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Learning the human-mobility interaction (HMI) on interactive scenes (e.g., how a vehicle turns at an intersection in response
to traffic lights and other oncoming vehicles) can enhance the safety, efficiency, and resilience of smart mobility systems (e.g.,
autonomous vehicles) and many other ubiquitous computing applications. Towards the ubiquitous and understandable HMI
learning, this paper considers both “spoken language” (e.g., human textual annotations) and “unspoken language” (e.g., visual
and sensor-based behavioral mobility information related to the HMI scenes) in terms of information modalities from the
real-world HMI scenarios. We aim to extract the important but possibly implicit HMI concepts (as the named entities) from
the textual annotations (provided by human annotators) through a novel human language and sensor data co-learning design.

To this end, we propose CG-HMI, a novel Cross-modality Graph fusion approach for extracting important Human-Mobility
Interaction concepts from co-learning of textual annotations as well as the visual and behavioral sensor data. In order to fuse
both unspoken and spoken “languages”, we have designed a unified representation called the human—mobility interaction
graph (HMIG) for each modality related to the HMI scenes, i.e., textual annotations, visual video frames, and behavioral
sensor time-series (e.g., from the on-board or smartphone inertial measurement units). The nodes of the HMIG in these
modalities correspond to the textual words (tokenized for ease of processing) related to HMI concepts, the detected traffic
participant/environment categories, and the vehicle maneuver behavior types determined from the behavioral sensor time-
series. To extract the inter- and intra-modality semantic correspondences and interactions in the HMIG, we have designed a
novel graph interaction fusion approach with differentiable pooling-based graph attention. The resulting graph embeddings
are then processed to identify and retrieve the HMI concepts within the annotations, which can benefit the downstream
human-computer interaction and ubiquitous computing applications. We have developed and implemented CG-HMI into a
system prototype, and performed extensive studies upon three real-world HMI datasets (two on car driving and the third
one on e-scooter riding). We have corroborated the excellent performance (on average 13.11% higher accuracy than the
other baselines in terms of precision, recall, and F1 measure) and effectiveness of CG-HMI in recognizing and extracting the
important HMI concepts through cross-modality learning. Our CG-HMI studies also provide real-world implications (e.g., road
safety and driving behaviors) about the interactions between the drivers and other traffic participants.
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1 INTRODUCTION

Human-mobility interaction (HMI) learning refers to the tasks of understanding how a mobility system user (e.g.,
a vehicle driver or a micromobility rider) interacts with her/his mobility system and the traffic environments
(e.g., the driver slows down her/his car in response to a pedestrian crossing the street). HMI learning has become
essential for many emerging and ubiquitous smart mobility applications. For instance, by learning the vehicle
driver’s decisions and responses at an intersection, one may devise safe car-maneuvering strategies and improve
artificial intelligence (AI) designs of self-driving autonomous vehicles (AV). Effective and accurate HMI learning
can serve as a basis for human behavioral learning for connected AV development [26], advanced driver assistance
system (ADAS) designs [43, 44], and many other emerging Al-assisted mobility and micromobility systems [16].

Existing HMI studies [4, 10, 17, 30, 36, 47] largely focus on analyzing and interpreting the visual sensor
(e.g., video frames of the vehicle’s dash-view cameras) and the behavioral sensor data (e.g., on-board inertial
measurement units (IMUs)), which can be considered as an “unspoken language”. An interesting but largely
under-studied way to understand the HMI lies with analysis of the human’s textual descriptions and thoughts
about how the mobility system users are interacting with certain traffic and mobility conditions. Specifically, a
vehicle driver or a passenger can provide a textual description regarding the scenes of certain interaction events,
such as abrupt braking due to the sudden appearance of a pedestrian, as the post-event feedback or even the
explainable AV system designs [1, 2]. For instance, the passengers may express their concerns about the road
conditions (e.g., slippery or an object) that may also inform additional, precautionary, or responsive measures
taken by the human driver or the AV system. Such an additional verbal and textual modality, i.e., the spoken
language, can help the core Al models and systems (e.g., ADAS) account for the latent human factors, such as
the attention levels of the human perception upon the traffic environments in the HMI scenes. One can further
derive the semantic decision-making processes and the causal relationships in the HMI scenes. This way, we can
enable safer and more pleasant interactions with the mobility environments and other traffic participants. In
other words, incorporating the human intelligence from the spoken language may help convey and express the
implicit and subtle interactions that may not be easily revealed by existing visual and behavioral sensor analysis.

