
Memory Latency Distribution-Driven Regulation

for Temporal Isolation in MPSoCs

Ahsan Saeed #

Robert Bosch GmbH, Stuttgart, Germany

Denis Hoornaert #

Technische Universität München, Germany

Dakshina Dasari #

Robert Bosch GmbH, Stuttgart, Germany

Dirk Ziegenbein #

Robert Bosch GmbH, Stuttgart, Germany

Daniel Mueller-Gritschneder #

Technische Universität München, Germany

Ulf Schlichtmann #

Technische Universität München, Germany

Andreas Gerstlauer #

The University of Texas at Austin, TX, USA

Renato Mancuso #

Boston University, MA, USA

Abstract

Temporal isolation is one of the most significant challenges that must be addressed before Multi-

Processor Systems-on-Chip (MPSoCs) can be widely adopted in mixed-criticality systems with

both time-sensitive real-time (RT) applications and performance-oriented non-real-time (NRT)

applications. Specifically, the main memory subsystem is one of the most prevalent causes of

interference, performance degradation and loss of isolation. Existing memory bandwidth regulation

mechanisms use static, dynamic, or predictive DRAM bandwidth management techniques to restore

the execution time of an application under contention as close as possible to the execution time in

isolation.

In this paper, we propose a novel distribution-driven regulation whose goal is to achieve a

timeliness objective formulated as a constraint on the probability of meeting a certain target

execution time for the RT applications. Using existing interconnect-level Performance Monitoring

Units (PMU), we can observe the Cumulative Distribution Function (CDF) of the per-request

memory latency. Regulation is then triggered to enforce first-order stochastical dominance with

respect to a desired reference. Consequently, it is possible to enforce that the overall observed

execution time random variable is dominated by the reference execution time. The mechanism

requires no prior information of the contending application and treats the DRAM subsystem as

a black box. We provide a full-stack implementation of our mechanism on a Commercial Off-

The-Shelf (COTS) platform (Xilinx Ultrascale+ MPSoC), evaluate it using real and synthetic

benchmarks, experimentally validate that the timeliness objectives are met for the RT applications,

and demonstrate that it is able to provide 2.2x more overall throughput for NRT applications

compared to DRAM bandwidth management-based regulation approaches.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases temporal isolation, memory latency, real-time system, multi-core

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2023.4

Funding Ahsan Saeed: This work has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 871669.

Denis Hoornaert: Denis Hoornaert was supported by the Chair for Cyber-Physical Systems in

Production Engineering at TUM and the Alexander von Humboldt Foundation.

Renato Mancuso: The material presented in this paper is based upon work supported by the National

Science Foundation (NSF) under grants number CCF-2008799 and CNS-2238476.

© Ahsan Saeed, Denis Hoornaert, Dakshina Dasari, Dirk Ziegenbein, Daniel Mueller-Gritschneder, Ulf
Schlichtmann, Andreas Gerstlauer, and Renato Mancuso;
licensed under Creative Commons License CC-BY 4.0

35th Euromicro Conference on Real-Time Systems (ECRTS 2023).
Editor: Alessandro V. Papadopoulos; Article No. 4; pp. 4:1–4:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ahsan.saeed@de.bosch.com
https://orcid.org/0000-0002-1574-688X
mailto:denis.hoornaert@tum.de
https://orcid.org/0009-0009-7419-549X
mailto:dakshina.dasari@de.bosch.com
mailto:dirk.ziegenbein@de.bosch.com
mailto:daniel.mueller@tum.de
https://orcid.org/0000-0003-0903-631X
mailto:ulf.schlichtmann@tum.de
https://orcid.org/0000-0003-4431-7619
mailto:gerstl@ece.utexas.edu
https://orcid.org/0000-0002-6748-2054
mailto:rmancuso@bu.edu
https://orcid.org/0000-0003-3558-5216
https://doi.org/10.4230/LIPIcs.ECRTS.2023.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




A. Saeed et al. 4:3

In this paper, we propose a distribution-driven regulation approach, whose goal is to

achieve a timeliness objective formulated as a constraint on the probability of meeting a

certain target execution time. This definition allows us to unite WCET-like constraints and

high-percentile latency constraints typical of real-time cloud systems (tail latency). The

basic premise of our approach stems from the observation that the latency distribution

of memory transactions of an application under contention gets skewed compared to the

execution in isolation. Therefore, it is possible to precisely influence the overall application

execution time so long as we can (1) characterize this distribution and (2) affect its shape

via regulation. With this basic principle, we first theoretically compute the reference CDF

from the distribution of the per-request memory latency for a given target execution time.

Then, we enforce first-order stochastical dominance by periodically checking that the CDF

of the observed memory latency distribution of the RT application (obtained by sampling at

the PMU) stays above the reference CDF of the per-request memory latency. In case this

condition is violated, the NRT cores are suspended till the condition of first-order stochastical

dominance holds again. If the reference per-request memory latency first-order stochastically

dominates the observed latency, then it follows that the overall execution time random

variable is dominated by the reference execution time random variable. Consequently, the

observed execution time achieves the timeliness objective.

The proposed distribution-driven regulation truly considers the impact of memory conten-

tion on the latency and execution time of an application, as opposed to memory bandwidth-

based [5, 41, 42] or memory utilization-based approaches [23]. Furthermore, we can also

control the level of degradation while guaranteeing timeliness by varying the reference CDF

of the per-request memory latency.

With this work, we make the following contributions:

1. To the best of our knowledge, our work is the first that demonstrates the use of an

interconnect-level PMU to capture the latency distribution of memory transactions and

to leverage it for precise control over an application’s execution time under contention.

2. We mathematically characterize the distribution of memory latency for an application

and demonstrate its effect when the application is executed in isolation and contention.

3. We provide a formal mathematical proof supporting how our proposed approach meets

the imposed timeliness objective for the RT applications, ultimately enabling controlled

degradation.

4. Finally, we perform an evaluation on a COTS platform (Xilinx Ultrascale+ MPSoC)

using an extensive set of realistic and synthetic benchmarks from the San Diego Vision

Benchmarks [35], DAPHNE [30], and IsolBench [33] suites. We demonstrate its effect-

iveness in (1) allowing controlled degradation, (2) providing probabilistic guarantees for

RT application, and (3) reducing the execution time of NRT applications by up to 2.2x

compared to DRAM bandwidth management-based regulation approaches.

The rest of the paper is organized as follows: Section 2 provides the survey of related

work. Section 3 describes the system model and the main assumptions of our approach.

After presenting the main theory behind our approach and its mathematical formalization

in Section 4, Section 5 describes the overall architecture and the main algorithm of our

approach. Section 6 describes the implementation, and Section 7 discusses the experimental

setup and presents the results. Finally, Section 8 concludes with a summary and outlook on

future work.

