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Electron transfer at electrode interfaces to molecules in solution or at the electrode surface plays a vital role in numerous

technological processes. However, treating these processes requires a unified and accurate treatment of the fermionic

states of the electrode and their coupling to the molecule being oxidized or reduced in the electrochemical processes

and, in turn, the way the molecular energy levels are modulated by the bosonic nuclear modes of the molecule and

solvent. Here we present a physically transparent quasiclassical scheme to treat these electrochemical electron transfer

processes in the presence of molecular vibrations by using an appropriately chosen mapping of the fermionic variables.

We demonstrate that this approach, which is exact in the limit of non-interacting fermions in the absence of coupling

to vibrations, is able to accurately capture the electron transfer dynamics from the electrode even when the process

is coupled to vibrational motions in regimes of weak coupling. This approach thus provides a scalable strategy to

explicitly treat electron transfer from electrode interfaces in condensed-phase molecular systems.

I. INTRODUCTION

Reactions at electrode interfaces are ubiquitous in indus-

trial processes and omnipresent in chemical, medical and en-

ergy research. Accurately capturing these processes requires

treating the quantum dynamics of the electrode states and

their coupling to the electronic and nuclear dynamics of the

molecules in the electrolyte. The vastly different timescales

of these dynamical processes as well as the combined size of

the electronic and nuclear Hilbert spaces makes accurate sim-

ulations of these systems with atomisitic detail highly chal-

lenging.

Semiclassical and quasiclassical methods, which use classi-

cal trajectories to approximate exact quantum dynamics, pro-

vide a potentially appealing route to treat the dynamics of con-

densed phase systems with lead(electrode)-molecule interac-

tions due to their efficiency and low scaling with dimensional-

ity. The two approaches that have generated the most methods

for treating these systems semiclassically are those based on

surface hopping and those that arise from mapping Hamilto-

nians.

Recently introduced surface hopping based methods in-

clude the independent electron surface hopping1±3 (IESH)

and the classical master equation evaluated with surface

hopping4±6 (CME-SH) approaches. The CME-SH approach

has been combined with a diffusive description of the sur-

rounding condensed phase environment to describe a range of

electrochemical properties.7±9 The CME also provides a link

to methods which incorporate the effects of the electrons in

the lead using electronic friction.10±12 However, the deriva-

tion of the CME assumes weak lead-molecule coupling and

requires introducing an ad hoc broadening procedure to prop-

erly treat the lead-molecule hybridization for stronger cou-

pling regimes.

Semiclassical mapping methods, which map the discrete,

single-particle creation and annihilation operators to contin-
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uous, classical degrees of freedom, provide an appealing ap-

proach to obtain an efficient classical-like description of the

dynamics of lead-molecule systems. The Li-Miller mapping13

(LMM) has been shown to give accurate results when ap-

plied to describing electronic transport through molecular

junctions14±16 (the Anderson impurity model). The apparent

success of LMM for these systems occurs despite its map-

ping of fermionic creation annihilation operators, which obey

fermionic symmetries, onto Cartesian degrees of freedom

that do not obey the fermionic anti-commutation identities.

The more recent complete quasiclassical mapping16 (CQM)

has extended the LMM to capture more general classes of

fermionic observables. The success of the LMM and CQM

approaches in accurately reproducing the dynamics in bench-

mark systems of nanoscopic transport despite not satisfying

the fundamental anticommutivity of the individual fermionic

operators initially seems quite remarkable and that a deeper

reason exists for their success. Recent work has provided

general insights into the reasons that mapping the fermionic

dynamics of the lead onto bosons in many cases can give

accurate or even exact results.17,18 In particular, it has been

shown that, in the case of non-interacting fermions, one can

exchange the fermionic and bosonic dynamics, while retain-

ing the fermionic statistics, and yet still obtain the exact quan-

tum dynamics.17 More generally the conditions (i.e. combi-

nation of the form of the Hamiltonian and observables) under

which individual fermionic creation and annihilation opera-

tors can be rigorously replaced with their bosonic counterparts

has been derived.18

Given the realization that under particular conditions one

can obtain the exact dynamics by mapping the fermionic

lead to bosons thus allows for the use of the Meyer-Miller

(MM) mapping,19 which has long been appreciated as an

exact mapping in the case of bosons,20 to be applied to

develop a classical-like description of fermionic processes.

