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ARTICLE INFO ABSTRACT

Handling Editor: Zhifu Mi A shift from privately owned vehicles to shared mobility services can affect mobility, energy consumption, and

vehicle emissions. Existing literature on ridesharing services has focused on evaluating its traffic and economic

Keywords: impacts. In this study, we propose an integrated framework to analyze the efficiency and environmental benefits
Rldesvhar.mg ) of ridesharing on a regional scale. The framework utilizes an agent-based traffic simulation package (i.e., SUMO)
z{;&g simulation to replicate traffic activities for commuting trips in a mid-size city, Chattanooga, Tennessee, based on real-world

travel-demand data. We construct scenarios representing different ridesharing strategies and penetrations. The
simulation and results analysis show that with a ridesharing ratio of 5%-75% over travel demand in a city scale,
many (65%-75%) ridesharing travelers will experience up to a 15-min delay. About 80% of drive-alone travelers
will arrive earlier compared with no ridesharing scenario. The average early arrival time would be 5.6 min for all
drive-alone travelers. The results also show ridesharing services can achieve a 2%-50% reduction in total city-
scale vehicle emissions and energy consumption compared with the no ridesharing scenario. The framework and
results of this study can be helpful to transportation practitioners to evaluate environmental benefits when

Vehicle emission

implementing ridesharing services on a city scale.

1. Introduction

Road transportation is a major consumer of energy and contributor
to air pollution (Davis and Boundy, 2021; European Union, 2012).
Shared mobility is considered an effective way to enhance efficiency in
the road transportation system (Shaheen et al., 2016b). Shared mobility
is an innovative transportation strategy that provides users with
short-term access to transportation on demand. The definition of shared
mobility includes various formats, including carsharing, ride-hailing,
and ridesharing. These services aim to break traditional car owner-
ship, instead providing users with travel options through a pay-per-use
approach. In recent years, there has been rapid development and
commercialization of ridesharing services (e.g., Uber, Lyft). Ridesharing
is defined as an arrangement where two or more people from different
households share the use of a privately owned car for part of a trip and
share the driving expenses (Delhomme and Gheorghiu, 2016). Rideshare
services has the potential to eliminate traffic congestion and reduce
vehicle emissions based on studies in different localities Yu et al. (2017);
Jalali et al. (2017); Dai et al. (2022).

Despite progresses in ridesharing services, knowledge gaps still exist,
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and this prevents transportation practitioners from fully understanding
the potential impacts of ridesharing services. As stated by Yu et al.
(2017), “most of the existing studies are mainly drawing on the survey
data or the small-scale trip data instead of the raw observed order in-
formation.” In the limited studies based on empirical ridesharing data,
their conclusions are retrospective and do not offer insights for future
scenarios, which are important for transportation practitioners in eval-
uating various ridesharing policies. Any tools developed should have the
capability to consider individual-level behavior when evaluating ride-
sharing impacts (Arteaga-Sanchez et al., 2020). Thus, the research
questions to address in this study are: (1) how to develop an environ-
mental impact evaluation framework for ridesharing services that
considering individual-level (i.e., agent) behavior changes; and (2) how
to implement scenario analysis that can be used by transportation
practitioners to evaluate the potential impacts of various ridesharing
strategies.

