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ABSTRACT
We extend our recently proposed theoretical framework for estimating cavity-modified equilibrium Fermi’s golden rule (FGR) rate con-
stants beyond the single cavity mode case to cases where the molecular system is coupled to multiple cavity modes. We show that the
cumulative effect of simultaneous coupling to multiple modes can enhance FGR rate constants by orders of magnitude relative to the sin-
gle mode case. We also present an analysis of the conditions necessary for maximizing this effect in the Marcus limit of FGR-based rate
theory.
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I. INTRODUCTION
This communication follows up on and extends our recently

proposed general-purpose theoretical framework for estimating the
effect of placing molecular matter in a photonic cavity on the rates
of electronic energy and charge transfer processes.1 Our strategy is
based on equilibrium Fermi’s Golden Rule (FGR) rate theory, which
treats the coupling between the electronic and photonic degrees of
freedom (DOF) as a small perturbation within the framework of
second order perturbation theory. The reader is referred to Ref. 1
for a detailed description and analysis of our framework in the case
where the photonic DOF correspond to a single cavity mode. In this
communication we examine the effect of going from a model that
accounts for a single cavity mode in a one-dimensional cavity to a
more realistic model that accounts for multiple cavity modes in a
two-dimensional cavity.

The main findings reported in this communication are: (1)
Similar to the single-mode case, cavity-modified FGR rate constants
can be obtained from cavity-free inputs in the case of multiple
modes; (2) The cumulative effect of coupling to multiple modes can
enhance FGR rate constants by orders of magnitude relative to the
single mode case; (3) A generalization of the cavity-modified Mar-
cus rate theory from the case of a single mode to the case of multiple
modes.

II. HAMILTONIAN
We begin, as in Ref. 1, by considering a donor-acceptor molec-

ular system inside a cavity, whose Hamiltonian in its most general
form is given by:

Ĥ = Ĥnp
D ∣D⟩⟨D∣ + Ĥ

np
A ∣A⟩⟨A∣ + V̂

np
DA[∣D⟩⟨A∣ + ∣A⟩⟨D∣]. (1)

Here, ∣D⟩ and ∣A⟩ are the diabatic donor and acceptor electronic
states, respectively; Ĥnp

D (Ĥ
np
A ) is the Hamiltonian of the nuclear

and photonic DOF when the system is in the donor (acceptor) state;
and V̂np

DA is the coupling between the donor and acceptor states (an
operator in the nuclear + photonic Hilbert space in the most general
case).

Assuming that the cavity modes are coupled to the electronic
DOF but uncoupled from the nuclear DOF, Ĥnp

D , Ĥnp
A and V̂np

DA are
given in terms of sums of purely nuclear and purely photonic terms:1

Ĥnp
D = Ĥ

n
D + Ĥ

p (2a)

Ĥnp
A = Ĥ

n
A + Ĥ

p (2b)

V̂np
DA = V̂

n
DA + V̂

p
DA. (2c)
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Here, the n and p superscripts identify contributions from the
nuclear and photonic DOF, respectively. It should be noted that,
while the nuclear Hamiltonians Ĥn

D and Ĥn
A are electronic-state spe-

cific, the corresponding photonic Hamiltonian, Ĥ p, is not. Going
forward, we will also assume that the molecular electronic coupling
term satisfies the Condon approximation, such that V̂n

DA = V
n
DA

(a constant, as opposed to a nuclear operator). Finally, we note that
the Hamiltonian of the molecular system in the cavity-free case is
given by

Ĥm
= Ĥn

D∣D⟩⟨D∣ + Ĥ
n
A∣A⟩⟨A∣ + V̂

n
DA[∣D⟩⟨A∣ + ∣A⟩⟨D∣], (3)

where the superscript m will be used throughout to indicate purely
molecular (i.e. cavity-free) operators.

