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€ Abstract

Point-of-care (POC) diagnostic devices have been developing rapidly in recent years, but
they are mainly using saliva instead of blood as a test sample. A highly efficient
self-separation during the self-driven flow without power systems is desired for
expanding the Point-of-care diagnostic devices. Microfiltration stands out as a promising
technique for blood plasma separation but faces limitations due to blood cell clogging,
resulting in reduced separation speed and efficiency. These limitations are mainly caused
by the high viscosity and hematocrit in the blood flow. A small increment in the
hematocrit of the blood significantly increases the pressure needed for the blood plasma
separation in the micro-filters and decreases the separation speed and efficiency.
Addressing this challenge, this study explores the feasibility of diluting whole blood
within a microfluidic device without external power systems. This study implemented a
spiral microchannel utilizing the inertial focusing and Dean vortex effects to focus the red
blood cells and extract the blood with lower hematocrit. The inertial migration of the
particles during the capillary flow was first investigated experimentally; a maximum of
88% of the particles migrated to the bottom and top equilibrium positions in the
optimized 350 x 60 um (cross-sectional area, 5.8 aspect ratio) microchannel. With the
optimized dimension of the microchannel, the whole blood samples within the
physiological hematocrit range were tested in the experiments, and more than 10% of the
hematocrit reduction compared between the outer branch outlet and inner branch outlet in

the 350 x 60 pm microchannel.
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€ Introduction

Point-of-care (POC) diagnostic devices are ideally rapid, easy-to-use, low cost, and
accurate for disease antigen or nucleic acid detection. Over the past decade, there has
been a growing interest in POC disease diagnostic devices, with POC technology being
applied for the rapid detection of many diseases [1]. However, the expansion of POC
technology applications is restrained by certain technical barriers, particularly in cases
where biomarkers need to be detected in blood plasma to ensure high detection accuracy
[2-6]. A self-powered standalone blood plasma separation technique adapted to the POC
applications is highly desired to address these technical barriers and expand the at-home
test device to the broader detection of diseases [7]. Most blood plasma separation
microfluidic devices rely on external devices and functionalities such as syringe pumps,
magnetic forces, dielectrophoretic forces, acoustic forces, etc [8-11]. In contrast to most
microfluidic devices, the blood plasma self-separation platform operates independently,
without relying on external pumping systems or additional functionalities [12]. The
pre-vacuumed microchannel space attached to the main microchannel and the capillary
action induced by the modified microchannel surface are the primary techniques for
propelling blood flow in the microchannel. To implement pre-vacuumed microchannels
for self-pumping the blood flow in the microchannel, Dimov et al. utilized a
pre-vacuumed PDMS microchannel to establish a pressure gradient between atmospheric
pressure and the pressure within the microchannel, driving the blood flow within the
microchannel [13]. By implementing the filter trench, the blood cells were sendimented,
and the plasma was extracted forward in the microchannel. Yeh et al. employed a vacuum
battery, involving a vacuumed microchannel attached to the main microchannel, to propel
the blood sample within the microchannel and facilitate the separation of plasma by
sedimenting the blood cells in the microwell and extracting plasma through microfilters
[14]. In their technologies, the separation time is relatively longer due to the low flow
rate and the requirement for blood cell sedimentation. Beside pre-vacuumed
microchannel, the capillary action also can serve as the driving force for fluid flow within
the microchannel [15]. By modifying the hydrophilicity of the channel surface, the

biofluid is able to flow into the microchannel spontaneously [16]. Maria et al. introduced



a hydrophobic patch in the surface-modified hydrophilic microchannel [17]. The blood
flow was driven by the capillary pressure induced by the hydrophilic microchannel. In the
hydrophobic patch, plasma separated out due to the higher flow speed resulting from the
lower viscosity compared to the blood cells, while the blood cells were trapped in the
hydrophobic patch. However, this technique is limited by the characteristics of blood
samples and is challenging to directly apply to Point-of-Care (POC) applications.
Researchers have explored microchannel dimensions and geometries to leverage
hydrodynamic forces for blood plasma separation, employing techniques such as inertial
migration and Dean vortex [18-20]. However, these methods still rely on the consistent
flow rate of the blood provided by external pumping systems, as the fluid's flow rate

directly influences the lift and drag forces exerted on the blood cells.