In the literature, researchers studied rideshare services in terms of
behavior, operation management, and impacts on traffic networks and
the environment. Research related to the behavior of rideshare focused
on motivations and constraints of people using rideshare services. The
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literature shows that people use rideshare services due to its benefits in
cost savings (Correia and Viegas, 2011; Ciasullo et al., 2017) and time
savings (Abrahamse and Keall, 2012; Shaheen et al., 2016a). People’s
sociodemographic characteristics have been shown to influence their
choice of ridesharing services (Delhomme and Gheorghiu, 2016; Javid
et al., 2017; Molina et al., 2020). Various types of online and offline
driver—passenger matching algorithms have been developed to improve
operational efficiency in ridesharing services (Guo et al., 2013a, 2013b;
Huang et al., 2016; Tamannaei and Irandoost, 2019; Yan et al., 2013).
Recently, studies have focused on impacts of rideshare on conges-
tion, energy consumption, and emission of transportation. The impacts
of rideshare on congestion have been well studied (Bahat and Bekhor,
2016; Gurumurthy et al., 2019; Li et al., 2016; Ou and Tang, 2018). But
the energy and environmental impacts of ridesharing services are less
studied. Some studies employed travel survey data to investigate the
environmental and energy impacts of rideshare. Caulfield (2009)
explored the environmental benefits of ridesharing in terms of re-
ductions in emissions and vehicle kilometers traveled based on
analyzing the 2006 census of Ireland. Minett and Pearce (2011) esti-
mated the energy savings of ridesharing for leisure trips in San Francisco
is about 1.7 million to 3.5 million liters of gasoline per year, or 200-400
L for each participant, based on ridesharing opinion data. Other studies
used similar approaches with survey data to analyze the energy and
emission benefits of ridesharing services in other countries, like China
(Yu et al., 2017), Canada (Jalali et al., 2017) and globally (Tikoudis
et al., 2021). Although these surveys were rigorously implemented, the
data can only represent survey participants’ choice under hypothetical
conditions. When investigating energy and emission benefits of ride-
sharing services, it is important to consider a bottom-up approach that
can quantify the benefits at individual level and evaluate how changes in
driving trajectories can lead to changes in aggregated vehicle emissions.
Agent-based traffic simulation is a technique that can model the
transportation system as a collection of autonomous decision-making
agents, i.e., travelers, and simulate their movements in the system
(Bonabeau, 2002). It has the advantage of modeling a complex trans-
portation system by tuning the interactions among independent
decision-making agents. It is possible to evaluate various traffic man-
agement policies in traffic simulation and gain insights into the system
that would not be possible a priori. Recently, limited studies began to
utilize agent-based traffic simulation tools to study impacts of various
formats of shared mobility. Becker et al. (2020) established a multi-
modal traffic simulation application in MATSim to evaluate the eco-
nomic and travel time impacts of car sharing, bike sharing, and ride
hailing. They simulated the road network in Zurich, Switzerland, and
implemented scenarios with different shared car or bike fleet sizes.
Other studies used similar traffic simulation tools to assess car sharing
(Ciari et al., 2015; Balac et al., 2019), shared autonomous taxis (Leich
and Bischoff, 2019), and transit first- and last-mile connections (Huang
etal., 2021). Thus, agent-based traffic simulation can be a viable method
to study the impacts of ridesharing at the transportation system level.
This review of the literature shows that there is a knowledge gap in
the literature regarding developing an environmental impact evaluation
framework for ridesharing services with consideration of individual-
level (i.e., agent) behavior changes. In addition, to be useful for trans-
portation practitioners, the developed framework needs to have scenario
analysis capability that can evaluate various ridesharing strategies for
comparison purposes. In this study, we propose an integrated framework
to analyze the efficiency and environmental benefits of ridesharing on a
regional scale. Specifically, the framework utilizes an agent-based traffic
simulation package (i.e., SUMO) to replicate traffic activities for
commuting trips in a mid-size city, Chattanooga, Tennessee. We utilize
real-world travel origin and destination demand data for the city and
develop a heuristic matching algorithm for arranging ridesharing trips
among travelers. We construct scenarios representing different ride-
sharing strategies and penetrations. Last, efficiency (delay at system and
individual levels) and environmental performance are evaluated and
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compared among different ridesharing scenarios.

The remainder of this paper is organized as follows. Section 2 pre-
sents the traffic simulation methodology, data sources, and construction
of simulation scenarios. In Section 3, we discuss simulation results and
analyze road network efficiency and environmental impacts due to the
implementation of ridesharing services. Section 4 discusses our study
and points out some policy implications for transportation practitioners.
Section 5 provides the conclusions and future research directions of this
study.

