
Low-Overhead Online Assessment of Timely

Progress as a System Commodity

Weifan Chen #

Boston University, MA, USA

Ivan Izhbirdeev #

Boston University, MA, USA

Denis Hoornaert #

Technische Universität München, Germany

Shahin Roozkhosh #

Boston University, MA, USA

Patrick Carpanedo #

Boston University, MA, USA

Sanskriti Sharma #

Boston University, MA, USA

Renato Mancuso #

Boston University, MA, USA

Abstract

The correctness of safety-critical systems depends on both their logical and temporal behavior.

Control-flow integrity (CFI) is a well-established and understood technique to safeguard the logical

flow of safety-critical applications. But unfortunately, no established methodologies exist for

the complementary problem of detecting violations of control flow timeliness. Worse yet, the

latter dimension, which we term Timely Progress Integrity (TPI), is increasingly more jeopardized

as the complexity of our embedded systems continues to soar. As key resources of the memory

hierarchy become shared by several CPUs and accelerators, they become hard-to-analyze performance

bottlenecks. And the precise interplay between software and hardware components becomes hard to

predict and reason about. How to restore control over timely progress integrity? We postulate that

the first stepping stone toward TPI is to develop methodologies for Timely Progress Assessment

(TPA). TPA refers to the ability of a system to live-monitor the positive/negative slack – with

respect to a known reference – at key milestones throughout an application’s lifespan. In this paper,

we propose one such methodology that goes under the name of Milestone-Based Timely Progress

Assessment or MB-TPA, for short. Among the key design principles of MB-TPA is the ability

to operate on black-box binary executables with near-zero time overhead and implementable on

commercial platforms. To prove its feasibility and effectiveness, we propose and evaluate a full-stack

implementation called Timely Progress Assessment with 0 Overhead (TPAw0v). We demonstrate

its capability in providing live TPA for complex vision applications while introducing less than

0.6% time overhead for applications under test. Finally, we demonstrate one use case where TPA

information is used to restore TPI in the presence of temporal interference over shared memory

resources.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases progress-aware regulation, hardware assisted runtime monitoring, timing

annotation, control flow graph

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2023.13

Supplementary Material Software (Source Code): https://github.com/wchen258/TPAw0v

archived at swh:1:dir:94e4198f133a2fb5eca90f45a5875eef2157ccee

Funding Denis Hoornaert: Denis Hoornaert was supported by the Chair for Cyber-Physical Systems

in Production Engineering at TUM and the Alexander von Humboldt Foundation.

Renato Mancuso: The material presented in this paper is based upon work supported by the National

Science Foundation (NSF) under grants number CCF-2008799 and CNS-2238476.

© Weifan Chen, Ivan Izhbirdeev, Denis Hoornaert, Shahin Roozkhosh, Patrick Carpanedo,
Sanskriti Sharma, and Renato Mancuso;
licensed under Creative Commons License CC-BY 4.0

35th Euromicro Conference on Real-Time Systems (ECRTS 2023).
Editor: Alessandro V. Papadopoulos; Article No. 13; pp. 13:1–13:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wfchen@bu.edu
https://orcid.org/0009-0002-4856-0421
mailto:ivani@bu.edu
mailto:denis.hoornaert@tum.de
https://orcid.org/0009-0009-7419-549X
mailto:shahin@bu.edu
https://orcid.org/0000-0001-5187-5999
mailto:pfcarp21@bu.edu
mailto:sanas@bu.edu
mailto:rmancuso@bu.edu
https://orcid.org/0000-0003-3558-5216
https://doi.org/10.4230/LIPIcs.ECRTS.2023.13
https://github.com/wchen258/TPAw0v
https://archive.softwareheritage.org/swh:1:dir:94e4198f133a2fb5eca90f45a5875eef2157ccee;origin=https://github.com/wchen258/TPAw0v;visit=swh:1:snp:a0733e1559103134836dd253f934c8aebd47ac79;anchor=swh:1:rev:45adb73e8be5ee4423aa8a7fadad289477193236
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Low-Overhead Online Assessment of Timely Progress as a System Commodity

1 Introduction

Prompted by the proliferation of cyber-physical, safety-critical, and human-in-the-loop

systems, the notion of timeliness in computing has gained growing interest. The accompanying

demand for complex, robust, and computationally demanding control algorithms has led

the real-time community to shift its focus away from simpler hardware platforms to high-

complexity and high-performance platforms. As the complexity increases in platforms, many

challenges have surfaced at all the software/hardware stack layers. It is well understood that

the logic of an application can be hardened against control-flow attacks via Control Flow

Integrity (CFI) [39] methods. But no established methodologies exist for the dual problem

in the temporal domain, for which we coin the name Timely Progress Integrity (TPI).

The introduction of heterogeneous multi-core System-on-Chip (SoC) along with complex

memory subsystem mechanisms at the hardware level has complicated the problem of ensuring

TPI. In particular, memory subsystem hierarchy such as shared [49], non-blocking caches [62],

shared memory controller [66], and DRAM organization [65] are among noteworthy sources of

interference. The interplay of each element mentioned above renders the task of guaranteeing

timeliness an open challenge. In turn, the introduced complexity in SoCs and their ongoing

proliferation have prompted the need for more complex operating systems and OS-level

scheduling strategies, which exacerbate the problem.

The real-time community has achieved important milestones towards restoring predict-

ability [45, 48]. But traditional methods – e.g. static WCET analysis, memory resource

partitioning – have largely focused on respecting end-to-end constraints in the worst case, as

opposed to reason on the current (timely) rate of progress of live applications. Solutions that

leverage code instrumentation have been proposed to checkpoint the progress of applications

at runtime [37, 38, 58], but a system-level solution that can operate on black-box binaries

and inform a rich OS of the expected/detected progress of its applications for it to make

informed management decisions has not been studied. We propose one such solution.

Timely progress assessment as a system commodity. Reasoning about, controlling, and

reacting to changes in the progress of safety-critical applications is the goal. Thus, the ability

to assess an application’s progress must become a system commodity. In referring to this

capability, we coin the term Timely Progress Assessment (TPA). With TPA, a system is

capable of detecting deviations in the timely progress of an application well before a deadline

is missed, providing the ability to enact corrective measures toward ensuring TPI early on.

On the other hand, when faster-than-expected progress is detected, the accumulated slack

can be redistributed to other workloads. Thus, TPA is an enabling capability towards Timely

Progress Integrity (TPI).

This article presents a system design and methodology called Milestone-Based Timely

Progress Assessment (MB-TPA) to perform TPA on live black-box applications. MB-TPA

relies on binary analysis and widely available on-chip tracing subsystems to detect the timely

completion of intermediate progress milestones for an application under analysis. We discuss

a full-stack implementation of MB-TPA on commercial hardware. The implemented TPA

subsystem was termed Timely Progress Assessment with 0 Overhead (TPAw0v), which we

describe and evaluate. We show that MB-TPA (1) introduces negligible (< 0.6%) overhead

to the monitored applications under test. MB-TPA is able to provide live progress assessment

even if a low-power CPU is used to monitor a high-performance CPU. In light of the discussion

above, we make the following contributions:

13:4 Low-Overhead Online Assessment of Timely Progress as a System Commodity

(3) in Figure 1. The detected positive/negative progress slack is reported back to the OS to

enact management decisions. The tracer was implemented as bare-metal firmware running

on a low-power CPU. The details of our implementation are provided in Section 7.

2 Related Works

Our work finds context in the broad literature concerned with ensuring that the timeliness of

a (set of) critical task(s) can be controlled. In modern platforms, the progress of application

workload can be impacted by many factors. These include scheduling decisions, overheads

introduced by preemptions and migrations [15, 40, 50] and I/O activity [16, 33, 55, 67], un-

predictable cache effects such as self-eviction [17,27], and contention over shared hardware

resources [45, 48]. The set of solutions proposed by the real-time community to reason about

the timeliness of an application can be placed on a spectrum. On one end are static analysis

approaches; on the other are runtime monitoring solutions.

Timeliness (interpreted as the ability to meet a completion deadline) in static analysis

approaches [5, 20, 31, 47] is ensured by computing an absolute worst-case execution time

(WCET) which is then used to compute a worst-case response time (WCRT). The promise is

that WCET/WCRT computation is done by considering the initial state(s) and sequences of

system states that lead to the worst possible temporal application behavior. Given the sheer

complexity of interactions between applications, system-level, and hardware-level components,

static approaches seldomly scale to modern multicore processors [30,35,46].

