct func-
tional forms, denoted U' = {U,, v € [0,7]} for t; = 1, and U° = {U,,, w € [0,0]} for t; = 0.
Functions in each family are known up to a scalar random coefficient that depends on type,
denoted v; (with support [0, 7]) for agents with ¢; = 1, and w; (with support [0, w]) for agents
with t; = 0. For example, in our empirical application " is the collection of expected utility
functions associated with preferences that exhibit constant absolute risk aversion (CARA)
with agent-specific Arrow-Pratt coefficient v;,” and U is a family of non-expected utility
functions that do not nest expected utility as a special case and are parametrized by w; (see
Egs. (4.1)-(4.2) and Assumptions 4.2 & 4.3 below). As the preference types are distinct,
each agent either receives a draw of v; or a draw of w;, hence by construction the two ran-
dom coefficients are independent. We do not impose any parametric restrictions on their
distributions. Rather, in Section 3 we provide nonparametric point identification results for

the two marginal distributions of preferences and for the share of each type.

AsSsuMPTION 2.1 (Restrictions on distribution of random coefficients): The random co-
efficient v; (respectively, w;) is distributed according to a cumulative distribution function F
(respectively, G ) that satisfies the properties of CDFs, and admits a density function f that is
continuous and strictly positive on V = [0, 7] (respectively, g strictly positive on W = [0, @] ).

Both v; and w; are independent of x;.8

We make three fundamental assumptions about utility functions in both families. First,
we assume that households’ preferences are stable across contexts, which allows us to leverage
variation in observed choices and covariates across contexts (recall that we have no covariate

variation within each context).

ASSUMPTION 2.2 (Stability): The utility function U, of each agent i witht; =1 (respec-

tively, U, for agents with t; = 0) is context-invariant.

"Other preferences that are characterized by a scalar parameter include ones exhibiting constant relative
risk aversion (CRRA), or negligible third derivative (NTD; see, e.g., Cohen and Einav 2007; Barseghyan
et al. 2013). Under CRRA, it is required that agents’ initial wealth is known to the researcher.

8Recall that our analysis conditions on ,uf , hence the distribution of preferences may depend on it.



Second, we need to take a stand on how agents make choices in multiple contexts. To
this end, it is important to introduce notation for bundles of alternatives. Denote bundles
as 7, 4, where the first index refers to the alternative in context I and the second one to that
in context II. Let CE, (L£(d% x7)) (respectively, CE,, (L£(d¥,x7))) denote the certainty
equivalent of lottery £(d%,x7) (see, e.g., Mas-Colell et al. 1995, Definition 6.C.2) in context
j for an agent of type t; = 1 (respectively, t; = 0). We impose a standard, albeit sometimes
implicit, assumption in the literature,” according to which agents’ choices are made without

taking into account any background risk (e.g., Read et al. 1999).

AssuMPTION 2.3 (Narrow Bracketing): Agent i’s certainty equivalent for the lottery as-
sociated with bundle T, is equal to CE¢,(L(d",x)) + CE.,(L(d x)), with {; = v; if
ti =1 and CZ = W thz = 0.

Third, we assume that each preference type satisfies the classic Single Crossing Property
(SCP) of Mirrlees (1971) and Spence (1974), central to important studies of decision making
under risk (see, for example Apesteguia et al. 2017; Chiappori et al. 2019).° Formally,

ASSUMPTION 2.4 (Single Crossing Property): For a given context j and any two lotteries
L(d",x) and L(d",x), { < k, there exists a continuously differentiable and strictly monotone

function Zf : supp(x) — R_s o), with supp(x) = supp(x’), such that

j=I,IT

Ue(L(dV,x)) < Ug(L(d7,x)) V(& (=00, Zx(x)),
Ue(L(d7,x)) = Ug(L(d7.x)) ¢ = Zi(x),
Ug(L(d,x)) > Ug(L(d,x)) V(e (Z4(x),0).

where ¢ = v; for agents of type t; = 1 and = w; for type t; = 0. We refer to ZL(-) as the
cutoff between L£(d9,x) and L(d",x), and denote it Vi(-) for t; = 1 and Wi(-) for t; = 0.1

Within a single context, the expected utility theory framework generally satisfies the
SCP, which requires that if an agent with a certain degree of risk aversion (the random
coefficient v;) prefers a safer lottery to a riskier one, then all agents with higher risk aversion

12 The same is true for the non-expected utility theory model

also prefer the safer lottery.
that we use in our empirical analysis in Section 4. The SCP implies that within a single
context, the household’s ranking of alternatives is monotone in v; for ¢t; = 1 and in w; for

t; = 0, yielding vertical differentiation of alternatives within each preference type.

9All papers that estimate risk preferences in the field as reviewed in Barseghyan et al. (2018a) impose it.

10The SCP is satisfied in many contexts, ranging from single agent models with goods that can be unam-
biguously ordered based on quality, to multiple agents models (e.g., Athey 2001).

' We assume that while v and w have bounded support, the utility functions in &' and 2/° are well defined
for any real valued v and w, respectively.

12For a discussion of possible failures of SCP, see Apesteguia and Ballester (2018).



2.3 Unobserved heterogeneity in consideration sets

Across contexts, the subset of alternatives actually available to each agent is unknown to the
researcher, due, e.g., to unobserved budget constraints, liquidity constraints, etc. Moreover,
agents face an overall large and potentially overwhelming universe of feasible alternatives,
leading to choice overload, cognitive ability constraints, etc. Hence, we allow for unobserved
heterogeneity in consideration sets, i.e., in the collection of alternatives that the agents
evaluate when making their choices. We denote the overall universe of alternatives across
contexts as D = D' x D with Z;, denoting each of the bundles in D.

AssuMPTION 2.5 (Consideration set formation mechanism): Conditional on t;, agent i

draws a consideration set C; < D independently from its random coefficient and from x; s.t.

Ql(]C) = PI‘(CI = K|tl = 1) = PI‘(Cz = K‘Xi,yi,ti = 1), IC - D,
QU(IC) = PI'(CZ = K‘tl = O) = PI'(Cl = ’C‘Xi,wi,ti = O), Kc<cD.

The fundamental restrictions imposed in Assumption 2.5 are that conditional on prefer-
ence type, consideration is independent of the agent’s random coefficient and of the observed

covariate x.13

However, the distribution of consideration sets may depend on preference
type. Importantly, we allow consideration to be broad, as it is determined at the bundle
level instead of within context. A significantly more restrictive approach would posit that
consideration is narrow: agent ¢ draws a pair of consideration sets Cij e DI, j =1,II in-
dependently across contexts, and forms C; = Cf x C}f. As we further discuss in Section
2.4, allowing consideration sets to be drawn at the bundle level substantially complicates the

identification analysis, but delivers a more realistic model.

2.4 Optimal choice within the consideration set

Once the consideration set is drawn, each agent chooses the best alternative in each context

according to their preferences.

T* = [0*,¢*] = arg [gn?%CEC(L(dH,XI)) + CE(L(a", x™)), (2.3)
7q e
where ( = v ift = 1 and ( = w if ¢ = 0. The bundle choice Z* depends on the agent’s
preference type, random coefficient, consideration set, associated premium-deductible tuples,
and claim probabilities p7, j = I,11.

13Recall that our analysis conditions on ,ug , hence the distribution of consideration sets may depend on it.



The flexible model of consideration set formation that we allow for has important im-
plications for the choice problem in Eq. (2.3). If we were to assume narrow consideration,
hence restrict agents to draw consideration sets independently across contexts, the choice

problems would break into independent, context-specific decisions, with

(% = argmax CE.(L£(d”,x%)). (2.4)
teCi

Each context-specific choice problem satisfies the SCP in Assumption 2.4. Barseghyan et al.
(2021b) offer a comprehensive analysis of the implications of the SCP for semi-nonparametric
identification of a model of discrete choice under risk that features a single preference type
and unobserved heterogeneity in consideration sets. Even in the simplified framework where
consideration is narrow, our analysis extends theirs as we allow for multiple preference types.
More importantly, a narrow model of consideration implies that very similar alternatives in
different contexts enter the consideration set independently.'* This assumption is unpalat-
able, particularly when analyzing demand for bundled products. We therefore allow for broad
consideration. In doing so, we overcome a substantial hurdle relative to Barseghyan et al.
(2021b). When consideration is broad and C; is formed at the bundle level, the SCP may not
necessarily hold across tuples of alternatives, because alternatives may not be monotonically
ranked against each other (with respect to v; or w;). Hence, here we develop a new approach
to obtain point identification of the distribution of preferences, shares of preferences types,

and features of the distribution of consideration sets given type.