2. Methodology

To assess the energy and environmental impacts of ridesharing ser-
vices, we configure an integrated framework to run scenario-based
traffic simulations and analyze traffic outputs for environmental im-
pacts (Fig. 1). The traffic simulation is implemented through Simulation
of Urban Mobility (SUMO). SUMO is a highly customizable, open-source
microscopic traffic simulator built on agent-based simulation concept
(Krajzewicz et al., 2002). Additionally, SUMO provides an interface,
TraCl, that allows real-time extracting and passing parameters with a
simulation (Wegener et al., 2008). The framework contains three mod-
ules: data preparation, shared mobility simulation, and output analysis.
In the “Data Preparation” module, road information is prepared to
digitally represent traffic network in the traffic simulator SUMO. We
obtain travel demand origin and destination (OD) matrix data from the
metropolitan planning organization of Chattanooga. The travel demand
OD matrix is based on traffic analysis zone (TAZ) and contains hourly
vehicle trips between each OD TAZ pair. We assign TAZ-level trips to
specific road links according to the land use characteristics of each TAZ.
In the “Shared Mobility Simulation” module, a shared mobility toolbox
is built using Python. It allows convenient setting of simulation pa-
rameters for scenario specifications. In addition, the toolbox enables
in-route driver—passenger matching for shared mobility vehicles to
maximize matching efficiency. Once scenario-specific simulations are
done, the toolbox can process the outputs and generate results at vehicle
level (i.e., vehicle trajectory at 1Hz frequency) and road link level (i.e.,
hourly average speed, density, and volume). The “Output Analysis”
module analyzes simulation results and evaluated share mobility im-
pacts on traffic, travelers’ schedules, and the environment under various
scenarios. For traffic impact analysis, we aggregate 1Hz vehicle trajec-
tory results into 5- or 15-min link-level average speed and volume. We
evaluate changes in link-level traffic stream characteristics under
different rideshare scenarios. For traveler schedule impact analysis, we
track and compare the travel time for each individual under base and
various rideshare scenarios. For environmental impact analysis, we
obtain 1Hz vehicle emissions of CO,, PM, and NOy as provided by
SUMO. Vehicle emissions reported by SUMO are based on
well-calibrated regulatory vehicle emission model HBEFA and PHEM-
light (Lopez et al., 2018) and have been widely used in relevant litera-
ture (Erdag1 et al., 2019; Validi et al., 2020; Gounni et al., 2019). We
aggregate the 1Hz vehicle emission at trip, link, and network levels to
evaluate environmental impacts of various shared mobility scenarios.

For the core part of “Shared Mobility Simulation,” the process is as
follows:

1. Vehicle trip generation. A vehicle trip contains OD road links for
vehicle travel. The OD matrix data provide the number of trips be-
tween each TAZ pair. We assign each trip to one road link in the
origin TAZ and one link in the destination TAZ, based on land use
and other link features (e.g., length, traffic volume, etc.). At this step,
we divide all vehicle trips into two travel modes, i.e., driving alone
and shared rides. The ratio between the two modes can vary under
different share mobility scenarios.

2. Route generation. Given OD links for each drive-alone vehicle trip,
we find the route of road links for each trip. We employ SUMO’s
DUAROUTER algorithm to search for the route. This algorithm
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Output Analysis

Fig. 1. Framework of the shared mobility simulation.

applies a dynamic user equilibrium method to determine the shortest
path for each trip based on time-dependent travel time and costs on
road links. The time-dependent individual vehicle routes can be used
to calculate the arrival time and schedule delay of each traveler.
When aggregating individual vehicle routes, we can obtain link-level
traffic volume and speed patterns that can be used to evaluate link-
level and network-level traffic and environmental impacts from
various shared mobility scenarios.

3. Matching passengers with shared vehicles. For rideshare travel de-
mand, we develop a heuristic vehicle-passenger matching algorithm
to match passengers with shared vehicles. The pseudocode of the
algorithm is shown in Fig. 2. The main purpose is to ensure every
rideshare passenger is served. The algorithm tries to reduce waiting
time for riders and minimize routing time for shared vehicles. It first
searches for available vehicles that can pick up a rider within 5 min
of the desired departure time. If a vehicle is identified, the vehicle’s
route will be modified to pick up the rider and continue to its
destination. A shared vehicle is allowed to pick up as many as 3
passengers. When multiple riders are picked up, the shared vehicle
drops off passengers in an order that considers both distance to the
destination of each rider and pickup order of riders. If no available
vehicles are found in the initial 5-min window, the algorithm extends
the window to 10 min and then 20 min. At the 20-min time window,
most shared mobility riders can find a matching vehicle.