While Meyer-Miller mapping of the fermionic operators is no

longer exact in the case of interacting fermions or when cou-

pled to bosonic degrees of freedom, recent work has shown

that it can still provide an accurate description of purely

fermionic systems.17 Here we investigate and analyze the ac-
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curacy of MM mapping in treating systems involving a mix-

ture of fermionic (lead and molecule electronic occupations)

and bosonic (nuclear motion) degrees of freedom. In partic-

ular, we investigate an Anderson-Holstein model consisting

of a lead (electrode) that can transfer electrons to a molecule

in the electrolyte with the transfer mediated by a vibrational

mode. This Hamiltonian has formed the basis of numerous

previous studies to benchmark techniques for use in electro-

chemical simulations.4,8,9,21 From this we are able to contrast

the benefits of MM mapping to surface hopping based ap-

proaches. We show that the mapping approach has advantages

over surface hopping approaches in that the states of the lead

are straightforward to discretize and it is accurate for strong

lead-molecule coupling. However, the mapping approach suf-

fers from detailed balance issues that become increasingly ap-

parent in the case of strong molecule-vibration coupling.

II. THEORY

We focus on the dynamics arising from a Hamiltonian of

the Anderson-Holstein form,

Ĥ ≙ Ĥelec + Ĥ
(U)
vib + Ĥelec-vib´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ĤM

+ĤL + Ĥelec-L. (1)

In particular, here we consider the case of a molecule ĤM

coupled to a single lead (electrode) with Hamiltonian ĤL

by Ĥelec-L. The molecular Hamiltonian is comprised of the

electronic states, vibrational states, and the coupling between

them described by Ĥelec, Ĥ
(U)
vib , and Ĥelec-vib respectively. The

molecule receives charge through its interaction with the lead

which can alter the charge from its initial ªunchargedº state to

a charged state. This system is shown schematically in Fig. 1.

The particular form of the Anderson-Holstein Hamiltonian

in Eq. 1 (also sometimes referred to as the Anderson-Newns

model22) has been previously been used to describe electron

and proton transfer in electrochemical reactions21 as well as

adsorption/desorption from metal interfaces.23 In the most

general form, the molecular Hamiltonian can be written as a

sum of the charged (C) and uncharged (U) states as

ĤM ≙ H
(C)
vib (Q̂, P̂ )d̂²d̂ +H

(U)
vib (Q̂, P̂ )∥1 − d̂²d̂∥, (2)

where

H
(U)
vib (Q̂, P̂ ) ≙ 1

2
P̂ TM̂−1P̂ + V (U)(Q̂), (3)

and

H
(C)
vib (Q̂, P̂ ) ≙ 1

2
P̂ TM̂−1P̂ + V (C)(Q̂) + ϵM . (4)

The set of operators Q̂ and P̂ describe the position and mo-

mentum of the nuclear degrees of freedom and ϵM is the en-

ergy difference between the charged and uncharged states.

The diagonal mass matrix is denoted by M and the fermionic

raising and lowering operators corresponding to the molecule

are denoted by d̂ and d̂² which satisfy the anticommutation

rule ∥d̂, d̂²∥+ ≙ 1. Eq. (2) can be rewritten as

ĤM ≙ ϵMd²d +H
(U)
vib (Q̂, P̂ ) +∆V (Q̂)d²d, (5)

where we have defined ∆V (Q̂) ≙ V (C)(Q̂) − V (U)(Q̂). By

rewriting Eq. (2) in this form and comparing with Eq. (1) one

can see that

Ĥelec ≙ ϵM d̂²d̂, (6)

and

Ĥelec-vib ≙∆V (Q̂)d̂²d̂. (7)

The forms of V (U)(Q̂) and V (C)(Q̂) are kept general for

now but will be given specified forms in Sec. III. Although

in the present work we will use a simple form of the molec-

ular Hamiltonian to allow for comparison to exact results we

emphasize that the mapping approach to treating the fermionic

dynamics described in Sec. II A is fully compatible with atom-

istic treatments of molecular vibrations using diabatization

schemes.24±30
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Figure 1. Schematic representation of the type of Anderson-Holstein

models studied in this work. The lead is described by ĤL, the ini-

tially uncharged molecular system by ĤM = Ĥelec + Ĥ
(U)
vib + Ĥelec-vib,

and the coupling between the two by Ĥelec-L.