Recently, approaches based on runtime monitoring have gained momentum. At a high

level, these approaches select a monitoring scheme and a set of system metrics. By monitoring

such metrics online – and taking management actions accordingly – the system detects and/or

avoids undesired outcomes, e.g., uncontrolled contention over a shared resource or a deadline

miss for a critical task. To properly contextualize our work with respect to related approaches,

we categorize runtime monitoring solutions into software- and hardware-based approaches.

2.1 Software-based Monitoring and Progress Assessment

The vast majority of solutions for runtime monitoring and progress assessment introduce

software mechanisms to enact monitoring and/or enact management decisions. We distinguish

four main sub-categories discussed below.

(A) Memory Bandwidth Regulation. Memory bandwidth controllers [59,62,66] monitor

the number of last-level data cache refills and/or writebacks against an allocation budget.

Periodically, they stall the processor if the consumed budget is exceeded. Although bandwidth

regulation aims to prevent the unbalanced progress of co-running applications sharing the

same memory subsystem, no exact knowledge of application progress is constructed.

(B) Feedback Control Scheduling. Feedback control scheduling represents another form of

runtime monitoring. In the context of real-time systems, this approach was pioneered in [60].

The key insight is that the knowledge of task parameters computed offline is refined via

online observations performed at task completion. Task admission is geared accordingly to

meet a target deadline miss ratio. Since the aforementioned original work, a broad literature

on feedback control scheduling has surfaced [19,44,53].

(C) Early Deadline Detection. Early deadline detection is the runtime monitoring technique

at the center of adaptive mixed-criticality scheduling (AMC) [14, 18]. The key insight is

that multiple (at least two) runtime estimates are expressed for high-criticality tasks with

W. Chen et al. 13:5

varying degrees of pessimism. Initially, an optimistic execution time is assumed, and an early

deadline (virtual deadline) is set accordingly. At runtime, the system detects if any early

deadline is missed and takes corrective measures accordingly by dropping [13,24,29,41,54] or

degrading low-criticality tasks [28, 42]. Like feedback control scheduling, runtime monitoring

in AMC systems is limited to detecting an application’s completion (or lack thereof) by a set

(early) deadline. This is equivalent to detecting a single milestone at the application’s end.

(D) Progress Detection. A handful of works attempt to provide a finer-grained under-

standing of the progress of target applications. For instance, the work in [26] periodically

monitors the number of retired instructions to detect a sequence of phases in which the

application’s usage of hardware resources changes. This approach is inherently limited to

applications with a single execution path. In a way that is more closely related to our work,

the works in [36–38,58] consider the full CFG of a target application. These works propose

to instrument a target application’s code via source-to-source translation and/or a modified

compiler. The goal is to insert watchpoints at which progress is assessed in software. At

runtime, when the execution reaches a watchpoint, an interrupt/syscall is issued to decide

whether the system should raise the critical level and drop/suspend low-criticality jobs. In

previous works, the overhead is a limiting factor. Kritikakou et al., in an extension [36]

to [37, 38], propose an algorithm to ignore some checkpoints in order to reduce the overhead.

The authors of PAStime [58] place watchpoints outside of loops to limit the overhead.

Compared to the works in the four categories surveyed above, this paper sets itself apart

because we aim at precise progress assessment without the need to modify/recompile the

application under analysis. Importantly, we are able to express a notion of timely progress

even if the control flow is input dependent. Finally, for the first time, we demonstrate that

leveraging widely available tracing hardware for progress assessment is possible and minimizes

runtime overhead. Indeed, our system never interrupts the application under analysis while

its progress is assessed asynchronously and, therefore, off the critical path.

2.2 Run-time Monitoring via Hardware

Comparatively, less work has explored progress monitoring via specialized hardware support.

Most notably, Lo et al. proposed a customized hardware architecture for runtime monitoring

of hard real-time tasks [43]. Apart from timely progress, the work aims to monitor other

safety properties, such as the presence of uninitialized memory and the correctness of return

addresses. Differently from [43], we focus on commercially available hardware.

Few works have also proposed to leverage trace unit at runtime to perform control flow

integrity [25, 34], while FPGA-based trace decoders were proposed in [6, 32]. We are the first

to utilize a trace unit online to perform timely progress assessment in real-time systems.

3 Background

All the aforementioned approaches for progress assessment [36–38,43,58] consider the CFG

of critical tasks. Kritikakou et al. have constructed a formal grammar to extract the

CFG from a wide range of binaries [37]. There are also a plethora of tools capable of such

transformations [57]. The following section provides a brief overview of CFGs.

(A) Basic Block and Branch Instructions. A basic-block (BB) is a contiguous sequence of

non-branching (assembly) instructions ending with a branching instruction. In other words,

except for the last instruction, a basic block only contains instructions for which the program

ECRTS 2023

13:6 Low-Overhead Online Assessment of Timely Progress as a System Commodity

counter (PC) of the CPU – or more generally, processing element (PE) – is monotonously

incremented. A branch instruction has one or more target BBs. For example, in Arm®

aarch32/64 [11], an unconditional branch instruction b would take PC to the operand

address, the beginning of a BB. Conditional branch instructions b.cond have two target

BBs. When b.cond is executed, if the condition is met, the PC is set to the operand address,

otherwise to the instruction following the b.cond instruction. The return instruction ret

can have more than two target BBs. It is possible to statically know its target(s) if the call

sites can be fully enumerated.

(B) Control Flow Graph. A program’s control flow transfer information can be expressed

as a directed graph G = (V, E). A node n ∈ V represents a BB, and an edge (np, ns) ∈ E

indicates that the branch instruction in np has ns as a target. We term this type of edge

a normal edge. In practice, it is unnecessary to expand the complete CFG for runtime

monitoring purposes. Instead, one can view the program as a collection of functions with

the entry point at main [37]. Thus, if no watchpoints are to be placed inside a function f,

all nodes and edges related to f can be removed, and an edge from the caller BB to the

returning BB is added. We refer to this operation as the folding of function f, and to the

newly added edge as the folding edge.

(C) Processor Trace. The processor trace, often called the embedded trace, is a highly

compressed data stream generated by a PE when executing binary code. The trace contains

the necessary information to reconstruct the history of the executed program. Trace generation

is often used for debugging and performance evaluation purposes. As such, the on-chip

hardware circuitry dedicated to processor trace generation, i.e., the trace unit (TU), is

designed to introduce negligible overhead, if at all. The typical use of processor tracing

capabilities is in conjunction with external trace probes. In this case, the system runs without

modification while external hardware (probe) is connected to a physical trace port. The

probe collects (portions of) the produced processor trace data for offline analysis. Two

broadly used hardware probes are the Lauterbach® PowerTrace [1] and the Green Hills®

Probe V4 [2].

Trace generation units are almost ubiquitous in embedded and general-purpose high-

performance CPUs. Many embedded modern processors include more or less capable on-chip

TU’s. For example, Arm’s lineup of hardware modules for tracing and debugging that

fall under the CoreSight [7] umbrella includes TU modules such as the Embedded Trace

Macrocell (ETM) and Program Trace Macrocell (PTM). The TU solution from Intel® is

called Processor Trace (PT). The PT infrastructure has been introduced in 5th generation

Intel processors, promising overheads below 5% [21, Chapter 32]. RISC-V also has its own

embedded trace specification [4].

Since trace data is produced at the same (or comparable) timescale as instruction execution,

the data bandwidth is usually considerably high, even after many lossless compression

techniques are applied. A common compression technique only reports the progression of BBs

instead of individual instructions. If the current BB is known, then a single bit of information

is enough to encode whether the (conditional) branch at the end of the BB is taken or not.

When this information is combined with static knowledge of the binary under analysis, the

entire control flow can be recovered. If the current BB ends with an indirect branch such as

a function return, the trace provides an explicit branching address.

Trace data include additional metadata about the processor state. For instance, in systems

that support multiple tasks, the context ID of the process in execution (as determined by the

OS) is also generated. The virtual machine ID is also included for systems with hardware

W. Chen et al. 13:7

virtualization extensions. Similarly, information that can identify an interrupt context

(interrupt taken, interrupt type, interrupt return) is also provided. Other valuable meta-

information for performance analysis can also be included, such as the cycle counter and the

occurrence of other microarchitectural events.

