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A B S T R A C T   

A shift from privately owned vehicles to shared mobility services can affect mobility, energy consumption, and 
vehicle emissions. Existing literature on ridesharing services has focused on evaluating its traffic and economic 
impacts. In this study, we propose an integrated framework to analyze the efficiency and environmental benefits 
of ridesharing on a regional scale. The framework utilizes an agent-based traffic simulation package (i.e., SUMO) 
to replicate traffic activities for commuting trips in a mid-size city, Chattanooga, Tennessee, based on real-world 
travel-demand data. We construct scenarios representing different ridesharing strategies and penetrations. The 
simulation and results analysis show that with a ridesharing ratio of 5%–75% over travel demand in a city scale, 
many (65%–75%) ridesharing travelers will experience up to a 15-min delay. About 80% of drive-alone travelers 
will arrive earlier compared with no ridesharing scenario. The average early arrival time would be 5.6 min for all 
drive-alone travelers. The results also show ridesharing services can achieve a 2%–50% reduction in total city- 
scale vehicle emissions and energy consumption compared with the no ridesharing scenario. The framework and 
results of this study can be helpful to transportation practitioners to evaluate environmental benefits when 
implementing ridesharing services on a city scale.   

1. Introduction 

Road transportation is a major consumer of energy and contributor 
to air pollution (Davis and Boundy, 2021; European Union, 2012). 
Shared mobility is considered an effective way to enhance efficiency in 
the road transportation system (Shaheen et al., 2016b). Shared mobility 
is an innovative transportation strategy that provides users with 
short-term access to transportation on demand. The definition of shared 
mobility includes various formats, including carsharing, ride-hailing, 
and ridesharing. These services aim to break traditional car owner
ship, instead providing users with travel options through a pay-per-use 
approach. In recent years, there has been rapid development and 
commercialization of ridesharing services (e.g., Uber, Lyft). Ridesharing 
is defined as an arrangement where two or more people from different 
households share the use of a privately owned car for part of a trip and 
share the driving expenses (Delhomme and Gheorghiu, 2016). Rideshare 
services has the potential to eliminate traffic congestion and reduce 
vehicle emissions based on studies in different localities Yu et al. (2017); 
Jalali et al. (2017); Dai et al. (2022). 

Despite progresses in ridesharing services, knowledge gaps still exist, 

and this prevents transportation practitioners from fully understanding 
the potential impacts of ridesharing services. As stated by Yu et al. 
(2017), “most of the existing studies are mainly drawing on the survey 
data or the small-scale trip data instead of the raw observed order in
formation.” In the limited studies based on empirical ridesharing data, 
their conclusions are retrospective and do not offer insights for future 
scenarios, which are important for transportation practitioners in eval
uating various ridesharing policies. Any tools developed should have the 
capability to consider individual-level behavior when evaluating ride
sharing impacts (Arteaga-Sánchez et al., 2020). Thus, the research 
questions to address in this study are: (1) how to develop an environ
mental impact evaluation framework for ridesharing services that 
considering individual-level (i.e., agent) behavior changes; and (2) how 
to implement scenario analysis that can be used by transportation 
practitioners to evaluate the potential impacts of various ridesharing 
strategies. 

In the literature, researchers studied rideshare services in terms of 
behavior, operation management, and impacts on traffic networks and 
the environment. Research related to the behavior of rideshare focused 
on motivations and constraints of people using rideshare services. The 
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literature shows that people use rideshare services due to its benefits in 
cost savings (Correia and Viegas, 2011; Ciasullo et al., 2017) and time 
savings (Abrahamse and Keall, 2012; Shaheen et al., 2016a). People’s 
sociodemographic characteristics have been shown to influence their 
choice of ridesharing services (Delhomme and Gheorghiu, 2016; Javid 
et al., 2017; Molina et al., 2020). Various types of online and offline 
driver–passenger matching algorithms have been developed to improve 
operational efficiency in ridesharing services (Guo et al., 2013a, 2013b; 
Huang et al., 2016; Tamannaei and Irandoost, 2019; Yan et al., 2013). 