Motivated by the above-mentioned scenarios, our goal is to fuse the spoken and unspoken languages in terms
of different modalities from the real-world HMI scenarios, and extract and learn the important HMI concepts from
the human textual annotations towards understanding the HMI scenes. Such a novel cross-modality HMI language
and sensor co-learning design will help the existing smart mobility applications to more effectively capture the
semantic dependencies between the human decision-making (e.g., driving behaviors) and the interaction outcomes
(e.g., prevention of a traffic accident). Furthermore, such a co-learning design can be beneficial for downstream
human-computer interaction (HCI) in many ubiquitous computing applications, such as bridging the semantic
and physical aspects of HCI in conducting multi-modal human behavior analysis [37].

Towards this goal, we focus on two case studies of emerging smart mobility systems for concrete insights, i.e.,
car driving [24, 58] and micromobility (e-scooter) riding [19]. Integrating the human intelligence, the car driving
data can provide us the HCI insights on the Al-driven AV designs, while the micromobility riding enhances our
understanding of smart micromobility systems. For each of these case-studies, we have prepared the “unspoken
language” from the scenes, i.e., the driving/riding videos and the behavioral sensor measurements from on-board
IMUs, as well as the “spoken language”, i.e., textual annotations from the human annotators regarding the HMI
scenes. We will focus on the understanding and learning of the following two sets of important HMI concepts
from these modalities: (a) how the mobility system users interact with the traffic environment (such as road
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structures or traffic signals), and (b) how the mobility system interacts with other mobility or traffic participants,
such as other vehicles and pedestrians encountered.

The key of extracting the HMI concepts lies in the co-learning of multi-modal data (e.g., textual, visual, and
behavioral sensor data) to construct the semantic correspondence across these modalities and enhancing the
downstream HMI learnability, thereby semantically identifying and extracting the above-mentioned concepts
from the human textual annotations. To this end, we need to carefully address the following two important
research challenges:

(1) How to design a unified feature representation to bridge modalities from spoken and unspoken languages for
the HMI learning? In particular, deriving the latent HMI concepts requires fusing the knowledge from
heterogeneous modalities from the above-mentioned unspoken and spoken language. Existing behavior
learning methods [31, 39, 44] and concept extraction approaches in the natural language processing (NLP)
largely considered representations dedicated to the individual modality [13, 27, 28, 45], or aggregating
the hand-crafted feature vectors from different modalities without further differentiation of their mutual
relations. Such single-modal methods or handcrafted feature aggregation designs cannot represent the
interactive relations across the HMI observations (e.g., videos regarding the pedestrian on the cross-
walk), decision-making (e.g., deceleration of the vehicle), and the human textual annotations. Existing
learning approaches, therefore, may not provide unified characterization and representation of their
inter-dependencies for HMI, leading to poor interpretation of the complex HMI scenes.

(2) How to formulate and capture the semantic interactions across modalities in the language and sensor data
co-learning? Language and sensor data co-learning should carefully account for how different modalities are
jointly associated with the HMI scenes. For instance, simply modeling the detected existence of pedestrians
in the video frames or human textual annotations does not fully reflect the pedestrians’ interactions with the
smart mobility system users in specific contexts (e.g., the driver yields to the pedestrians at the crosswalk).
Such interactions lie within the semantic correspondence of certain visual objects, maneuver behaviors,
and textual words, and these correspondence relations should be carefully extracted and grouped in order
to provide a holistic understanding of the HMI scenes. Without modeling such a correspondence, prior
behavior learning [31, 39, 44] and concept extraction approaches [13, 27, 28, 45] may not recognize the
intrinsic and implicit interactions between the mobility system users (e.g., car drivers or e-scooter riders)
and the mobility environments, yielding low accuracy in retrieving the concepts of the interaction events.