ECRTS 2023



4:4 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

2 Related Work

There has been a significant amount of work [18] to tackle the issue of memory interference.

The first category includes techniques that essentially employ memory bandwidth

management-based regulation. In this category of approaches, the effects of memory conten-

tion are statically regulated by controlling the outgoing memory bandwidth from each core as

in MemGuard [5,41,42], or by directly measuring the utilization at the memory controller [23]

and then based on the observed utilization, dynamically regulating the outgoing memory

bandwidth from each of the cores. In these approaches, the designer has to experimentally

derive the correct system parameters, and furthermore, there are no formal techniques to

guarantee the impact of such a regulation on the execution time of the application.

The second category includes profile-driven approaches like E-WarP [27,29] and the work

in [1], where an application’s behavior is profiled to sufficiently characterize it. Then, together

with insights into the underlying regulation mechanism – E-WarP uses Memguard under the

hood – it is possible to accurately predict the worst-case execution time. In contrast, the

proposed approach in this paper is not about predicting the WCET but rather about setting

a target execution-time distribution and adjusting the regulation scheme accordingly.

The third category of approaches falls broadly into the category of WCET estimation

approaches [14,18,20]. These approaches perform WCET estimation by leveraging detailed

models of the memory subsystem and do not assume any specific regulation approach. They

only consider worst-case memory access latencies considering a certain arbitrary memory

placement (bank arrangement) and the underlying workload.

Next, there are the hardware-based regulation mechanisms, which include using a dedic-

ated memory controller [2] or additional hardware like FPGAs [11,13], which is orthogonal

to our approach. In addition, embedded high-performance platforms are increasingly offering

QoS modules [25,31,45] on the interconnect between masters (CPUs, GPUs, DMAs) and main

memory to regulate and prioritize memory requests. However, the existing QoS modules

account for the traffic generated by the core cluster connected to the interconnect as a

single master, which does not alleviate cross-core contention [21]. Secondly, a static QoS

configuration may lead to inefficiencies in the utilization of the underlying DRAM subsystem

for dynamic workloads.

Other hardware-based techniques for COTS platforms, such as RDT [9,28] and MPAM [44],

essentially enforce a desired memory bandwidth limit at the hardware-level. This reduces

the regulation overhead and significantly improves the granularity of bandwidth regulation.

The recently proposed MemPol [46] loosely belongs to this category because it leverages

debug interfaces to halt/resume CPUs with the goal of enforcing a target bandwidth.

Despite said benefits, the aforementioned shortcomings of memory bandwidth management-

based regulation are still present. Nonetheless, a promising direction for future work entails

combining the techniques proposed in this paper with hardware-based bandwidth enforcement.

We approach the problem from a different perspective by not relying on the notion of

DRAM bandwidth. Instead, we directly reason on the properties of the observed distribution

of latencies for the memory transactions performed by the application under analysis.

Our approach starts by considering design-time timeliness constraints and uses one such

specification to construct a target cumulative distribution (CDF). The latter is then used

to enact regulation. The proposed approach also makes no assumptions on the memory

transactions generated by the contending applications.



A. Saeed et al. 4:5

3 System Model and Assumptions

We hereby review the key assumptions and the system model required for the results presented

in Section 4 to hold. These assumptions are also experimentally validated in Section 7.2 and

Section 7.3.

A1: Multicore Platform Topology. We assume a system comprised of m application CPUs

Π1, . . . , Πm. For simplicity, we assume that the high-criticality workload is only deployed

on CPU Π1, which can be considered the real-time core. The memory hierarchy comprises

zero or more levels of cache. Cache misses caused by load or store instructions at the

last-level cache (LLC) cause read/write memory requests to be initiated towards a single

shared main memory subsystem via a single shared bus. Note that we distinguish between

memory instructions (load/store) and the resulting traffic that they might cause in terms

of read (and possibly write) requests to the underlying main memory subsystem.

A2: Cache Model. We assume that (1) either all the cache levels are private per-core

caches, or (2) if shared cache levels exist, they can be partitioned among the cores to prevent

inter-core cache interference. All the cache levels adopt a write-back, write-allocate policy. By

write-allocate, store instructions that cause a cache miss to trigger a read memory request

downstream to fill the cacheline to be modified. A cacheline that has been modified is marked

as dirty. By write-back, cache refills might trigger a write memory request downstream if the

cache replacement policy has selected a dirty cacheline for eviction. We make no assumption

about the specific cache replacement policy adopted by the cache controllers at the different

levels. We make no assumption about the inclusiveness of adjacent cache levels.

A3: In-order CPUs. We assume that the considered CPUs are unable to reorder instructions.

Thus, the latency incurred by pending load instructions is additive with respect to the time

spent executing instructions that do not perform memory operations. The same is true

for store instructions. This assumption is pessimistic yet safe if out-of-order CPUs are

considered instead.

Timing anomalies arising due to microarchitectural effects can violate this assumption.

In this work, we followed a measurement-based evaluation approach. Therefore, timing

anomalies are accounted for in the measured runtime. If these anomalies are to be estimated

using static analysis, the work in [12] demonstrates that timing anomalies can be statically

bounded and accounted for at design time without introducing an intractable amount of

pessimism.

A4: Blocking reads, non-blocking writes. As per A2, both load and store instructions

cause an LLC cache miss to trigger a read request to the main memory. As per A3, the

latency incurred by such read requests is additive with respect to the time spent by the rest

of the instructions that do not generate main memory requests. Conversely, if a memory

instruction triggers a write-back to the main memory, the resulting write memory transaction

is carried out non-blockingly with respect to the instruction stream under analysis. Therefore,

the latency of read requests in main memory is on the critical path from the standpoint of

total execution time, while the latency of write requests is not. This is not to say that the

contention generated by write requests is not considered, but rather that what matters is

their impact on the latency of read transactions.

ECRTS 2023



4:6 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

Note that, in typical DRAM subsystems, batched write requests could be prioritized

over reads, causing read requests to temporarily stall. However, by controlling the latency

distribution of read requests, one can control how this reflects into the total execution time,

essentially factoring in the overall impact of write requests.

A5: Measurable Read Latency Distribution. We assume that the platform provides a

performance monitoring unit (PMU) capable of collecting measurements on the latency of

read memory requests. The PMU shall be located at the interface of the shared bus and

main memory subsystem. The latency is measured as the difference between the timestamp

at which a read request is forwarded to the main memory and the timestamp at which the

response for the said request is returned (request turnaround time). We assume that, when

queried, the PMU can return (an approximation of) the distribution of the observed latencies

of read requests issued by a core Πk under analysis. We will discuss the ability to do so in

commercial platforms in Section 6.