Here the lead is assumed to be comprised of free electrons

giving the specific form of the Hamiltonian

ĤL ≙

G

∑
k

ϵk ĉ
²
k ĉk, (8)

and the lead-molecule coupling is taken to be via an exchange

mechanism of the form

ĤC ≙

G

∑
k

tk(d̂²ĉk + ĉ
²
kd̂). (9)
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The annihilation and creation operators ĉk and ĉ²
k destroy

and create electrons of energy ϵk in the lead and satisfy∥ĉk, ĉ²
k′∥+ ≙ δkk′ while {tk} are the transfer coefficients be-

tween the lead states and the electronic states of the molecule.

The distribution of fermionic states in the lead is determined

by its spectral function JL(ϵ) which allows the flexibility to

treat leads ranging from metals to semiconductors.

A. Classical mapping of a many-body bosonic and
fermionic system

While it has been long established how to classically de-

scribe bosonic degrees of freedom via the formal relation-

ship between ladder operators and Cartesian variables19,20

the case for fermions has faced considerably more difficul-

ties. Previous work in this area has made use of quaternions

to map fermionic operators into classical variables.13±16 Re-

cently it was demonstrated that for non-interacting fermionic

systems it is possible to exactly replace the fermionic oper-

ators by classical-like phase space variables using the MM

mapping17,18 giving the relations

ĉ→
1√
2
(q + ip), (10)

ĉ²
→

1√
2
(q − ip). (11)

This mapping and the resulting classical equations of motion

for q and p exactly reproduce the evolution of the one-body

density matrix for non-interacting fermionic systems while

outside of this limit or when coupled to bosonic degrees of

freedom, it is an approximation. It is important to emphasize

that the classical oscillators of the MM mapping are used here

to count the occupation of the single-particle fermionic states

whose sum adds up to the total number of particles which dif-

fers from its traditional use in counting the total electronic

population which always sums to one. Applying this mapping

to the Hamiltonian of the Anderson-Holstein form in Eq. (1)

gives

H(q,p,Q,P ) ≙ 1

2
U(Q)(q2d + p2d − 2γM) +H(U)vib (Q,P )

+

G

∑
k

ϵk

2
(q2k + p2k − 2γL) + G

∑
k

tk(qdqk + pdpk),
(12)

with

U(Q) ≙∆V (Q) + ϵM . (13)

Here q,p are the mapped Cartesian coordinates that describe

the fermionic variables of both the molecule (qd, pd) and lead

({qk, pk}). In Eq. (12) we have also replaced the nuclear co-

ordinates with classical variables Q,P which is a separate

approximation.

Each of these degrees of freedom evolves classically ac-

cording to Hamilton’s equations of motion

q̇d ≙
dH

dpd
≙ Upd +

G

∑
k

tkpk, (14)

ṗd ≙ −
dH

dqd
≙ −Uqd −

G

∑
k

tkqk, (15)

Q̇j ≙
dH

dPj

≙

dH
(U)
vib

dPj

, (16)

Ṗj ≙ −
dH

dQj

≙ −
1

2

dU

dQj

(q2d + p2d − 2γM) − dH
(U)
vib

dQj

−

G

∑
k

dtk

dQj

(qdqk + pdpk), (17)

q̇k ≙
dH

dpk
≙ ϵkpk + tkpd, (18)

ṗk ≙ −
dH

dqk
≙ −ϵkqk − tkqd, (19)

where the dot refers to the derivative with respect to time. The

second line of Eq. (17) accounts for the fact that the transfer

coefficients may depend on the nuclear coordinates, which can

easily be incorporated within the mapping framework but is

not studied in this work.

The factors γM and γL parameterize the zero-point energy

of the molecular and lead fermionic states respectively. Only

for the choice of γM ≙ γL ≙ γ does the MM mapping ex-

actly describe the Anderson-Holstein model in the absence of

nuclear modes, thus we will limit our attention to this case.