To address the above-mentioned research challenges, we propose CG-HMI, a novel cross-modality graph
interaction fusion approach to fuse heterogeneous unspoken and spoken language for human-mobility interaction
learning. Specifically, as illustrated in Fig. 1, we have designed a novel unified representation called the human-
mobility interaction graph (HMIG) for each modality related to the HMI scenes, i.e., textual annotations, visual
video frames, and behavioral sensor time-series (based on on-board inertial measurement units). Each node
of the HMIG corresponds to the words related to HMI concepts, the detected traffic participant/environment
categories, or the vehicle maneuver behavior types, in these modalities, while the edges represent their semantic
correspondence. This way, the HMIG bridges the spoken and unspoken language, and formulates and captures the
semantic interactions across the modalities. Towards HMI learning, we have formulated the HMI concepts as the
named entities [29], and designed a named entities recognition (NER) approach based on the interaction graphs
to extract the concepts. In order to extract the inter-modality and intra-modality semantic correspondences,
we have designed a novel approach based on differentiable pooling-based graph attention. Our fusion design
groups the graph nodes based on their differentiated semantic correspondence via the differentiable pooling. The
resulting graph embeddings are further processed to detect and identify the HMI concepts within the human
annotations, which benefits the further downstream HMI learning applications.

In summary, this paper makes the following four major technical contributions:
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Fig. 1. Motivations of CG-HMI and the enabled potential HMI applications.

(a) Unified Graph Representation: We have provided a novel and unified graph representation design,
named human-mobility interaction graph (HMIG), to model the interactions and correspondences across
textual annotations, video frames, and behavioral sensor measurements;

(b) Human-Mobility Interaction Concept Formulation: We have formalized the HMI concepts from the
human textual annotations to characterize the scenes when the mobility system users (e.g., car drivers) are
interacting with complex traffic environments;

(c) Cross-Modality Graph Fusion: We have designed a cross-modality graph fusion approach to capture the
semantic correspondences and interactions across the modalities in the HMIG for HMI concept learning
and extraction. To the best of our knowledge, this is the first attempt to study the semantic interactions of
multiple modalities for human-mobility interaction (HMI);

(d) System Implementation and Experimental Studies: We have developed and implemented the system
prototype of CG-HMI. We have conducted extensive experimental studies with three real-world mobility
system datasets (two of them are collected on our own on a university campus), i.e., two car driving datasets
and one e-scooter riding dataset. We have performed the textual annotations of the HMI scenes with the
HMI concepts. Our experimental studies have corroborated the effectiveness and accuracy in identifying
and extracting the important HMI concepts (on average over 13% higher accuracy than other baseline
approaches).

o System Overview. Fig. 2 provides a brief system overview on the information flow, which comprises the
following three important stages:

(1) HMI Data Pre-processing (Sec. 3): We first prepare the HMI dataset for the CG-HMI model training. In
particular, each record of the HMI dataset studied consists of an HMI textual annotation, recorded HMI video
frames, and HMI behavioral sensor data (i.e., IMU measurements upon the HMI scenes of the mobility system
status). We first pre-process each HMI textual annotation by dividing them into a series of smaller units called
tokens [52]. For the recorded video of the HMI scene, we perform the object detection [38, 46] to obtain the types
of the important HMI objects (e.g., cars, pedestrians, and traffic lights). For the HMI behavioral sensor data, we
process the IMU time-series and identify a set of maneuver behaviors [8, 39, 44] (e.g., left turn or acceleration) in
the HMI scenes.
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Fig. 2. System overview of CG-HMI that consists of three major stages. The returned HMI concepts can be further fed to
other downstream applications such as inferring the causality and accountability of the interaction events.