A6: Computation and Read-latency Additivity. By A4 and A5, we can decompose the

worst-case execution time E as a sum of two contributions E = C + L, where L is the total

latency of read memory transactions. Let N denote the worst-case number of read requests

and let us indicate the per-request latency as li, then L =
∑N

i=1 li. C denotes the time

spent for anything other than waiting for read responses, and is a constant, regardless of

whether the workload executes in isolation vs. contention. Conversely, li and thus L and

E are random variables that are affected by the level of congestion of the main memory

subsystem. In practice, we observe a small deviation (less than 1.8%) in the value of C

when measured in isolation vs. under contention, as evaluated in detail in Section 7.3. One

such deviation might arise from contention over Miss Status Holding Registers (MSHR) [33]

or LLC tag/data banks [6]. For the sake of simplicity, C is assumed to be constant in our

theoretical formulation. In practical instantiations of our framework, this value should be

experimentally derived and a safe upper-bound on the compute-only time shall be used.

A7: Profiled Critical Workload. We assume that the high-criticality workload deployed

on Π1 can be profiled offline to derive the worst-case execution time Eisol and total read

latency Lisol in isolation. This can be done using traditional measurement-based approaches

and allows us to upper-bound the value of C = Eisol − Lisol, which is the time spent by the

CPU to carry out any other operation except waiting for read requests to be fulfilled. As

per A2, C is computed with statically partitioned shared caches (if any). As per A5, Lisol

measurement is enabled by the PMU.

A8: I.I.D. Read Transaction Latencies. We assume that li are independent samples from

the same (unknown) distribution. Intuitively, the independence arises from the fact that

between any two subsequent read transactions, a random amount of time can elapse, and a

random amount of congestion can be caused by interfering CPUs. Thus, li’s are independent

and identically-distributed (i.i.d.) random variables.

4 Distribution-Driven Regulation

In this section, we introduce the theoretical results that represent the foundation of the

proposed distribution-driven regulation. We introduce the notations in Table 1.



A. Saeed et al. 4:7

Table 1 Summary of notation used.

Symbols Descriptions Symbols Descriptions

Eisol Total execution time in isolation l̄σ2 Variance of read memory transactions reference

Ereg Total execution time under regulation Lisol Total latency of read memory trans. in isolation

Ē Total execution time target lmin Min read latency

C Non-memory compute time lmax Max read latency

L Total latency of read memory transactions li Latency of an individual read memory transaction i

lµ Mean latency of read memory transactions N Worst-case number of read requests

lσ2 Variance of read memory transactions α Acceptable tolerance for execution time to exceed Ē

l̄µ Mean latency of read memory trans. reference

Regulation Goal. Unlike the related literature surveyed in Section 2, our goal is to achieve

a timeliness objective formulated as a constraint on the probability of meeting a certain

execution time target Ē. Formally, given an execution time target Ē and an acceptable error

α ∈ [0, 1], the goal of regulation can we written as

P (Ereg ≤ Ē) ≥ 1 − α, (1)

where Ereg is the actual execution time observed under regulation and (possibly) in the

presence of main memory contention for the application under analysis. When α is such that

α → 0, then Ē represents a worst-case execution time (WCET) constraint. Note however

that the timeliness constraint formulation in Eq. 1 is more generic. For instance, setting

α = 0.01 expresses a 99th-percentile tail latency requirement on Ereg.

Goal-driven Regulation Strategy. We hereby describe how the regulation strategy can be

built from the goal formulated in Eq. 1 given a value of Ē and α. Following the notation

and assumptions in A6 (Section 3), we can rewrite Eq. 1 as follows:

P (C + L ≤ Ē) = P



N
∑

i=1

li ≤ Ē − C



≥ 1 − α. (2)

The key insight into our approach is that, by controlling the distribution of per-request

latency li via regulation, we can directly control the distribution of the total memory latency

L and thus impact the distribution of Ereg to satisfy Eq. 1.

As we previously mentioned, li’s are independent and identically-distributed random

variables (as per A8) following an unknown distribution. Call lµ and lσ2 , respectively, the

(unknown) mean and variance of the li random variables. From the Central Limit Theorem

(CLT) [10], it holds that the random variable Z constructed as

Z =

∑N

i=1 li − Nlµ√
Nlσ2

=
L − Nlµ√

Nlσ2

∼ N (0, 1), (3)

follows a standard normal distribution, i.e. a normal distribution with mean µ = 0 and

variance σ2 = 1. The latter property is captured by the notation Z ∼ N (0, 1). Note that

Eq. 3 only holds for large values of N . Since our goal is to analyze and regulate memory-

intensive applications, this condition holds. In fact, our experiments described in Section 7

highlight that for the considered applications, the order of magnitude of N is somewhere

between 106 and 107.

From Eq. 3 we can derive that L ∼ N (Nlµ, Nlσ2). Let us indicate with Φ(x) the

Cumulative Distribution Function (CDF) of the standard normal distribution. We can then

rewrite Eq. 2 as follows:

ECRTS 2023



4:8 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

P (L ≤ Ē − C) = Φ



(Ē − C) − Nlµ√
Nlσ2



≥ 1 − α. (4)

So far, we have treated lµ and lσ2 as unknown values. The insight at this point is that,

when regulation is performed (by pausing/resuming the activity of interfering cores), we can

exert direct control over the underlying distribution of L =
∑N

i=1 li and thus over the value

of Nlµ and Nlσ2 . In fact, our goal is not to enforce a specific value of lµ and lσ2 . Instead, it

is enough to identify two values l̄µ and l̄σ2 such that the following inequality holds for every

value of Ē ∈ R
+:

Φ



(Ē − C) − Nlµ√
Nlσ2



≥ Φ



(Ē − C) − Nl̄µ
√

Nl̄σ2



≥ 1 − α. (5)

Regulation Condition. Recall from A5 in Section 3 that we are able to periodically snapshot

the distribution of read latencies. By enacting start/stop control over the interfering cores,

we can impact such distribution. We are now ready to derive the condition according to

which, given a snapshot, we should pause or resume the activity of the interfering cores.

More specifically, we can observe the CDF of the random variable li while the application

under analysis is running. Call this observed CDF function Fl(t) = P (li ≤ t). If regulation

is applied such that

∀t ∈ R
+, Fl(t) ≥ Φ



(Ē − C) − l̄µ
√

l̄σ2



= F̄l(t), (6)

then we have two properties. The first, is that F̄l(t) is the CDF of a random variable

lnorm
i ∼ N (l̄µ, l̄σ2). The second is that lnorm

i is said to first-order stochastically dominate

li [26]. Indeed, Eq. 6 is one possible definition of first-order stochastic dominance, also

indicated with the notation lnorm
i ≥1 li.