A TU includes hardware resources that go beyond embedded trace generation to perform

some degree of pre-processing. For instance, trace packet filters, counters, sequencers/format-

ters, external input selectors, or aggregators to combine trace data from multiple sources

(e.g., multiple CPUs) can be included in the TU subsystem.

4 System Model and Assumptions

In this section, we describe the assumed system model upon which our MB-TPA is formulated.

These assumptions also dictate the system requirements to implement the proposed MB-TPA,

and ultimately introduce timely progress assessment as a commodity.

4.1 System-level Assumptions

(A) Tracee PE and Tracer PE. We assume that at least two PEs are present: (1) a main

PE (or tracee) running the application under analysis and (2) the other PE serving as a tracer.

Note that no assumption on the components’ nature nor performance is made, meaning that

the tracer and tracee can be implemented using various technologies. For instance, a system

could have high-performance PEs as tracee and be monitored by a low-performance real-time

core or specialized hardware implemented as an ASIC or on an FPGA.

(B) Address Range Filters. We assume that the tracee features a TU providing at least

one range-programmable instruction address filter. That way, the TU can be programmed

to trace specific address ranges corresponding to the immediate next milestones.

(C) On-chip Trace Data Path. We assume that an on-chip data path exists through which

the TU-generated trace data stream can be forwarded to the tracer, as it is commonly the case

for high-performance embedded systems. For instance, many ARM-based COTS platforms

offer dedicated on-chip trace routing and storage within the CoreSight [7] infrastructure1.

4.2 Application-level Assumption

(A) Single Binary. This work targets single-binary applications running on the tracee.

No restrictions on the number of software layers used by the tracee are imposed, meaning

that the target applications can equally run on top of a full-fledged OS, inside a virtual

machine on a hypervisor, or as a bare-metal application. The binary is sufficient to apply the

proposed MB-TPA: we place no assumption on the availability of the target’s source code,

nor that it can be recompiled and/or binary-instrumented. The goal is that MB-TPA can be

automatically employed by a system.

1 Trace data routing components include the Embedded Trace Router (ETR), Embedded Trace FIFO,
and Funnel. Storage components include the Embedded Trace Buffer and Trace Memory Controller.

ECRTS 2023

W. Chen et al. 13:9

negligible delay. This way, the tracer can promptly assess TPI violations and trigger any

correction countermeasure if necessary. Conversely, if the tracer lags significantly behind the

tracee, then it might be too late to act upon detected TPI violations – and one might as well

detect TPI violations at target completion instead.

What makes this challenging? The first issue might reside in the latency for the

propagation of TU-generated data to the tracer PE. As we evaluate in Section 8.1, it is not

an issue if the tracer and tracee are different PEs on the same SoC. A second (and more

problematic) issue is the limited bandwidth of the on-chip channels via which trace data

is streamed. Despite aggressive trace compression, allowing the TU to stream trace data

unrestrictedly leads to buffer overflows due to the performance gap between tracer and tracee

PEs. These overflows can occur both within the TU or at the interface between the TU

and the tracer, preventing any packet from reaching the tracer. Thus the naïve solution of

constantly streaming data from the TU and matching against MBBs does not work.

(C) Dynamic TU Reconfiguration. To reliably ensure milestone detection, we propose

to dynamically reconfigure the TU so that it is silent for most of the time and only emits

bare minimum packets when the event of interest happens – i.e., one of the next MBBs is

reached. At this point, a new set of MBBs to monitor is configured. The TU then becomes

silent again, waiting for the next milestone. In this paradigm, the TU only emits sporadic

and short-lived signals, thus consuming a fraction of the sustainable trace bandwidth. The

information of which MBBs to monitor after a given MBB is reached is expressed in the TMG.

5.2 Trace Blackout Window

Two milestones cannot be placed arbitrarily close to one another. This is a consequence of

the dynamic TU reconfiguration. Suppose MBB1 and MBB2 are adjacent, i.e., when the TU

has detected that tracee’s execution has reached MBB1, then the TU should be reconfigured

to detect tracee’s execution on MBB2. The reconfiguration typically consists of (1) disabling

the TU to reprogram the relevant registers, (2) identifying the MBB that has been reached,

(3) looking up in the TMG the next set of milestones to detect, and (4) resuming the TU.

Let t1 and t2 denote the time for tracee’s execution reaching MBB1 and MBB2 respectively.

From the time t1 at which MBB1 is reached and until the TU is brought back online to

monitor MBB2, there is a window of time during which milestones cannot be monitored. We

call this the trace blackout window and indicate it with the symbol Tr. If the best-case

path between MBB1 and MBB2 is such that (t2 − t1) < Tr, then detection of MBB2 cannot be

guaranteed. Our methodology avoids this issue by design.

Formally, call D(MBBi,MBBj) ∈ R
+ the time-cost to reach MBBj starting from MBBi.

Clearly, this cost is a random variable that depends on the specific path taken and the

progress at which the target executes. Moreover, D(MBBi,MBBj) = ∞ if MBBj cannot be

reached from MBBi. We show that a lower-bound of this cost can be computed and impose

that, for any two valid MBBi,MBBj , it must hold that

min
i,j

{D(MBBi,MBBj)} > Tr. (1)

It is worth noting that the blackout window and the sizable progress requirement discussed

in the first challenge in Section 5.1 both require the distance between two milestones to

be sufficiently large. In practice, the blackout window is generally smaller – we derive this

parameter for our implementation in Section 8.1. Thus ensuring that enough progress occurs

between milestones implies that the constraint imposed by the blackout window is also met.

ECRTS 2023

13:10 Low-Overhead Online Assessment of Timely Progress as a System Commodity

V0 V1 V2 V3 V4

V7

V5

V6

(a) The extracted CFG. Red edges
are folding.

V0 V1 V2 V3 V4

V7

V5

V6

(b) Nodes satisfying the constraint
are colored red.

V0 V1 V5V3

V7

(c) Remove white nodes, add cor-
responding edges.

Figure 3 Illustrative MG generation for the main of the disparity benchmark.

5.3 Milestone Graph Construction (Step 1 and 2)

Figure 3 depicts the intuition behind the Milestone Graph (MG) construction procedure.

First, the CFG of the target application is extracted (Figure 3a). The CFG is annotated by

adding a weight on each edge that is indicative of the temporal distance between two nodes.

Then a subset of nodes satisfying the constraint expressed in Eq. 1 is selected – the red

nodes in Figure 3b. Finally, new edges are added to the red nodes to maintain reachability

relationships, as per Figure 3c. The resultant digraph is a valid MG.

(A) CFG Notation. Given a target black-box binary, the CFG is extracted (Step 1 in

Figure 2). This is a digraph GCF G = (V, E) where V and E are the set of all the vertices and

edges, respectively. Here a vertex vi ∈ V is a BB. An edge (vi, vj) ∈ E is either normal or

folding (Section 3)3. For any edge (vi, vj) ∈ E , we assign a per-edge weight w equal to the

lower bound on the time to execute the instructions in vi, including the folded function if

its out-edge is folding. A safe albeit inaccurate lower bound can be obtained by dividing

the number of instructions in vi by the maximum clock frequency of the tracee4. We define

D(vi, vj) for any two vertices in V as the cost of the path (if any) from vi to vj with the

minimum cost. This is used to lower-bound the minimum time needed to reach vj from vi.

(B) MG Notation. An MG GMG = (M, Q), is a digraph where M ⊆ V is the set of MBBs.

For each MBBi ∈ M, an edge (MBBi,MBBj) ∈ Q signifies that (1) MBBj is one of the next

milestones to detect after MBBi has been reached, and (2) Eq. 1 holds. Note: the edge (MBBi,

MBBj) might not exist in E because the corresponding BBs might not be in an immediate

predecessor/successor relationship in GCF G.

(C) Milestone Selection. The milestone selection problem is the following: (1) given a

blackout window Tr, color the vertices in GCF G either red or white; (2) ensure that for

any two red nodes, ri, rj ∈ V, D(ri, rj) > Tr; and (3) find the maximal set of red nodes.

Other optimization objectives and heuristics could also be used – e.g, minimizing the sum

of distances among red nodes. Finding the optimal solution is not the focus of this work

and left as future work; an algorithm that is guaranteed to find a solution (if one exists) is

presented here.

3 Folding all functions except for main can already produce meaningful milestone graphs for applications
under test. In practice, if the execution time of a function is long, unfolding it to allow milestones to be
placed inside can achieve better granularity.