(2) Cross-Modality Graph Representation Construction (Sec. 4.2): In this stage, given the tokenized HMI textual
annotation, detected important HMI objects, and identified HMI behaviors, we form the cross-modality graph
representation of HMIGs. Each node of HMIG corresponds to a node in textual, visual, and behavioral modalities.
To support the HMI concept learning and extraction from the textual annotations, we associate a textual word for
each graph node. We then formulate the semantic correspondences and interactions within the HMIG, namely
the inter-modality edges and intra-modality edges.

(3) Interaction Graph Encoder and Concept Recognition Decoder for Cross-Modality Fusion (Sec. 4.3): In this stage,
CG-HMI leverages the constructed cross-modality HMIGs, and encodes the nodes as well as the edges based on
the differentiable pooling-based graph attention network. An interaction graph encoder module first extracts the
dependencies within and across the modalities through the graph interaction attention learning. Then, CG-HMI
conducts the node cluster assignment to determine the relevance of each node in the HMIG to a certain HMI
concept. Furthermore, a concept recognition decoder module converts the graph embeddings into the word
embeddings, and identifies our targeted HMI concepts within the textual annotations.

o Contributions to UbiComp Community. To the best of our knowledge, this is the first work on designing
and implementing a language and sensor data co-learning system for understanding ubiquitous human-mobility
interactions. Our insights gained from the model designs, system prototyping, and experimental studies will benefit
the UbiComp community in the following two perspectives: (1) understanding the human-mobility interactions
through cross-modality fusion for emerging smart mobility systems that are equipped with ubiquitous sensing
capability; and (2) stimulating more human-centered computing designs and understandable modeling, through
a novel language and sensor data co-learning approach, for HMI learning systems (such as ADAS). Our HMI
framework can serve as an important building block to enable safer (or more responsible) operations and more
enjoyable experience with other important mobility systems (e.g., AVs and other emerging smart micromobility
systems). The thus-derived HMI concepts by CG-HMI can further serve as inputs to other downstream ubiquitous
computing applications, such as explaining causality in the HMI scenes, inferring accountability, and enabling
responsibility analysis in a traffic conflict or an accident event (e.g., auto insurance policy designs and traffic
accident analyses from big mobility system data).

The rest of the paper is organized as follows. We first review the related work in Sec. 2. Then, we present the
HMI data processing and preparation in Sec. 3, followed by the unified graph representation construction and the
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core cross-modality graph interaction fusion designs in Sec. 4. We demonstrate the results of our experimental
studies in Sec. 5, discuss the deployment in Sec. 6, and conclude the paper in Sec. 7.

2 RELATED WORK

We briefly review the related work in the following two categories.

e Ubiquitous Human-Mobility Interaction. Towards smart mobility system designs (such as the emerging
AV systems), “spoken language”, such as human textual annotations, has started to demonstrate the potential to
be fused with the “unspoken language” that is often embedded within the sensor measurements (e.g., visual and
behavioral sensors) towards better decision understanding and interpretation of the entire mobility system and
its interactions with complex traffic environments/participants. For instance, Kim et al. [24] and Ben et al. [5]
studied video-to-text models that generate textual explanations and justifications for the driving decisions. In
particular, Kim et al. [24] augmented the BDD100k driving video dataset [58] with the human-generated textual
annotations to describe the driving scenarios, and formed the BDD-X dataset that can be used for explanation of
the AV modeling process. In addition, to enhance the interpretability of the AV system, Kim et al. [23] designed a
model that learns to describe and summarize the visual observations and the actions of the AV system in response
to the observations in natural language. Xia et al. [53] leveraged the driver gaze supervision to guide the Al
model in finding the prominent parts of the video stream for car speed estimation. Similarly, Kim et al. [22]
leveraged human textual advice and guidance to improve the learning and operation of the AV systems. Cao et
al. [6] proposed a question-answering framework that can be used to explain the visual inputs in a textual form.
Similarly, Acer et al. [3] introduced a model that can provide detailed and purposeful textual information about
the surrounding environment (e.g., a driving scene). Furthermore, Zhan et al. [60] combined word contextual
representations with temporal dynamics to enhance the subsequent human activity prediction.