It is a known result [26, Theorem 1.A.3] [19, Lemma 6] that stochastical dominance

between random variables implies stochastical dominance in the aggregate. Formally, given

two random variables X and Y and a positive integer k, if Y is k-th order stochastically

dominated by X (i.e., X ≥k Y ), then ∀n ∈ N
+ and i.i.d. replicas X1, . . . , Xn of X and

Y1, . . . , Yn of Y it holds that

n
∑

i=1

Xi ≥k

n
∑

i=1

Yi =⇒
n
∑

i=1

Xi ≥1

n
∑

i=1

Yi. (7)

Next, we note that from Eq. 7 and 6 it immediately follows that
∑N

i=1 lnorm
i ≥1

∑N

i=1 li.

Moreover, by leveraging the properties of the normal distribution [17], we know that
∑N

i=1 lnorm
i ∼ N (Nl̄µ, N l̄σ2). This brings us to the final step. That is, the random variable

L under regulation is first-order stochastically dominated by a normal distribution of mean

Nl̄µ and variance Nl̄σ2 . This means that, as long as Eq. 6 is ensured via regulation, Eq. 5

holds.

Final Formulation. Putting everything together, we have the following workflow. First,

given the target Ē and α, numerically compute l̄µ and l̄σ2 such that

Φ



(Ē − C) − Nl̄µ
√

Nl̄σ2



≥ 1 − α (8)





4:10 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

Algorithm 1 Memory Latency Distribution-Driven Regulator.

input : number of latency bins K, reference CDF F̄k ∀ k ∈ {0 . . . K − 1}

1 foreach regulation interval r do

2 foreach latency bin k ∈ {0 . . . K − 1} do

3 Sample the height of latency bin lk,r

4 γk,r = γk,r−1 + lk,r

5 end

6 foreach latency bin k ∈ {0 . . . K − 1} do

7 fk,r =
γk,r

∑

K−1

k=0
γk,r

▷ Normalize bins to obtain PMF

8 Fk,r =
∑k

m=0
fm,r ▷ Construct observed CDF

9 end

10 if F0,r < F̄0 ∨ · · · ∨ FK−1,r < F̄K−1 then

11 suspend all NRT cores

12 else

13 resume all NRT cores

14 end

15 r = r + 1

16 end

in the counters, then it can be accumulated in software at each snapshot. In software, divide

the number of transactions in each bin (i.e. the height of the bin) by the total number of

transactions in the entire snapshot. The result is a valid observed Probability Mass Function

(PMF) fl(k) for the read request latency li for the generic request i. Figure 2 provides a

visual representation of the PMF. In other words, the height of each bin provides the value of

fl(k) = P (lmin + kb ≤ li < lmin + (k + 1)b). From the acquired PMF, it is easy to compute

the corresponding observed CDF as

Fl(k) =

k
∑

j=0

fl(j) = P (li < lmin + (k + 1)b). (9)

Recall that (Eq. 6) we can construct a normal distribution F̄l(t) of reference with

appropriate values of l̄µ and l̄σ2 such that Eq. 8 is satisfied. At runtime, whenever a new

read latency distribution snapshot is acquired, it is enough to check the following condition:

∀k ∈ ¶0, . . . , K − 1♢, Fl(k) ≥ F̄l(lmin + (k + 1)b). (10)

This condition is visually depicted in Figure 3. Indeed, if the condition expressed in Eq. 10

holds, then our reference lnorm
i ∼ N (l̄µ, l̄σ2) first-order stochastically dominates li. This is

the case for the blue curve in Figure 3. Conversely, if for some k Eq. 10 does not hold, the

non-real-time CPUs must be paused – regulation must be triggered. This is the case for the

orange line in Figure 3. The implicit assumption, which we validate in Section 7.3, is that

pausing the interfering CPUs allows to shift the observed Fl(k) in subsequent snapshots.

Finally, note that numerically computing the value of F̄l(t) online can lead to excessive

overhead in the regulator. Instead, the K values of F̄l(k) necessary to check the validity of

Eq. 10 can be pre-computed offline and stored in a lookup table for efficient online retrieval.

These values are depicted as red dots in Figure 3.



A. Saeed et al. 4:11

5 System Overview

An overview of our system architecture is depicted in Figure 4. We consider an MPSoC in

which a core designated as RT core is dedicated to host time-sensitive RT applications, while

the others are designated as NRT cores that host performance-oriented NRT applications.

The purpose of the memory latency distribution-driven regulator introduced in Section 4

is to achieve the timeliness objective (Equation (1)) on the execution time of applications

running on the RT core. The regulator is activated periodically on each NRT core using a

timer interrupt. The timer interrupt triggers the sampling of memory latency distribution

using the Performance Monitoring Unit (PMU) (shown in blue in Figure 4) for the memory

transactions originating from RT core. This memory latency distribution is normalized to

obtain the probability mass function (PMF), as described in Section 4.1 and then is used

to derive the cumulative distribution function (CDF). From the CDF, we enforce the rule

of first-order stochastic dominance (Equation (6)), which states that if any bin violates the

reference CDF for the target distribution of execution time, the regulation is triggered, and

all the NRT cores are suspended, as highlighted with red lines in Figure 4.

In principle, the regulator could reside either in software, such as the Operating System

(OS) or hypervisor, or in hardware, such as a Field Programmable Gate Array (FPGA). For

analysis and evaluation of the mechanism, the regulator optionally stores the PMF and key

characteristics in the DRAM memory.

The proposed mechanism can be implemented on any platform on which we are able to

measure (1) memory latency distribution and (2) filter the memory transaction on a per core

basis.

5.1 Memory Latency Distribution-Driven Regulator Algorithm

Algorithm 1 sketches our proposed distribution-driven regulation. Let the total number of

bins in the memory latency distribution be denoted by K. Furthermore, we denote by F̄k

the reference CDF assigned to each bin.

At the beginning of each regulation interval r > 1, the regulator first samples the number

of transactions (since the last interval) with latency that falls in bin lk,r. This is repeated

for each bin (Line 3). The samples are accumulated into the variable γk,r (Line 4). We then

apply height normalization to derive the PMF fk (Line 7). The PMF is converted into a

CDF Fk by summing up the probabilities associated with the variable up to each bin (Line 8).

This CDF Fk is then compared against the reference CDF F̄k for each bin (Line 10). If the

condition in Eq. 10 does not hold, all the NRT cores are suspended (Line 11). They will be

resumed only when Eq. 10 holds again (Line 15).