In this work, the photonic Hamiltonian and electronic coupling
term are assumed to account for contributions from multiple cavity
modes:1

Ĥ p
=∑

α
Ĥ pα
=
1
2∑α

(p̂2pα + ω
2
pαq̂

2
pα), (4)

V̂p
DA =∑

α
V̂pα

DA =∑
α

√
2h̵ωpαgpα q̂pα. (5)

Here, Ĥ pα and V̂pα
DA are the contributions of the α-th cavity mode

to the photonic Hamiltonian and electronic coupling term, respec-
tively (α = 1, 2, 3, . . .). This should be contrasted with Ref. 1 where
only a single photonic mode was assumed (i.e. the above sums over
the index α reduce to a single term). {q̂pα}, {p̂pα} and {ωpα} are
the positions, momenta and angular frequencies associated with the
cavity modes and

gpα =

¿
Á
ÁÀμ2DAωpα

2h̵ε0V
, (6)

where μDA is the donor-acceptor transition dipole moment, ε0 is the
vacuum permittivity and V is the volume of the cavity.

In the next step, we specialize to the case of a two-dimensional
cavity with the z and x-directions parallel and perpendicular to the
mirrors, respectively. The frequencies of the photonic modes in such
a case are given by:

ωp =
c
nr

√

k2x + k
2
z , (7)

where kx and kz are wave vectors that correspond to the respec-
tive directions and nr is the refractive index. In the x-direction
we restrict ourselves to the fundamental mode k0,x = π/Lx, where
Lx is the width of the cavity along the x axis, while in the z-direction
the modes are assumed to satisfy periodic boundary condition, such
that kαz = 2απ/Lz , where Lz is the length of the cavity along the z
axis. Substituting kx = k0,x = π/Lx and kαz = 2απ/Lz back into Eq. (7)
yields:

ωpα =

√

ω2
p0 + α

2δ2z , (8)

where ωp0 = cπ/(nrLx) is the fundamental cavity frequency along
the x axis, and δz = 2cπ/(nrLz) is assumed to be a parameter

independent of Lx or ωp0.2,3 We also assume that gpα is propor-
tional to√ωp0ωpα, such that the dimensionless parameter χ defined
by Eq. (9), which measures strength of the cavity-induced electronic
coupling relative to that of the cavity-free electronic coupling, is
independent of α:

1
χ
≡

h̵2g2pα
(Vn

DAβh̵)
2ωp0ωpα

. (9)

III. CAVITY-MODIFIED EQUILIBRIUM
FGR RATE CONSTANTS

The main assumption underlying the derivation of the cavity-
modified equilibrium FGR rate constant is that the electronic
coupling term, V̂np

DA[∣D⟩⟨A∣ + ∣A⟩⟨D∣], can be treated as a small
perturbation within the framework of second-order perturbation
theory. This assumption, together with the assumption that the onset
of rate kinetics happens on a time scale which is much faster than
the time scale of the actual electronic transition (set by the inverse
of the rate constant), results in the following expression for the
cavity-modified donor-to-acceptor transition rate constant:1,4–6

kD→A =
1
h̵2∫

∞

−∞
dt CD→A(t). (10)

Here, CD→A(t) is the cavity-modified donor-to-acceptor FGR time
correlation function, which is explicitly given by

CD→A(t) = TrnTrp[ρ̂eqD e
iĤ np

D t/h̵V̂np
DAe

−iĤ np
A t/h̵V̂np

DA]. (11)

The corresponding cavity-free donor-to-acceptor transition rate
constant is given by

kmD→A =
1
h̵2∫

∞

−∞
dt Cm

D→A(t), (12)

where Cm
D→A(t) is the cavity-free donor-to-acceptor FGR time

correlation function:

Cm
D→A(t) = Trn[ρ̂

eq
D,ne

iĤ n
Dt/h̵V̂n

DAe
−iĤ n

At/h̵V̂n
DA]. (13)