CG-HMI differs from these prior studies in the following aspects. Aiming to understand the interactions
between mobility system users and the mobility environments, CG-HMI focuses on identifying and extracting the
essential HMI concepts from the human textual annotations by constructing the semantic correspondence across
the unspoken (visual and behavioral sensors) and spoken (textual) language. Instead of conventional feature
integration, CG-HMI provides a novel and unified cross-modality graph representation to bridge these modalities.
Our novel designs of fusing the spoken and unspoken language yield accurate identification of the HMI concepts,
and can serve as the key enabler for various downstream human-centered and ubiquitous applications in smart
mobility systems [23, 42, 44] and HCI [60].

o Named Entity Recognition (NER). NER refers to the task of identifying various entity types (e.g., person
names, locations, organizations, or other more fine-grained types in specific domains) in the texts [29, 40]. For
instance, given the text “Albert Einstein was born in Germany”, “Albert Einstein” is recognized as a named
entity of “person” type, while “Germany” is identified as the “location” type. NER is important as it could be
considered one of the main pre-processing steps for other downstream applications related to texts, such as user
input understanding and question-answering models [29]. Existing NER studies largely focus on single-modal
(text-only) named entity recognition [13, 27, 28, 45], which may not necessarily adapt to recognizing the HMI
concepts that have complex inter-dependencies with multiple modalities. With the increasing association of
texts with other important modalities, multi-modal NER [11, 34, 36, 49, 61, 62] often considers compressing
the additional modalities (such as images or video frames) into feature vectors for extracting named entities
within the texts. Chen et al. [11] analyzed the textual representations with the attention mechanism over the
visual modality to reduce the sensitivity of the named entity recognition upon unrelated objects and improve
the accuracy of NER. Chen et al. [9] studied the image description generation based on a pre-trained generative
model in order to support accurate multi-modal NER. Moon et al. [32] proposed a contrastive learning approach
that transforms the IMU sensor readings and the textual annotations upon the videos of human activities into a
shared embedding space to enhance information retrieval. Chan et al. [7] investigated the AV trajectory planning
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and control by encoding human textual commands with other sensor data fusion. These multi-modal feature
integration approaches may not necessarily capture the interactive correspondence across these modalities, and
may not scale to other heterogeneous modalities, such as behavioral data in complex HMI scenes.

Unlike the above-mentioned studies, we propose a novel approach of co-learning language and sensor data for
ubiquitous mobility sensing, which is based on cross-modality graph interaction fusion to identify and extract
the HMI concepts within the human textual annotations. Furthermore, unlike other NER tasks [27, 61] that focus
on coarse-grained named entities, we focus on the subtle and implicit HMI concepts that require a model to
capture the complex semantic correspondence including the inter- and intra-modality relations. The extracted
fine-grained HMI concepts can also deepen our understanding of the HMI scenes and provide the accountability
implications within the interactions.

3  HMI DATA PREPARATION AND CO-LEARNING PROBLEM DEFINITION

We first overview the HMI datasets used for our CG-HMI system development in Sec. 3.1, and then present how
we process and obtain the unspoken language — HMI participants and HMI behaviors — within the visual and
behavioral sensor data in Sec. 3.2. Then, we present the HMI concepts in the spoken language — human textual
annotations - in Sec. 3.3.