The experiment scenarios constructed in this paper are based on the
real-world data for the city of Chattanooga, Tennessee. This city has a
population of 182,803 and is set along the Tennessee River in the
foothills of the Appalachian Mountains in the Southeast region of United
States. It has a motorization index of 951 vehicles per 1000 people (TN
DOT, 2016). According to Tennessee Department of Transportation
data, 82% of commuting trips are fulfilled by driving cars and 10% of
commuters regularly or sometimes used ridesharing services. Chatta-
nooga was designated as an air quality nonattainment area mainly due
to its high vehicle-related emissions. Chattanooga commuters spend an

average of 20 min traveling one way (Chattanooga, 2020). Thus, Chat-
tanooga is an ideal testbed for our ridesharing framework given its high
vehicle ownership, travelers’ openness to rideshare services, and air
quality problems due to vehicle-related emissions. In this study, we
quantify traffic and environmental impacts of various ridesharing sce-
narios in Chattanooga.

To make our framework more applicable, we utilize real data from
Chattanooga to set up the simulation. We obtain Chattanooga’s TAZ-
level OD demand for a typical weekday from the Chattanooga trans-
portation planning organization. We use travel demand during morning
peak hours (6-9 a.m.) as the OD demand in the traffic simulation. The
OD demand shows the number of trips between each TAZ, and each trip
is considered to be fulfilled by one agent. Fig. 3 visualizes the travel
demand for the 746 TAZs in Chattanooga for the morning peak period.
Specifically, we categorize all TAZs into 10 homogenous TAZ clusters
based on sociodemographic information. For each TAZ cluster, we split
the travel demand into driving alone and sharing rides with different
ratios. Specifically, the “Base” scenario assumes all trips are driven
alone, which is comparable to the existing situation in Chattanooga. We
define five additional scenarios that have share ratio of 5%, 10%, 25%,
50%, and 75%, respectively, of travel demand to be fulfilled by shared
mobility services. According to literature, the current ridesharing ratio
in Chattanooga is 10% (Chattanooga, 2020) and the national average
ridesharing ratio is 9% (U.S. Census Bureau, 2019). Therefore, the 5%
and 10% scenarios are realistic scenarios that reflecting current ride-
sharing status. And our framework can evaluate its environmental im-
pacts. The 25%, 50% and 75% ridesharing scenarios are built in to
explore possible impacts of future ridesharing scenarios that could be
seen as high at present time. Overall, we are to quantify environmental
benefits of ridesharing in current and future scenarios.

We randomly choose 5%, 10%, 25%, 50%, and 75% of the trips in
drive-alone scenarios to be fulfilled by ridesharing services for the cor-
responding scenarios. These travelers will make themselves available to
be picked up based on their original departure times in the drive-alone
scenario. They are picked up based on the availability of drivers and
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Algorithm 1: Ride matching algorithm

Result: Mapping set of rider to car M = {r : c};

Initialization:

Available cars AC, = () for rider r and a set of cars fully occupied FC = ();

forr € Rdo

while length(AC,) = 0 do

TW, = [dt, — 2T, dt, — T);
for c € C do
ifdt. € TW, & c ¢ FC then
| AC, + AC,U{c};
end
end
Update length(AC,);
if length(AC, = 0) then
repeat
TW, <« TW, +T;

end
end
force AC, do

end

c* < argminct(c,7);

M+~ MU{p:c};

if count(c € M) = 4 then
| FC+ FCuU{c}

end

end

Statements of depart time (dt,.), depart position (pos,) for each rider r, and depart time
(dt.), depart position (pos,) for each candidate shared car c;

Search available cars for each rider » within the time widow

Extend T'W with time interval 7" and continue to search;
until TW, [upperbound] > TW, + 2T,

Calculate the path length L(pos., pos;,) between available car ¢ and rider r;
Estimate the traveling time T'(c,7) < L(pos., pos;)/speed;

Get time difference t(c, ) = T'(pos., pos,) + dt. — dt,

between the arrival of ¢ at pos,. and departure of r;

Fig. 2. Pseudocode for the heuristic matching algorithm.