Recently, studies have focused on impacts of rideshare on conges
tion, energy consumption, and emission of transportation. The impacts 
of rideshare on congestion have been well studied (Bahat and Bekhor, 
2016; Gurumurthy et al., 2019; Li et al., 2016; Ou and Tang, 2018). But 
the energy and environmental impacts of ridesharing services are less 
studied. Some studies employed travel survey data to investigate the 
environmental and energy impacts of rideshare. Caulfield (2009) 
explored the environmental benefits of ridesharing in terms of re
ductions in emissions and vehicle kilometers traveled based on 
analyzing the 2006 census of Ireland. Minett and Pearce (2011) esti
mated the energy savings of ridesharing for leisure trips in San Francisco 
is about 1.7 million to 3.5 million liters of gasoline per year, or 200–400 
L for each participant, based on ridesharing opinion data. Other studies 
used similar approaches with survey data to analyze the energy and 
emission benefits of ridesharing services in other countries, like China 
(Yu et al., 2017), Canada (Jalali et al., 2017) and globally (Tikoudis 
et al., 2021). Although these surveys were rigorously implemented, the 
data can only represent survey participants’ choice under hypothetical 
conditions. When investigating energy and emission benefits of ride
sharing services, it is important to consider a bottom-up approach that 
can quantify the benefits at individual level and evaluate how changes in 
driving trajectories can lead to changes in aggregated vehicle emissions. 

Agent-based traffic simulation is a technique that can model the 
transportation system as a collection of autonomous decision-making 
agents, i.e., travelers, and simulate their movements in the system 
(Bonabeau, 2002). It has the advantage of modeling a complex trans
portation system by tuning the interactions among independent 
decision-making agents. It is possible to evaluate various traffic man
agement policies in traffic simulation and gain insights into the system 
that would not be possible a priori. Recently, limited studies began to 
utilize agent-based traffic simulation tools to study impacts of various 
formats of shared mobility. Becker et al. (2020) established a multi
modal traffic simulation application in MATSim to evaluate the eco
nomic and travel time impacts of car sharing, bike sharing, and ride 
hailing. They simulated the road network in Zurich, Switzerland, and 
implemented scenarios with different shared car or bike fleet sizes. 
Other studies used similar traffic simulation tools to assess car sharing 
(Ciari et al., 2015; Balac et al., 2019), shared autonomous taxis (Leich 
and Bischoff, 2019), and transit first- and last-mile connections (Huang 
et al., 2021). Thus, agent-based traffic simulation can be a viable method 
to study the impacts of ridesharing at the transportation system level. 

This review of the literature shows that there is a knowledge gap in 
the literature regarding developing an environmental impact evaluation 
framework for ridesharing services with consideration of individual- 
level (i.e., agent) behavior changes. In addition, to be useful for trans
portation practitioners, the developed framework needs to have scenario 
analysis capability that can evaluate various ridesharing strategies for 
comparison purposes. In this study, we propose an integrated framework 
to analyze the efficiency and environmental benefits of ridesharing on a 
regional scale. Specifically, the framework utilizes an agent-based traffic 
simulation package (i.e., SUMO) to replicate traffic activities for 
commuting trips in a mid-size city, Chattanooga, Tennessee. We utilize 
real-world travel origin and destination demand data for the city and 
develop a heuristic matching algorithm for arranging ridesharing trips 
among travelers. We construct scenarios representing different ride
sharing strategies and penetrations. Last, efficiency (delay at system and 
individual levels) and environmental performance are evaluated and 

compared among different ridesharing scenarios. 
The remainder of this paper is organized as follows. Section 2 pre

sents the traffic simulation methodology, data sources, and construction 
of simulation scenarios. In Section 3, we discuss simulation results and 
analyze road network efficiency and environmental impacts due to the 
implementation of ridesharing services. Section 4 discusses our study 
and points out some policy implications for transportation practitioners. 
Section 5 provides the conclusions and future research directions of this 
study. 