3 Identification Results

We begin by describing the conditions under which we can prove our point identification
results.”” We index bundles as Z;, and Zy,, with ¢,k € D' alternatives in context I and
q,r € D alternatives in context II. We recall that in each context, d¥ > d% > ... > aM’i
and x7 < x7 < -+ < x| see Section 2.1. We let Vﬁ:ﬁ(x) and Wﬁg (x) denote cutoff levels
for v; and w;, respectively, at which the agent is indifferent between bundles Z,, and Zj,.
Hence, under Assumption 2.3, the cutoff Vﬁ:ﬁ(x) is such that (and similarly for W,f?(x))

(L(a",x") + CEyq

Ve (x) (ﬁ(dqn> XH))

CEyrac

= OBy

10 (L@, X)) + OBy

y(x)(ﬁ(d’“ﬂ,xﬂ)). (3.1)

MFor example, a $500 deductible at price x* in collision insurance and a $500 deductible at price x™ in
comprehensive insurance would enter the consideration set independently.
15The results extend easily to more than two contexts, at the cost of heavier notation.



Relative to the cutoffs introduced in Assumption 2.4, which compared alternatives within a
single context and we denoted V{(x) (single superscript and subscript for a single context
of choice), we have V;1(x) = Vi(x) and Vﬁi(x) = V{(x) for all m € D' and s € D™ (and
similarly for W' (x)). While cutoffs V,f:g(x) and Wﬁ:g(x) for ¢ # k,q # r depend on both x?
and x| cutoffs V,f’;(x) and W,ﬁi(x) depend only on x*, while cutoffs V)"#(x) and W) (x)
depend only on x™. These properties will be used to establish our identification results.

We remark that the cutoffs Vﬁzg(x) and Wﬁ:ﬁ(x) may not be unique if £ > k but ¢ < r
(or vice versa). However, they are unique whenever Z; ; is compared with any other bundle
(and similarly whenever Zy: ppr is compared with any other bundle).

Throughout, we assume that the researcher has access to data that identify the joint dis-

tribution of chosen bundles and covariates. The consideration set, however, is not observed.

AssuMPTION 3.1 (Observed data): A random sample {(Z,x},x}) : i = 1,...,n} is
observed, with I, as defined in Eq. (2.3).

3.1 Restrictions on variation in x’ across contexts

Identification of the model’s functionals rests on the interplay between the model and the
variation in the observed covariates. We only require the covariates x; = (x;,x;') to vary
across agents and contexts, as formally stated below, but allow x} (respectively, x7!) to
be constant across alternatives within DT (respectively, D). Hence, one needs sufficient

variation across contexts to obtain point identification results.

ASSUMPTION 3.2 (Preferred within a triplet): In each contest j € {I, II}, for any x and
triplet {d%, d*, d*+1)7} Yk € {2,..., M7 — 1}, there are values of v (and w) at which each

alternative in this triplet is strictly preferred to the other two.

Assumption 3.2 requires that given three coverage levels including the cheapest, each
one is preferred by at least some agent. As shown in Barseghyan et al. (2021b), under
Assumption 2.4, this condition is satisfied for agents of type t; = 1 within context I if and
only if —o0 < V;y’ll(xl) < V;;ll(xl) < Vi’ll(xl) -+ < 400 (and similarly for agents of type
t; = 0, and for context II with appropriate modifications in the compared bundles and
evaluation at x'! instead of x'), with v,f;ﬁ defined through Eq. (3.1). So, any agent of type
t; = 1 who draws v < V2111 (x!) unambiguously prefers alternative ¢! to any other in DZ.

In what follows, an important role is played by the values of x = (x',x*) at which the
indifference cutoff for an agent of type t; between alternatives ¢! and ¢** (the two cheapest

alternatives in context I) is equal to that agent’s indifference cutoff between alternatives ¢!



and (*™ (the two cheapest alternatives in context II). We first define these values of x, and

then make assumptions on the support of x to guarantee that it includes them.

DEFINITION 3.1 (Covariate values delivering indifference): Given t;, fir a value of v €
[0,7] if t; =1 and of w € [0,] if t; = 0. Let the set of covariate values at which the agent
has preference v (respectively, w) and is indifferent between bundles I, 1, I, o, and Ly, be:
{5 xT) 1 Wy () = Vip (xT) = v},

X0() = {(x7, %) : WAL () = WEA ) = .

The covariate values X!(v) (respectively, X°(w)) are the values of x = (x*, x™) at which
an agent with preferences v (respectively, w) is indifferent between the two cheapest coverage
levels in context I and, at the same time, also in context II. In other words, the agent is
indifferent between Z; 1, Z; 2, and Zy; (and, hence, Zy5). Given the single crossing property
in Assumption 2.4, within each context it is immediate to see that both elements of X'(v)
(the covariate value in context I and the covariate value in context II) are strictly monotone
in v (and, similarly, both elements of X°(w) are monotone in w). For example, the higher
is v, the higher is the base price in context I at which the agent with random coefficient
v is indifferent between Z; ; and Z, ;. Hence, we can represent X'(v) (respectively, X%(w))
as a strictly monotone function on the support of (x,x™).1% We assume that these strictly

monotone functions intersect on a set of measure zero.
AssumpTION 3.3 (Distinct contexts): The contexts are distinct, in the sense that:
(1) X*(v) # X(w) a.e

(II) The following four conditions are satisfied:

Vi, (X0w)) # Vi (X)) ace. (3.2)
W§;<X1<v)) # Wi (X)) a (3.3)
V(X () # V;j(xl(m) a.e. V{£ ¢ k.r} st {0q kr\{1,2} # &. (3.4)
(Xo(w)) ( O(W)) a.e. V{l,q,k,r} sit. {{,q,k,7}\{1,2} # . (3.5)

Assumption 3.3-(II) implies Assumption 3.3-(I), as Eqgs. (3.2)-(3.3) for £,q = 2,1 and
k,r = 1,2 imply X!(v) # X%w) a.e. Both conditions require that at any value of (x*, x*!)
at which indifference across 7 1, Z; 2, and Zy ; occurs for an agent of type ¢; = 1, such indif-
ference cannot occur for an agent of type ¢; = 0. Additionally, Assumption 3.3-(II) requires

that at any value of (x!,x!) at which indifference across 7y 1, I 2, and Zy ; occurs, no other

16See Figure 3.1 and its discussion below.
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Figure 3.1: X%w) and X!(v) in our application, with data in the background.

triplet of bundles including Z; ; can generate a three-way tie in utility ranking. Given the
data and utility models across preference types, one can directly check whether Assumption
3.3 is satisfied. Finally, we require that the support of x is sufficiently rich, as point identi-
fication of f(v) and g(w) can only occur at values of v and w that belong, respectively, to

intervals [v*,v**] < [0, 7] and [w*, w**| < [0, w] satistying the next assumption.

AssuMPTION 3.4 (Independent variation in x): Let [v*,v**| < [0,7] and [w*,w**] <
[0,@0] be intervals such that, for some € > 0, the random vector x = (xI,x™) has strictly

positive density on the sets S} (v*,v**) < R? and 8% (w*,w**) < R?, with

Sel(u*,y**) = {Be(Xl(V)), ve [1/*,1/**]},
S (w*, w*™*) = {B(X(w)), we [w*,w*]}.

where B,(c) denotes a ball in R? of radius a centered at c.

Assumption 3.4 guarantees that for each v € [v* v**] there are values of x such that
X1(v) is non-empty and that there is an e-neighborhood around X!(v) with positive density
(and similarly for X°(w) and all w € [w*,w**]). This yields sufficient observed variation in
x to identify the functionals that we are after. We illustrate the notion of distinct contexts
and independent variation in x via Figure 3.1, which depicts X%(w) and X'(v) drawn for

different pairs of u’s. First, X°(w) and X!(v) intersect only at a single point.!” Second, these

1"In our empirical model described in Section 4, this intersection point corresponds to v = 0 and w = 1,
i.e., respectively, no risk aversion and no probability distortions.
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I*=Th, ZI*=1I I* =T I* =T, I*=Th, I*=1I,

i) Vip(x) W) Wy (x™)
(a) ti =1 (b) t; =0

Figure 3.2: Stylized depiction of regions where, under full consideration, Z* = 7, ;.

curves are both monotone. We present them with a scatterplot of unconditional data from
our empirical application in the background, to highlight the fact that even when variation
in x does not cover the entire R?, identification is attainable since Assumption 3.4 requires
variation in x only to cover respective neighborhoods of X%(w) and X*(v).