Unlike the flow driven by external pumping systems, capillary flow exhibits inconsistent
flow rates due to pressure drops resulting from increasing viscous forces within the
microchannel [21-23]. Consequently, the use of inertial focusing or other hydrodynamic
forces for blood plasma separation is constrained in capillary flow due to its inconsistent
and insufficient flow rate [24]. The microfilters recently became one of the most popular
technologies for blood plasma separation in microchannels with self-driven flow [25].
Various microfiltration designs have been developed to achieve blood plasma separation
within microfluidic systems [26-32]. However, these microfilters have their limitations.
Dead-end and membrane filters are susceptible to clogging by blood cells, leading to
reduced separation speed and yield [33]. While cross-flow filters can mitigate the
clogging issue, separation speed remains limited, particularly when filtering blood
samples with a high hematocrit (volumetric percentage of red blood cells in whole blood)

[34].

In the context of blood plasma separation using microfilters, lower hematocrit levels are
always preferred to achieve higher separation speeds, primarily due to the decreased
viscosity of blood influenced by the quantity of red blood cells (RBCs) [35,36]. In
microchannels with tiny microfilter dimensions (~2 pm), even slight increases in

hematocrit within the blood sample lead to a noticeable pressure difference within the



filters, caused by changes in blood flow viscosity [37-40]. The complexities of blood
viscosity, influenced by RBC shape changes and the formation of RBC rouleaux due to
cell aggregations, especially under low shear rate conditions (<100 s7), highlight the
critical role of hematocrit [35, 41]. At higher shear rates, RBCs change shape, becoming
flatter and aligned with the flow, reducing resistance to blood flow and breaking apart
RBC rouleaux. Nonetheless, hematocrit remains a significant factor influencing blood
viscosity [42]. The work of Weiss et al. reported the considerable impact of hematocrit,
showing a threefold increase in pressure requirements for blood with a 60% hematocrit
compared to that with a 36% hematocrit [37]. Even a small 1% increase in hematocrit
raises blood viscosity by 4% wunder high shear rate conditions [42]. As most
self-driven-flow-based microfiltration devices operate within a low shear rate range [43],
the influence of hematocrit on blood viscosity becomes more pronounced. The significant
effect of hematocrit on blood viscosity, combined with the potential for additional RBC
cluster formation in the flow, highlights the need to minimize the blood hematocrit to
prevent delays in blood plasma separation and filter clogging [44]. Hence, achieving a
slight (5-10%) reduction is well expected to lead to a substantial increase in blood plasma
separation in the microfilter settings, and this approach for the microfilter settings

emerges as a promising strategy.

In the field of inertial microfluidics, the effects of inertial focusing and Dean vortex on
particle migration have been explored, particularly in channels orchestrated by pumping
systems [45-50]. However, a gap exists in understanding these phenomenon within the
confinement of capillary flow conditions in microchannels. Unlike the controlled
environments with the assistance of pumping systems where meticulous manipulation of
flow rate can be achieved, the efficacy of the inertial microfluidic phenomenon in
capillary flow conditions remains unclear [51, 52]. While the pricise control of the
particles is more difficult to achieve in the capillary flow due to the dynamic change of
the advancing velocity of the meniscus than in the constant flow rate condition where the
flow velocity field is maintained constant, the potential of inertial focusing of RBCs
emerges as a promising method for controlling hematocrit in a self-driven flow

environment [53].