2. Methodology 

To assess the energy and environmental impacts of ridesharing ser
vices, we configure an integrated framework to run scenario-based 
traffic simulations and analyze traffic outputs for environmental im
pacts (Fig. 1). The traffic simulation is implemented through Simulation 
of Urban Mobility (SUMO). SUMO is a highly customizable, open-source 
microscopic traffic simulator built on agent-based simulation concept 
(Krajzewicz et al., 2002). Additionally, SUMO provides an interface, 
TraCI, that allows real-time extracting and passing parameters with a 
simulation (Wegener et al., 2008). The framework contains three mod
ules: data preparation, shared mobility simulation, and output analysis. 
In the “Data Preparation” module, road information is prepared to 
digitally represent traffic network in the traffic simulator SUMO. We 
obtain travel demand origin and destination (OD) matrix data from the 
metropolitan planning organization of Chattanooga. The travel demand 
OD matrix is based on traffic analysis zone (TAZ) and contains hourly 
vehicle trips between each OD TAZ pair. We assign TAZ-level trips to 
specific road links according to the land use characteristics of each TAZ. 
In the “Shared Mobility Simulation” module, a shared mobility toolbox 
is built using Python. It allows convenient setting of simulation pa
rameters for scenario specifications. In addition, the toolbox enables 
in-route driver–passenger matching for shared mobility vehicles to 
maximize matching efficiency. Once scenario-specific simulations are 
done, the toolbox can process the outputs and generate results at vehicle 
level (i.e., vehicle trajectory at 1Hz frequency) and road link level (i.e., 
hourly average speed, density, and volume). The “Output Analysis” 
module analyzes simulation results and evaluated share mobility im
pacts on traffic, travelers’ schedules, and the environment under various 
scenarios. For traffic impact analysis, we aggregate 1Hz vehicle trajec
tory results into 5- or 15-min link-level average speed and volume. We 
evaluate changes in link-level traffic stream characteristics under 
different rideshare scenarios. For traveler schedule impact analysis, we 
track and compare the travel time for each individual under base and 
various rideshare scenarios. For environmental impact analysis, we 
obtain 1Hz vehicle emissions of CO2, PM, and NOx as provided by 
SUMO. Vehicle emissions reported by SUMO are based on 
well-calibrated regulatory vehicle emission model HBEFA and PHEM
light (Lopez et al., 2018) and have been widely used in relevant litera
ture (Erdağı et al., 2019; Validi et al., 2020; Gounni et al., 2019). We 
aggregate the 1Hz vehicle emission at trip, link, and network levels to 
evaluate environmental impacts of various shared mobility scenarios. 

For the core part of “Shared Mobility Simulation,” the process is as 
follows:  

1. Vehicle trip generation. A vehicle trip contains OD road links for 
vehicle travel. The OD matrix data provide the number of trips be
tween each TAZ pair. We assign each trip to one road link in the 
origin TAZ and one link in the destination TAZ, based on land use 
and other link features (e.g., length, traffic volume, etc.). At this step, 
we divide all vehicle trips into two travel modes, i.e., driving alone 
and shared rides. The ratio between the two modes can vary under 
different share mobility scenarios.  

2. Route generation. Given OD links for each drive-alone vehicle trip, 
we find the route of road links for each trip. We employ SUMO’s 
DUAROUTER algorithm to search for the route. This algorithm 
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applies a dynamic user equilibrium method to determine the shortest 
path for each trip based on time-dependent travel time and costs on 
road links. The time-dependent individual vehicle routes can be used 
to calculate the arrival time and schedule delay of each traveler. 
When aggregating individual vehicle routes, we can obtain link-level 
traffic volume and speed patterns that can be used to evaluate link- 
level and network-level traffic and environmental impacts from 
various shared mobility scenarios. 

3. Matching passengers with shared vehicles. For rideshare travel de
mand, we develop a heuristic vehicle–passenger matching algorithm 
to match passengers with shared vehicles. The pseudocode of the 
algorithm is shown in Fig. 2. The main purpose is to ensure every 
rideshare passenger is served. The algorithm tries to reduce waiting 
time for riders and minimize routing time for shared vehicles. It first 
searches for available vehicles that can pick up a rider within 5 min 
of the desired departure time. If a vehicle is identified, the vehicle’s 
route will be modified to pick up the rider and continue to its 
destination. A shared vehicle is allowed to pick up as many as 3 
passengers. When multiple riders are picked up, the shared vehicle 
drops off passengers in an order that considers both distance to the 
destination of each rider and pickup order of riders. If no available 
vehicles are found in the initial 5-min window, the algorithm extends 
the window to 10 min and then 20 min. At the 20-min time window, 
most shared mobility riders can find a matching vehicle. 