We next explain why, under full consideration, our assumptions suffice for identification
of the share of preference types and the distributions of the respective random coefficients.
Fix a value of v € [v*, v**] at which one wants to learn f(v). Under Assumption 3.4, X!(v)
is non-empty and there is an e-ball of positive density around it. Along with Assumption 3.3,
this implies that there is a vector (x¥,x™') € B.(X'(v)) such that v = V2111 (x") < V1121 (x)
and W2111 (x") > W1121 (x™). Then, as shown in Figure 3.2, under Assumptions 2.4 and 3.2,'®

Pr(Z* = T11[x) = aF (V1 (x")) + (1 — ) GOV, (x™)). (3.6)
In turn, owing to the fact that V2111 (x") depends on x' but W1121 (x™) does not, this yields

OPr(T* =T, [x) _ of (V)avg;ll (x¥)

(3.7)

ox1 ox1

VL (=) . . - .
where the term %&X) is a known function of x! and is different from zero due to Assumption
2.4 (where cutoff functions are assumed to be strictly monotone in x). If [v*,v**] = [0, 7],
one can repeat the above argument for all v on the support and then use the fact that f(v)

integrates to one to learn «. One can similarly learn g(w), w € [w*, w**].

3.2 Restrictions on the consideration set formation mechanism

In the presence of limited consideration, the above argument does not directly apply, as one
needs to account for all possible consideration sets in which bundle Z; ; is included. We

therefore need to introduce additional notation and some restrictions.

18Recall that these assumptions, jointly, imply that any agent who draws v < Vzly’ll(xl' ) < V1121 (x)

unambiguously prefers alternative ¢'1 to all other alternatives in DT, unambiguously prefers alternative ¢!

to all other alternatives in D!, and therefore unambiguously prefers bundle Z; ; to any other bundle in D.
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For any Iy, Ko € D, K1 n Ky = ¢, denote the probability that all elements of Iy are

included in the consideration set while all elements of Iy are excluded from it, by

O1(K1; Ks) = > Pr(C; = K|t; = 1) = > 9, (K),

K: Kick, KanK=J K: Kick, KanK=g

and define Oy(K1; Ky) similarly, where Q,(K), t = 0,1, was introduced in Assumption 2.5.
Denote by B(Zy,,x;() the collection of bundles that, at a given value of (, strictly
dominate bundle Z; ,, with ( = 1; for agents of type ¢; = 1, and ¢ = w; for ¢; = 0O:

B(Ig,q,x; C) = {I]g’r s.t. CEc(Ikﬂ«,X) > CEg(Iqu,X)}.

Then, for a given value of x, any bundle Z, , € D is chosen if and only if it is considered and

every bundle that dominates it is not:'"
Pr(Z* =1, ,|x) = af@l(Iqu;B(I&q,x; v))dF + (1 — «) f@o(zg,q;B(I&q,X; w))dG. (3.8)

Eq. (3.8) with (¢,q) = (1,1) shows that Z; ; is chosen when it is the bundle in C; with the
highest certainty equivalent, i.e., no bundle that yields a higher certainty equivalent (those
in B(Z;1,x;-)) is considered. Hence, an agent choosing 7, ; switches to or from a different
bundle Zj , if and only if (i) they are indifferent between 7, ; and Zj ,; and (ii) they do not
consider any bundle in D that dominates Z; ; and Zj ,. As the indifference cutoffs involving

bundle Z; ; are unique, differentiating Eq. (3.8) we have

1,1
6Vkm

ox?

6Pr(I* = Il,l’X>

ox?

=« Z Or({Z11, Tus ) B(Z10, % V) f (Vi)

(k,r)#(1,1)
Wy

oxt

+(1-a) Z Oo({T11, Ty }: B(Z1,1, 3 Wi, ) ) g W)
(k,r)#(1,1)

(3.9)

The summation in Eq. (3.9) collects all relevant consideration sets across preference types
and indifference points (cutoffs), weighted by the density function at these indifference points

and taking into account how the change in x* affects the indifference points themselves.?

YEquivalently, bundle Z; , is chosen if and only if it is the first best among the ones considered:

Pr(T* = Tpylx) = a Y. Qi(K) J 1(CE,(Ty r,x) < CE,(Zy.4, %) VI, € K|x;v)dF
I@)QGKZ
F-a) Y Q(K) J UCE (T, %) < CBo(To.g,x) YInr € Klx;0)dG.

IgYQEK:

*_
20For w, the right-hand-side of Eq. (3.9) remains as is, with 0x*! replacing ox!.
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We impose the following restrictions on the consideration set formation mechanism:
AssuMPTION 3.5 (Minimally informative consideration): One of the following holds:
(1) O\({Th1.Z22, T, }; &) = O1({Z11, L2, Th 2} &) > 0.
(U) (91({7:1,1712,2,12,1}; @) - 01({1'1,1,7:272711,2}; @) # 0, and
(91({11,1722,1}; @) = Ol({Il,1712,1}§ {12,2711,2})-21
One of these two restrictions also holds with Oy replacing Oy .

Assumption 3.5-(I) requires symmetry in the probability with which the triplets (Z; 1,752, Z; 2)
and (Z; 1,252, Z51) are included in the consideration set, and that each probability is strictly
positive, so that information can be extracted through the differentiation in Eq. (3.9). As-
sumption 3.5-(II) requires that if such symmetry is absent, then alternatives Z;; and Zy;
can only be considered together when neither Z; 5 nor 7, 5 are considered (a trivial case that
would guarantee this condition is that Z,; is never considered when Z; ; is). The conditions
in Assumption 3.5 are sufficient (together with the other assumptions listed above) for our
identification results. However, they can be replaced by technical yet verifiable assumptions

on the behavior of the cutoffs involving comparisons of alternatives I1717I2,171172,1272.22

3.3 Point identification results

We next state our main identification results, whose proofs are in the Appendix.
THEOREM 3.1: Let Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 3.1, 8.2, 8.8, 8.4, 3.5 hold. Then
1. f(+) is identified up to scale on any interval [v*,v**| satisfying Assumption 3.J.
2. g(+) is identified up to scale on any interval [w*,w**| satisfying Assumption 3.4.
3. If [v*,v**] = [0, 7] and [w*,w**] = [0,0], then f(-) and g(-) are identified.

Theorem 3.1 shows that under limited consideration, despite the lack of independent
variation in observed covariates across alternatives (within a single context), it is nonetheless

possible to identify the distribution of the random coefficient for each preference type without

2 Alternatively, O1({Z11,Z12}; &) = O1({Z1.1,Z12};{Z2.2,Z2.1}) can replace the last condition in As-
sumption 3.5-(IT). In our application this alternative restriction is satisfied because bundle Z; 5 (which is the
deductible bundle {$1000, $500}) is chosen with probability zero, and hence both probabilities are zero.

22These conditions are available from the authors upon request, and require that 6]/11_”21 (x)/0x™ does not

equal a specific linear function of 6V21”11 (x)/oxt.

14



relying on identification at infinity arguments.?*> While to pin down the entire distribution of
preferences large support is required, our approach identifies (up to scale) the density function
of each random coefficient conditional on a given interval. Let V (respectively, W) denote
the union of all intervals [v*, v**] (respectively, [w*, w**]) satisfying Assumption 3.4. If V is
a proper subset of [0, 7] (respectively, W is a proper subset of [0,&]), partial identification of
the entire distribution of preferences is still possible, by collecting the probability distribution
functions that have density equal to f(v) for all v € V (respectively, g(w) for all w € W).
For a general treatment of partial identification of preferences in discrete choice models with
limited consideration, see Barseghyan et al. (2021a).

One can point identify the shares of preference types under a mild additional restriction,
where the probability of including one specific pair of bundles in the consideration set and

excluding another specific bundle (or pair of bundles) is independent of preference type.
COROLLARY 3.1: « is identified if all Assumptions of Theorem 3.1 hold, and either:

(i) Assumption 3.5-(1) holds for both agents with preference types t; =1 and t; = 0, and
O1({Th,1, L2} D)~ O1({Z11, Toa }5 {222, Th2}) = Oo({Th,1, L2 }; D)~ O0({Z11, T }5 {222, Th 2})-
(i1) Assumption 3.5-(11) holds for both agents with preference typest; =1 and t; = 0, and

Ol({Il,hIZQ};IZl) - Ol({Il,lal—Q,Z};Il,Z) = OO({Il,la:Z2,2};I2,1) - OO({ILMIQQ};IlQ)-

Given the distributions of the random coefficients, F'(-) and G(-), the system of equations
defined in Eq. (3.8) (L x M equations for a given x) is linear in the consideration probabilities
across the two types, weighted by their respective shares o and 1 — «. This in turn implies

2L><M+1

that we have a continuum of L x M linear equations to pin down parameters.