This study focuses on the blood hematocrit reduction under capillary flow conditions
implementing inertial focusing and the Dean vortex phenomenon in an optimized spiral
microchannel. The primary novelty lies in the exploration of inertial focusing and Dean
vortex applications for the blood plasma self-separation in microchannels and
micro-structured settings, coupled with a rigorous quantitative analysis of blood plasma
separation. The experiments using whole blood within the physiological range were
conducted in the microchannel optimized by iterative adjustments to the microchannel
geometry to quantify the separation of RBCs. Initial study was performed with blood
mimicking fluid (BMF) to understand the particle dynamics, and implemeted on the
whole blood condition. This paper presents the experimental study on the inertial
focusing and Dean vortex of the blood cell in the spiral microchannel capillary flow for
enhancement of blood plasma separation in microfilters, and provides a reference for the

self-separation microfluidic system design without external devices involved.

€ Materials and methods

Materials

Indium Tin Oxide (ITO) coated glass slides and IP-S photoresist resin were procured
from Nanoscribe, while 9.5 pm polystyrene microspheres were obtained from Cospheric
LLC. Porcine whole blood was sourced from Lampire Biological Laboratories. Sylgard

184 Silicone Elastomer and its curing agent were purchased from Dow Corning.

Microfluidic Devices Working Principle

In inertial microfluidics, it is a prerequisite for the Reynolds number (Re) to exceed 1 to
ensure that both inertial and viscous forces are effective in the flow. This criterion,
however, imposes limitations on the length of microchannels when dealing with capillary
flow due to the declining flow rate within the channel. Based on experimental results,
microchannels with a depth of 60 um and varying widths of 250 um, 350 pm, 450 pum,
and 550 um have constrained lengths ranging from 22 mm to 32 mm. Due to this
limitation, the length of all microchannels was uniformly designed to be 22 mm. The

hydraulic diameter of the microchannel is also constrained by the target particle size. To
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ensure effective particle migration, the ratio of particle size to hydraulic diameter should
exceed 0.07 [51]. Given that red blood cells (RBCs) are targets for separation, with an
average diameter of 8 pum at their largest portion, the maximum hydraulic diameter of the
microchannel is restricted to 114 um. Another limiting factor is the radius of curvature of
the microchannel, which is influenced by the available space between each turn of the
spiral. As a maximum 550 pm-width microchannel was designed in the experiment setup,
the radius difference between two spiral turns should be more than 600 um to ensure the
spacing between the neighbor spiral microchannel is bigger than 50 pm for practical
microchannel fabrication. Based on these considerations, a spiral configuration was
designed by the equation (1):
r = 0.6 + 6/540 (1)

Where r is the radius in mm of spiral from in to out, 0 is defined from 0° to 1080° which
means 3 turns of the spiral. The spiral channels were meticulously designed and
fabricated for the purpose of investigating particle focusing during capillary flow. These
microchannels possessed cross-sectional dimensions of 250 x 60 um, 350 x 60 um, 450 x
60 um, and 550 x 60 um, with a uniform length of 22 mm. The average radii along the
path from the inlet to the outlet are 0.6 mm, 1.3 mm, and 2.0 mm for the respective three

turns, as depicted in the figure 1.

Figure 1. Spiral Microchannel design (left) and the Spiral Microchannel after the

experiment (right).

Microfluidic Devices Fabrication



The master molds of the microchannels were fabricated with the Photonic Professional
GT, made by Nanoscribe. The Photonic Professional is a two-photon polymerization
system designed to produce micro or sub-micro structures. The specific process used in
this work was Dip in Laser Lithography (DiLL), where the optics focusing the laser used
to cross-link the resist are inserted directly into the resist. This minimizes optical
distortion of the laser and helps ensure peak accuracy of the final features.