The experiment scenarios constructed in this paper are based on the 
real-world data for the city of Chattanooga, Tennessee. This city has a 
population of 182,803 and is set along the Tennessee River in the 
foothills of the Appalachian Mountains in the Southeast region of United 
States. It has a motorization index of 951 vehicles per 1000 people (TN 
DOT, 2016). According to Tennessee Department of Transportation 
data, 82% of commuting trips are fulfilled by driving cars and 10% of 
commuters regularly or sometimes used ridesharing services. Chatta
nooga was designated as an air quality nonattainment area mainly due 
to its high vehicle-related emissions. Chattanooga commuters spend an 

average of 20 min traveling one way (Chattanooga, 2020). Thus, Chat
tanooga is an ideal testbed for our ridesharing framework given its high 
vehicle ownership, travelers’ openness to rideshare services, and air 
quality problems due to vehicle-related emissions. In this study, we 
quantify traffic and environmental impacts of various ridesharing sce
narios in Chattanooga. 

To make our framework more applicable, we utilize real data from 
Chattanooga to set up the simulation. We obtain Chattanooga’s TAZ- 
level OD demand for a typical weekday from the Chattanooga trans
portation planning organization. We use travel demand during morning 
peak hours (6–9 a.m.) as the OD demand in the traffic simulation. The 
OD demand shows the number of trips between each TAZ, and each trip 
is considered to be fulfilled by one agent. Fig. 3 visualizes the travel 
demand for the 746 TAZs in Chattanooga for the morning peak period. 
Specifically, we categorize all TAZs into 10 homogenous TAZ clusters 
based on sociodemographic information. For each TAZ cluster, we split 
the travel demand into driving alone and sharing rides with different 
ratios. Specifically, the “Base” scenario assumes all trips are driven 
alone, which is comparable to the existing situation in Chattanooga. We 
define five additional scenarios that have share ratio of 5%, 10%, 25%, 
50%, and 75%, respectively, of travel demand to be fulfilled by shared 
mobility services. According to literature, the current ridesharing ratio 
in Chattanooga is 10% (Chattanooga, 2020) and the national average 
ridesharing ratio is 9% (U.S. Census Bureau, 2019). Therefore, the 5% 
and 10% scenarios are realistic scenarios that reflecting current ride
sharing status. And our framework can evaluate its environmental im
pacts. The 25%, 50% and 75% ridesharing scenarios are built in to 
explore possible impacts of future ridesharing scenarios that could be 
seen as high at present time. Overall, we are to quantify environmental 
benefits of ridesharing in current and future scenarios. 

We randomly choose 5%, 10%, 25%, 50%, and 75% of the trips in 
drive-alone scenarios to be fulfilled by ridesharing services for the cor
responding scenarios. These travelers will make themselves available to 
be picked up based on their original departure times in the drive-alone 
scenario. They are picked up based on the availability of drivers and 

Fig. 1. Framework of the shared mobility simulation.  
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traffic conditions in the road network. 

3. Results 

We construct six scenarios in the shared mobility simulation: (a) no 
share (all vehicles driving alone); (b) 5% of trips are shared; (c) 10% of 
trips are shared; (d) 25% of trips are shared; (e) 50% of trips are shared; 

and (f) 75% of trips are shared. We first split passengers according to the 
proportions of the scenario based on demand and then assign shared 
vehicles to each passenger. Table 1 summarizes the volumes of pas
sengers, shared vehicles, and drive-alone vehicles, as well as the average 
vehicle occupancy for shared vehicles under each scenario. Various 
outputs are generated by simulating these scenarios, including link-level 
traffic measurements, trajectories of each vehicle, trip-level 

Fig. 2. Pseudocode for the heuristic matching algorithm.  