Here, Trn and Trp are the traces over the nuclear and pho-
tonic Hilbert spaces, respectively; ρ̂eqD = e

−βĤ np
D /TrnTrp[eβĤ

np
D ] is the

density operator that describes the initial state of the photonic
+ nuclear DOF in the cavity-confined system, assumed to be in
the thermal equilibrium state that corresponds to the donor state;
ρ̂eqD,n = e

−βĤ n
D/Trn[eβĤ

n
D] is the density operator that describes the

initial state of the nuclear DOF in the cavity-free system, assumed
to be in the thermal equilibrium state that corresponds to the donor
state.1

Themain quantity of interest in this communication is the ratio
of the cavity-modified to cavity-free donor-to-acceptor transition
rate constants, kD→A

kmD→A
, which captures the sought after cavity-induced
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relative change in the FGR rate constant. Thus, kD→A
kmD→A

= 1 implies

no change, kD→A
kmD→A

> 1 implies a cavity-induced rate enhancement and
kD→A
kmD→A

< 1 implies cavity-induced rate suppression.
Following a similar procedure to that applied to a single-mode

model in Ref. 1, and taking advantage of the fact that the modes in
the multiple-mode case are uncoupled, then leads to the following
expression for kD→A

kmD→A
:

kD→A

kmD→A
= 1 +∑

α

h̵2g2pα
(Vn

DA)
2 ⟨N̂(βh̵ωpα)⟩eq[

kmD→A(ωpα)

kmD→A(0)
+
kmA→D(ωpα)

kmA→D(0)
].

(14)

Here, ⟨N̂(βh̵ωpα)⟩ is the expectation value of the number of photons
in the α-th cavity mode at thermal equilibrium,

⟨N̂(βh̵ωpα)⟩eq =
1

eβh̵ωpα − 1
, (15)

kmD→A(ωpα) is given by

kmD→A(ωpα) =
1
h̵2∫

∞

−∞
dteiωpαtCm

D→A(t), (16)

and kmA→D(ωpα) can be obtained from kmD→A(ωpα) by switching the
labels A and D in Eqs. (12), (13), and (16). It should be noted that
kmD→A(0) ≡ k

m
D→A and kmA→D(0) ≡ k

m
A→D are the cavity-free donor-

to-acceptor and acceptor-to-donor transition rate constants, respec-
tively. It should be noted that kD→A

kmD→A
→∞ when VDA → 0, which

reflects the fact that the cavity-free kmD→A → 0 when VDA → 0, while
the cavity-modified kD→A remains finite.

Equation (14) is the main result of this communication. It rep-
resents a generalization of a similar expression obtained for the
single-mode case in Ref. 1. The main difference is the sum over mul-
tiple modes on the R.H.S. of Eq. (14), which reduces to a single term
in the single cavity mode case studied in Ref. 1. Since every term
in the sum on the R.H.S. of Eq. (14) is non-negative, we conclude
that kD→A

kmD→A
≥ 1, with equality in the cavity-free case. Thus, within our

model, coupling to cavity modes would always enhance the rate
constant, with the overall enhancement consisting of the sum of
enhancements associated with coupling to individual cavity modes.
In this communication, we will focus on the effect on the cavity-
induced enhancement of the donor-to-acceptor rate constant caused
by going from a singlemode tomultiplemodes. To this end, we focus
on electronic energy and charge transfer reactions whose cavity-free
kinetics can be described by Marcus theory, which corresponds to a
widely used approximate version of FGR-based rate theory.