The microchannels were then fabricated using soft-lithography method with
Polydimethylsiloxane (PDMS). The Sylgard 184 Silicone Elastomer and its curing agent
are mixed thoroughly at the mass ratio of 10:1 and ensure the curing agent is
homogeneously distributed in the mixture to make the PDMS uniformly cross-linked.
After the PDMS mixture is prepared, pour the PDMS mixture on the microchannel
master mold in a glass container and place the container into a vacuum chamber to degas
the PDMS mixture. Once complete the degassing, the container is replaced from the
vacuum chamber to the oven and baked at 70°C for 3 hours to accelerate the cross-linking
reaction in the PDMS mixture and cure the PDMS slab. When the PDMS is appropriately
cured, carefully detach the PDMS slab from the master mold and use the puncher to
punch the inlet and outlet ports of the microchannel. The PDMS slab with a microchannel
was fabricated to be 1.5 mm in thickness, and all the inlet and outlet ports are 1 mm in
diameter. In all experiments, the 2 ul of BMF and blood samples are dropped into the
microchannel through the inlet without additional pressure and driven by capillary

pressure along the hydrophilic microchannel wall towards the outlets.

Surface Treatment of Microchannels

The surface of the PDMS microchannel is naturally hydrophobic. However, a hydrophilic
surface is necessary to activate the capillary action and make the fluid naturally flow
inside the microchannel. When the PDMS slab is exposed to the oxygen plasma,
oxidation occurs on the surface. This process involves the removal of organic and
hydrocarbon materials from the PDMS surface through chemical reactions with reactive
oxygen radicals and the physical removal by energetic oxygen ions. As a result of

oxidation, the surface of PDMS develops silanol (SiOH) groups, which make the surface
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more hydrophilic. The PDMS surface Oxygen plasma treatment was conducted in a
vacuum chamber below 1 Torr of surrounding air. A criteria of 60-second treatment is
used to ensure the consistency of every experimental condition. The blood contact angle

on the PDMS surface changed from 105° to 22°, as show in figure 2.

)

8 =22°
1 mm

Oxygen Plasma Treatment

Figure 2. Contact angle measurements of the blood drops on the PDMS surface before
(left) and after (right) Oxygen plasma treatment. The PDMS surface was converted from
hydrophobic nature to hydrophilic.

Blood sample preparation

The Porcine blood samples were purchased from Lampire Biological Laboratories. The
blood samples were first centrifuged at 3500 rpm for 30 minutes to separate plasma and
blood cells. Subsequently, the hematocrit level of the original samples was recorded. The
desired blood samples with hematocrit levels of 30%, 35%, 40%, and 45% were then
prepared by either adding or removing plasma from the original blood samples to achieve

the specified hematocrit values for the experiments.

Image processing tool for particle counting

In the microscope view, the particles above the focal level, in the focal level, and below
the focal level have the different appearances in the frames recorded by the high-speed
camera. The particles appearances at the different levels compare to the microscope focal

plane are shown in the figure 3.
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40 pm 30 um 20 um 10 um In focus 10 pm 20 um 30 um 40 pm

Particles above focal plane Particles below focal plane
Figure 3. Particles appear differently at the different levels compare to the focal plane

of the microscope.

In the imaging analysis, particles located within the focal plane exhibit characteristics
akin to clear circular rings. As one moves above the focal plane, these particles gradually
transform into increasingly blurred ring-like shapes, while those situated below the focal
plane present themselves as solid rounds that gradually fade. Leveraging these distinct
features, an imaging processing method has been employed to analyze the video frames
of the flowing particles and quantify their state of focus. This method entails a two-step

image processing procedure, as illustrated in Figure 4.

Step1: remove the particle above focal level Step2: remove the particle below focal level

200 pm

Initial Frame

O Particles above focus level Eliminating unfocused particles
Particles Below focus level

Figure 4. The image processing method to count the in-focus particles and total particles

in a frame.