Fig. 3. Spatial distribution of passenger cars departing (left) and arriving (right) in each TAZ of the Chattanooga model area.  
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information, and person-level trip summary. The link-level traffic 
measurements describe macroscopic values such as the average speed, 
density, and occupancy of the road link during a specified interval (e.g., 
5 or 15 min). Trip-level information contains the departure time, arrival 
time, and route length of each vehicle and person and the sum of all 
emissions by the vehicle during its journey. 

3.1. Impacts of ridesharing on traffic 

Fig. 4 shows the 5-min average speed distributions at the link level of 
the three scenarios compared with the base scenario during morning 
peak hours. We observe that all scenarios have a similar spread of link- 
level speed ranging from 0 to 88 km/h and all density lines have two 
main peak points at a similar segment-level speed; the primary one lies 
at around 20 km/h, and the secondary peak is located at about 38 km/h. 
The pattern of the distribution indicates that many vehicles are driving 
at a low speed (20 km/h), corresponding to local collector roads. In 
addition, another group of vehicles is driving around 38 km/h, corre
sponding to arterial or major arterial roads. This implies that the 
investigated area encounters traffic congestion during the simulated 
morning peak hours. As shown in Fig. 4, the densities of shared scenarios 
(5%, 10%, 25%, 50%, and 75% share ratios) at their primary peak point 
(20 km/h) are lower than that of the base scenario (no share). Differ
ences between the base scenario and the three shared scenarios at the 
secondary peak point are also observable, although they are not statis
tically significant. These differences reveal that the volume of vehicles 
driving at a relatively low speed is reduced, which means shared 
mobility significantly contributes to reducing traffic jams. In other 
words, ridesharing is capable of easing traffic congestion during rush 
hour. In Fig. 4, we further observe that the reduction of the density at the 
primary peak point in the high share ratio scenario is the largest, 

followed by the medium share ratio scenario and the low share ratio 
scenario. As mentioned, these three scenarios are designed according to 
the proportions of passengers who would like to share rides with others. 
Therefore, the comparison among the three scenarios indicates that the 
remission of traffic congestion is determined by the proportion of pas
sengers in the shared mobility simulation. The higher the proportion of 
passengers, the fewer vehicles in the traffic jam. 

3.2. Impacts of ridesharing on schedule 

Besides relieving traffic congestion on the road network, ridesharing 
has the potential to affect the travel schedule of individual travelers. 
Fig. 5 reports distributions of changes in arrival time for drive-alone 
travelers and rideshare travelers. In the simulations, drive-alone trav
elers will depart at the same time, but arrival times will differ due to 
different traffic conditions in the road network. Ridesharing travelers’ 
departure (pickup) and arrival (dropoff) times can vary due to driver 
availability and traffic conditions on roads. 

Fig. 5 (left) presents the distribution of changes in arrival time for 
drive-alone travelers under the three ridesharing scenarios. It shows that 
most (70%–82%) drive-alone travelers arrive early compared with their 
original arrival time in the no ridesharing scenario. The early arrival of 
drive-alone travelers is caused by fewer vehicles on the road due to some 
travelers choose ridesharing services. In all five ridesharing scenarios, 
less than 20% of travelers are delayed by more than 5 min and the 
magnitude decreases as rideshare percentage increases. Some drive- 
alone travelers experience delays in travel time that are longer than 5 
min, but the percentages are minimal. Although traffic volume in the 
whole network is reduced because of ridesharing services, in certain 
regions, there could be more traffic due to ridesharing vehicles routing 
to pick up and drop off passengers. This caused a small fraction of drive- 

Table 1 
Summary of trip volume under different scenarios during peak times (6–9 a.m.).  