The theoretical formulation provided in Section 4 assumes that the PMF (or CDF) of the

per-request latency can be observed infinitely fast. Clearly, this is not possible in realistic

hardware, hence a non-zero regulation interval Tr must be picked. Because of that, what

could happen is that during Tr, the distribution of memory latencies shifts so drastically that

it cannot be recovered. Although this can happen, its effect can be easily bounded. In the

worst-case, right after a snapshot that satisfied Eq. 10 (otherwise, the NRT cores would be

stopped) with exact equalities between left- and right-hand sides, a back-to-back sequence of

memory transactions with latency lmax occurs. These can be at most ⌈Tr/lmax⌉ because Π1

is an in-order CPU (A3 in Section 3). Thus, the extra time cost H = (lmax − lmin)⌈Tr/lmax⌉
can be accounted for by computing a new, more restrictive Ē′ = Ē − H. Interestingly,

since we can observe the typical latency distribution under unrestricted contention, it is also

possible to compute the probability that such a case can occur.

ECRTS 2023



4:12 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

6 Implementation

We have performed a full-system implementation that includes a partitioning hypervisor

augmented to support the proposed memory latency distribution-driven regulator. The

implementation is carried out on the Xilinx Ultrascale+ Multi-Processor System-on-Chip

(MPSoC) ZCU102 [40]. The SoC features 4 ARM Cortex A53 [4] cores clocked at 1.2 GHz.

Each core has its own private L1 data and instruction cache, whereas the 4 cores share a

unified L2 cache. The SoC also features a tightly-coupled FPGA, which is not needed to

implement the proposed approach. We only use the FPGA for the validation experiments on

the nature of DRAM read transaction latencies conducted in Section 7.2.

We use the Jailhouse-RT partitioning hypervisor [15, 27] to partition resources in our

system, which is an ideal choice for this type of implementation because it is lightweight,

easy to port/modify, includes support for cache coloring [16,43] and bandwidth regulation,

and is open-source.

6.1 AXI Performance Monitor (APM)

We sample the memory latency in the Xilinx Ultrascale+ MPSoC [40] using the AXI

Performance Monitor (APM) hardware module. The APM measures the key performance

metrics like the amount of read/write memory transactions, min/max/total latency, and

other performance metrics for the AMBA AXI [3] in a system. The APMs implemented on

Xilinx Ultrascale+ MPSoC [40] are based on the Xilinx AXI Performance Monitor available

as a LogiCORE IP [37].

The APM has 10 hardware counters that can be configured to simultaneously monitor

up to 10 performance metrics for any interface points called slots on the AXI interconnect.

There is also a global-clock counter in addition to these 10 hardware counters that run at

the APM clock frequency of 533.5 MHz.

The APM can be configured to monitor the performance metrics for a particular slot

using the Metric Selector register. Furthermore, the APM contains a Range Incrementer

module that compares the performance metric count with the low and high ranges from the

Range register and increments the count of the given performance metric by one if the value

falls within the limits. The Range Incrementer is useful in obtaining the read/write latency

ranges that we leverage in this work to sample the memory latency distribution.

We configured 8 Metric Selector registers in conjunction with 8 Range registers to monitor

read memory latency (as defined in Section 3 A6: Measurable Read Latency Distribution) with

respectively low and high ranges of 0-40, 41-80, 81-120, 121-160, 161-200, 201-240, 241-280,

and 281-2000 clock cycles. The rationale behind the selection of these ranges is discussed in

Section 7.4. These 8 performance metrics provide the number of read memory transactions

that fall within the given read memory latency limits, referred to as bins. Furthermore,

2 Metric Selector registers are configured to report the total number of read transactions

and total read latency. The total number of read transactions is N , as used throughout

the mathematical formalization in Section 3. Additionally, we verify that the total number

of read transactions and the sum of all bins are always the same. This ensures that no

memory transaction escapes the bins. The global-clock counter is used as the reference for

all the calculations in this paper. The included hardware counters can be set and read via a

memory-mapped interface.

The APM slot is configured to monitor the AXI communication between the cores and the

memory controller. In addition, we employ the AXI ID filtering to monitor the transactions

emanating from a core with a certain AXI ID. The AXI IDs for the cores are evaluated

experimentally. Once the AXI IDs for each core have been determined, we utilize the Filter

and Mask registers to set up AXI ID filtering.



A. Saeed et al. 4:13

Currently, the APMs are adopted in Xilinx Ultrascale boards. However, since these APM

IPs are part of the AXI bus, they are deployable on other SoCs. They can also be deployed

in programmable logic (FPGA) to gather statistics on the traffic observed over AXI bus

segments generated, for instance, by in-FPGA accelerators.

7 Validation and Evaluation

In this section, we first experimentally validate the key assumptions presented in Section 3.

Then we discuss the key design parameters of our system. Finally, we present a full system

evaluation where we validate the effectiveness of our approach to ensure the timeliness of

different sets of applications.

7.1 Experimental Setup

We evaluate our approach on the Xilinx Ultrascale+ Multi-Processor System-on-Chip

(MPSoC) ZCU102 [40] as introduced in Section 6. A combination of real-world [35], [30], and

synthetic [33] benchmarks are used to evaluate the proposed approach. For our real-world

benchmarks, we use a subset of the benchmarks in the San Diego Vision Benchmark Suite

(SD-VBS) [35]. The input dataset for the benchmark applications comes in 9 different sizes.

Since we are interested in DRAM-bounded applications, we use the ones with the largest

input data size (named FullHD). The other benchmark suite is the Darmstadt Automotive

Parallel Heterogeneous Benchmark Suite (DAPHNE) [30], which represents parallelizable

workloads from the automotive domain. For our evaluation, we used the applications that run

exclusively on the CPU. We also use a synthetic ’Bandwidth’ benchmark from the IsolBench

suite [33] that is engineered to continuously perform memory write operations. In the rest of

the paper, we refer to this benchmark as the MemBomb application.

Unless otherwise stated, all experiments refer to the isolation scenario or simply isolation

in which the disparity application is running on the designated RT core with no other

applications running in parallel. In contrast, a contention scenario or simply contention

happens when the same disparity application is running on the designated RT core while

synthetic MemBomb applications are running on the three NRT cores. The disparity

application is selected as it has the lowest average IPC and the highest average memory

utilization [23] in the benchmark suite, making it an ideal candidate for demonstrating

memory interference-related effects.

For consistency, we always activate the hypervisor. The regulator is activated on each

NRT core to facilitate comparison with a memory bandwidth management-based regulation

(MemGuard [5]). However, the current implementation can be extended to sample the PMU

values from only one NRT core responsible for suspending the other NRT cores. All the

obtained results are calculated on 100 runs for each configuration to remain statistically

significant.