The image processing method employed a two-step approach for particle analysis. In the
initial step, particles located above the focal plane (characterized as blurry circles) were
removed using a binary technique, while converting the Red, Green, and Blue color
(RGB) image to grayscale. In the second step, particles below the focal plane (resembling
blurry solid circles) were eliminated through a method that involved dividing the image

into 3 x 3-pixel groups. If all pixels within a group were assigned a value of 1



(normalized grayscale value, indicating white color in the binary image), that group of
pixels was collectively assigned a value of 0 (black). This procedure effectively removed
particles positioned below the focal level from the image. Consequently, particles within
the focal plane could be accurately quantified. Furthermore, the particle
in-focus/out-of-focus ratio could be calculated at various levels of channel height. For
instance, when the objective lens was focused at the 25% of the channel height, the
relative ratio of particles migrating to the bottom equilibrium position could be

quantified.

€ Results and discussions

The capillary flow in the microchannel is characterized with Reynolds number (Re). The
microchannels are treated with air plasma to obtain the hydrophilic surfaces for the
capillary flow. The capillary flow speed of the BMF (dynamic viscosity = 3 cP), was
measured within microchannels featuring varying aspect ratios (Width/Height) of 4.2, 5.8,
7.5, and 9.2, all possessing a channel depth of 60 pum. The hydraulic diameters of these
microchannels were computed as 96.77 um, 102.44 um, 105.88 um, and 108.19 um. The

Reynolds number (Re) along the length of the channel can be calculated using Equation
).

— PVDn
Re = . (2)

Where p is the density of the fluid, v is the flow velocity in the microchannel, Dy is the
hydraulic diameter of the microchannel, p is the dynamic viscosity of the fluid. For
microchannels of various sizes and aspect ratios (AR), we recorded data for four distinct
positions of BMF travel starting from the channel inlet. The resulting Reynolds numbers
for BMF flow within these microchannels at multiple travel lengths have been

graphically represented in Figure 5.
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Figure 5. Re at the different travel lengths from the channel inlet in multiple

microchannels with various sizes and aspect ratios.

The inertial migration and Dean vortex effect of the particles in the microchannel both
rely on the higher Re (but < 100, to ensure both the viscous and inertial effects of the
flow in the channel) in the microchannel. Analysis of the data shows that the 5.8 aspect
ratio microchannel maintains a higher Reynolds number over its length, promoting
favorable conditions for inertial migration and the Dean vortex effects in particle
separation within the microchannel. For the experimental setup, a 0.1% particle
concentration BMF containing particles with a diameter of 9.5 um was introduced into
the microchannels. These flow conditions were recorded by a high-speed camera through
an inverted microscope with a magnification of 200x. The focal plane of the microscope
was adjusted to the 25% height of the microchannel (15 um from the channel bottom) to
monitor and enumerate the particles located near the bottom equilibrium position. Data
on the relative particle concentration (the number of particles in the focal plane relative to

the total particle count within the frame) at different travel lengths near the bottom
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equilibrium position in microchannels of various sizes were collected and graphically

represented in Figure 6.
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Figure 6. Particle relative concentration near the bottom equilibrium position at multiple

travel lengths from the inlets of microchannels with various sizes and aspect ratios.

The 5.8 aspect ratio microchannel exhibited a higher overall flow speed, leading to a
relatively greater net lift force acting upon the particles compared to the other
microchannels. Additionally, due to the identical channel height across all microchannels,
the migration distances of the particles in these channels remained comparable.
Consequently, the 5.8 aspect ratio microchannel demonstrated better particle migration
efficiency, with approximately 44% of the particles successfully reaching the bottom
equilibrium position. Considering the negligible influence of gravity in microfluidic
flows, it is reasonable to assume symmetric migration of particles to both the top and
bottom sides. In the 5.8 aspect ratio microchannel, a notable 88% of particles reached
their respective equilibrium positions, a higher percentage compared to 78% in the 7.5

aspect ratio microchannel and 68% in the 9.2 aspect ratio microchannel.
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In the spiral microchannel, Dean number (De) plays a critical role to describe the

intensity of the Dean vortices which can be expressed by equation (3).