In general, with sufficient variation in x, these parameters are over-identified, subject to

24 However, depending on the specific models of

standard non-redundancy assumptions.
preferences assumed, and on the richness of variation in the data observed, it may not be
possible to identify some parts of the distribution of consideration sets. Nevertheless, for a
specific model, given the data, one can test whether a full rank system of equations results
across observed values of x (see., e.g., Chen and Fang 2019).

More broadly, our limited consideration model has several testable implications. We high-

light two: one specific to our broad consideration case, the other more general. First, suppose

231f one had variation in x7 across alternatives and unbounded support, letting the observed covariate
(say, price) for a given alternative go to infinity would be akin to assuming that one observes agents repeated
choices in context j while facing feasible sets that include/exclude each single alternative.

2For example, if for type t; = 1 alternative Z, ) dominates alternative Z, ., Q1({Z¢x,Z,,}) cannot be
separately identified from Q1 ({Z¢}).
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Assumption 2.3 holds. Then under full or narrow consideration, the marginal distribution of
choices in context I is invariant to changes in x™ and vice versa. Under broad consideration
this is not the case, as can be seen through a simple example where card(D?) = 2 for both
j =Tand j = II, and a positive share of agents consider only the two bundles {Z; 1,72}
Hence, one can test for violations of a narrow consideration model by checking whether the
marginal distribution of choices in context I (respectively, II) responds to changes in x
(respectively, x'). A second testable implication of the model is obtained as follows. Re-
call that our identification argument focuses on the cheapest bundle, Z; ;, and is built by
looking at how its share responds to changes in x* and x™. An identical argument can be
constructed by focusing on the most expensive bundle, Zyr 5sr. Hence, the density functions
f(v) and g(w) can be recovered through two different channels. If they do not coincide, this
implies that at least one modeling assumption is violated.

We conclude by comparing the amount of variation in x = (x',x') that we require
for our point identification results, with that required in the closely related prior work of
Barseghyan et al. (2021b) to obtain semi-nonparametric point identification of a model with
a single preference type. Barseghyan et al.’s results are derived for an environment where
agents are observed making choices only in a single context and with a single source of
independent data variation, say context I with variation in x'. The covariate x* is assumed
to vary independently across agents; however, for a given agent there is no requirement of
independent variation in x' across alternatives in DT (similarly to this paper). Due to the
less rich choice environment observed, to recover the conditional distribution of preferences,
Barseghyan et al. (2021b) impose stronger restrictions than we do here on the consideration

set formation mechanism.?°

4 Model & Data on Choices in Automobile Insurance

4.1 Empirical model

As introduced in Section 2.1, we model agents’ choices in two contexts of insurance coverage,
where each coverage provides full insurance against covered losses in excess of a deductible
chosen by the agent. In our data, the decision maker is a household; hence, we refer to agents

as households. As a reminder, ,uz denotes the probability of household 7 experiencing a claim

2For example, Barseghyan et al. (2021b) require that whenever ¢! is considered, £* is also considered.

They do so because there is not a one-to-one mapping between 0 Pr(Z* = Z;|x)/dx' and the (up-to-scale)
density function evaluated at a single point. Rather, d Pr(Z* = Z;|x)/0x' maps into a linear combination of
the density function evaluated at cutoffs V}(x),k > 1. In contrast, here by properly utilizing variation in
x!! we are able to create such a mapping even though there can be multiple preference types.
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in context j; for each coverage j € {I,II}, household i faces a menu of premium-deductible
pairs, M? = {(d9,x%) : ¢ € DI}, where x7 is the household-specific premium associated
with deductible d¥ and D7 is the set of deductible options offered in context j. As discussed
in Section 2.1, for each context j € {I, I1} the ratio of the price of deductible d“ to the price
of deductible d* is constant across households for all d¥/,d* e DJ.

We make assumptions, that are widespread in the literature on property insurance, re-

lated to filing claims and their probabilities:

AssuMPTION 4.1 (Restrictions Related to Claim Probabilities):

(1) Households disregard the possibility of experiencing more than one claim during the

policy period.

(1I) Any claim exceeds the highest available deductible; payment of the deductible is the only
cost associated with a claim; the household’s deductible choice does not influence its

claim probability.

We assume that the two types of preferences described in Section 2.2 result from either
Expected Utility Theory (EU) or Yaari’s (1987) Dual Theory (DT). Within EU, a single-

context lottery is evaluated through
U7, x7, ) = (1= i Jus(w; — x7) + plus(w; — xi7 — a), (4.1)

where w; is the household’s wealth and w;(-) is its Bernoulli utility function, which under
Assumption 2.2 is the same for each context. In the EU model, utility is linear in the
probabilities and aversion to risk is driven by the shape of the utility function u,(-).

Yaari’s (1987) DT model aims at decoupling the decision maker’s attitude towards risk

from her attitude towards wealth. Within DT, a single-context lottery is evaluated through
U7, x7, ) = (1= Qi) (w; — xi7) + Qi) (wi — ;7 — a), (4.2)

where ;(-) is the household’s probability distortion function, which under Assumption 2.2
is the same for each context. In the DT model, utility is linear in the outcomes and aversion
to risk is driven by the shape of the probability distortion function €2;(-).2® We remark that
in our setting (as well as in many others where subjective beliefs data are not collected and
the analysis relies on an often implicit rational expectations assumption), the DT model
is indistinguishable from one in which agents’ subjective loss probabilities systematically

deviate through the €;(-) function from the objective ones.

26Probability distortions are featured also in, e.g., prospect theory (Kahneman and Tversky 1979; Tversky
and Kahneman 1992), rank-dependent expected utility theory (Quiggin 1982), Gul (1991) disappointment
aversion theory, and K&szegi and Rabin (2006, 2007) reference-dependent utility theory.
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To strike a balance between model generality and its empirical tractability, we impose
shape restrictions on u;(-) and €2;(-), respectively. We assume u;(-) exhibits constant absolute
risk aversion (CARA):

ASSUMPTION 4.2 (CARA): w;(y) = =Y for 12 0 and u;(y) =y for v; = 0.

Vi

Assuming CARA has two key virtues. First, u,(-) is fully characterized by a single pa-
rameter: the Arrow-Pratt coefficient of absolute risk aversion, v; = —uf(w;)/u}(w;). Second,
v; is a constant function of w;, and hence we need not observe wealth to estimate u;(-).

To keep the EU model and the DT model on “equal footing,” we need ;(-) to be as
parsimonious as u;(-). This suggests a single-parameter specification. The literature contains

many examples, and we run our analysis with the following one due to Prelec (1998):
AsSUMPTION 4.3 (Prelec’s Q(-) function): Q;(u) = exp(—(—1Inp)“#), w; > 0.

We also carry out our analysis using other utility functions for the EU type (one proposed
by Cohen and Einav (2007) and one by Barseghyan et al. (2013)) and other probability
distortion functions for the DT type (one put forward by Tversky and Kahneman (1992)
and one by Barseghyan et al. (2016)). The results confirm the main takeaways reported here,
and are available from the authors upon request.?”

The EU and DT models are true alternative theories of decision making under risk.?
Neither model is a special case of the other. DT preferences depart from EU preferences
in two key ways. First, risk averse behavior is driven by distortions of probabilities for
households with DT preferences, but by nonlinear evaluation of wealth for households with
EU preferences. Second, narrow bracketing has behavioral implications for households with
DT preferences, but not for households with EU preferences. In our framework, where the
lotteries are independent across the brackets,?’ the choices of a household with EU preferences
and CARA utility are independent of the scope of bracketing (e.g., Rabin and Weizsacker
2009). The well-known reason is the absence of wealth effects with CARA utility. In contrast,
the choices of a household with DT preferences are not independent of the scope of bracketing,
because of the rank-dependent nature of how probability distortions are applied.

Within context 7, the resulting utility function is

U(£(@0 5, iy = 4 (s =) g =7 =) itd =1 (ED),
R (1= Qu(ad)) (s = %) + () (w; % — @) i t; =0 (DT).
(4.3)

2TVuong tests comparing the various models confirm the good fit of our preferred specification.

28Except when both degenerate into net present value calculations with v; = 0 and w; = 1.

29Independence results from the assumption that claims follow a Poisson distribution, which is imposed
in estimating the probability of a claim (see Barseghyan et al. 2013, 2018b).
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While we obtain conditions for nonparametric point identification of F(-) and G(-), for

tractability we estimate a fully parametric model via Maximum Likelihood.?’

ASSUMPTION 4.4 (Heterogeneity Restrictions):

(I) Conditional ont; = 1, v; follows a Beta distribution on [0,0.025] with parameter vector

(Y1, Yw2) and is independent of [(u),x)),j = I, IT).