4 We assume the CPI is greater or equal to one. Notice this might not be true for multi-issue processors.

W. Chen et al. 13:11

(D) Graph Coloring Heuristic. The proposed strategy (Step 2 in Figure 2) is described

in Algorithm 1. The algorithm first colors all of the vertices red (Line 6–8), then iterates

over any non-visited remaining red vertex in DFS search order – thus, starting from the

root BB (Line 9). Next, for each red vertex ri we compute the path with the shortest total

cost D(ri, rj) to all other red vertices in V (Line 12). If for some rj D(ri, rj) > Tr does not

hold (Line 14), color rj white (Line 15). The full adjacency map D for ri can be computed

using Dijkstra’s algorithm [22]. The only adaptation needed to the standard algorithm is to

correctly compute D(vi, vi), which is always 0 in the traditional algorithm. Instead, we must

compute the cost to come back into vi if vi was reached, which can be computed as

D(vi, vi) =

{

wi if (vi, vi) ∈ E

min(vi,vj)∈E{D(vj , vi) + wi} otherwise.
(2)

Algorithm 1 Constrained Directed Graph Coloring.

1 input:

2 GCF G = (V, E), Tr ◁ CFG graph and blackout window
3 output:

4 Colored GCF G
◁ CFG graph with red-colored marked MBB’s

5 init:

6 for each v ∈ V do

7 v.color ← red ◁ Color all nodes red
8 end

9 Rleft ← Topol(V) ◁ Red vertices to visit, in DFS search order

10 algorithm:

11 for each ri ∈ Rleft do

12 D ← Dijkstra(ri, GCF G) ◁ Get all shortest-paths from ri

13 for each rj ∈ V s.t. rj .color == red do

14 if D(ri, rj) ≤ Tr then

15 rj .color ← white ◁ rj unsafe milestone from ri

16 Rleft ← Rleft \ ¶rj♢ ◁ Remove rj from Rleft

17 end

18 end

19 Rleft ← Rleft \ ¶ri♢ ◁ Mark ri as visited

20 end

To finalize the MG GMG, we proceed as follows. M is created from the colored GCF G by

removing all the white vertices vi. To compute Q from E , we proceed as follows. For each

white vertex vi, remove any self-loop and say that incoming (resp., outgoing) edges are of

the form (vp, vi) (resp., (vi, vs)). Then, for each direct predecessor vp of an incoming edge,

we add all the edges of the form (vp, vs) for any direct successor vs of vi in Q.

(E) Degree Reduction. Recall that the number of address range registers available (noted

M∗) at the TU is limited (Section 3). Intuitively, M∗ constraint how many milestones can

be monitored by the TU after (one of) the current milestone is hit. After the MG has been

produced following the procedure described so far, there is no guarantee that the outdegree

(number of outgoing edges) of all the ri ∈ M is below M∗. Thus, a simple pruning strategy

is adopted. That is, for each ri with outdegree greater than M∗, randomly pick one of the

outgoing edges and color the vertex pointed by that edge white; then repeat the procedure to

remove white nodes. This is done until no vertex with outdegree greater than M∗ is found.

We call FinalizeMG(Colored GCF G, M∗) the routine that takes in input a colored

MG and performs edge construction plus MG pruning. Note that the selection of Tr and

computation of the weights w can affect the pessimism of Algorithm 1. Moreover, in the

presence of loops, the lack of static knowledge about the number of iterations that will be

executed at runtime forces the algorithm to assume that only the iteration lower bound is

ECRTS 2023

13:12 Low-Overhead Online Assessment of Timely Progress as a System Commodity

taken. Finally, error-handling branches that are never taken during nominal execution create

short-cut paths (e.g., from entry to exit in a routine) that prevent many intermediate BBs

from being colored in red. Nonetheless, the important advantage of this first step is that an

initial MG can be produced without the need to execute the application.

5.4 Milestone Graph Refinement with Concrete Runs (Step 3)

Refinement of the MG with concrete runs (Step 3 in Figure 2) mitigates the problems with

static MG construction described in Section 5.3. During refinement, the target is executed

on a set of representative inputs, potentially multiple times for each input. Techniques such

as symcretic execution that combine symbolic execution and concrete runs can be used to

automate the generation of representative inputs [23]. For the purpose of this work, we

assume that a set of representative inputs has been identified for the target application.

By executing the target application using representative inputs, we are able to measure

the temporal distance between two BBs in the CFG and gather additional information about

the path(s) taken by the target for each input. Importantly, we can now compute the

max/min number of times that each edge (vi, vj) ∈ E was taken, and thus the min/max

number of iterations of each loop is discovered. We record both observed minimum ai,j and

maximum bi,j number of times each edge is visited. We only preserve the number of visits,

but not their order, despite the trace data does provide the full history of the visited BBs.

These runs are a way to collect extra information about the target and belong to the

offline analysis phase of MB-TPA. In this phase, the TU is configured in a special mode

where the TU can slow down the tracee. This is because the high-bandwidth nature of the

trace data stream can overflow the internal buffer of the TU and cause information loss.

Thus the slowdown ensures that a complete trace from entry to exit of the target is acquired.

This is the only case in MB-TPA when the target is executed with a (possibly) heavy impact

on its runtime due to the activity of the TU.

(A) Branches as a Proxy of Distance. Since the exact temporal progress has been impacted,

we need a different metric that correlates (and lower-bounds) the temporal distance between

MBBs. The metric must be available from the traces and preserved when the runtime of the

application is impacted. Thus, we use the reported number of visited BBs – i.e., the number of

executed branch instructions. The advantage is threefold: (1) can be computed directly from

the acquired trace without interfacing with any other architectural unit – e.g., a performance

measurement unit; (2) when execution flows within the known CFG of the target, one can

always retrieve the number of instructions executed; (3) we can put a (conservative) weight

on branches to the outside of the CFG under analysis, such as calls to dynamically linked

libraries and system calls. From our experience, (2) is unnecessary since the newly acquired

information about the min/max number of loop iterations and the presence of never-observed

paths already enables much lower pessimism in the MG construction.

Under the new metric, the weight of every normal edge equals to one. The weight of a

folding edge depends on the number of branch instructions executed in the folded function

which can vary across different sample inputs. To ensure the blackout window condition

holds (Eq.1), the weight of a folding edge is assigned to be the minimum across all inputs.

Now the effective temporal distance D(ri, rj) is the shortest path from ri to rj . The following

two heuristics can further fold subgraphs with certain properties, so that extra milestones

can be placed.

W. Chen et al. 13:15

At runtime, we track two times: (1) the actual time Θ(i) and (2) the running nominal

time N(i). Let MBBi be the i-th milestone for which a hit has been detected. Θ(i) is updated

with the current time. Therefore, it tracks the time measured since MBB0 was hit and until

MBBi is reached. Conversely, N(i) is updated as N(i) = N(i − 1) + Tn(MBBi−1,MBBi).

At this point, everything is set to assess the timely progress of the target. Whenever a

milestone MBBi is hit, the tracer can check that Θ(i) ≤ min(Tt(MBBi), N(i)). If a controllable

amount of degradation – compared to the reference timing acquired in isolation – is accepted,

one can express the allowed slowdown as α > 1 and check the following condition instead:

Θ(i) ≤ α min(Tt(MBBi), N(i)). (3)

Importantly, all the elements are in place not only for the detection of TPI violations but

also to routinely report positive/negative current slack to the tracee PE. The slack at MBBi

can be calculated as slack(i) = min(αTt(MBBi), αN(i)) − Θ(i).

6 Use Cases for MB-TPA

We hereby provide three use-cases enabled by the ability of MB-TPA to provide runtime

timely progress assessment as a system commodity.

(A) Strict WCET Enforcement. Previous work has provided a methodology based on

code-level instrumentation to insert progress checkpoints (milestones in our notations) with

the goal of enforcing a target WCET for a high-criticality task under analysis [36–38,58]. The

capabilities of MB-TPA seamlessly support one such use case. Consider a mixed-criticality

system in which a critical task is scheduled exclusively on the main core, and low critical

tasks are scheduled on other cores. Kritikakou et al. [37] have proved that the following

regulation policy can guarantee the timeliness of the critical task5. Following their strategy,

low-criticality tasks are suspended if a checkpoint is reached and the slack is not sufficient as

indicated by the following condition:

RWCETiso(x) + RWCETmax + tRT > Dc − ET (x),

where RWCETiso(x) is the remaining WCET (measured in isolation) from the arrival at

watchpoint x until completion. In our MB-TPA, this is equivalent to Tt(MBBexit) − Tt(MBBx).