3.1 HMI Datasets under Study

To gain concrete insights from the HMI studies, we have prepared and harvested the following three datasets.

o HMI Dataset 1 (DS1): We have processed and prepared the open-sourced BDD-X [24] dataset, which consists
of car-driving behaviors (based on the open-source large-scale HMI dataset BDD100K [58]) annotated with the
texts. Specifically, each record (sample) in the processed BDD-X dataset corresponds to an HMI video (recorded
by the dash-view camera), the IMU measurements with Apple iPhone 5 during driving (i.e., accelerometer and
gyroscope), and human-generated textual annotations which, describe the driving behaviors within the video
frames.

o HMI Dataset 2 (DS2): We have also developed our
HMI data collection application on an Apple iPhone XR
to harvest the visual and behavioral sensor data (Fig. 3(a))
during our daily commute (see Fig. 3(b)) when driving to
and from a university campus (situated in a rural area) in
North America, and performed the textual annotations of
the HMI scenes. Similar to DS1, each record (sample) in DS2
consists of the HMI video (recorded with our smartphone’s
or dash-view camera), smartphone IMU readings, and the ; s
textual annotations regarding the interactions in the video @ (o) ()
frames. Fig. 3. (a) Our HMI data collection application. Setup for

e HMI Dataset 3 (DS3): To evaluate the HMI for the (b) car driving for DS2 and (c) e-scooter riding for DS3.
micromobility systems, we have collected our own HMI
dataset during e-scooter riding similar to DS2 (Fig. 3(c)). We attached a Google Pixel 3 to the handlebars of the
e-scooter and the smartphone’s main (back-view) camera is used to record the HMI scenes during the daily
commute rides on our university campus. Similar to DS1 and DS2, each record in DS3 consists of the HMI video,
smartphone IMU readings, and the textual annotations of the video frames. In our e-scooter riding data collection,
we have followed the local regulations and riding ethics (e.g., wearing a scooter helmet, avoiding conflicts with
pedestrian crowds) during the e-scooter riding.

We further show the records (samples) of the video frames, and IMU sensor readings (i.e., accelerometer and
gyroscope), along with the textual annotations of two HMI scenes from DS1 and DS3 in Fig. 4. Specifically, the
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Fig. 4. Visualization of the visual and behavioral sensor modalities of two examples from DS1 (top) and DS3 (bottom) (the
reading order of the frame/sensor records is from left to right), where the sentences “The car accelerates because the light
has turned green” and “The rider slows down to let the pedestrians cross” are their corresponding textual annotations.

Table 1. Statistics of the detected HMI participants/objects and identified maneuver behaviors from the three datasets.

Datasets HMI Participants and Objects Detected Maneuvers and Behaviors
Pedestrians | Cars | Traffic Light | Traffic Signs || Left Turn | Right Turn | Straight Driving | Stop | Acceleration | Deceleration
DS1 701 2,611 1,133 140 124 94 611 530 271 411
DS2 379 620 75 84 84 78 260 63 70 188
DS3 131 791 199 55 87 65 203 137 45 119

first HMI scene shows that as the traffic light turns from red to green (highlighted in the frames), the car starts
to accelerate, which is reflected by the accelerometer time-series along the x-axis (i.e., forward direction) and
depicted in the textual annotations. In the second HMI scene, the e-scooter rider starts to decelerate as s/he
sees a pedestrian on the left, which is similarly reflected in the accelerometer time-series as well as the textual
annotations. Note that we collected DS2 and DS3 in the naturalistic driving/riding settings, i.e., the data collection
was performed during the daily commutes without experimental control, and followed the local traffic rules
and social norms (e.g., minimum interference with the other traffic participants). Our smartphone-based data
collection was unobtrusive, and did not interfere with the naturalistic vehicle driving and e-scooter riding as well
as the nearby local road traffic.