(1I) Conditional on t; = 0, w; follows a Beta distribution on [0, 1] with parameter vector

Yols Yw2) and is independent o 1 x1),j =1, I1].
Hi» X

Assumption 4.4 specifies that the distributions of v and w are Beta distributions. The
main attraction of the Beta distribution is its flexibility (e.g., Ghosal 2001). Its bounded
support is a plus given our setting. A lower bound of zero rules out risk-loving preferences
and seems appropriate for insurance markets that exist primarily because of risk aversion.
Imposing an upper bound enables us to rule out absurd levels of risk aversion. The choice of
0.025 for CARA is conservative both as a theoretical matter and in light of prior empirical
estimates in similar settings (e.g., Cohen and Einav 2007; Sydnor 2010; Barseghyan et al.
2011, 2013, 2016). Similarly, for the probability distortion function, the upper bound of 1
insures over-weighting of probabilities; the lower bound of 0 insures that it is a well-behaved
function. None of these constraints is binding in our analysis.

We close the empirical model by restricting how C; € D = D! x D is drawn:

AssuMPTION 4.5 ((Broad) Alternative-Specific Consideration): Household i draws a

consideration set C; < D s.t.

Pr(C; =G) = [[or [ [0 -62), VG<=D,

TeG I¢G
where ¢z = Pr(Z e C;) = Pr(Ze Gilt;) =0, Ze D, and ¢z, = 1.

Assumption 4.5 strengthens Assumption 2.5 by requiring consideration to be independent
of type (in addition to being independent of households’ preferences given type). This is not
needed to establish identification, but we think it prudent to impose it in our application
because, as further discussed below, |D| = 30 and allowing for type-dependent considera-
tion would add 60 rather than 30 consideration parameters to the model. Assumption 4.5
also adapts the Alternative-specific Random Consideration (ARC) model first proposed by
Manski (1977) and later axiomatized by Manzini and Mariotti (2014), to hold over bundles
of insurance deductibles across contexts. Each bundle Z € D appears in the consideration

set with probability ¢7 independently of other bundles. To avoid empty consideration sets,

30Inspection of Eqgs. (A.2)-(A.3)-(A.4) in the Appendix shows that under Assumption 4.4, f(-) and g(-)
are identified, provided the intervals [v*, v**] and [w*,w**] in Assumption 3.4 are not singletons.
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following Manski (1977), we assume that one bundle is always considered, and further im-
pose that the always-considered bundle is the cheapest one.?! Once the consideration set is

drawn, the household chooses the best alternative according to its preferences as in Eq. (2.3).

4.2 Data Description

We obtained the data from a large U.S. property and casualty insurance company. The
company offers several lines of insurance, including auto. As explained in Section 2.1, we
focus on deductible choices in auto collision and auto comprehensive. Our analysis uses a
sample of 7,736 households who purchased their auto and home policies for the first time
between 2003 and 2007 and within six months of each other (this is the same sample used
by Barseghyan et al. (2021b)).* We observe households’ deductible choices in auto collision
and auto comprehensive, and the premiums they paid for these coverages. We also observe
the household-coverage specific menus of deductible-premium combinations—i.e., the pricing
menus—that were available to the households when they made their deductible choices.
We refer to Section 2.1 for a discussion of how households’ pricing menus are determined
by the company in each context. As explained there, in each context the premium ij
associated to deductible d*,¢ € D7, is a household-invariant affine function of a household-

J

specific base price x;, and the company determines this base price applying a coverage-
specific rating function to household ¢’s coverage-relevant characteristics. Naturally, the
base prices x; and x;* may exhibit substantial correlation due to common factors entering
the rating function (this correlation equals 0.74 in our data), highlighting the importance of
our weak requirement on variation in x stated in Assumption 3.4 — which in particular can
hold when x! and x! are strongly correlated (see Figure 3.1 and its discussion).

Table 4.1 reports the deductible choices of the households in our sample. In each context,
the modal choice is $500. Interestingly, virtually no household purchases a comprehensive de-
ductible larger than their collision deductible. As we discuss in more detail below, this choice
pattern cannot be rationalized by standard discrete choice models under the assumption of
full consideration, but can easily be explained once one allows for limited consideration.

The top panel of Table 4.2 shows that base premiums vary dramatically in our sample.
The ninety-ninth percentile of the $500 deductible is more than ten times the corresponding

first percentile in each line of coverage. While not reported in the table, here we summarize

31 Alternatively, we could assume that if the realized consideration set is empty, agents choose one of the
alternatives in D uniformly at random. Our estimation results are robust to this modeling assumption.

32 As explained in Barseghyan et al. (2021b), the dataset is an updated version of the one used in Barseghyan
et al. (2013). It contains information for an additional year of data and puts stricter restrictions on the timing
of purchases across different lines. These restrictions are meant to minimize potential biases stemming from
non-active choices, such as policy renewals, and temporal changes in socioeconomic conditions.
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Table 4.1: Collision and Comprehensive Deductible Choices, in %

Comprehensive
Collision $50 $100 $200 $250 $500 $1,000
$100 0.7 0.2 0 0 0 0
$200 1.8 1.1 10 0 0.1 0
$250 0.9 1.3 4.6 5.4 0 0
$500 1.0 1.3 17.8 6.5 41 0
$1,000 0 0.1 0.4 0.2 1.9 3.7

Table 4.2: Descriptive statistics for premiums of $500 deductible and claim probabilities

Mean Std. Qunatiles
Dev.
0.01 005 025 050 075 095 0.99

Premiums
Collision 187 104 53 74 117 162 227 383 565

Comprehensive 117 86 29 41 69 99 141 242 427

Claim probs
Collision 0.081 0.026 0.036 0.045 0.062 0.077 0.096 0.128 0.156

Comprehensive  0.023  0.012 0.005 0.008 0.014 0.021 0.030 0.045 0.062

the pricing menus. The cost of decreasing the deductible from $500 to $250 is on average
$56 in collision and $31 in comprehensive. The saving from increasing the deductible from
$500 to $1,000 is on average $42 in collision and $23 in comprehensive.

The claim probabilities ,uz stem from Barseghyan et al. (2018b), who estimated them
using coverage-by-coverage Poisson-Gamma Bayesian credibility models applied to a large
auxiliary panel of more than one million observations. We treat estimated claim probabilities
as if they were observed data. Predicted claim probabilities (summarized in the bottom panel
of Table 4.2) exhibit substantial variation: the ninety-ninth percentile claim probability in
collision (comprehensive) is 4.3 (12) times higher than the corresponding first percentile.
Finally, the correlation between claim probabilities and premiums for the $500 deductible is
0.38 for collision and 0.15 for comprehensive. Hence, there is independent variation in both

(although our identification results only require independent variation in premiums).
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4.3 Evidence in support of unobserved heterogeneity in Cj

As discussed in, e.g., Barseghyan et al. (2016, 2021a,b), standard models of risk preferences
fail to rationalize some salient data patterns. First, in our data the pricing rule in collision
coverage is such that (virtually) no household, regardless of their preference type and ran-
dom coefficient, should choose the $200 deductible under full consideration. The reason is
that for agents with lower risk aversion (probability distortions) it is dominated by the $250
deductible, and for agents with higher risk aversion (probability distortions) it is dominated
by the $100 deductible.?® A limited consideration model, even in the case where the consid-
eration set forms narrowly (i.e., with Cf drawn independently from C!* and C; = C} x C})
has no problems explaining such a pattern, because it allows for the $200 deductible to be
considered without either $100 or $250. Under Assumption 2.5 (consideration sets drawn at
the bundle level), that is not necessary, because utility comparisons are at the bundle level.

Second, the joint probability mass function of choices across contexts (see Table 4.1)
exhibits a striking pattern where virtually none of the 7,736 households purchase a deductible
in comprehensive that exceeds the deductible they purchase in collision. Unless prices (and
claim probabilities) exhibit strong negative correlation, a feature that does not occur in our
data, standard models (e.g., a Mixed Logit with full consideration) under the assumption of
context invariant preferences will struggle to replicate this pattern.