Fig. 3. Spatial distribution of passenger cars departing (left) and arriving (right) in each TAZ of the Chattanooga model area.

traffic conditions in the road network.
3. Results
We construct six scenarios in the shared mobility simulation: (a) no

share (all vehicles driving alone); (b) 5% of trips are shared; (c) 10% of
trips are shared; (d) 25% of trips are shared; (e) 50% of trips are shared;

and (f) 75% of trips are shared. We first split passengers according to the
proportions of the scenario based on demand and then assign shared
vehicles to each passenger. Table 1 summarizes the volumes of pas-
sengers, shared vehicles, and drive-alone vehicles, as well as the average
vehicle occupancy for shared vehicles under each scenario. Various
outputs are generated by simulating these scenarios, including link-level
traffic measurements, trajectories of each vehicle, trip-level



R. Sun et al.

Table 1
Summary of trip volume under different scenarios during peak times (6-9 a.m.).
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Trip volume No rideshare 5% share ratio

10% share ratio

25% share ratio 50% share ratio 75% share ratio

Passengers 0 7250 14501 36,252 72,504 10,8755
Shared vehicles 0 6635 12433 28,421 40,246 33,022
Vehicles driving alone 145,007 131122 118073 80,334 32,257 3230
Average vehicle occupancy 1 1.09 1.17 1.28 1.80 2.94

information, and person-level trip summary. The link-level traffic
measurements describe macroscopic values such as the average speed,
density, and occupancy of the road link during a specified interval (e.g.,
5 or 15 min). Trip-level information contains the departure time, arrival
time, and route length of each vehicle and person and the sum of all
emissions by the vehicle during its journey.

3.1. Impacts of ridesharing on traffic

Fig. 4 shows the 5-min average speed distributions at the link level of
the three scenarios compared with the base scenario during morning
peak hours. We observe that all scenarios have a similar spread of link-
level speed ranging from 0 to 88 km/h and all density lines have two
main peak points at a similar segment-level speed; the primary one lies
at around 20 km/h, and the secondary peak is located at about 38 km/h.
The pattern of the distribution indicates that many vehicles are driving
at a low speed (20 km/h), corresponding to local collector roads. In
addition, another group of vehicles is driving around 38 km/h, corre-
sponding to arterial or major arterial roads. This implies that the
investigated area encounters traffic congestion during the simulated
morning peak hours. As shown in Fig. 4, the densities of shared scenarios
(5%, 10%, 25%, 50%, and 75% share ratios) at their primary peak point
(20 km/h) are lower than that of the base scenario (no share). Differ-
ences between the base scenario and the three shared scenarios at the
secondary peak point are also observable, although they are not statis-
tically significant. These differences reveal that the volume of vehicles
driving at a relatively low speed is reduced, which means shared
mobility significantly contributes to reducing traffic jams. In other
words, ridesharing is capable of easing traffic congestion during rush
hour. In Fig. 4, we further observe that the reduction of the density at the
primary peak point in the high share ratio scenario is the largest,

followed by the medium share ratio scenario and the low share ratio
scenario. As mentioned, these three scenarios are designed according to
the proportions of passengers who would like to share rides with others.
Therefore, the comparison among the three scenarios indicates that the
remission of traffic congestion is determined by the proportion of pas-
sengers in the shared mobility simulation. The higher the proportion of
passengers, the fewer vehicles in the traffic jam.

3.2. Impacts of ridesharing on schedule

Besides relieving traffic congestion on the road network, ridesharing
has the potential to affect the travel schedule of individual travelers.
Fig. 5 reports distributions of changes in arrival time for drive-alone
travelers and rideshare travelers. In the simulations, drive-alone trav-
elers will depart at the same time, but arrival times will differ due to
different traffic conditions in the road network. Ridesharing travelers’
departure (pickup) and arrival (dropoff) times can vary due to driver
availability and traffic conditions on roads.