The value of γ has traditionally been restricted to lie between

0 and 1/2,17,20,31,32 although recent work has discussed the

use of negative values.33 For non-interacting systems the clas-

sical equations of motion are independent of γ and it only

affects the initial conditions (see Sec. III). However, for in-

teracting systems such as the case studied here the choice

of this γ affects the resulting dynamics as can be seen in

Eq. (17). For the particular value of γ, we investigated val-

ues of γ ≙ (√3 − 1)/2,32,34 which gives the best result for

2-state systems such as the spin-boson problem, and γ ≙ 0,

which has been shown to be the best choice as the number of

states becomes large.34 Overall we find that the latter of these

choices yields slightly improved results over a wider range of

Hamiltonian parameters and thus are shown in Sec. IV while

the results using the former are provided in SI Sec. I.

Upon integrating the equations of motion given in

Eqs. (14)-(19) one can use the trajectories to compute time-

dependent quantities such as the electronic population of the

molecule

nM(t) ≙ ⟨d̂²d̂⟩→ 1

2
⟨q2d + p2d − 2γ⟩, (20)
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and the current

I(t) ≙ − d

dt
∑
k

⟨ĉ²
k ĉk⟩→ −∑

k

tk⟨pdqk − qdpk⟩. (21)

where the mapping from the fermionic operators to the clas-

sical variables are obtained by using Eqs. (10) and (11). Here

the angular brackets denote averaging with respect to the ini-

tial density matrix. Appendix A shows that the MM mapping

guarantees the total charge and energy are conserved just as is

the case with the exact quantum dynamics.

As discussed in the introduction, the MM mapping is not

the only choice of a classical mapping that is available for

fermionic operators. Indeed, the LMM13 and its generalized

form known as the complete quasiclassical map (CQM)16 are

also exact in the same limits as the MM mapping. It was

also shown in Ref. 17 that each of these mappings perform

similarly outside of the non-interacting fermion case. The

reason for this is likely due to the fact that despite each of

these mappings trying to capture fermionic properties they

can actually be expressed in a unified mapping framework,

along with the MM mapping, which makes no assumptions of

fermionic canonical commutation relations.35,36 In SI Sec. III

we compute the results obtained using the CQM approach for

the Anderson-Holstein model we investigate here and demon-

strate that it gives almost numerically indistinguishable results

to those obtained using MM mapping. Since MM mapping

only requires half the number of degrees of freedom to de-

scribe the same system as the LMM and CQM in Sec. IV, we

show the results obtained using MM mapping.

III. MODEL SYSTEM AND GENERATION OF INITIAL
CONDITIONS

To examine the ability of the MM mapping to describe the

many-body physics of the Anderson-Holstein model we spec-

ify the nuclear vibrational Hamiltonians in Eq. (1) to take the

forms,

H
(U)
vib ≙

1

2
h̵ω(P 2

+Q2), (22)

and

H
(C)
vib ≙

1

2
h̵ω(P 2

+Q2) +√2gQ + ϵM ,

≙

1

2
h̵ω

⎡⎢⎢⎢⎢⎣P
2
+ (Q + √2g

h̵ω
)2⎤⎥⎥⎥⎥⎦ + ϵ̃M . (23)

In our case, the nuclear Hamiltonian thus consists of one har-

monic vibrational degree of freedom with frequency ω cou-

pled to the two electronic states of the molecule where g me-

diates the electron-vibration coupling, ϵM is the bias of the

charged state and ϵ̃M ≙ ϵM−g
2/h̵ω is the renormalized molec-

ular energy in the presence of the vibrational mode. This

model was previously investigated using the CME-SH ap-

proach that we compare to here.4 The initial density matrix

is

ρ ≙ ρM ⊗ ρ
eq

vib ⊗ ρ
eq

L , (24)

where ρM represents the initial density of the fermionic de-

grees of freedom of the molecule where the molecule is ini-

tialized such that only H
(U)
vib is populated i.e. nM(0) ≙ 0

(see Eq. 20). The nuclear vibrational degrees of freedom are

thermalized in this state according to the Wigner distribution

given by,

ρ
eq

vib ≙
α

π
e−α(Q

2
+P 2), (25)

where α ≙ tanh(βh̵ω/2) and β ≙ 1/(kBT ) is the inverse tem-

perature. In the limit of βh̵ → 0 this reduces to the classical

Boltzmann distribution.