3.2 Unspoken Language within Visual and Behavioral Sensor Data of HMI Scenes

e HMI Participants and Objects from Visual Data. For the given HMI video, we have implemented the
YOLOV5 object detection algorithm [38, 46] to identify a total of V different objects classes within each HMI
video frame, i.e., pedestrians, motorized vehicles (e.g., cars, buses, and trucks), traffic lights, and traffic signs.
In our data preparation, we process and extract each HMI scene, and each scene lasts 9s on average. We have
further shown the statistics of the detected HMI participants and objects of the three datasets in Table 1.

o HMI Behaviors from IMU Sensor Data. The behavioral sensor data can serve as another unspoken
language to express the HMI scenes. In this prototype HMI study, we focus on the IMU measurements (e.g.,
accelerometer and gyroscope) collected from the smartphones during car driving or e-scooter riding. We have
identified and labeled the HMI behaviors of the mobility system users based on the on-board IMU measurements
from DS1, DS2, and DS3. We have implemented an efficient IMU-based maneuver behavior identification algorithm
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to process the time-series data of the accelerometer and gyroscope readings, and identify multiple different
driver/rider maneuver classes [8, 39, 44]. We have identified the following X = 6 maneuver classes: left turns,
right turns, straight driving, stops, acceleration, and deceleration. We further illustrate the statistics of the
detected maneuvers of DS1, DS2, and DS3 in Table 1. We note that this pilot study focuses on leveraging the IMUs
for determining the interaction behaviors, since the mobile/vehicle-equipped IMUs can provide fine-grained
maneuver behavior data and enable the ubiquitous computing applications, especially under GPS-less urban
environments. The design of our CG-HMI is also general, and can be extended to other sensing modalities (e.g.,
LiDAR) for the more fine-grained analysis.

IMU Sensory Data Pre-processing

Smartphone Measurements Coordinate Alignment

IMU-based Maneuver Behavior Identification
Maneuver Embeddings
tati
D_> Accelerometer | | ~ Segmentation :} LSTM ‘ ReLU ‘ ‘ LSTM ‘ ReLU HC‘, € RA p. ERY
Gyroscope Noise Filtering

Normalization

_ . Raw Sensory Measurements _ Filtered Measurements Sliding Window Segmentation
04 @ 0.4 @0_4 T >
Fo3 g o3 3 03— >
Z 0.2 Z 0.2 ~‘a'-; 0.2
3 01 % 0.1 3TN SlRE
;;O, N 0.0 —» 5 0.0
8-0.1 %0.1 201 \
8-0.2 §-02 § 0.2
2.03 203 803
&0.41 | &04 304
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Fig. 5. Overview of behavioral sensor data processing and behavior recognition from the HMI scenes.

We illustrate the IMU-based maneuver identification in Fig. 5 for both the car driving and e-scooter riding.
In particular, given the raw time-series of the accelerometer and gyroscope, we first perform the coordinate
alignment to convert the sensor readings from the smartphone’s coordinate system (local coordinate system) to
that of the vehicle/e-scooter (global coordinate system). Then, we segment them with a sliding window of size W
(10s in this study) and 50% overlap. We further filter the sensor noise caused by the vibrations or the inherent
imprecision of the sensors, and normalize the data to the range of [-1,1] [8]. For each a-th sample in our harvested
HMI dataset, let A, € R>*W and R, € R3*W be the pre-processed accelerometer and gyroscope time-series
segments with length W along the x, y, and z axes. Then, to capture the temporal information within each of
the sensor time-series segments, we process the segments based on a total of By consecutive long short-term
memory (LSTM) layers [31] with  hidden units and the rectified linear units (ReLU) activation function. Such a
design adds non-linearity and generates the f-D maneuver embeddings £, € R%, i.e.,

C,=LSTMg, (... (LSTM; (A4 Ry))). (1)

¢, is further processed by a fully connected (FC) layer with X hidden units and the Softmax activation function
to output the probabilities p, for each of the X maneuver classes in our study, i.e.,