Fig. 5 (left) presents the distribution of changes in arrival time for
drive-alone travelers under the three ridesharing scenarios. It shows that
most (70%-82%) drive-alone travelers arrive early compared with their
original arrival time in the no ridesharing scenario. The early arrival of
drive-alone travelers is caused by fewer vehicles on the road due to some
travelers choose ridesharing services. In all five ridesharing scenarios,
less than 20% of travelers are delayed by more than 5 min and the
magnitude decreases as rideshare percentage increases. Some drive-
alone travelers experience delays in travel time that are longer than 5
min, but the percentages are minimal. Although traffic volume in the
whole network is reduced because of ridesharing services, in certain
regions, there could be more traffic due to ridesharing vehicles routing
to pick up and drop off passengers. This caused a small fraction of drive-
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Fig. 4. Distributions of the segment-level speed of three scenarios compared with the base scenario.
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Fig. 5. Distributions of arrival delays of drive-alone travelers (left) and ridesharing travelers (right) under three ridesharing scenarios as compared with the no

share scenario.

alone travelers to spend extra time on the road. Our results also indicate
an average time savings of 5.6 min per drive-alone travelers, which is a
significant benefit in travel time for those travelers. Fig. 5 (right) pre-
sents the distribution of arrival delays for travelers using ridesharing
services as compared with travel time if they drive alone. We category
the arrival delays into four intervals: 0-5 min, 5-15 min, 15-30 min, and
more than 30 min. The high share scenario leads to a higher share of
travelers with delays less than 5 min. The results also show that 65%-—
75% of travelers are expected to experience an arrival delay that is less
than 15 min under various ridesharing scenarios. The main cause of
delay for ridesharing travelers is waiting for vehicle matching and
pickup. Particularly, travelers living in remote areas with lower popu-
lation density are more likely to experience longer delays. The results
show that the high share scenario, where more travelers are partici-
pating in ridesharing services, has the highest percentage of delays of 30
min or more. This is because in the high share scenario, it is more likely
that travelers from isolated areas will need rides.

3.3. Impacts of ridesharing on energy and emission

We investigate the impacts of ridesharing on trip-level vehicle-
related emissions. Specifically, we calculate and compare vehicle
emissions caused by each traveler in ridesharing scenarios. For the base
(no rideshare) case, each traveler drives one car and has a unique vehicle
trajectory at 1Hz frequency. We estimate second-level CO emissions
based on trajectory-level speed and acceleration and aggregate to trip-

level CO, emissions of each traveler. For rideshare scenarios, the trip-
level CO, emissions of each drive-alone travelers are calculated the
same way as in the base (no share) scenario. For travelers using ride-
sharing services, we split the CO, emissions among travelers sharing the
same vehicle based on their traveling distance. Fig. 6 presents the
scatterplot comparing trip-level CO, emissions in the no share scenario
and each of the three ridesharing scenarios. If emissions of each traveler
remain the same in the base and ridesharing scenarios, the scatter points
should cluster along the red diagonal line. If the emissions of each
traveler in ridesharing scenarios are lower than those in the base (no
share) scenario, the scatter plots would be expected to appear above the
diagonal line, and vice versa. Fig. 6 shows a larger portion of scatter
points above the diagonal line for all three ridesharing scenarios
compared with the base (no share) scenario, which means that travelers
can generally reduce vehicle emissions with ridesharing options. In
addition, the higher the ridesharing ratio, the higher portion of points
that appear above the diagonal line. This is expected, because a higher
ridesharing ratio can achieve more reductions in vehicle emissions of
each traveler. The average trip-level CO, emissions are 4.3 kg, 4.2 kg,
4.0 kg, 3.8 kg, 3.2 kg, and 2.9 kg for no rideshare, 5%, 10%, 25%, 50%,
and 75% share ratio scenarios, respectively. Clearly, higher ridesharing
generally leads to lower average trip-level emissions given the same
amount of travel demand. Though the exact reduction in CO emissions
is subject to the specific operation of ridesharing services and travel
demand, our results are consistent with existing literature on the envi-
ronmental impacts of ridesharing services, such as Yu et al. (2017) in
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Beijing, Fagnant and Kockelman (2014) in Austin, and Caulfield (2009)
in Dublin.