ρ
eq

L is the thermal equilibrium density matrix of the lead

states. Since the electrons in the lead are in thermal equilib-

rium, the population of a state with energy ϵ is given by the

Fermi-Dirac distribution

nf(ϵ) ≙ 1

1 + eβ(ϵ−µ)
, (26)

where µ is the chemical potential. Here, we assume a lead

that is metallic in nature such that the fermionic states of the

lead form a continuum and are described by the continuous

spectral function

JL(ϵ) ≙ Γ(1 + eA(ϵ−B/2))(1 + e−A(ϵ+B/2)) , (27)

where A and B define the cutoff and width of the lead distri-

bution and Γ controls the coupling strength of the lead to the

molecule. The transfer coefficients, tk (see Eq. 9), are mod-

eled in the wide band limit following the procedure of Refs. 15

and 16 giving

tk ≙

√
JL(ϵk)∆ϵ

2π
, (28)

where ∆ϵ is the spacing between lead states. The initial con-

ditions for the molecular fermionic degrees of freedom are

qd(0) ≙√2γ + 2nM(0) cos(θd), (29)

and

pd(0) ≙ −√2γ + 2nM(0) sin(θd), (30)

where θd is a uniform random number between 0 and 2π and

nM(0) is initial charge state of the molecule. The lead degrees

of freedom are initialized similarly as

qk(0) ≙√2γ + 2nk cos(θk), (31)

and

pk(0) ≙ −√2γ + 2nk sin(θk), (32)

where the nk are sampled using the procedure of Ref. 16

where each nk is either zero or one such that the Fermi-Dirac

distribution is reproduced upon ensemble averaging and θk is

a uniform random number between 0 and 2π. In what fol-

lows all units are reported in atomic units unless otherwise

stated. Additional Computational details can be found in the

SI Sec. IV.
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IV. RESULTS

To investigate the performance of the MM mapping in

describing the Anderson-Holstein model we first look at

cases without the presence of the vibrational mode, in which

the mapping should yield the exact result regardless of the

strength of the lead-molecule coupling.17,18 We then consider

the effect of coupling this system to a vibrational mode of the

lead and how this alters the ability to capture the properties of

the system.

A. Lead-molecule system

When g ≙ 0 in Eq. (23) the nuclear vibrational mode is de-

coupled from the system and it reduces to an Anderson model

consisting of just the lead and molecule (often referred to as a

dot). In the limit of small electron-vibration coupling, g → 0,

the equilibrium molecular population in the presence of a wide

band lead is given exactly by37,38

n
eq
M ≙ ∫

dϵ

2π

Γ(ϵ − ϵ̃M)2 + (Γ/2)2nf(ϵ). (33)

Using Eq. (33) we can test how well the classical dynam-

ics of the MM mapping recovers equilibrium properties both

in the absence and presence of nuclear motion as a function

of the lead-molecule coupling strength. Since, in the ab-

sence of nuclear modes the MM mapping gives a quadratic

Hamiltonian, which ensures the dynamics are exact, it should

recover the correct equilibrium population regardless of the

lead-molecule coupling strength.

Figure 2 shows that in this case (g ≙ 0) the MM mapping

is able to capture the correct equilibrium molecular popula-

tion as the energy bias ϵM is scanned revealing that the hy-

bridization between the molecular level and the lead is be-

ing properly described. This is not the case for the CME-SH

methodology,4,5 which only recovers correct equilibrium pop-

ulations after being ªbroadenedº to account for the hybridiza-

tion between the lead and molecule. While the broadening

schemes that have been used in conjunction with CME-SH are

effective in correcting the equilibrium behavior in the absence

of nuclear motion it is unclear how to extend them beyond

cases where analytic results provide guidance. In contrast, the

MM mapping naturally incorporates the hybridization through

the explicit dynamics of the lead degrees of freedom and does

not need to be modified to capture the equilibrium behavior

in the absence of nuclear motions. In addition, the current

(Eq. (21)) is correctly zero when the system is in equilibrium.

B. Lead-molecule-vibration system

We now consider the case where the lead-molecule sys-

tem is now coupled to a nuclear vibrational mode (see Fig. 1)

which can dissipate energy. The strength of the coupling of

0 50 100 150 200 250 300
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M = 0.015
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M = 0.015

Figure 2. Left: Transient dynamics of the molecule population with

Γ = 0.006, µ = 0.0 and β = 100. Dotted lines are the transient

populations computed using the MM mapping, dashed lines are the

equilibrium value predicted by the CME-SH method without broad-

ening and solid lines are the exact values obtained from Eq. (33).