IV. CAVITY-MODIFIED MARCUS THEORY RATE
CONSTANTS

As is well known, the cavity-free donor-to-acceptor FGR rate
constant, Eqs. (12) and (13), reduces to the Marcus theory rate con-
stant in the short-time and high-temperature limits, provided that
the nuclear dynamics satisfy Gaussian statistics.5,6 Within this com-
monly assumed limit of FGR rate theory, the various cavity-free rate
constants that show up on the R.H.S. of Eq. (14) are given by the
following expressions:1

kmD→A(0) =
(Vm

DA)
2

h̵

√
π

kBTEr
e−

(ΔE+Er)2

4kBTEr , (17a)

kmA→D(0) =
(Vm

DA)
2

h̵

√
π

kBTEr
e−

(−ΔE+Er)2

4kBTEr , (17b)

kmD→A(ωpα) =
(Vm

DA)
2

h̵

√
π

kBTEr
e−

(ΔE−h̵ωpα+Er)2

4kBTEr , (17c)

kmA→D(ωpα) =
(Vm

DA)
2

h̵

√
π

kBTEr
e−

(−ΔE−h̵ωpα+Er)2

4kBTEr . (17d)

Here, ΔE is the cavity-free donor-to-acceptor reaction free energy and
Er is the cavity-free reorganization energy. In what follows, we will
assume that the cavity-free donor-to-acceptor (D→ A), transition is
thermodynamically favorable (i.e. ΔE < 0).

Following a procedure similar to that followed in Ref. 1, we
define the following multi-mode cavity enhancement function of the
Marcus theory rate constant:

F(βh̵ωp0,βh̵δz) = χ(
kD→A

kmD→A
− 1)

=∑
α
β2h̵2ωp0ωpα⟨N̂(βh̵ωpα)⟩eq

× [
kmD→A(ωpα)

kmD→A(0)
+
kmA→D(ωpα)

kmA→D(0)
]. (18)

We note that the frequencies of the multiple cavity modes,
{ωpα∣α = 1, 2, . . .}, depend on two parameters, which are deter-
mined by the experimental setup, namely ωp0 and δz [see Eq. (8)].
The results presented below are based on assuming that δz = 0.5
a.u., which corresponds to Lz ∼ 0.1 μm [using δz = 2cπ/(nrLz) and
assuming nr = 1]. We also consider a range of ωp0 values such
that βhωp0 ∈ [1, 50], which corresponds to Lx ∈ [0.5 − 20] μm [using
ωp0 = cπ/(nrLx) and assuming nr = 1 and T = 300 K]. The fact that
the length scale of the cavity (as measrued by Lx and Ly) is in the
μm range implies that they correspond to experimentally accessible
microcavities. We also consider values of β∣ΔE∣ and βEr between 5
and 50. This corresponds to ∣ΔE∣ and Er in the (0.13–1.30) eV range
at room temperature, which is typical for charge transfer reactions
in molecular systems.1 In what follows, we will focus on analyz-
ing the effect of going from a single cavity mode to multiple cavity
modes on the cavity-induced enhancement of theMarcus theory rate
constant.

The cavity enhancement function in Eq. (18), F(βhωp0,βhδz),
is shown in Fig. 1, as a function ωp0, for different numbers of
cavity modes (1, 2, 10, 100). Differet panels in this figure corre-
spond to different values of βΔE and βEr . Also shown in Fig. 1
is the contribution from the dominant cavity mode, which corre-
sponds to the cavity mode with the largest contribution to the sum
on the R.H.S. of Eq. (18). Inspection of Fig. 1 reveals that going
from a single cavity mode to multiple cavity modes can enhance the
cavity-modified Marcus theory rate constant by at least an order of
magnitude. Furthermore, the additional enhancement is cumulative,
i.e. the enhancement results from summing over multiple terms on
the R.H.S. of Eq. (18) and cannot be explained by a single dominant
mode. We also note that while the dominant term corresponds to
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FIG. 1. Plots of F(βhωp0,βhδz
) as a function of F(βhωp0, for different numbers of cavity modes (1, 2, 10, 100). Differet panels in this figure correspond to different values of

βΔE and βEr . Also shown is the contribution from the dominant cavity mode, which corresponds to the cavity mode with the largest contribution to the sum on the R.H.S. of
Eq. (18) (dotted blue line).

the principal cavity mode (α = 0) at small values of ∣ΔE∣, higher fre-
quency cavity modes become dominant at larger values of ∣ΔE∣, and
even more so at larger values of Er .