The system-level impacts of energy consumption, vehicle emissions,
and link average speed under different scenarios are presented in
Table 2. The exhaust emissions including CO,, CO, HC, NOx, and PM are
significantly reduced from the no share to high share ratio scenarios
during the three morning peak hours. CO emissions drop 33% for 75%
share ratio, 21% for 50% share ratio, 7% for 25% share ratio, 5% for
10% share ratio, 2% for 5% share ratio, compared with no share. Besides
CO2, the CO, HC, NOx, and PM emissions under 75% share ratio drop
46%, 46%, 35%, and 36%, respectively, relative to the base scenario.
The energy consumption falls from 67,951 gallons under no share to
45,618 gallons under 75% share ratio, a 33% reduction. These reduction
in energy consumption and vehicle emissions are expected because the
corresponding average link-level travel speed improves across the sce-
narios. Average travel speed is considered an indicator of vehicle
emission and energy consumption (Barth and Boriboonsomsin, 2009).
Previous studies showed vehicle emissions decrease as average speed
increases from 5 to 50 mph.

4. Discussions and policy implications

Our analysis demonstrates the potential of ridesharing services in
mitigating traffic congestion and reducing vehicle-related emissions. In
this section, we discuss our results in the context of previous studies and
point out several policy implications for transportation practitioners in
implementing or managing ridesharing services. In Table 3, we compare
our results on ridesharing services’ impacts on traffic and vehicle-related
emissions with the relevant literature. It is worth noting that the relevant
studies have different scopes and methods; thus, the focus of the com-
parison is on the general trend of impacts rather than specific numbers.
The comparison shows that our results are consistent with existing
literature in terms of magnitude and trend of rideshare impacts on
travelers’ schedule and CO, emissions. Most existing studies were based
on survey data, and they estimated up to 6% CO5 emission reductions for
up to a 10% ridesharing ratio on a city or national scale. For a study that
used simulation data (Fagnant and Kockelman, 2014), the assessed
schedule impacts are comparable to our study. Our study simulates
scenarios with ridesharing ratios ranging from 5% to 75%, which pro-
vides insights into potential impacts of ridesharing on high sharing
cases. We found that our studies achieve comparable results to existing
studies in assessing environmental impacts of ridesharing services. Most
of existing literature studied ridesharing service with up to 10% ratio
and found benefits in CO, emission reduction up to 6%. We also find 5%
reduction in CO5 emission for 10% rideshare ratio.

Our results and the comparison with relevant studies have several
policy implications. First, the literature has consistently demonstrated
the environmental benefits of implementing rideshare services at
various geographical scales. As indicated by Shaheen et al. (2016b),
transportation practitioners in the United States and other countries
have started recognizing the environmental and social benefits of ride-
sharing services. Thus, transportation practitioners should be encour-
aged to promote transportation ridesharing projects, though it is always
recommended to estimate the benefits in a systematic way through
either survey or simulation processes as described in this study. Second,

Table 2
System-level analysis for different scenarios.
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vehicle types used in ridesharing services play an important role in
estimating the environmental benefits of ridesharing. Many studies,
including our study, estimate environmental benefits assuming ride-
sharing vehicles are regular gasoline-powered cars. Limited studies, e.g.,
Yu et al. (2017), have investigated potential impacts when electric ve-
hicles are used in ridesharing, and their results show significant envi-
ronmental benefits. Ridesharing is easier to implement in a centralized
operation model (Shi et al., 2019), and there are studies advocating for
the use of electric vehicles in ridesharing services (Tu et al., 2019; He
etal., 2017; Kang et al., 2017). Our study shows a 35% reduction in CO5
emissions if up to 75% of trips are shared, and we expect even larger
reductions if some or all vehicles are electric cars.

Our results demonstrate benefits of ridesharing in reducing trans-
portation emissions and energy consumption, particularly when ride-
sharing service ratio is at high range, e.g., 25%-75%. Apparently, it
takes efforts to increase ridesharing ratio from the current ~10% in
Chattanooga to such a high ratio. Literature shows several trans-
portation policies that can help improve ridesharing ratio. One type of
policy is to establish high-occupancy vehicle (HOV) exclusive lane (Di
et al., 2017). Studies have shown that the reduction in both travel time
(due to traveling on the faster HOV lane) and fuel cost can further
encourage riders to adopt ridesharing services. This type of policy works
well in regions with high population density and vehicle ownership,
such as California Bay area (Shaheen et al., 2016b). However, Chatta-
nooga is a city with relative smaller population size and the road
network is not congested for a large portion of day. Thus, adopting HOV
lane policy might not be as effective in Chattanooga as in other regions.
Another type of policy is to provide monetary incentive to drivers to
choose ridesharing service (Ong et al., 2021). Studies have shown by
appropriately choosing incentives, this policy can significantly improve
ridesharing ratio among drivers (Song et al., 2021). This policy can be
considered to implement in Chattanooga. There are various government
transportation emission reduction programs, such as the federal’s
Congestion Mitigation and Air Quality (CMAQ), which provides funding
to local transportation authorities to implement policies for emission
reduction. As long as the air quality benefits can be quantified, it is
justifiable to use government funding to incentivize drivers to choose
ridesharing services to achieve lower transportation emission.