RWCETmax is the WCET from watch-point x to the next watchpoint when other low critical

tasks are present, which can be measured as Tn(MBBx,MBBx+1) according to Section 5.5 by

adding interference. tRT is the software interrupt overhead. Our MB-TPA does not use

interrupts, but to remain safe, the delay in the milestone detection at the tracer must be

considered. This term is evaluated in Section 8.1. Dc and ET (x) are deadline and actual

time at x. We refer to the latter as Θ(x). The required metrics for the regulation policy are

offered by MB-TPA, thus our method can also achieve strict WCET enforcement.

(B) Progress-aware Profiling. In this use case, we demonstrate that it is possible to acquire

application profiles about their interaction with the underlying hardware in a way that is

progress aware. This can be done by performing online tracking according to what described

in Section 5.6. In addition, the tracer is modified to interface with the performance monitoring

5 Due to space constraint, the proof is omitted here. The work also includes a treatment to regulate loop
components.

ECRTS 2023

13:16 Low-Overhead Online Assessment of Timely Progress as a System Commodity

unit of the tracee. By doing so, it is possible to measure the progression of architectural

events (e.g. cache misses, branch mispredictions, bus stalls) at the reached milestones. This

allows precise attribution of exhibited behaviors to specific code paths inside the target. More

importantly, it enables correlating slowdowns on specific milestones to root causes in terms

of platform behavior. And therefore, to identify hardware bottlenecks on a per-code-path

basis. We evaluate this use case in Section 8.2.

(C) Progress-aware Controlled Degradation. Lastly, we consider TPA-driven detection of

TPI violations due to contention over shared memory resources and perform regulation of

interfering PEs with the goal of tracking a degraded performance setpoint for the target.

In a nutshell, TPI violation is triggered if the target suffers a slowdown greater than

a selected α factor. At runtime, if Equation 3 does not hold, the tracer sends a signal to

the tracee to pause the activity of all the other PEs. After the interfering cores have been

stopped, the target might recover some slack. Thus, it might be possible to resume the

paused PEs. To decide when the interfering PEs should be resumed, we use an aggressiveness

parameter β ∈ [0, 1]. Whenever slack(i) > βαN(i), the interfering PEs are resumed. As

β decreases, the tracer resumes the co-runners as early as possible. When β increases, the

tracer becomes more conservative. We evaluate this use case in Section 8.2.

7 System Instantiation and Implementation Details

We performed a full-stack implementation of the proposed MB-TPA. We name our proof-

of-concept system instantiation Timely Progress Assessment with 0 Overhead (TPAw0v).

TPAw0v was implemented on the ZCU102 development board featuring a Xilinx UltraScale+

MPSoC. The target platform comprises two CPU clusters: (1) the APU cluster with four

ARM Cortex-A53 CPUs operating at 1.3GHz, used as the tracee; (2) the RPU cluster with

two ARM Cortex-R5 CPUs operating at 600MHz, used to implement the tracer. Following

the platform assumptions described in Section 4, the target platform features an ARM

Coresight infrastructure commonly with tracing capability.

Figure 6 illustrates the trace data path. Each tracee CPU has a TU, namely an ARM

Embedded Trace Macrocell (ETM) [10]. The ETMs produce trace data for the respective

core. The ETMs are capable of filtering the trace data by comparing the PC against a set of

4 range-address filters. Each filter uses two registers (TRCACVRn) for the address range’s

upper and lower ends. Trace data packets are generated whenever the PC falls within any of

the defined ranges.

The trace packets traverse multiple on-chip CoreSight components. The bare-metal

drivers used by the tracer to manage all these components were written from scratch. In

TPAw0v, the ETR is configured to asynchronously store trace packets to the RPU cluster’s

scratchpad (TCM), where a 2KB circular buffer is reserved. The TMG in binary format is

also stored on the TCM. The tracer implements all the modes to carry out the full MB-TPA

pipeline described in Section 5, including online tracking.

7.1 Constructing MB-TPA with ETM

To implement MB-TPA, the ETM is driven using a Finite State Machine (FSM) by the

tracer and composed of three states (solid circles), two transition states (dashed circles),

and several transitions as depicted in Figure 7. The controller starts in the Inactive state.

This state is the only one in which reconfiguring the ETM (modifying the address filtering

registers) is allowed, as the ETM is idle. Once reconfiguration is completed, the controller

13:18 Low-Overhead Online Assessment of Timely Progress as a System Commodity

8 Evaluation

First, we evaluate TPAw0v to understand its performance in terms of milestone detection

delay, size of the trace blackout window, and overhead on the tracee. Next, we evaluate the

ability to enact progress-aware profiling and controlled performance degradation.

8.1 Progress Assessment Performance

(A) Delivery Time. Let t denote the time at which tracee executes the first instruction in

the monitored MBB. The TU generates a trace packet toward the tracer via on-chip buses.

Let t′ denote the time at which the tracer receives it. The delivery time ∆t = t′ − t has to

be comparably small so that the TPAw0v can operate effectively. To measure ∆t, we use a

synthetic benchmark on the tracee in which the cycle counter is periodically read. MBBs are

chosen as the BBs where the cycles are sampled. The tracer reads the same cycle counter

upon receiving the signal. For a given MBB, the application’s timestamp is t; the tracer’s

is t′. We sample 1500 data points, 50% in isolation and the rest with interference from

memory-intensive applications. Figure 8 shows the overall (cumulative) distribution. The

delivery time is upper-bounded by 5750 cycles, or 4.4µs on our 1.3GHz tracee.

Recall that software-based detection methods [38,58] inevitably introduce overhead due

to synchronous interrupt handling. In contrast, our method never interrupts the tracee. Due

to our monitoring scheme’s asynchronous nature, the delivery time is not an overhead term.

Nonetheless, it is informative to contrast the overhead for software-based detection to the

magnitude of our delivery time. A convenient way to obtain such measurement is to use

a widely-adopted Linux support for dynamic binary instrumentation, namely UPROBEs [3].

They allow hooks to be registered at different locations of a user application. A software

interrupt is issued when a hook is reached and time can be sampled. We measured the

overhead of UPROBEs at about 4µs.

(B) Blackout Window Size. The reconfiguration of the TU is solely handled by the

function reconfigure residing in the control logic of the tracer. Thus by reading the cycle

counter before/after the function call of reconfigure, the size of Tr can be measured. We

conduct such measurements while running TPAw0v normally with target applications from

the SD-VBS suite [63] which is a diverse collection of computer vision applications. The

characteristics of these benchmarks have been extensively studied by the community [51,52,61].

Our measurements show that Tr is around 3µs. Recall that we choose Tr in terms of number

of executed branch instructions. In the (very unlikely) worst case, all the instructions

executed during the blackout window are branch instructions. Thus, we conservatively set

Tr = 10000 given the 1.3GHz tracee.

(C) Overhead on Tracee. When the tracer only performs TPA but takes no regulation

actions, the target should only experience a negligible slowdown. Five SD-VBS benchmarks

were evaluated: disparity, texture_synthesis, mser, tracking, and sift.

We run benchmarks with their respective default inputs in two configurations: (1) without

TPAw0v, and (2) with TPAw0v but taking no regulation actions. Ten runs are conducted per

benchmark and in each configuration. The top section of Table 1 reports the slowdown caused

by TPAw0v on the benchmarks as a percentage of their runtime. Expectedly, the overhead is

low (< 0.6%). The low yet visible overhead in some applications might arise from interference

on the main interconnect between the tracer and the tracee CPUs. Implementing the tracer

W. Chen et al. 13:19

Table 1 Overhead (%) of tracer activity and TMG/trace size information.

Benchmark disparity text. mser tracking sift

Mean(%) 0.512 -0.009 0.250 -0.072 0.168

Max(%) 0.585 0.033 0.263 -0.110 0.194

Min(%) 0.483 0.085 0.225 -0.059 0.173

of MBBs in TMG 17 5 18 16 13

of MBB hit in execution 143 1169 20 18 19

of unfolding functions 1 1 1 1 2

TMG size (bytes) 340 108 408 320 324

Raw trace size (MB) 10 44.4 14 175.2 236.4

Filtered trace size (bytes) 1500 9400 210 350 300

on the on-chip FPGA might mitigate the issue [64] and further reduce the overhead. Negative

entries indicate that the applications run faster when traced. H. Shah et al. [56] observed

and theorized such counterintuitive timing anomalies.