While the number of modes included in the sum on the R.H.S.
of Eq. (18) is in principle infinite, a closer inspection reveals that
there is an effective upper limit beyond which additional modes
do not contribute significantly to sum. This is demonstrated in

Fig. 2(a) which shows the ratio between the multiple-mode and
single-mode enhancement functions (FN and F1, respectively) as a
function of the number of cavity modes, N, for three different val-
ues of the principle cavity frequency, ωp0 (see insert), in the case
where β∣ΔE∣ = 35 and βEr = 20. The value of FN/F1 is seen to plateau
beyond a certain finite number of modes (N ∼ 40–60 in this exam-
ple), which implies an effective upper cutoff frequency beyondwhich
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FIG. 2. (a) The ratio between the multiple-mode and single-mode enhancement functions (FN and F1, respectively) as a function of the number of cavity modes, N, for three
different values of the principle cavity frequency, ωp0 (see insert), in the case where β∣ΔE∣ = 35 and βEr = 20. (b) A plot of the ratio between the maximum enhancement
in the case of N = 100 cavity modes, Fmax

100 , and the maximum enhancement in the case of N = 1 (a single cavity mode), Fmax
1 , as a function of βEr and βΔE. The 16 black

points correspond to the 16 panels of Fig. 1.

multi-mode enhancement becomes ineffective. It should also be
noted that the maximum multi-mode enhancement is sensitive to
the value of ωp0.

Further insight can be obtained from Fig. 2(b) where we plot
the ratio between the maximum enhancement in the case ofN = 100
cavity modes, Fmax

100 , and the maximum enhancement in the case of
N = 1 (a single cavity mode), Fmax

1 , as a function of βEr and βΔE.
The value of Fmax

100 /F
max
1 is seen to range between 2 × 102–5 × 103,

and to increase with increasing ∣ΔE∣ and decreasing Er . It should also
be noted that the dependence on ∣ΔE∣ is significantly stronger than
the dependence on Er . We note that a similar trend was previously
reported in the context of the dependence of Fmax

1 on ΔE and Er .1

V. CONCLUSIONS
FGR rate theory has proven to be extremely useful for calculat-

ing electronic energy and charge transfer rates in molecular systems.
The considerable recent interest in the ability to modify rates of
chemical processes by placing the molecular system inside a pho-
tonic cavity therefore calls for a cavity-modified FGR rate theory. In
this communication we examined the effect of going from a model
that accounts for a single cavity mode in a one-dimensional cavity to
a more realistic model that accounts for multiple cavity modes in a
two-dimensional cavity. To this end, we extended our recently pro-
posed theoretical framework for estimating cavity-modified equi-
librium FGR rate constants1 beyond the single cavity mode case
to cases where the molecular system is coupled to multiple cavity
modes.

Similarly to the single-mode framework in Ref. 1, the FGR rate
constant can be calculated from cavity-free inputs in the multi-mode
case. Our major finding is that accounting for multiple cavity modes

can enhance the Marcus theory rate constant by several orders of
magnitude in comparison to the single-mode case. Furthermore, the
additional enhancement is cumulative and cannot be explained by a
single dominant mode. Another finding is that the rate is affected by
a finite number of cavity modes whose frequency lies below a cutoff
frequency. A detailed analysis of the conditions necessary for max-
imizing this effect and its dependence on the reaction energy and
reorganization energy was presented in the case of the Marcus limit
of FGR rate theory.

While being rather general, the proposed framework is still
based on a number of assumptions, including restricting ourselves to
two electronic states, assuming zero permanent dipole moments and
neglecting nonequilibrium effects. Extending the framework beyond
those restrictive assumptions would be desirable towards closing the
gap between theory and experiment in this emerging domain of
chemical reactivity.
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