5. Conclusions

A shift from privately owned vehicles to shared mobility services can
affect mobility, energy consumption, and vehicle emissions. In this
study, we investigate efficiency and environmental benefits of ride-
sharing in a mid-size city (Chattanooga, Tennessee) using an agent-
based simulation framework. The purpose of the framework is to help
transportation practitioners evaluate the environmental benefits of
ridesharing services with a systematic and comprehensive perspective.

The simulation and result analysis demonstrate that ridesharing
services have the potential to reduce traffic volume and relieve
congestion without significant impacts on travelers’ schedules. Specif-
ically, when ridesharing ratios are 5%-75% (trips fulfilled by rideshar-
ing services) in Chattanooga, many (65%-75%) of ridesharing travelers
will experience a delay of up to 15 min. Longer delays, 30 min or more,
are mainly due to ridesharing travelers in isolated areas because it takes

Scenarios CO, (ton) CO (ton) HC (kg) NOy (kg) PM (kg) Fuel (gallon) Average travel speed (kph)
No rideshare 598 24 124 259 14 67,951 22
5% share ratio 585 23 122 257 13 66,024 22
10% share ratio 570 22 118 250 13 64,865 23
25% share ratio 555 21 110 239 12 63,018 24
50% share ratio 475 16 85 202 10 53,994 29
75% share ratio 402 13 67 169 9 45,618 32
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Table 3
Comparison of rideshare impacts in the literature.
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Granularity and data source Ridesharing Changes in schedule Changes in CO,
percentage
This study City scale (Chattanooga) empirical and 5%-75% 25%-35% with 20-min delay 2%-35%
simulation or more
Jacobson and King (2009)  U.S. national survey data 1-10% —1%-5%
Fagnant and Kockelman City scale (Austin) simulation data 10% 20% with 20-min delay or —4%—6%
(2014) more
Caulfield (2009) City scale (Dublin) survey data 4% —2%—4%

Yu et al. (2017) 1938 sampled

travelers

City scale (Beijing) survey data

Up to —35% with various levels of electrical
vehicle adoption

time to match vehicles to pick them up. Ridesharing services can result
in external outcomes that can be beneficial to other travelers and soci-
ety. This analysis shows 60%-80% of drive-alone travelers will arrive
earlier compared with the baseline no ridesharing scenario. The average
early arrival time is 5.6 min for all drive-alone travelers. The results
show ridesharing services can achieve a 2%-35% reduction in vehicle-
related emissions and energy consumption with various ridesharing
ratios. This is significant considering most vehicle emissions are gener-
ated in urban regions with high population density. The reduction in
vehicle emissions has the potential to improve air quality and mitigate
adverse impacts on the health of local residents.

We acknowledge there are limitations of the current research that
could motivate future research directions. First, the vehicles applied in
our simulation model were internal combustion vehicles. Electric vehi-
cles are emerging fast and play an important role in reducing energy
consumption and cutting emissions. It would be interesting for future
research to consider a diversified vehicle fleet for ridesharing service
and associated infrastructure planning. Second, researchers can include
other travel modes, such as public transit, shared bike, or micro
mobility, with ridesharing to model multimodal travel implementation
and estimate associated impacts. This requires more complex planning
algorithms to search for optimal mode combinations to reach minimum
monetary, time, or environmental impacts. Third, the scenario con-
structed in our study is for one mid-size city, Chattanooga, where most
trips are fulfilled by passenger cars. It would be interesting to look at
mega-cities, which normally have diversified travel modes and trip
purposes, to identify the most suitable scenarios and locations for
implementing ridesharing services.
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