Right: Lead distribution after 750 fs. Colored shapes are distribu-

tions computed from the MM mapping and the solid black line is

the Fermi-Dirac distribution. 10000 trajectories were used to obtain

these results.

the molecule’s electronic population to the vibrational is con-

trolled by g (Eq. 23). Due to the presence of the nuclear mo-

tion coupled to the molecular electronic degrees of freedom

the MM representation is no longer exact.

Figure 3 shows the equilibrium molecule population (ob-

tained at 1.5 ps) as a function of the energy bias for a series of

electron-vibration coupling (g) values. The parameter regimes

shown correspond to those in Ref. 4 such that comparisons can

be made to the CME-SH approach. Despite the MM mapping

not being exact we see that it is able to accurately predict the

correct population for the cases when g ≙ 0.001, g ≙ 0.0025,

and g ≙ 0.005. However, for the strongest coupling to the vi-

brational mode g ≙ 0.0075 we find that the MM mapping un-

derestimates the long-time population. We also observe that

MM mapped dynamics more accurately capture the equilib-

rium molecule population at large positive bias (ϵM > 0) than

negative bias. This is likely due to the fact that at high positive

bias the molecule’s energy is shifted high into the Fermi dis-

tribution where the population of lead states is much smaller

which effectively reduces the amount of coupling between the

lead and the molecule.

To further test MM mapping’s ability to capture the correct

long-time molecular population in Fig. 4 we plot the molecu-

lar population as a function of the renormalized bias, ϵ̃M , for

a case with strong vibrational coupling and weak lead cou-

pling (top panel) and a case with strong lead coupling and

weak vibrational coupling (bottom panel). Our MM map-

ping results are compared with the numerically exact numer-

ical renormalization group (NRG) and CME-SH calculations

without broadening in Fig. 4. As expected from the obser-

vations in Fig. 3 the MM mapping is not able to reproduce

the correct equilibrium molecule population in the case of

strong vibrational coupling but is very accurate for the case

of weak vibrational coupling even when the lead is strongly

coupled to the molecule. The latter result follows from the

fact that the MM mapping describes the bare fermionic sys-
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Figure 3. Equilibrium molecule population as a function of ϵM . Γ =

0.003, µ = 0.0, ̵hω = 0.003 and β = 100. The solid line are the exact

NRG results and dots are from the explicit MM mapping dynamics

using 10000 trajectories. Here γ = 0. 1200 lead states were used

ranging in energy from −0.1 to 0.1 except for the case where g =

0.0075 in which 2400 states were used ranging from −0.2 to 0.2.

tem exactly regardless of the value of Γ (see Sec. IV A). A

weakly coupled nuclear mode does not significantly affect this

description and demonstrates that there are regimes in which

a mapping description that employs fully linearized trajecto-

ries may be more accurate than the CME-SH since there is no

ambiguity in how to broaden the results. However, in cases

with strong coupling to the vibrational mode, even without

broadening, the CME-SH is able to more accurately capture

the exact result. The failure of mean-field dynamics and re-

lated methods such as classical mappings to capture detailed

balance for electronic systems coupled to bosonic modes has

been well documented in the literature and again presents a

challenge in the cases of stronger coupling to the vibrational

mode.6,39,40

To investigate the failure of the MM mapping in captur-

ing detailed balance, we performed a calculation in which the

molecule with no bias between the charged and uncharged

states (ϵ̃ ≙ 0) and the lead are initialized in thermal equilib-

rium. Due to the absence of a bias between the charged states

and since everything is at the same temperature there should

be no net exchange of energy between the lead and molecu-

lar degrees of freedom and hence the kinetic energy should

not evolve with time. The left panel of Fig. 5 shows the time

evolution of the kinetic energy of the vibrational mode where

we see that the MM mapping shows a drift in the average ki-

netic energy until it reaches a steady state value of ∼ 75% of

its initial value. The right panel of Fig. 5 shows the initial

(black) and final (blue) populations of the lead states where,

after magnifying the difference between them (green), we ob-

serve that those near the value of ϵ̃ ≙ 0 have lost population

which has been redistributed to the surrounding states. From

the green line we see that more of the population has been

pushed into states of higher energy. This increase of energy
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M

0.0
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ne
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Figure 4. Equilibrium molecule population as a function of ϵ̃M . µ =

0.0, ̵hω = 0.003 and β = 100. Top panel: Γ = 0.003 and g =

0.075 Bottom panel: Γ = 0.01 and g = 0.025 Solid lines are the

NRG results, dots are from the MM mapping using 10000 trajectories

and dashed lines are unbroadened CME-SH results taken from Ref.