(D) Application Considerations. The sum of delivery time and blackout window size

(∼ 7.4µs) indicates the responsiveness of the tracer in detecting and reacting to milestone

hits. Thus, TPAw0v is better suited for applications with execution times on the order of

103µs and above, e.g., data processing workloads. Approaches using software interrupts

would incur overheads of at least 4µs, as measured on our platform. Thus, for short-lived

applications, the overhead introduced by software instrumentation would significantly degrade

performance.

8.2 Evaluation of MB-TPA Use Cases

We hereby evaluate the last two use cases described in Section 6. For our evaluation,

we consider the same five aforementioned SD-VBS benchmarks. The memory-intensive

application bandwidth from IsolBench [62] is deployed on all the other cores to create

interference in both main memory and shared cache.

(A) TMG Construction. First, we provide information regarding TMGs and trace data in

the second section of Table 1. When a milestone is placed inside a loop, high granularity

regulation can be achieved. disparity and texture synthesis demonstrate such

granularity as the number of milestones hit is high. TMG size refers to the memory usage

for the tracer to store the binary TMG; raw traces are only used during the offline MG

refinement phase; the TU generates the filtered trace during online tracking.

(B) Progress-aware Profiling. When the execution reaches a milestone, we collect architec-

tural event statistics by directly reading the PMU event counters7. In this evaluation, the

architectural event monitored is the L2 data cache refill, i.e. we track last-level cache misses.

The benchmarks under evaluation run (1) in isolation and (2) with interference tasks. In each

7 ETM can also report architectural events in the trace stream. ETM can optionally implement external
inputs which connect to PMU event bus lines. Event packets can be inserted into the trace stream
whenever the monitored events occur.

ECRTS 2023

13:22 Low-Overhead Online Assessment of Timely Progress as a System Commodity

the capability of our model to detect execution anomalies and enforce corrective measures

to preserve TPI. We envision that the contributions made by this work represent the first

building blocks towards elaborated real-time policies with TPI at their core.

References

1 Powertrace iii. https://www.lauterbach.com/powertrace3.html. Accessed: 01-03-2023.

2 Technology overview. https://www.ghs.com/products/probe.html. Accessed: 01-03-2023.

3 Uprobe-tracer: Uprobe-based event tracing. https://docs.kernel.org/trace/uprobetracer.

html.

4 Working draft of the risc-v processor trace specification. https://github.com/

riscv-non-isa/riscv-trace-spec. Accessed: 01-03-2023.

5 Jaume Abella, Carles Hernandez, Eduardo Quiñones, Francisco J. Cazorla, Philippa Ryan

Conmy, Mikel Azkarate-askasua, Jon Perez, Enrico Mezzetti, and Tullio Vardanega. Wcet

analysis methods: Pitfalls and challenges on their trustworthiness. In 10th IEEE International

Symposium on Industrial Embedded Systems (SIES), pages 1–10, 2015. doi:10.1109/SIES.

2015.7185039.

6 Seyed Mohammad Ali Zeinolabedin, Johannes Partzsch, and Christian Mayr. Analyzing

arm coresight etmv4.x data trace stream with a real-time hardware accelerator. In 2021

Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1606–1609,

2021. doi:10.23919/DATE51398.2021.9474035.

7 ARM. Coresight components technical reference manual, 2004. URL: https://developer.

arm.com/documentation/ddi0314/h/.

8 ARM. CoreSight trace memory controller technical reference manual, 2010. URL: https:

//developer.arm.com/documentation/ddi0461/b/.

9 ARM. AMBA ATB Protocol Specification, 2012. URL: https://developer.arm.com/

documentation/ihi0032.

10 ARM. Embedded trace macrocell architecture specification etmv4.0 to etm4.6, 2012. URL:

https://developer.arm.com/documentation/ihi0064/h/?lang=en.

11 ARM. Arm architecture reference manual for a-profile architecture, 2013. URL: https:

//developer.arm.com/documentation/ddi0487/latest.

12 ARM. ARM CoreSight SoC-400 Technical Reference Manual, 2015. URL: https://developer.

arm.com/Processors/CoreSight%20SoC-400.

13 S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela, S. van der Ster, and

L. Stougie. The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline

sporadic task systems. In 24th Euromicro Conference on Real-Time Systems (ECRTS 2012),

pages 145–154, Los Alamitos, CA, USA, July 2012. IEEE Computer Society. doi:10.1109/

ECRTS.2012.42.

14 S.K. Baruah, A. Burns, and R.I. Davis. Response-time analysis for mixed criticality systems.

In 2011 IEEE 32nd Real-Time Systems Symposium, pages 34–43, 2011. doi:10.1109/RTSS.

2011.12.

15 Andrea Bastoni, Björn B. Brandenburg, and James H. Anderson. Cache-related preemption and

migration delays : Empirical approximation and impact on schedulability. In Proceedings of the

6th annual workshop on. Operating Systems Platforms for Embedded Real-Time Applications,

volume 10 of OSPERT’10, pages 33–44, 2010.

16 Emiliano Betti, Stanley Bak, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Real-time i/o

management system with cots peripherals. IEEE Transactions on Computers, 62(1):45–58,

2013. doi:10.1109/TC.2011.202.

17 Reinder J. Bril, Sebastian Altmeyer, Martijn M. H. P. van den Heuvel, Robert I. Davis, and

Moris Behnam. Fixed priority scheduling with pre-emption thresholds and cache-related

pre-emption delays: integrated analysis and evaluation. Real-Time Systems, 53(4):403–466,

July 2017. doi:10.1007/s11241-016-9266-z.

https://www.lauterbach.com/powertrace3.html
https://www.ghs.com/products/probe.html
https://docs.kernel.org/trace/uprobetracer.html
https://docs.kernel.org/trace/uprobetracer.html
https://github.com/riscv-non-isa/riscv-trace-spec
https://github.com/riscv-non-isa/riscv-trace-spec
https://doi.org/10.1109/SIES.2015.7185039
https://doi.org/10.1109/SIES.2015.7185039
https://doi.org/10.23919/DATE51398.2021.9474035
https://developer.arm.com/documentation/ddi0314/h/
https://developer.arm.com/documentation/ddi0314/h/
https://developer.arm.com/documentation/ddi0461/b/
https://developer.arm.com/documentation/ddi0461/b/
https://developer.arm.com/documentation/ihi0032
https://developer.arm.com/documentation/ihi0032
https://developer.arm.com/documentation/ihi0064/h/?lang=en
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/Processors/CoreSight%20SoC-400
https://developer.arm.com/Processors/CoreSight%20SoC-400
https://doi.org/10.1109/ECRTS.2012.42
https://doi.org/10.1109/ECRTS.2012.42
https://doi.org/10.1109/RTSS.2011.12
https://doi.org/10.1109/RTSS.2011.12
https://doi.org/10.1109/TC.2011.202
https://doi.org/10.1007/s11241-016-9266-z

W. Chen et al. 13:23

18 Alan Burns and Robert Ian Davis. Mixed Criticality Systems – A Review (13th Edition,

February 2022). Universities of Leeds, Sheffield and York, February 2022. URL: https:

//eprints.whiterose.ac.uk/183619/.

19 M. Caccamo, G. Buttazzo, and Lui Sha. Elastic feedback control. In Proceedings 12th

Euromicro Conference on Real-Time Systems. Euromicro RTS 2000, pages 121–128, 2000.

doi:10.1109/EMRTS.2000.853999.

20 Hugues Cassé and Pascal Sainrat. OTAWA, a Framework for Experimenting WCET

Computations. In Conference ERTS’06, Toulouse, France, January 2006. URL: https:

//hal.science/hal-02270434.

21 Intel Corp. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3 (3A, 3B,

3C & 3D): System Programming Guide, 2022. URL: https://www.intel.com/content/www/

us/en/developer/articles/technical/intel-sdm.html.

22 Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,

1(1):269–271, 1959.

23 Peter Dinges and Gul Agha. Targeted test input generation using symbolic-concrete backward

execution. In Proceedings of the 29th ACM/IEEE International Conference on Automated

Software Engineering, ASE ’14, pages 31–36, New York, NY, USA, 2014. Association for

Computing Machinery. doi:10.1145/2642937.2642951.