A final note pertains to modeling limited consideration as operating at the bundle level,
rather than independently across contexts. A model where limited consideration operates
independently across contexts may be successful in matching the marginal distribution of
choices within each context, but not the joint (see the working paper Barseghyan et al. 2019,
Section 7.3.3). The limited consideration model studied in this paper, by operating on the
bundles, does have the capacity to match the joint distribution of choices. By doing so,
it also resolves the preference stability debate discussed in, e.g., Barseghyan et al. (2011);
Einav et al. (2012); Barseghyan et al. (2016). This debate is centered around the fact that
while households’ risk aversion relative to their peers is correlated across lines of coverage,
implying that households preferences have a stable component, analyses based on revealed
preference reject the standard models: under full consideration, for the vast majority of
households one cannot find a level of (household-specific) risk aversion that justifies their
choices simultaneously across all contexts. Limited consideration allows the model to match
the observed joint distribution of choices, and hence their rank correlations. Under limited
consideration, testing for preference stability amounts to asking whether one can find a

consideration set and a random coefficient (preference parameter) which jointly rationalize

33 An analogous fact can be established even if an i.i.d., type-specific, noise term were added to the utility
function in Eq. (4.3) at the coverage level or, more broadly, for any model that abides a notion of generalized
dominance formally defined in Barseghyan et al. (2021b).
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Table 5.1: Estimated Probability of Considering each Deductibles Pair

Comprehensive
Collision $50 $100 $200 $250 $500 $1,000

$100 0.05 0.01 0.00 0.00 0.00 0.00
[0.04 0.06] [0.01 0.01] [0.00 0.00]

$200 0.12 0.04 0.29 0.00 0.00 0.01
(0.1 0.13] [0.04 0.05] [0.27 0.3] [0.00 0.00] [0.00 0.00] [0.00 0.01]

$250 0.04 0.03 0.08 0.09 0.00 0.00
[0.03 0.05] [0.02 0.03] [0.07 0.08] [0.09 0.10] [0.00 0.00]

$500 0.13 0.06 0.46 0.18 0.83 0.00
[0.11 0.15] [0.05 0.07] [0.44 0.47] [0.18 0.20] [0.81 0.84]

$1000 0.04 0.03 0.18 0.07 0.47 1.00

(0.02 0.07] [0.01 0.05] [0.14 0.22] [0.05 0.10] [0.43 0.52]

Notes: 95% confidence intervals obtained via subsampling in square brackets.

an agent’s choice, which is inherently weaker then asking whether one can find preferences

that rationalize the agent’s choice under full consideration (see, e.g., Barseghyan et al. 2021a).

5 Estimation Results

We begin our discussion of the estimates that we obtain through MLE by focusing on the
type of limited consideration that we uncover, and its role in the results one obtains when
estimating preferences. Table 5.1 reports the estimated consideration probabilities for each
bundle (these are the ¢7 coefficients in Assumption 4.5), along with 95% confidence intervals
obtained by subsampling.®* The estimated model is very far from a full consideration one.
Bundles where the collision deductible is strictly lower than the comprehensive one are almost
never considered (the probability that the bundle ($200, $1000) is considered is 1/100, and all
others are zero).>® The cheapest bundles, excluding the one where the collision deductible is
lower than the comprehensive one, are considered most often (the consideration probabilities
for ($500, $500) and ($1000, $500) are, respectively, 0.83 and 0.47).%

The presence of limited consideration alters inference about preference types and about
the distribution of the random coefficient within each type in essentially every possible way.
To illustrate these effects, we estimate preferences in a pure random coefficients model under

three scenarios for the consideration set formation mechanism: limited consideration as in

34We use subsampling because the parameter vector is on the boundary of the parameter space.

35QGiven the choice patterns in the data discussed in Section 4.3, this is not surprising, as MLE sets the
consideration probability of never-chosen bundles to zero.

36Recall that we assume that ($1000, $1000) is considered with probability one.
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Limited Consideration Triangular Consideration Full Consideration

0.35 0.35

Q)

Figure 5.1: The function Q(x) when w equals its estimated mean, 25th, 50th, or 75th quantile, in
a model with limited (left), triangular (middle), or full (right) consideration.

Assumption 4.5 (our proposed model); triangular consideration, where for Z = [(*, ¢"],
¢7 = 0 when ¢f < ¢ and ¢z = 1 when (' > ¢'; and full consideration, where ¢z = 1 for
all Z € D. In all cases, we estimate a model where households choose their optimal bundle
according to Eq. (2.3) with the utility function in Eq. (4.3).%"

Figure 5.1 depicts the resulting Prelec distortion function in Assumption 4.3 when w;
equals the mean, median, 25th and 75th quantile of the distribution G(w) estimated in the
limited consideration model (left panel), in the triangular consideration model (center panel),
and in the full consideration model (right panel), each with a mixture of types. As the figure
illustrates, there is substantial variation in the function across these different values of w,
and all functions are substantially far from the 45° line, indicating substantial over-weighting
of small probabilities. Of notice is the fact that the over-weighting is larger in the limited
consideration model than in the triangular or in the full consideration model.

Figure 5.2 depicts the cumulative distribution function F(-) in our limited consideration
model (left panel), in the triangular consideration model (middle panel), and in the full
consideration model (right panel). Each panel depicts F(-) for a model that assumes that
all households are of the EU type (blue line), for our model with a mixture of EU and

DT types (red line), and, for the mixture model, also the implied cumulative distribution

37Under full consideration, the likelihood of observing non-zero shares of never-the-first-best alternatives
is zero. Due to this, in estimation we set the consideration probability of each bundle to 0.99 instead of 1.00.
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Figure 5.2: Estimated F(v) in a model that assumes limited (left), triangular (middle), or full
consideration (right).

function for the entire population, where the (1 — «) share of DT households has v = 0. The
important feature to notice is that in all panels of Figure 5.2, the risk aversion displayed is
much higher for the EU households in the mixture model than in the single-type model, and
the discrepancy grows from the limited to the triangular to the full consideration model.

In Table 5.2 we analyze the same interplay between consideration and preferences from
a different angle. We report the estimated excess willingness to pay (WTP) of households in
our sample to avoid a lottery where with probability 10% the household loses $500 (hence,
the total WTP equals $50 plus the values reported in the table).

A first feature to notice is that the estimated share of EU types is much higher when the
model allows for limited consideration than in models that assume triangular or full consid-
eration (almost a half versus 30% and 20% respectively). The implied degree of aversion to
risk changes for households of both preference types, but in opposite directions. The top left
panel of Table 5.2 shows that if one disregards limited consideration, one infers that the risk
aversion of EU types is much higher (more than 40% according to our metric) than under
limited consideration, but the aversion to risk of DT types is about one third lower under full

consideration (and similarly for triangular consideration). The cumulative effect of limited
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Table 5.2: Excess willingness to pay to avoid lottery where with probability 10% agent loses $500

Mean Median 1°* Quar. 3¢ Quar. Mean Median 1% Quar. 3¢ Quar.
Mixture: All Population EU share
Limited Consideration 82.10  79.95 61.82 100.49 a = 0.46
Lower Triangular 73.27 7238 42.33 101.64 a=0.30
Full Consideration 73.49 72.42 54.31 91.72 a=0.20

EU type DT type

Limited Consideration 110.74 104.47 69.29 146.60 57.95  56.73 39.70 75.11
Lower Triangular 155.56  148.83 50.94 255.07 38.47  32.59 15.54 56.49
Full Consideration 194.83  205.93 127.16 267.12 42.88  38.72 21.52 60.59
Single Type: All Population EU All Population DT
Limited Consideration — 81.74  69.72 39.58 113.45 74.01  75.03 51.79 97.15
Lower Triangular 76.19  37.61 8.64 121.29 43.07  37.26 17.60 63.90
Full Consideration 80.87  49.17 15.01 127.35 47.16  42.99 23.38 67.57

Notes. Top panel: excess WTP in our model for the overall population and within each preference type.

Bottom panel: excess WTP for a single-type model, where all agents are either EU or DT.

consideration in the overall population results in a near 12 percent higher willingness to pay
to avoid the simple lottery relative to a model that imposes full consideration.*®

We conclude by observing that both the full and the triangular consideration model
cannot rationalize the choices of a substantial fraction of households in our data and in
general deliver a poor fit, as shown in Figure 5.3. Even adding an Extreme Value Type I
error term to the utility function in Eq. (4.3) and estimating a Mixed Logit model does not
remedy this problem. Indeed, the Mixed Logits do not fit our data well, while our limited
consideration model essentially replicates the observed shares.

For completeness, in the figure we also display the fit of a limited consideration model
where consideration is narrow and choice follows from Eq. (2.4). While this model fits the
data well relative to the Mixed Logit models with full or triangular consideration (compare
the third panel to the top two panels in Figure 5.3), it falls short of our benchmark model.
This is not surprising: by construction, this model is restrictive in how bundles enter the
consideration sets. As a result, it cannot, e.g., set the shares of bundles with d' < d'* to
zero, or match certain features of the joint distribution of chosen alternatives in the two

contexts, such as rank correlations of choices across the two different coverages.’