Trip volume No rideshare 5% share ratio 10% share ratio 25% share ratio 50% share ratio 75% share ratio 

Passengers 0 7250 14501 36,252 72,504 10,8755 
Shared vehicles 0 6635 12433 28,421 40,246 33,022 
Vehicles driving alone 145,007 131122 118073 80,334 32,257 3230 
Average vehicle occupancy 1 1.09 1.17 1.28 1.80 2.94  

Fig. 4. Distributions of the segment-level speed of three scenarios compared with the base scenario.  
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alone travelers to spend extra time on the road. Our results also indicate 
an average time savings of 5.6 min per drive-alone travelers, which is a 
significant benefit in travel time for those travelers. Fig. 5 (right) pre
sents the distribution of arrival delays for travelers using ridesharing 
services as compared with travel time if they drive alone. We category 
the arrival delays into four intervals: 0–5 min, 5–15 min, 15–30 min, and 
more than 30 min. The high share scenario leads to a higher share of 
travelers with delays less than 5 min. The results also show that 65%– 
75% of travelers are expected to experience an arrival delay that is less 
than 15 min under various ridesharing scenarios. The main cause of 
delay for ridesharing travelers is waiting for vehicle matching and 
pickup. Particularly, travelers living in remote areas with lower popu
lation density are more likely to experience longer delays. The results 
show that the high share scenario, where more travelers are partici
pating in ridesharing services, has the highest percentage of delays of 30 
min or more. This is because in the high share scenario, it is more likely 
that travelers from isolated areas will need rides. 

3.3. Impacts of ridesharing on energy and emission 

We investigate the impacts of ridesharing on trip-level vehicle- 
related emissions. Specifically, we calculate and compare vehicle 
emissions caused by each traveler in ridesharing scenarios. For the base 
(no rideshare) case, each traveler drives one car and has a unique vehicle 
trajectory at 1Hz frequency. We estimate second-level CO2 emissions 
based on trajectory-level speed and acceleration and aggregate to trip- 

level CO2 emissions of each traveler. For rideshare scenarios, the trip- 
level CO2 emissions of each drive-alone travelers are calculated the 
same way as in the base (no share) scenario. For travelers using ride
sharing services, we split the CO2 emissions among travelers sharing the 
same vehicle based on their traveling distance. Fig. 6 presents the 
scatterplot comparing trip-level CO2 emissions in the no share scenario 
and each of the three ridesharing scenarios. If emissions of each traveler 
remain the same in the base and ridesharing scenarios, the scatter points 
should cluster along the red diagonal line. If the emissions of each 
traveler in ridesharing scenarios are lower than those in the base (no 
share) scenario, the scatter plots would be expected to appear above the 
diagonal line, and vice versa. Fig. 6 shows a larger portion of scatter 
points above the diagonal line for all three ridesharing scenarios 
compared with the base (no share) scenario, which means that travelers 
can generally reduce vehicle emissions with ridesharing options. In 
addition, the higher the ridesharing ratio, the higher portion of points 
that appear above the diagonal line. This is expected, because a higher 
ridesharing ratio can achieve more reductions in vehicle emissions of 
each traveler. The average trip-level CO2 emissions are 4.3 kg, 4.2 kg, 
4.0 kg, 3.8 kg, 3.2 kg, and 2.9 kg for no rideshare, 5%, 10%, 25%, 50%, 
and 75% share ratio scenarios, respectively. Clearly, higher ridesharing 
generally leads to lower average trip-level emissions given the same 
amount of travel demand. Though the exact reduction in CO2 emissions 
is subject to the specific operation of ridesharing services and travel 
demand, our results are consistent with existing literature on the envi
ronmental impacts of ridesharing services, such as Yu et al. (2017) in 

Fig. 5. Distributions of arrival delays of drive-alone travelers (left) and ridesharing travelers (right) under three ridesharing scenarios as compared with the no 
share scenario. 

Fig. 6. Scatter plots of CO2 emissions under five scenarios (5%, 10%, 25%, 50%, and 75% share ratios) versus the CO2 emissions under the no share scenario for 
passengers, shared vehicles, and vehicles driving alone. 
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Beijing, Fagnant and Kockelman (2014) in Austin, and Caulfield (2009) 
in Dublin. 