24 Pontus Ekberg and Wang Yi. Outstanding paper award: Bounding and shaping the demand

of mixed-criticality sporadic tasks. In 2012 24th Euromicro Conference on Real-Time Systems,

pages 135–144, 2012. doi:10.1109/ECRTS.2012.24.

25 Lang Feng, Jeff Huang, Jiang Hu, and Abhijith Reddy. Fastcfi: Real-time control-flow integrity

using fpga without code instrumentation. ACM Trans. Des. Autom. Electron. Syst., 26(5),

June 2021. doi:10.1145/3458471.

26 Robert Gifford, Neeraj Gandhi, Linh Thi Xuan Phan, and Andreas Haeberlen. DNA: Dynamic

resource allocation for soft real-time multicore systems. In 27th IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS ’21), May 2021. doi:10.1109/RTAS52030.

2021.00024.

27 Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich, and Rodolfo

Pellizzoni. A survey on cache management mechanisms for real-time embedded systems. ACM

Comput. Surv., 48(2), November 2015. doi:10.1145/2830555.

28 Xiaozhe Gu and Arvind Easwaran. Dynamic budget management with service guarantees for

mixed-criticality systems. In 2016 IEEE Real-Time Systems Symposium (RTSS), pages 47–56,

2016. doi:10.1109/RTSS.2016.014.

29 Xiaozhe Gu, Arvind Easwaran, Kieu-My Phan, and Insik Shin. Resource efficient isolation

mechanisms in mixed-criticality scheduling. In 2015 27th Euromicro Conference on Real-Time

Systems, pages 13–24, 2015. doi:10.1109/ECRTS.2015.9.

30 Jan Gustafsson. Usability aspects of WCET analysis. In 2008 11th IEEE International

Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC),

pages 346–352, 2008. doi:10.1109/ISORC.2008.55.

31 Damien Hardy, Benjamin Rouxel, and Isabelle Puaut. The Heptane Static Worst-Case

Execution Time Estimation Tool. In Jan Reineke, editor, 17th International Workshop on

Worst-Case Execution Time Analysis (WCET 2017), volume 57 of OpenAccess Series in

Informatics (OASIcs), pages 8:1–8:12, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik. doi:10.4230/OASIcs.WCET.2017.8.

32 Augusto Hoppe, Jürgen Becker, and Fernanda Lima Kastensmidt. High-speed hardware

accelerator for trace decoding in real-time program monitoring. In 2021 IEEE 12th Latin

America Symposium on Circuits and System (LASCAS), pages 1–4, 2021. doi:10.1109/

LASCAS51355.2021.9459137.

33 Tai-Yi Huang, J.W.-S. Liu, and D. Hull. A method for bounding the effect of DMA I/O

interference on program execution time. In 17th IEEE Real-Time Systems Symposium, pages

275–285, 1996. doi:10.1109/REAL.1996.563724.

ECRTS 2023

https://eprints.whiterose.ac.uk/183619/
https://eprints.whiterose.ac.uk/183619/
https://doi.org/10.1109/EMRTS.2000.853999
https://hal.science/hal-02270434
https://hal.science/hal-02270434
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doi.org/10.1145/2642937.2642951
https://doi.org/10.1109/ECRTS.2012.24
https://doi.org/10.1145/3458471
https://doi.org/10.1109/RTAS52030.2021.00024
https://doi.org/10.1109/RTAS52030.2021.00024
https://doi.org/10.1145/2830555
https://doi.org/10.1109/RTSS.2016.014
https://doi.org/10.1109/ECRTS.2015.9
https://doi.org/10.1109/ISORC.2008.55
https://doi.org/10.4230/OASIcs.WCET.2017.8
https://doi.org/10.1109/LASCAS51355.2021.9459137
https://doi.org/10.1109/LASCAS51355.2021.9459137
https://doi.org/10.1109/REAL.1996.563724

13:24 Low-Overhead Online Assessment of Timely Progress as a System Commodity

34 Marine Kadar, Gerhard Fohler, Don Kuzhiyelil, and Philipp Gorski. Safety-aware integration

of hardware-assisted program tracing in mixed-criticality systems for security monitoring. In

2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS),

pages 292–305, 2021. doi:10.1109/RTAS52030.2021.00031.

35 Raimund Kirner and Peter P. Puschner. Discussion of misconceptions about WCET analysis.

In Jan Gustafsson, editor, Proceedings of the 3rd International Workshop on Worst-Case

Execution Time Analysis, WCET 2003 – A Satellite Event to ECRTS 2003, Polytechnic

Institute of Porto, Portugal, July 1, 2003, volume MDH-MRTC-116/2003-1-SE, pages 61–64.

Department of Computer Science and Engineering, Mälardalen University, Box 883, 721 23

Västerås, Sweden, 2003.

36 Angeliki Kritikakou, Thibaut Marty, and Matthieu Roy. Dynascore: Dynamic software

controller to increase resource utilization in mixed-critical systems. ACM Trans. Des. Autom.

Electron. Syst., 23(2), October 2017. doi:10.1145/3110222.

37 Angeliki Kritikakou, Claire Pagetti, Olivier Baldellon, Matthieu Roy, and Christine Rochange.

Run-time control to increase task parallelism in mixed-critical systems. In 2014 26th Euromicro

Conference on Real-Time Systems, pages 119–128, 2014. doi:10.1109/ECRTS.2014.14.

38 Angeliki Kritikakou, Christine Rochange, Madeleine Faugère, Claire Pagetti, Matthieu Roy,

Sylvain Girbal, and Daniel Gracia Pérez. Distributed run-time WCET controller for concurrent

critical tasks in mixed-critical systems. In Proceedings of the 22nd International Conference

on Real-Time Networks and Systems, RTNS ’14, pages 139–148, New York, NY, USA, 2014.

Association for Computing Machinery. doi:10.1145/2659787.2659799.

39 Don Kuzhiyelil, Philipp Zieris, Marine Kadar, Sergey Tverdyshev, and Gerhard Fohler. Towards

transparent control-flow integrity in safety-critical systems. In International Conference on

Information Security, pages 290–311. Springer, 2020.

40 Chang-Gun Lee, Hoosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha, Seongsoo Hong,

Chang Yun Park, Minsuk Lee, and Chong Sang Kim. Analysis of cache-related preemption

delay in fixed-priority preemptive scheduling. IEEE Transactions on Computers, 47(6):700–713,

1998. doi:10.1109/12.689649.

41 Jaewoo Lee, Hoon Sung Chwa, Linh T. X. Phan, Insik Shin, and Insup Lee. Mc-adapt:

Adaptive task dropping in mixed-criticality scheduling. ACM Trans. Embed. Comput. Syst.,

16(5s), September 2017. doi:10.1145/3126498.

42 Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor Stefanov, and Wang Yi.

Edf-vd scheduling of mixed-criticality systems with degraded quality guarantees. In 2016 IEEE

Real-Time Systems Symposium (RTSS), pages 35–46, 2016. doi:10.1109/RTSS.2016.013.

43 Daniel Lo, Mohamed Ismail, Tao Chen, and G. Edward Suh. Slack-aware opportunistic

monitoring for real-time systems. In 2014 IEEE 19th Real-Time and Embedded Technology and

Applications Symposium (RTAS), pages 203–214, 2014. doi:10.1109/RTAS.2014.6926003.

44 Chenyang Lu, John A. Stankovic, Sang H. Son, and Gang Tao. Feedback control real-time

scheduling: Framework, modeling, and algorithms. Real-Time Systems, 23(1):85–126, July

2002. doi:10.1023/A:1015398403337.

45 Tamara Lugo, Santiago Lozano, Javier Fernández, and Jesus Carretero. A survey of techniques

for reducing interference in real-time applications on multicore platforms. IEEE Access,

10:21853–21882, 2022. doi:10.1109/ACCESS.2022.3151891.

46 Mingsong Lv, Zonghua Gu, Nan Guan, Qingxu Deng, and Ge Yu. Performance comparison

of techniques on static path analysis of wcet. In 2008 IEEE/IFIP International Conference

on Embedded and Ubiquitous Computing, volume 1, pages 104–111, 2008. doi:10.1109/EUC.

2008.178.