38These results are sensitive to the choice of the simple lottery to benchmark willingness to pay. Changing
the stakes will induce a non-linear response by the EU types but a linear one by the DT types. Changing
the loss probability will induce a non-linear response by the DT types but a linear one by the EU types.

39The narrow consideration model implies a rank correlation of .42 while in the data and under the broad
consideration model this coefficient equals .61 and .62, respectively. In comparison, in the Mixed Logit model
with full consideration this correlation is .45, while with lower triangular consideration it is .65.
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Figure 5.3: Choice probabilities for deductible bundles in a Mixed Logit model with full consid-
eration and with triangular consideration (first and second panel), and in a limited
consideration model with narrow and with broad consideration (third and forth panel).
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6 Implications for Welfare Analysis

In our setting, there are three channels for potential welfare losses. First, limited considera-
tion may prevent agents from choosing their first best. Second, if the probability distortions
are capturing a mismatch between subjective and objective beliefs about loss probabilities, "
agents may not choose their objective first best, even if they consider it. Third, non-expected
utility maximizing households (the DT type in our model) may be open to nudging, whereby
modifications of market features that leave the behavior (and welfare) of EU households
mostly unchanged may trigger large changes in behavior (and welfare) of DT households.

We therefore conduct two welfare exercises aimed at assessing the impact of each of these
channels on the welfare of households purchasing auto deductible insurance. In the first
exercise, we estimate the impact on welfare of all households having full consideration. To
do so, we take the preferences estimated using our limited consideration model, predict each
household’s optimal choice from the entire menu D, and compute each household’s utility
gain (in certainty equivalent terms). To carry out this exercise, we need to take a stand on
how does the household value alternatives. For the EU type, we use their choice utility (also
called decision utility), i.e., the CARA utility function (with v distributed according to our
estimate of the distribution F'). For the DT types, we report results both for their choice
utility, i.e., using the Prelec distortion function in Eq. (4.2) (with w distributed according
to our estimate of the distribution G); and for the case where the probability distortion
function is completely removed, so that Q(u) = p and the household values alternatives
based on their net present value (NPV). This also allows one to think about the effect of
eliminating the mismatch between subjective and objective beliefs about loss probabilities,
if this is what the probability distortion function captures.

In the second exercise, we propose a restructuring of the auto insurance market where

collision and comprehensive coverage are offered as a single auto insurance product with

D = {100, 200, 250, 500, 1000}

auto I II
ptt =+ p
Xéauto _ XIE + XIIZ

auto

where 2% is the probability of experiencing a claim in either collision or comprehensive (we

disregard the probability that a claim occurs in both contexts within the policy period as

fauto i the premium charged for an auto

this probability is extremely low in our data) and x
coverage that offers the same deductible in collision and comprehensive when firms operate

under perfect competition or if they use a constant markup rule.

40Gee, e.g., the model with imperfect information in Gualdani and Sinha (2023, Example 2).
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Again, we take the preferences estimated using our limited consideration model, predict
each household’s optimal choice, and compute the household’s utility gain/loss (in certainty
equivalent terms). However, to carry out the exercise not only do we need to take a stand on
how does the household value alternatives, but, importantly, also on how does the household
draw its consideration set after the intervention. For the former, we proceed as in our first
welfare exercise, and report results where the EU types value alternatives based on their
choice utility, and DT types based on both their choice utility and on the alternatives’ NPV.
For the latter, we report our results under several scenarios, detailed below. This exercise
may help inform the debate on the need to “simplify insurance choice,” and clarify the role
of limited consideration in mediating nudging effects.

Before presenting the results of these two exercises, we explain why EU and DT house-
holds may respond differently to an intervention that combines collision and comprehensive
into a single coverage. A defining feature of the DT model is that it is non-linear in proba-
bilities. Hence, offering insurance as a bundle or as a single product may have a first order
impact on DT households’ choices and welfare. To see why, suppose the probability distor-
tion function is strictly sub-additive (as is the case in our estimated model). Then, under
the maintained assumption of narrow bracketing (Assumption 2.3), the agent’s willingness
to pay to avoid a $500 loss which occurs with a 10 percent chance, is strictly lower than twice
their willingness to pay to avoid the same loss with 5 percent chance. Put differently, a single
insurance product against two (mutually exclusive) identical losses, instead of a bundle of
two products, reduces the degree of over-weighting of loss probabilities. At the same time,
combining insurance products into one line of insurance limits choice, and may eliminate the
first best alternative. Ceteris paribus, for a fully rational agent making choices according
to the EU model, this can only be welfare reducing. Interestingly, there are examples of
insurance products that are indeed sold both as a single coverage and as a bundle, such as
single limit liability coverage versus bodily injury and property damage in auto insurance. In
summary, our first welfare exercise addresses the question: what is the (average) welfare cost
associated with limited consideration? Our second welfare exercise addresses the question:
what are the welfare implications of combining collision and comprehensive into a single
product, and how does the presence of limited consideration alter these implications?

The top panel of Table 6.1 reports our estimates of the welfare losses due to limited
consideration. Using the choice utility for each preference type, the welfare losses are about
$30, or 12.7% of the average price of the cheapest bundle. The effect is smaller ($18 or
7.6%) if for DT types we use the alternatives’ NPV as their value (i.e., we shut down the
probability distortion). This is expected, since all utilities and utility differences decrease.

The bottom panel of Table 6.1 reports estimated welfare changes associated with combin-

ing collision and comprehensive insurance into a single product. We carry out the exercise
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Table 6.1: Welfare implications of limited consideration and of combining collision and com-
prehensive into a single coverage (95% confidence intervals in square brackets)

Choice CARA As a % of Average price
Utility NPV for (1000,1000) ($238)
All at Full Consideration 30.1 18.2 12.7 7.6

283 319 [16.0 20.3] [11.9 134] [6.7 8.5

Bundled Auto Insurance:

Worst Case Consideration -3.2 -18.7 -1.3 -7.9
[-8.0 1.5] [22.2 -152] [-3.4 0.6] [-93 -64]

Middle Case Consideration 48.1 26.5 20.2 11.1
[45.9 50.3] [25.4 27.7] [19.3 21.1] [10.7 11.7]

All at Full Consideration 52.3 29.6 22 12.5

[50.0 54.7] [28.2 31.1] [21 23] [11.8 13.1]

for three different ways in which consideration sets may be drawn after the market interven-
tion. In the worst case scenario, in the sense that consideration is lowest, the probability
that deductible d is considered equals the estimated consideration probability for bundle
(d,d),d € D, In this case, the impact of the intervention is negative, although the magni-
tude of the effect depends substantially on how the welfare of DT types is evaluated. This is
because under choice utility, following the intervention, DT types overweight the overall loss
probability to a lesser degree than they did with separate coverages, and this effect attenu-
ates substantially the welfare reduction from not being able to choose from a larger menu.
On the other hand, when welfare of DT types is evaluated according to NPV, although the
overweighting of loss probabilities affects choice, it does not enter the welfare calculations.

Under full consideration, the best case scenario, the welfare gains for both evaluation
approaches are positive and large. Relative to the worst case scenario, this is, of course,
expected. What is more interesting is that the welfare gains are higher than those obtained
in the counterfactual of full consideration that maintains the status-quo separation between
collision and comprehensive insurance. This is because under full consideration, the EU
types are worse off when the collision and comprehensive are combined into a single product
(for them, the choice set is being reduced without any associated benefit); however, the DT
types, despite facing a smaller choice set, benefit from such a reduction because in making
choices they overweight losses by a smaller degree. The latter effect dominates, more so
when welfare is computed based on choice utility rather than on NPV.

For completeness we also report welfare changes for a case that we label “middle con-
sideration,” in which each deductible in the combined single coverage is considered with a
probability equal to the sum of the probability that it is considered either as collision or

comprehensive deductible (or with probability one if the sum exceeds one). The results are
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reported in the middle row of the bottom panel of Table 6.1. Even with this intermediate
consideration level, the welfare gains are substantial.

Based on these welfare exercises, we argue that the interplay between features of the
decision making process at the utility evaluation level and of the consideration mechanism
cannot be ignored when analyzing possible market interventions. In the second welfare
exercise carried out above, reducing the feasible set may lead to unambiguous welfare gains,
provided consideration increases. However, if consideration does not increase, the same
intervention can lead to welfare losses that exceed the gains stemming from nudging the

non-expected utility maximizers in the population.