The system-level impacts of energy consumption, vehicle emissions, 
and link average speed under different scenarios are presented in 
Table 2. The exhaust emissions including CO2, CO, HC, NOx, and PM are 
significantly reduced from the no share to high share ratio scenarios 
during the three morning peak hours. CO2 emissions drop 33% for 75% 
share ratio, 21% for 50% share ratio, 7% for 25% share ratio, 5% for 
10% share ratio, 2% for 5% share ratio, compared with no share. Besides 
CO2, the CO, HC, NOx, and PM emissions under 75% share ratio drop 
46%, 46%, 35%, and 36%, respectively, relative to the base scenario. 
The energy consumption falls from 67,951 gallons under no share to 
45,618 gallons under 75% share ratio, a 33% reduction. These reduction 
in energy consumption and vehicle emissions are expected because the 
corresponding average link-level travel speed improves across the sce
narios. Average travel speed is considered an indicator of vehicle 
emission and energy consumption (Barth and Boriboonsomsin, 2009). 
Previous studies showed vehicle emissions decrease as average speed 
increases from 5 to 50 mph. 

4. Discussions and policy implications 

Our analysis demonstrates the potential of ridesharing services in 
mitigating traffic congestion and reducing vehicle-related emissions. In 
this section, we discuss our results in the context of previous studies and 
point out several policy implications for transportation practitioners in 
implementing or managing ridesharing services. In Table 3, we compare 
our results on ridesharing services’ impacts on traffic and vehicle-related 
emissions with the relevant literature. It is worth noting that the relevant 
studies have different scopes and methods; thus, the focus of the com
parison is on the general trend of impacts rather than specific numbers. 
The comparison shows that our results are consistent with existing 
literature in terms of magnitude and trend of rideshare impacts on 
travelers’ schedule and CO2 emissions. Most existing studies were based 
on survey data, and they estimated up to 6% CO2 emission reductions for 
up to a 10% ridesharing ratio on a city or national scale. For a study that 
used simulation data (Fagnant and Kockelman, 2014), the assessed 
schedule impacts are comparable to our study. Our study simulates 
scenarios with ridesharing ratios ranging from 5% to 75%, which pro
vides insights into potential impacts of ridesharing on high sharing 
cases. We found that our studies achieve comparable results to existing 
studies in assessing environmental impacts of ridesharing services. Most 
of existing literature studied ridesharing service with up to 10% ratio 
and found benefits in CO2 emission reduction up to 6%. We also find 5% 
reduction in CO2 emission for 10% rideshare ratio. 

Our results and the comparison with relevant studies have several 
policy implications. First, the literature has consistently demonstrated 
the environmental benefits of implementing rideshare services at 
various geographical scales. As indicated by Shaheen et al. (2016b), 
transportation practitioners in the United States and other countries 
have started recognizing the environmental and social benefits of ride
sharing services. Thus, transportation practitioners should be encour
aged to promote transportation ridesharing projects, though it is always 
recommended to estimate the benefits in a systematic way through 
either survey or simulation processes as described in this study. Second, 

vehicle types used in ridesharing services play an important role in 
estimating the environmental benefits of ridesharing. Many studies, 
including our study, estimate environmental benefits assuming ride
sharing vehicles are regular gasoline-powered cars. Limited studies, e.g., 
Yu et al. (2017), have investigated potential impacts when electric ve
hicles are used in ridesharing, and their results show significant envi
ronmental benefits. Ridesharing is easier to implement in a centralized 
operation model (Shi et al., 2019), and there are studies advocating for 
the use of electric vehicles in ridesharing services (Tu et al., 2019; He 
et al., 2017; Kang et al., 2017). Our study shows a 35% reduction in CO2 
emissions if up to 75% of trips are shared, and we expect even larger 
reductions if some or all vehicles are electric cars. 