4. Broadened CME-SH results are indistinguishable from the NRG

results and are not shown.

in the lead is responsible for the decrease in the average ki-

netic energy of the molecule. Similar results are found when

the number of states in the lead is increased verifying that this

effect is not an artifact of improper lead discretization (see SI.

Sec. II).

V. CONCLUSION

We have presented a simple and practical method for simu-

lating electrochemical systems using classical trajectories. By

utilizing the MM mapping to describe fermionic degrees of

freedom we have shown it is possible to capture the funda-

mental physics of lead-molecule and electron-vibration cou-

pling in the Anderson-Holstein model. Most notable is the

mapping approach’s ability to correctly capture the lead-

molecule hybridization. The mapping approach thus provides

advantages over other methods that could be applied to an

atomistic description of the molecular degrees of freedom
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Figure 5. The molecule with zero bias and the lead are both initial-

ized in thermal equilibrium. Left: the average kinetic energy from

the MM mapping dynamics (red line) and exact value (black dashed

line). Right: The initial (black line) and final (blue line) lead dis-

tribution. The green is the difference between the two and has been

magnified by a factor of 4 for clarity. Γ = 0.01, µ = 0.0, ̵hω = 0.003,

g = 0.025, β = 100.

such as the CME-SH approach4,5 since it naturally captures

the correct electronic population of the bare fermionic system

without the need for an ad hoc broadening procedure. How-

ever, while surface hopping methods accurately capture de-

tailed balance,4,40,41 we have shown that, consistent with other

MM mapped systems, when strong coupling to the nuclear

motion is present detailed balance issues arise leading to in-

correct molecular populations. Given that a number of strate-

gies have been introduced to improve the detailed balance fail-

ures of mapping approaches to semiclassical dynamics these

provide a potential avenue for improvements in future work.

Ultimately we believe this straightforward procedure

should be usable in a variety of contexts where strong

molecule-lead and weak electron-vibration couplings are

present making it complementary to other trajectory-based ap-

proaches as well as perturbative master equations. The flexi-

bility that this method affords should make it possible to ex-

tend it to describe a range of electrochemically relevant prop-

erties such as adsorption, charge transfer in atomistic environ-

ments as well as bond breaking/formation at charged surfaces

when combined with ab initio descriptions of the forces.

SUPPLEMENTARY MATERIAL

See the supplementary material for comparisons with alter-

native values of the point energy, convergence tests, compari-

son with the CQM, and additional computational details.
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Appendix A: Conservation of charge and energy

The total charge is given by the sum of the fermionic popu-

lation in the lead and the molecule

T̂ ≙ d̂²d̂ +
G

∑
k

ĉ²
k ĉk. (A1)

Using the Heisenberg equation of motion and Eq. (1) it is

straightforward to show that

d

dt
T̂ ≙ i∥Ĥ, T̂ ∥ ≙ 0, (A2)

meaning that charge is conserved in this system when treated

quantum mechanically. Likewise, it can also be shown that

when the system is mapped classically using the MM mapping

that charge is also conserved. Within the mapping the total

charge is given by

T ≙
1

2
(q2d + p2d − 2γ) + 1

2

G

∑
k

(q2k + p2k − 2γ). (A3)

From this definition and using the classical equations of mo-

tion given in Eqs. (14)-(19) it follows that

d

dt
T ≙ qdq̇d + pdṗd +

G

∑
k

(qk q̇k + pkṗk) ≙ 0. (A4)

Similarly the total energy is conserved, which trivially follows

from the fact that quantum Hamiltonian commutes with itself

and Hamilton’s equations of motion (Eqs. (14)-(19)) conserve

the total energy of the system. These results reveal that regard-

less of the value of γ the charge and energy of the total system

is conserved on the trajectory level. While it is true that charge

and energy are conserved at the trajectory level this does not

imply that individual trajectories are physically meaningful.

One must still average a sufficient number of configurations

to properly approximate the quantum dynamics of the system.
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