7 Discussion

This paper provides semi-nonparametric point identification results for a model of discrete
choice under risk that allows for unobserved heterogeneity in preference types, unobserved
heterogeneity within each type, and unobserved heterogeneity in consideration sets, while
confronting the fact that the covariates x characterizing products do not exhibit indepen-
dent variation across alternatives within a context, but only across contexts. We apply our
method to study demand for deductible insurance in two lines of property insurance, and to
analyze the welfare implications of an hypothetical market intervention where the two lines
of insurance are combined into a single one. Our findings provide evidence of the importance
of allowing for the rich amount of unobserved heterogeneity that our model features.

The choice environment that we study in this paper is similar to that studied in Barseghyan
et al. (2021b). They offer a comprehensive analysis of the implications of the Spence-Mirlees
single crossing property for semi-nonparametric identification of a model of discrete choice
under risk that features a single preference type and unobserved heterogeneity in consider-
ation sets. They also illustrate the tradeoff between the common exclusion restrictions and
the restrictions on consideration set formation required for semi-nonparametric point iden-
tification. Their work is the closest to ours. However, in our model consideration sets are
formed at the bundle level (i.e., across contexts), and hence the single crossing property that
both Barseghyan et al. (2021b) and we assume to hold within a context, may not necessarily
hold across tuples of alternatives. This is because bundles may not be monotonically ranked
(with respect to preference parameters) against each other. Hence, the results in Barseghyan
et al. (2021b) do not apply and in this paper we develop a new approach to obtain point

identification of the distribution of preferences, of the shares of preferences types, and of
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features of the distribution of consideration sets given type.*! In Barseghyan and Molinari
(2023) we show that in a richer data environment where the researcher observes a character-
istic for each alternative that displays independent variation both across agents and across
alternatives, and that affects utility but not consideration, semi-nonparametric point iden-
tification holds for a flexible pure random coefficients model with unrestricted dependence
between the random coefficients and the consideration set formation mechanism.

The challenges posed to identification of discrete choice models by unobserved hetero-

42 Tt is not

geneity in consideration sets have long been recognized (e.g., Manski 1977).
uncommon for the problem to be ignored, as a textbook assumption is that agents pick
an alternative to maximize their utility over the entire feasible set. When heterogeneity in
consideration sets is allowed for, point identification of the model often relies on the availabil-
ity of auxiliary information about the composition or distribution of agents’ consideration
sets, or on two-way exclusion restrictions, whereby certain variables impact consideration
but not preferences and vice versa. A third approach relies primarily on restrictions to the
consideration set formation process.*?

When such assumptions may not be credible and one does not have access to auxiliary
data or valid exclusion restrictions, Barseghyan et al. (2021a) provide a method to obtain
informative sharp identification regions for the parameters of discrete choice models, even
when preferences and consideration sets may depend on each other, under the assumption
that agents’ consideration sets include at least two alternatives. Cattaneo et al. (2020, 2021)
provide revealed preference theory, testable implications, and partial identification results for
preference orderings and attention frequency, in very general models of limited consideration
but without heterogeneity in preferences, under the assumption that one observes agents

repeated choices (in a single context) while facing varying choice sets.

41 As we allow for multiple preference types, our analysis extends that of Barseghyan et al. (2021b) even
in the simplified framework where consideration is independent across contexts.

42Many important papers in the theory literature—including papers on revealed preference analysis under
limited attention, limited consideration, rational inattention, and other forms of bounded rationality that
manifest in unobserved heterogeneity in consideration sets—also grapple with the identification problem
(e.g., Masatlioglu et al. 2012; Manzini and Mariotti 2014; Caplin and Dean 2015; Lleras et al. 2017; Cattaneo
et al. 2020). However, these papers generally assume rich datasets—e.g., observed choices from every possible
subset of the feasible set—that often are not available in applied work, especially outside of the laboratory.

43Examples for the first approach include De los Santos et al. (2012); Conlon and Mortimer (2013); Honka
et al. (2017); Honka and Chintagunta (2017); for the second, Goeree (2008); van Nierop et al. (2010); Gaynor
et al. (2016); Heiss et al. (2021). Recent examples for the third approach include Abaluck and Adams (2020);
Crawford et al. (2021); Lu (2022).
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A Appendix: Proof of Theorem 3.1 and Corollary 3.1

Proof of Theorem 3.1. Fix v € [v*,v**] and the corresponding X'(v). By Assumption 3.4,
X1!(v) is non-empty and there is an e-ball around it of positive density. By Definition 3.1,
for any (x*,x') e X!(v), V2111 (xh) = V1121 (x™) = v. Along with Assumption 3.3, this implies
that there are vectors x' = (x¥,x') € B(X!(v)) and x” = (x*,x") € B.(X'(v)) such that
V= V2111 (x¥) < V1121 (x™) and V2111 (x¥) > V1121 (x™"). We claim that

lim (apr(z* = Tulx)  oPr(Z = I“|X”)) —af(W) h(x,01), (A1)

ox1 ox1

x/ x"—x

where hy(x, 1) is a function of x and of the consideration probabilities given by:

hl(xaol>:Ol({Il,bIQ,l};g) ; 1( %) 01({11,1712,2}312,1) ; f *)
(%)

—<01({Il,1,12,2};11,2) ; 01({11,1,12,1};{12,2,11,2}) ;f)> (A-Q)

Under Assumption 3.5-(I), Eq. (A.2) simplifies to*!

oV, (x
x.00) = (0T, T} 2) = O(Ton Tork (Tan ) S 0 ()
Under Assumption 3.5-(II), Eq. (A.2) simplifies to
Vo (x)
hi(x,0:) = (Ol({zl,1a12,2}§12,1) - 01({11,1,12,2};11,2)>T # 0 (A.4)

To derive the expression for hy(x,O;) in Eq. (A.2), we return to Eq. (3.9), which states

1,1
avk,r

ox?

ﬁPr(I* = Il,l‘x) .

ox?

Z Or({Z11, Tus ) B(Z10, % Vi) f (Vi)
() 2(1,1)
owi

ox?t

+(1-a) Z Oo({T11, iy }: B(Z11, 3 Wi, ) ) g W)
(k,r)#(1,1)

Under Assumptions 3.3-(IT) and 3.4, when x" and x” are sufficiently close to x, the relative

order of the cutoffs for type t; = 0 preferences, W,i;, does not change. For type ¢; = 1

44These derivations are based on repeated use of facts such as

O1({Th 1, L2} D) = O1({Th1,Z22, 121 1 D) + O1({Th 1, T2} {T21}) = O1({Th 1, T22, L1 2} ) + O1({Z1 1, Z2,2}; {11 .2})
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preferences, it changes only for the cutoffs involving bundles {Z5 1,7 2,75 2}. Hence,

OPr(T* =TI, 1 |x')

ox1

aVl,l X/
= aO01({T11, 22, }; @)ﬂV?l”ll)%
OV, (xX)

ox?t

+ @01({11,1,1_2’2};IQ’1>f(V21:21) + R(X,) (A5)

8 PI‘(I* = Il,l |X”)
ox?

V)5 (x")

ox?t

= a@l ({1-171, 1—272}; Il,Z)f(Vé;Ql)
oVyy (X"

ox?t

+ a0 ({Th1, Ton b {Th 2. To}) f (Va)) + R(x") (A.6)

where R(-) is a collection of terms that are continuous functions of their argument around
x. Consequently, in the limit where both x’, x” tend to x, R(x’) and R(x”) are identical to
each other, and Eq. (A.2) follows by subtracting Eq. (A.6) from Eq. (A.5).

Va1 (x)

Next, observe that hi(x,O;) equals a non-zero constant multiplied with —%5— (or
vy, . . o
Vg%l(x)). The latter term is a known function of the data and is different from zero. Conse-

quently, the density function of the random coefficient for type t; = 1 agents evaluated at v,
f(v), is identified up to a non-zero constant (a multiplied with a non-zero linear combination
of consideration probabilities that does not depend on v). If [v*,v**] = [0, 7], then using
that f(v) integrates to one over its support identifies « - hi(x,O;), and consequently the

entire function f(-). The same argument applies to establish identification of g(-). O

Proof of Corollary 3.1. Once af(v) - hi(x,0;) and (1 — a)g(w) - ho(x, Op) are identified, so
are f(v) and g(w) provided there is large support. Under Assumption 3.5, hi(x,O;) and
ho(x, Q) can be decomposed into a product of two terms, one known and another entirely
dependent on consideration, see Eqs. (A.3)-(A.4). Moreover, these terms will be identical,
as long as O;(:;-) = Op(+;-) for all relevant combinations of {Z; 1,71 9,751,752} in part
(i) (respectively, part (ii)) of the assumptions stated in Corollary 3.1. Hence, the ratio of
af(v)-hi(x,0;) and (1 — a)g(w) - ho(x, Op) identifies a. O
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