47 Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi. A survey on static

cache analysis for real-time systems. Leibniz Transactions on Embedded Systems, 3(1):05:1–

05:48, June 2016. doi:10.4230/LITES-v003-i001-a005.

https://doi.org/10.1109/RTAS52030.2021.00031
https://doi.org/10.1145/3110222
https://doi.org/10.1109/ECRTS.2014.14
https://doi.org/10.1145/2659787.2659799
https://doi.org/10.1109/12.689649
https://doi.org/10.1145/3126498
https://doi.org/10.1109/RTSS.2016.013
https://doi.org/10.1109/RTAS.2014.6926003
https://doi.org/10.1023/A:1015398403337
https://doi.org/10.1109/ACCESS.2022.3151891
https://doi.org/10.1109/EUC.2008.178
https://doi.org/10.1109/EUC.2008.178
https://doi.org/10.4230/LITES-v003-i001-a005

W. Chen et al. 13:25

48 C. Maiza, H. Rihani, J. Rivas, J. Goossens, S. Altmeyer, and R. Davis. A Survey of Timing

Verification Techniques for Multi-Core Real-Time Systems. ACM Comput. Surv., 52(3), June

2019. doi:10.1145/3323212.

49 R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-time

cache management framework for multi-core architectures. In 2013 IEEE 19th Real-Time and

Embedded Technology and Applications Symposium (RTAS), pages 45–54, 2013.

50 Hemendra Singh Negi, Tulika Mitra, and Abhik Roychoudhury. Accurate estimation of cache-

related preemption delay. In Proceedings of the 1st IEEE/ACM/IFIP International Conference

on Hardware/Software Codesign and System Synthesis, CODES+ISSS ’03, pages 201–206, New

York, NY, USA, 2003. Association for Computing Machinery. doi:10.1145/944645.944698.

51 Mattia Nicolella, Denis Hoornaert, Shahin Roozkhosh, Andrea Bastoni, and Renato Mancuso.

Know your enemy: Benchmarking and experimenting with insight as a goal. In 2022 IEEE

Real-Time Systems Symposium (RTSS), RTSS 2022, 2022. URL: https://cs-people.bu.edu/

rmancuso/files/papers/RTBench_RTSS22.pdf.

52 Mattia Nicolella, Shahin Roozkhosh, Denis Hoornaert, Andrea Bastoni, and Renato Mancuso.

Rt-bench: An extensible benchmark framework for the analysis and management of real-time

applications. In Proceedings of the 30th International Conference on Real-Time Networks and

Systems, RTNS 2022, pages 184–195, New York, NY, USA, 2022. Association for Computing

Machinery. doi:10.1145/3534879.3534888.

53 Alessandro Papadopoulos, Enrico Bini, Sanjoy Baruah, and Alan Burns. Adaptmc: A control-

theoretic approach for achieving resilience in mixed-criticality systems. In Sebastian Altmeyer,

editor, Proceeding ECRTS Conference, pages 14:1–14:22, Dagstuhl, July 2018. LIPICS. URL:

https://eprints.whiterose.ac.uk/133393/.

54 J. Ren and L. Xuan Phan. Mixed-criticality scheduling on multiprocessors using task grouping.

In 2015 27th Euromicro Conference on Real-Time Systems (ECRTS), pages 25–34, Los

Alamitos, CA, USA, July 2015. IEEE Computer Society. doi:10.1109/ECRTS.2015.10.

55 Gero Schwaricke, Rohan Tabish, Rodolfo Pellizzoni, Renato Mancuso, Andrea Bastoni, Al-

exander Zuepke, and Marco Caccamo. A real-time virtio-based framework for predictable

inter-vm communication. In 2021 IEEE Real-Time Systems Symposium (RTSS), pages 27–40,

2021. doi:10.1109/RTSS52674.2021.00015.

56 Hardik Shah, Kai Huang, and Alois Knoll. Timing anomalies in multi-core architectures due to

the interference on the shared resources. In 2014 19th Asia and South Pacific Design Automation

Conference (ASP-DAC), pages 708–713, 2014. doi:10.1109/ASPDAC.2014.6742973.

57 Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Audrey

Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel, and Giovanni

Vigna. SoK: (State of) The Art of War: Offensive Techniques in Binary Analysis. In IEEE

Symposium on Security and Privacy, 2016.

58 Soham Sinha, Richard West, and Ahmad Golchin. Pastime: Progress-aware scheduling for

time-critical computing. arXiv preprint, 2019. arXiv:1908.06211.

59 Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. E-warp: A system-wide

framework for memory bandwidth profiling and management. In 2020 IEEE Real-Time

Systems Symposium (RTSS), pages 345–357, 2020. doi:10.1109/RTSS49844.2020.00039.

60 J.A. Stankovic, Chenyang Lu, S.H. Son, and Gang Tao. The case for feedback control real-time

scheduling. In Proceedings of 11th Euromicro Conference on Real-Time Systems. Euromicro

RTS’99, pages 11–20, 1999. doi:10.1109/EMRTS.1999.777445.

61 Dharmesh Tarapore, Shahin Roozkhosh, Steven Brzozowski, and Renato Mancuso. Observing

the invisible: Live cache inspection for high-performance embedded systems. IEEE Transactions

on Computers, 71(3):559–572, 2022. doi:10.1109/TC.2021.3060650.

62 Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming non-blocking caches to

improve isolation in multicore real-time systems. In 2016 IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), pages 1–12, 2016. doi:10.1109/RTAS.2016.

7461361.

ECRTS 2023

https://doi.org/10.1145/3323212
https://doi.org/10.1145/944645.944698
https://cs-people.bu.edu/rmancuso/files/papers/RTBench_RTSS22.pdf
https://cs-people.bu.edu/rmancuso/files/papers/RTBench_RTSS22.pdf
https://doi.org/10.1145/3534879.3534888
https://eprints.whiterose.ac.uk/133393/
https://doi.org/10.1109/ECRTS.2015.10
https://doi.org/10.1109/RTSS52674.2021.00015
https://doi.org/10.1109/ASPDAC.2014.6742973
https://arxiv.org/abs/1908.06211
https://doi.org/10.1109/RTSS49844.2020.00039
https://doi.org/10.1109/EMRTS.1999.777445
https://doi.org/10.1109/TC.2021.3060650
https://doi.org/10.1109/RTAS.2016.7461361
https://doi.org/10.1109/RTAS.2016.7461361

13:26 Low-Overhead Online Assessment of Timely Progress as a System Commodity

63 Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta, Christopher Louie,

Saturnino Garcia, Serge Belongie, and Michael Bedford Taylor. SD-VBS: The san diego

vision benchmark suite. In 2009 IEEE International Symposium on Workload Characterization

(IISWC), pages 55–64, 2009. doi:10.1109/IISWC.2009.5306794.

64 Xilinx. Zynq UltraScale+ Device Technical Reference Manual, 2023. URL: https://docs.

xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/Components.

65 H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. PALLOC: DRAM bank-aware memory

allocator for performance isolation on multicore platforms. In 2014 IEEE 19th Real-Time and

Embedded Technology and Applications Symposium (RTAS), pages 155–166, 2014.

66 Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memguard: Memory

bandwidth reservation system for efficient performance isolation in multi-core platforms. In

2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS),

pages 55–64, 2013. doi:10.1109/RTAS.2013.6531079.

67 Matteo Zini, Giorgiomaria Cicero, Daniel Casini, and Alessandro Biondi. Profiling and

controlling I/O-related memory contention in COTS heterogeneous platforms. Software:

Practice and Experience, 52(5):1095–1113, 2022. doi:10.1002/spe.3053.

https://doi.org/10.1109/IISWC.2009.5306794
https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/Components
https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/Components
https://doi.org/10.1109/RTAS.2013.6531079
https://doi.org/10.1002/spe.3053

	1 Introduction
	1.1 Overview of Proposed System Design for MB-TPA

	2 Related Works
	2.1 Software-based Monitoring and Progress Assessment
	2.2 Run-time Monitoring via Hardware

	3 Background
	4 System Model and Assumptions
	4.1 System-level Assumptions
	4.2 Application-level Assumption

	5 Methodology for Milestone-Based Timely Progress Assessment
	5.1 Intuition of Key Challenges and Solutions
	5.2 Trace Blackout Window
	5.3 Milestone Graph Construction (Step 1 and 2)
	5.4 Milestone Graph Refinement with Concrete Runs (Step 3)
	5.5 Timed Milestone Graph Generation (Step 4)
	5.6 Online Timely Progress Assessment (Step 5)

	6 Use Cases for MB-TPA
	7 System Instantiation and Implementation Details
	7.1 Constructing MB-TPA with ETM

	8 Evaluation
	8.1 Progress Assessment Performance
	8.2 Evaluation of MB-TPA Use Cases

	9 Conclusion