7.2 Validation of I.I.D. Assumption A8

In order to validate hypothesis A8 in Section 3, i.e., that the latencies of read memory

transactions emitted by the cores are i.i.d., we perform 10 different statistical tests called

Permutation Tests [32]. These tests are designed to find evidence that empirical samples are

i.i.d.. The rationale is that if i.i.d. holds in all cases, the regulation system is guaranteed to

be operated correctly. Conversely, if the i.i.d. property is validated only in some cases, a

full-system implementation and evaluation are necessary to assess the correct end-to-end

behavior of a system that employs the proposed distribution-driven regulation.

ECRTS 2023





A. Saeed et al. 4:15

of only a loopback IP linking the core cluster with the memory controller through the

FPGA (i.e., no transformations are performed on the transactions’ address). Similarly, the

Jailhouse-RT hypervisor [15] is instrumented to target the FPGA memory range instead of

the memory controller, making the hypervisor and benchmark memory traffic observable

via an ILA. We run different SD-VBS benchmarks with different inputs in a sequence and

randomly acquire fragments of memory traces. Thus, while we know that the captured

activity belongs to some SD-VBS benchmark, we cannot determine which trace corresponds

to which specific benchmark.

Table 2 shows the results of the first 10 permutation tests performed on the two FPGA

designs, on the top and bottom, respectively. For synthetic benchmarks, the number of

passed tests increases as randomness in the pattern, and ITG is introduced. Therefore, for

ATG with random memory access pattern and random ITG has the highest tests pass of

100%, whereas sequential memory access pattern with fixed ITG has the lowest test pass of

60%. Hence, the percentage of tests pass increases as access pattern and ITG randomness

grow.

For real-world benchmarks, 30 snapshots of memory traffic are captured. Since applications

have different phases, the ILA buffer is small, and memory transactions are captured

asynchronously, we observed variation in the results of permutation tests. In the best-case

scenario, all tests are passed, although pass percentages as low as 50% have been seen on

rare occasions. The mode (value that appears most often) indicates a 90% pass.

In summary, the permutation testing indicates that not all tests are passed under all

scenarios, albeit an indication that A8 holds in most of the cases has emerged. Nonetheless,

we conduct a full-stack implementation to verify that the timeliness objective (Equation (1))

we impose is, in fact, met with real-world applications.

7.3 Validation of Other Key System Assumptions

In this subsection, we experimentally validate that the key assumptions, as stated in detail

in Section 3, hold for our system.

Validation of A2: Cache Model. First, we show that the total numbers of LLC misses

for an application executed in isolation and contention scenarios are comparable. Figure 5a

illustrates the average total number of LLC misses that occur during 100 runs for disparity,

tracking, mser and ndt_mapping in isolation and contention, respectively. It can be observed

that the total number of LLC misses is comparable in both scenarios, with an average

difference of less than 1% in their counts. This demonstrates that there is no inter-core cache

interference, which is consistent with assumption A2.

Validation of A6: Computation and Read-latency Additivity and A7: Profiled Critical

Workload. Next, we show that the compute time C of an application remains the same in

isolation and contention. We measure the worst-case execution time E and the total latency

of read memory transactions L and determine the compute time C by: C = E − L

In Figure 5b, it is shown that the compute time of the application under consideration

(disparity, tracking, mser and ndt_mapping) is similar in both the scenarios, with an average

difference of less than 1.8%. Thus, assumptions A6 and A7 hold.

Validation of A5: Measurable Read Latency Distribution. Finally, we demonstrate the

capability of measuring (an approximation of) the latency distribution of read memory

transactions in a COTS platform – without redirecting memory transactions through the

FPGA – as stated in A5.

ECRTS 2023











4:20 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

Table 3 Slowdown Ratio of benchmarks in contention without regulation and with different

regulation mechanisms.

RT Core NRT Cores

disparity MemBomb on each NRT Core

Unregulated MemGuard Distribution-Driven Unregulated MemGuard Distribution-Driven

1.28 1.03 1.03 3.79 16.67 7.05

disparity MemBomb (HB) on each NRT Core

1.25 1.03 1.03 1.41 8.07 3.49

mechanism, (2) a memory bandwidth management-based regulation (MemGuard [5])1, and

(3) distribution-driven regulation. We define the slowdown ratio of an application as the

ratio of execution time under contention to the execution time in isolation.

We use the latest implementation of MemGuard [5] that regulates LLC write-backs in

addition to LLC misses, ported to the partitioning hypervisor and configured for static

bandwidth reservation. The key parameter used by MemGuard is the guaranteed (worst-case)

bandwidth, which is approximately 960 MB/s for our evaluation platform based on the work

in [24]. We allocated half of the said bandwidth for the application running in the RT core,

and the remaining is distributed equally among the three applications running in the NRT

cores.

Once the configurations for MemGuard have been selected, the parameters of the

distribution-driven regulator (target execution time Ē and acceptable error α) are selected

in such a way that the actual execution time Ereg for the application running on the RT

core is the same under MemGuard and distribution-driven regulation. This allows for a fair

comparison of slowdown ratios for applications running on NRT cores while keeping the same

slowdown ratios for the application running on the RT core.

We conducted the evaluation with two different sets of applications. In the first set

of applications, disparity is running on the designated RT core while synthetic MemBomb

applications are running on the three NRT cores. In the second set of applications, only

the MemBomb is modified to perform memory write operations for half of its duration

periodically. We refer to this modified MemBomb application as MemBomb Half Blast (HB).

Table 3 shows the slowdown ratios for different run settings compared to the execution

times in isolation. We compare (1) unregulated runs in which the applications are executed

concurrently in the respective cores with no regulation mechanism in place to (2) the proposed

distribution-driven regulator and to (3) regulation done using MemGuard.

As expected, both regulation approaches achieve the same slowdown ratios of 1.03 for

disparity. However, with MemGuard, both sets of applications running on the NRT cores

suffer the highest slowdowns of 16.67 and 8.07, respectively. By contrast, the distribution-

driven regulator is able to improve the slowdown ratio of the NRT applications on average

by 2.2× compared to MemGuard.

8 Conclusion and Future Work

In this work, we presented a novel distribution-based regulation mechanism that enforces a

timeliness objective formulated as a constraint on the probability of meeting any execution

time target, which can be anywhere between the execution time in isolation and contention

1 Comparison against a more recent work [23] is not possible due to the unavailability of memory utilization
metric in our evaluation platform, which is necessary for the latter work.