Our results demonstrate benefits of ridesharing in reducing trans
portation emissions and energy consumption, particularly when ride
sharing service ratio is at high range, e.g., 25%–75%. Apparently, it 
takes efforts to increase ridesharing ratio from the current ~10% in 
Chattanooga to such a high ratio. Literature shows several trans
portation policies that can help improve ridesharing ratio. One type of 
policy is to establish high-occupancy vehicle (HOV) exclusive lane (Di 
et al., 2017). Studies have shown that the reduction in both travel time 
(due to traveling on the faster HOV lane) and fuel cost can further 
encourage riders to adopt ridesharing services. This type of policy works 
well in regions with high population density and vehicle ownership, 
such as California Bay area (Shaheen et al., 2016b). However, Chatta
nooga is a city with relative smaller population size and the road 
network is not congested for a large portion of day. Thus, adopting HOV 
lane policy might not be as effective in Chattanooga as in other regions. 
Another type of policy is to provide monetary incentive to drivers to 
choose ridesharing service (Ong et al., 2021). Studies have shown by 
appropriately choosing incentives, this policy can significantly improve 
ridesharing ratio among drivers (Song et al., 2021). This policy can be 
considered to implement in Chattanooga. There are various government 
transportation emission reduction programs, such as the federal’s 
Congestion Mitigation and Air Quality (CMAQ), which provides funding 
to local transportation authorities to implement policies for emission 
reduction. As long as the air quality benefits can be quantified, it is 
justifiable to use government funding to incentivize drivers to choose 
ridesharing services to achieve lower transportation emission. 

5. Conclusions 

A shift from privately owned vehicles to shared mobility services can 
affect mobility, energy consumption, and vehicle emissions. In this 
study, we investigate efficiency and environmental benefits of ride
sharing in a mid-size city (Chattanooga, Tennessee) using an agent- 
based simulation framework. The purpose of the framework is to help 
transportation practitioners evaluate the environmental benefits of 
ridesharing services with a systematic and comprehensive perspective. 

The simulation and result analysis demonstrate that ridesharing 
services have the potential to reduce traffic volume and relieve 
congestion without significant impacts on travelers’ schedules. Specif
ically, when ridesharing ratios are 5%–75% (trips fulfilled by rideshar
ing services) in Chattanooga, many (65%–75%) of ridesharing travelers 
will experience a delay of up to 15 min. Longer delays, 30 min or more, 
are mainly due to ridesharing travelers in isolated areas because it takes 

Table 2 
System-level analysis for different scenarios.  

Scenarios CO2 (ton) CO (ton) HC (kg) NOx (kg) PM (kg) Fuel (gallon) Average travel speed (kph) 

No rideshare 598 24 124 259 14 67,951 22 
5% share ratio 585 23 122 257 13 66,024 22 
10% share ratio 570 22 118 250 13 64,865 23 
25% share ratio 555 21 110 239 12 63,018 24 
50% share ratio 475 16 85 202 10 53,994 29 
75% share ratio 402 13 67 169 9 45,618 32  
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time to match vehicles to pick them up. Ridesharing services can result 
in external outcomes that can be beneficial to other travelers and soci
ety. This analysis shows 60%–80% of drive-alone travelers will arrive 
earlier compared with the baseline no ridesharing scenario. The average 
early arrival time is 5.6 min for all drive-alone travelers. The results 
show ridesharing services can achieve a 2%–35% reduction in vehicle- 
related emissions and energy consumption with various ridesharing 
ratios. This is significant considering most vehicle emissions are gener
ated in urban regions with high population density. The reduction in 
vehicle emissions has the potential to improve air quality and mitigate 
adverse impacts on the health of local residents. 

We acknowledge there are limitations of the current research that 
could motivate future research directions. First, the vehicles applied in 
our simulation model were internal combustion vehicles. Electric vehi
cles are emerging fast and play an important role in reducing energy 
consumption and cutting emissions. It would be interesting for future 
research to consider a diversified vehicle fleet for ridesharing service 
and associated infrastructure planning. Second, researchers can include 
other travel modes, such as public transit, shared bike, or micro 
mobility, with ridesharing to model multimodal travel implementation 
and estimate associated impacts. This requires more complex planning 
algorithms to search for optimal mode combinations to reach minimum 
monetary, time, or environmental impacts. Third, the scenario con
structed in our study is for one mid-size city, Chattanooga, where most 
trips are fulfilled by passenger cars. It would be interesting to look at 
mega-cities, which normally have diversified travel modes and trip 
purposes, to identify the most suitable scenarios and locations for 
implementing ridesharing services. 
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