= /&
De = Re R 3)

Where Re is the Reynolds number, Dy, is the hydraulic diameter, and Rc is the radius of
curvature of the spiral channel. As shown in the equation (3), De is proportional to the Re
and the hydraulic diameter Dy, and counter proportional to the radius of curvature of the
spiral channel [54]. Since the Re is limited by the capillary flow nature, and Dy is limited
by the size of the targeted particle for the separation, the Rc is designed as small as
possible to enhance the Dean vortices effect on the particles in the microchannels with
various sizes. To gain a comprehensive understanding of the relationship between the
Dean number and travel length, we plotted Dean numbers against travel lengths for
microchannels featuring diverse sizes and aspect ratios. The representation of the De

versus travel length is plotted in Figure 7.
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Figure 7. De at the different travel lengths from the spiral channel inlet in multiple

microchannels with various sizes and aspect ratios.
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The highest overall De was in the 5.8 aspect ratio spiral microchannel. Even though the
De number is small compared to other Dean vortex-based separation devices with
pump-controlled flow, the particles still experienced the Dean drag force applied by the
secondary flow. Especially when the particles reached the lift-force equilibrium positions
in the inertial migration, where the lift-force effects became negligible while the Dean
drag force still exists and dominates the migration.

The 0.1% particle concentration BMF flows in the spiral microchannels with the inlet in
the center and three outlets. Three spiral microchannels with different hydraulic diameter
and aspect ratios were implemented in the experiments. The particles flowed into three
independent branch outlets were recorded and counted. Figure 8 shows the particle

distributions in the inner, middle, and outer branch outlets.
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Figure 8. Particle distributions in the trifurcation branch outlets, more particles

accumulated into the inner outlets.
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The results of the blood mimicking fluid flow with particles prove that the particles also
can be affected by the inertial focusing and Dean vortices in the capillary conditions. In
the most studies in the inertial migration and Dean vortex applications in the microfluidic
field, a high aspect ratio (W/H) microchannel with limited hydraulic diameter (a,/Dn >
0.07, where a, is diameter of particle for separation, Dy is hydraulic diameter of
microchannel) [55]. However, in the capillary flow condition, the flow rate is sharply
decreases with travel length in the microchannel [23], a microchannel that is capable to
hold a higher Re meanwhile also has a relative higher aspect ratio is preferred for the

Dean vortex implemented inertial microfluidic application.

From the results, the 5.8 aspect ratio spiral microchannel has the best performance for
implementing the inertial focusing and Dean vortices in the microchannel to focus the
particles to the inner side of microchannel. The high Re number make the particles inside
the 5.8 aspect ratio spiral microchannel migrate to the equilibrium positions faster and
enhance the Dean drag force to the particles. In the capillary flow, the flow rate keeps
decreasing due to pressure drop caused by the increasing viscous force in the
microchannel. The Re can not satisfy the inertial focusing requirement after ~25 mm
travel length in the microchannels (~100 um hydraulic diameter). Owing to this limitation,
the particles can not fully migrated to the one side of the microchannel as they are in the
flow with consistent high flow rates. The completion of the separation needs more travel
length compared to the inertial focusing effective capillary flow. However, partial
separation of the particles/blood cells still has the value in the microfluidic applications,
especially the separation of the blood cells. The viscosity of the blood is highly
dependent on its hematocrit (hct) and shear rate in the channel flow. The higher viscosity
of the blood poses the challenge for the blood plasma filtration, typically in the capillary
flow [37].

Porcine blood was used in the experiments for blood plasma separation. Distinct to the
BMF, the blood is a shear thinning non-Newtonian fluid. That means the viscosity of
blood flow will become higher in the low shear rate condition due to the RBC