A. Saeed et al. 4:21

scenario. The timeliness objective is met by directly controlling the distribution of total

memory latency via regulation, which eventually impacts the distribution of the observed

execution time.

We implemented our solution inside the Jailhouse-RT hypervisor [15] and deployed it on a

COTS platform (Xilinx Ultrascale+ MPSoC) to demonstrate its effectiveness in meeting the

timeliness objective for time-sensitive RT applications. Our approach can also be extended to

handle multiple RT cores by assigning ranks to the RT cores based on their criticality level.

The level of criticality then determines the order of suspension of the cores. If the observed

CDF is below the reference CDF, the NRT cores are suspended first, followed by the RT

core with the lowest criticality level, and so on, until the observed CDF no longer remains

below the reference CDF. This is not immediately feasible with the same PMU due to the

limited number of AXI ID filtering blocks. However, APM blocks can be instantiated on the

on-chip FPGA, and memory traffic can be observed through-FPGA instead.

References

1 Ankit Agrawal, Renato Mancuso, Rodolfo Pellizzoni, and Gerhard Fohler. Analysis of Dynamic

Memory Bandwidth Regulation in Multi-core Real-Time Systems. In IEEE Real-Time Systems

Symposium (RTSS), 2018.

2 Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: A predictable SDRAM

memory controller. In IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS), 2007.

3 ARM. An introduction to AMBA AXI. https://developer.arm.com/documentation/102202.

4 ARM. ARM® Cortex®-A53 MPCore Processor – Technical Reference Manual. https:

//static.docs.arm.com/ddi0500/f/DDI0500.pdf.

5 Michael Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared Cache in Multicore:

Analysis and Prevention. In IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2019.

6 Michael Bechtel and Heechul Yun. Cache Bank-Aware Denial-of-Service Attacks on Multicore

ARM Processors. In 29th IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS 2023), San Antonio, Texas, USA, May 2023.

7 Roberto Cavicchioli, Nicola Capodieci, and Marko Bertogna. Memory interference charac-

terization between CPU cores and integrated GPUs in mixed-criticality platforms. In IEEE

International Conference on Emerging Technologies and Factory Automation (ETFA), 2017.

8 Dakshina Dasari, Benny Akesson, Vincent Nélis, Muhammad Ali Awan, and Stefan M. Petters.

Identifying the sources of unpredictability in COTS-based multicore systems. In IEEE

International Symposium on Industrial Embedded Systems (SIES), 2013.

9 Giorgio Farina, Gautam Gala, Marcello Cinque, and Gerhard Fohler. Assessing Intel’s Memory

Bandwidth Allocation for resource limitation in real-time systems. In IEEE International

Symposium On Real-Time Distributed Computing (ISORC), 2022.

10 H. Fischer. A History of the Central Limit Theorem: From Classical to Modern Probability

Theory. Sources and Studies in the History of Mathematics and Physical Sciences. Springer

New York, 2010. URL: https://books.google.com/books?id=v7kTwafIiPsC.

11 Johannes Freitag and Sascha Uhrig. Closed Loop Controller for Multicore Real-Time Systems.

In Architecture of Computing Systems (ARCS), 2018.

12 Sebastian Hahn, Michael Jacobs, and Jan Reineke. Enabling Compositionality for Multicore

Timing Analysis. In International Conference on Real-Time Networks and Systems (RTNS),

RTNS ’16, 2016.

13 Denis Hoornaert, Shahin Roozkhosh, and Renato Mancuso. A Memory Scheduling Infra-

structure for Multi-Core Systems with Re-Programmable Logic. In Euromicro Conference on

Real-Time Systems (ECRTS), 2021.

ECRTS 2023

https://developer.arm.com/documentation/102202
https://static.docs.arm.com/ddi0500/f/DDI0500.pdf
https://static.docs.arm.com/ddi0500/f/DDI0500.pdf
https://books.google.com/books?id=v7kTwafIiPsC


4:22 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

14 Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark Klein, Onur Mutlu, and Ragunathan

Rajkumar. Bounding memory interference delay in cots-based multi-core systems. In IEEE

Real-Time and Embedded Technology and Applications Symposium (RTAS), 2014.

15 J. Kiszka, V. Sinitsin, H. Schild, and contributors. Jailhouse Hypervisor. URL: https:

//github.com/siemens/jailhouse.

16 Tomasz Kloda, Marco Solieri, Renato Mancuso, Nicola Capodieci, Paolo Valente, and Marko

Bertogna. Deterministic memory hierarchy and virtualization for modern multi-core embedded

systems. In 2019 IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS), pages 1–14, 2019. doi:10.1109/RTAS.2019.00009.

17 D.S. Lemons, P. Langevin, and A. Gythiel. An Introduction to Stochastic Processes in

Physics. Johns Hopkins Paperback. Johns Hopkins University Press, 2002. URL: https:

//books.google.com/books?id=Uw6YDkd_CXcC.

18 Claire Maiza, Hamza Rihani, Juan M. Rivas, Joël Goossens, Sebastian Altmeyer, and Robert I.

Davis. A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems. ACM

Computing Surveys (CSUR, 52(3):1–38, 2019.

19 Xiaosheng Mu, Luciano Pomatto, Philipp Strack, and Omer Tamuz. From blackwell dominance

in large samples to renyi divergences and back again, 2019. doi:10.48550/arXiv.1906.02838.

20 Rodolfo Pellizzoni and Heechul Yun. Memory Servers for Multicore Systems. In IEEE

Real-Time and Embedded Technology and Applications Symposium (RTAS), 2016.

21 Falk Rehm, Jörg Seitter, Jan-Peter Larsson, Selma Saidi, Giovanni Stea, Raffaele Zippo, Dirk

Ziegenbein, Matteo Andreozzi, and Arne Hamann. The road towards predictable automotive

high - performance platforms. In Design, Automation Test in Europe Conference Exhibition

(DATE), 2021.

22 Shahin Roozkhosh and Renato Mancuso. The potential of programmable logic in the middle:

Cache bleaching. In 2020 IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), pages 296–309, 2020. doi:10.1109/RTAS48715.2020.00006.

23 Ahsan Saeed, Dakshina Dasari, Dirk Ziegenbein, Varun Rajasekaran, Falk Rehm, Michael

Pressler, Arne Hamann, Daniel Mueller-Gritschneder, Andreas Gerstlauer, and Ulf Schlicht-

mann. Memory Utilization-Based Dynamic Bandwidth Regulation for Temporal Isolation

in Multi-Cores. In IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS), 2022.

24 Gero Schwäricke, Rohan Tabish, Rodolfo Pellizzoni, Renato Mancuso, Andrea Bastoni, Alex-

ander Zuepke, and Marco Caccamo. A Real-Time Virtio-Based Framework for Predictable

Inter-VM Communication. In IEEE Real-Time Systems Symposium (RTSS), 2021.

25 Alejandro Serrano-Cases, Juan M. Reina, Jaume Abella, Enrico Mezzetti, and Francisco J.

Cazorla. Leveraging Hardware QoS to Control Contention in the Xilinx Zynq UltraScale+

MPSoC. In Euromicro Conference on Real-Time Systems (ECRTS), 2021.

26 Moshe Shaked and J. George Shanthikumar, editors. Stochastic Orders. Springer New York,

2007. doi:10.1007/978-0-387-34675-5.

27 P. Sohal, R. Tabish, U. Drepper, and R. Mancuso. E-WarP: A System-wide Framework for

Memory Bandwidth Profiling and Management. In IEEE Real-Time Systems Symposium

(RTSS), 2020.

28 Parul Sohal, Michael Bechtel, Renato Mancuso, Heechul Yun, and Orran Krieger. A Closer

Look at Intel Resource Director Technology (RDT). In International Conference on Real-Time

Networks and Systems (RTNS), 2022.

29 Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. Profile-driven memory

bandwidth management for accelerators and cpus in qos-enabled platforms. Real-Time Syst.,

58(3):235–274, September 2022. doi:10.1007/s11241-022-09382-x.

30 Lukas Sommer, Florian Stock, Leonardo Solis-Vasquez, and Andreas Koch. DAPHNE – An

automotive benchmark suite for parallel programming models on embedded heterogeneous

platforms: work-in-progress. In International Conference on Embedded Software Companion

(EMSOFT), 2019.

https://github.com/siemens/jailhouse
https://github.com/siemens/jailhouse
https://doi.org/10.1109/RTAS.2019.00009
https://books.google.com/books?id=Uw6YDkd_CXcC
https://books.google.com/books?id=Uw6YDkd_CXcC
https://doi.org/10.48550/arXiv.1906.02838
https://doi.org/10.1109/RTAS48715.2020.00006
https://doi.org/10.1007/978-0-387-34675-5
https://doi.org/10.1007/s11241-022-09382-x


A. Saeed et al. 4:23

31 Ashley Stevens. Quality of Service (QoS) in ARM Systems: An Overview. In ARM White

paper, 2014.

32 Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry McKay, Mary Baish, and Michael

Boyle. Recommendation for the Entropy Sources Used for Random Bit Generation, 2018.

URL: https://csrc.nist.gov/publications/detail/sp/800-90b/final.

33 P. K. Valsan, H. Yun, and F. Farshchi. Taming Non-Blocking Caches to Improve Isolation in

Multicore Real-Time Systems. In IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2016.

34 Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Addressing Isolation Challenges of

Non-Blocking Caches for Multicore Real-Time Systems. ACM Real-Time Systems, 53(5):673–

708, 2017.

35 S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and M. B. Taylor.

SD-VBS: The San Diego Vision Benchmark Suite. In IEEE International Symposium on

Workload Characterization (IISWC), 2009.

36 Bryan C. Ward, Jonathan L. Herman, Christopher J. Kenna, and James H. Anderson.

Outstanding Paper Award: Making Shared Caches More Predictable on Multicore Platforms.

In Euromicro Conference on Real-Time Systems (ECRTS), 2013.

37 Xilinx. AXI Performance Monitor LogiCORE IP Product Guide (PG037). https://docs.

xilinx.com/v/u/en-US/pg172-ila.

38 Xilinx. AXI Traffic Generator v3.0 LogiCORE IP Product Guide (PG125). https://docs.

xilinx.com/v/u/en-US/pg125-axi-traffic-gen.

39 Xilinx. Integrated Logic Analyzer v6.2 LogiCORE IP Product Guide (PG172). https:

//docs.xilinx.com/v/u/en-US/pg037_axi_perf_mon.

40 Xilinx. Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit. https://www.xilinx.com/

products/boards-and-kits/ek-u1-zcu102-g.html.

41 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory Bandwidth Management for

Efficient Performance Isolation in Multi-Core Platforms. IEEE Transactions on Computers

(TC), 65(2):562–576, 2016.

42 Heechul Yun, Waqar Ali, Santosh Gondi, and Siddhartha Biswas. BWLOCK: A Dynamic

Memory Access Control Framework for Soft Real-Time Applications on Multicore Platforms.

IEEE Transactions on Computers (TC), 66(7):1247–1252, 2017.

43 Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards Practical Page Coloring-Based

Multicore Cache Management. In ACM European Conference on Computer Systems, EuroSys

’09, 2009.

44 Matteo Zini, Daniel Casini, and Alessandro Biondi. Analyzing Arm’s MPAM From the

Perspective of Time Predictability. IEEE Transactions on Computers (TC), 72(1):168–182,

2023.

45 Matteo Zini, Giorgiomaria Cicero, Daniel Casini, and Alessandro Biondi. Profiling and

controlling I/O-related memory contention in COTS heterogeneous platforms. Software:

Practice and Experience, 52(5):1095–1113, 2022.

46 Alexander Zuepke, Andrea Bastoni, Weifan Chen, Marco Caccamo, and Renato Mancuso.

MemPol: Policing Core Memory Bandwidth from Outside of the Cores. In 29th IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS 2023), San Antonio,

Texas, USA, May 2023.

ECRTS 2023

https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://docs.xilinx.com/v/u/en-US/pg172-ila
https://docs.xilinx.com/v/u/en-US/pg172-ila
https://docs.xilinx.com/v/u/en-US/pg125-axi-traffic-gen
https://docs.xilinx.com/v/u/en-US/pg125-axi-traffic-gen
https://docs.xilinx.com/v/u/en-US/pg037_axi_perf_mon
https://docs.xilinx.com/v/u/en-US/pg037_axi_perf_mon
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

	1 Introduction
	2 Related Work
	3 System Model and Assumptions
	4 Distribution-Driven Regulation
	4.1 Discrete-domain Formulation

	5 System Overview
	5.1 Memory Latency Distribution-Driven Regulator Algorithm

	6 Implementation
	6.1 AXI Performance Monitor (APM)

	7 Validation and Evaluation
	7.1 Experimental Setup
	7.2 Validation of I.I.D. Assumption A8
	7.3 Validation of Other Key System Assumptions
	7.4 Configuration Parameters
	7.4.1 Regulation Interval
	7.4.2 Total Bins
	7.4.3 Bin Size

	7.5 Effectiveness of the Approach
	7.6 Impact of Regulation on the Average Memory Latency
	7.7 Comparison with DRAM bandwidth-based regulation

	8 Conclusion and Future Work