aggregation and deformation, while the viscosity will become lower until consistent in
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the high shear rate condition. Therefore, the viscosity of the blood flow is inconsistent
owing to the changing of the shear rate in the capillary flow. On the other hand, the
lateral forces acting on the RBCs will change due to the deformation of RBC during the
flow, leading to variations in the focusing positions. These effects complicate the
separation of blood plasma compared to separation in the BMF. As it is known that the
hematocrit of blood samples significantly influences blood flow behavior, blood samples
with varying hematocrit levels were utilized for blood plasma separation. The hematocrit
quantification method in the microfluidic channel flow was developed and discussed in
the previous study [56]. The blood samples with 30%, 35%, 40%, and 45% hct were
prepared for the experiments. 2 pl blood drops were introduced into the microchannel
inlets, and the images of the branch outlet channels were recorded by the high-speed
camera at the restricted condition. The hematocrit of the blood flow in the branch outlet
channels was quantified using the grayscale information of the images of blood flow, as
shown in Figure S1. And the hematocrit of the blood flows in the branch outlets are

plotted in the figure 9.
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Figure 9. The blood cell focusing results of the 30%, 35%, 40%, and 45% hct blood
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samples of the 5.8 aspect ratio spiral microchannel. The hematocrit variations in the

branch outlets of the microchannel.

Within the physiological range of the blood samples, the inertial migration and Dean
vortex effect of the blood cells in the capillary blood flow in the 5.8 aspect ratio spiral
microchannel are still functional as they are in the BMF flow but less effective. More
than 5% hct decrease obtained with the 45% hct samples. By incorporating a spiral
microchannel and leveraging enhanced blood plasma separation through inertial
migration and Dean vortex effects, the microfilter-based self-powered microfluidic
device demonstrates faster and more efficient blood plasma separation. This results in a
relatively higher volume of separated plasma and faster separation speeds, addressing
issues such as clogging and pressure drops in microfilters, making this method suitable
for Point-of-Care (POC) diagnosis applications compared to other existing technologies
(Table 1). Consequently, the development of additional microfluidic-based POC
diagnosis devices becomes viable, and the limit-of-detection issue is mitigated due to the
increased separated plasma volume.

Table 1. Blood plasma separation characteristics by methods

Volume range | Separation

Method for separation | time Standalone capability
Conventional

Centrifugation 5-50 ml 10-30 mins No, Bulky centrifuges needed
[57,58]

Microfluidic No, Motor & other power

100-2000 pl 5-10mins

centrifugation [59,60] systems needed.

Microfiltration 5-1000 ul 5_15 mins Partial, some of them need
[13,14,28,30] H external pumping system
Our Approach 2-5ul <1 min Yes, no external device needed

€ Conclusions

In summary, this study investigated the focusing of porcine RBCs and RBC-sized
particles through inertial migration and the Dean vortex effect within spiral

microchannels, as well as the inertial migration of RBC-sized particles within straight

17




microchannels under capillary flow conditions. The experiments in straight
microchannels showed that 88% of particles reached equilibrium positions, indicating the
effectiveness of inertial migration in low-viscosity capillary flow. Notably, within the 5.8
aspect ratio spiral microchannel, a 23% relative concentration difference was observed
between the inner and outer outlets, highlighting the significant particle migration during

BMF capillary flow.

The particles have the rigid property and the actual size is bigger than the procine RBC,
and the BMF has a relative lower and consistent viscosity compared to the blood flow.
Due to these reasons, the particle migration during the BMF capillary flow is more

notable.

In the context of blood flow experiments, the RBCs exhibited high deformability,
impacting their behavior as opposed to behaving as rigid entities. The plasma
environment led to RBC aggregation under low shear rate conditions, resulting in
variable fluid viscosity and rendering the separation process less predictable.
Consequently, many unexplored factors exist, and require further investigation to attain a
more comprehensive understanding and improved modeling of RBC behavior during the
capillary flow in the microfluidic channels under the combined influences of inertial

focusing and secondary flow.

The differences in hematocrit levels between the inner and outer outlets in blood flow
experiments are not as notable as in particle focusing experiments. However, a 5% -10%
reduction in hematocrit yields a notable enhancement in the speed of blood plasma

separation within the microfilters.

€ Supplementary Material

See the supplementary material for the method to quantify the hematocrit value of the

blood flow in the branch outlet.
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