Pa=lpalll,....palX]] € RY, (2

where .
oli] = M, (3
P ™ SE explpalkD) )

and p,[i] represents the probability of the i-th maneuver class being detected in the time-series segment. We
denote the set of the detected maneuvers in the a-th sample through the above procedures as B,.
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3.3 Spoken Language on HMI Concepts

We have defined and labeled the HMI concepts from the human textual annotations for our language and sensor data
co-learning, which characterize the contexts and decision-making processes within the HMI scenes. Specifically,
we focus on the following five important concepts related to HMI: (i) mobility system status (such as the left/right
turn decisions by the drivers); (ii) traffic environment status (e.g., the contexts of clear way, or heavy traffic);
(iii) interactions with other vehicles (for instance, passing a slow vehicle or allowing the front vehicle to merge);
(iv) interactions with pedestrians (e.g., stop when a pedestrian is crossing, or signaled by a pedestrian); and (v)
interactions with the road infrastructures (such as traffic lights, stop signs, and speed bumps).

Fig. 6 illustrates five examples of these different HMI concepts. Note that the extraction and recognition of the
HMI concepts of CG-HMI cannot rely on simple word matching, since one word may relate to multiple different
contexts and imply different semantics in different HMI concepts. Instead, CG-HMI aims to capture the sequences
of multiple words inside the human textual annotations that are interconnected, thus enabling the comprehensive
understanding of HMI scenes.

(i) Mobility System Status
The car is merging into the left lane to make a left turn.

The car maintains a moderate constant speed because the road is clear.

(iii) Interactions with Pedestrians
The car maintains a slow speed because the road is clear but there are pedestrians.

(iv) Interactions with Other Vehicles
The car veers right to pass a vehicle that stopped in the car's lane.

(v) Interactions with Road Infrastructures
The car drives forward because traffic lights are green.

Fig. 6. Human textual annotation examples from DS1 with each of the 5 HMI concept classes.

In summary, we have identified and labeled a total of 5,793, 807, and 1,073 HMI concepts from DS1, DS2, and
DS3, respectively. We further illustrate the distributions of HMI concepts in DS1, DS2, and DS3 in Fig. 7. Note
that a car driver in DS1 and DS2 might encounter more vehicle traffic but fewer pedestrians than the e-scooter
rider in DS3.

DS1 Concept Distribution

DS2 Concept Distribution DS3 Concept Distribution

3,500 522
3,000 ..
2,500 ll
2,000 ll
1,500 ll
i 75 Bl e

500

0

[0) @ m ™ W

Concept Class

6] (i) (i) () V) [) i) Gy ™ )

Concept Class Concept Class

Fig. 7. Distribution of the different HMI concept classes (labeled in (i)—(v)) for DS1, DS2, and DS3.

Since the HMI annotations may be of different lengths, our pre-processing will break each sentence into smaller
units. Then, CG-HMI learns the relations of different units, and assigns the labels of HMI concepts to the units
in the HMI annotations, which follows the existing NLP practices [52]. Specifically, we convert each sentence
regarding the HMI scenes of a sample a into a series of tokens, i.e., S; = [sa1, - . ., SqgL], With a maximum length
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of L (L = 128 in this study since the textual annotations are all shorter than 128 words). If a tokenized textual
annotation has tokens of length shorter than L, CG-HMI pads it with the null tokens to the length of L [52]. Here
sq,; denotes the i-th token of the a-th textual annotation S,.

To ease the language and sensor data co-learning, for each HMI textual annotation S,, we provide the labels of
HMI concepts, ie., Y, € RXXL wwhere K is the number of HMI concept classes and L is the number of tokens in the
textual annotations. Each element Y, [i, j] = 1 represents that the j-th token s, ; (j € {1,...,L}) belongs to the
i-th HMI concept type, and Y,[i, j] = 0 otherwise. Fig. 8 illustrates a labeled example of Y,, where Y,[2,1] = 1
denotes that the word “slowly” belongs to the HMI concept of “mobility system status”.

End of Sentence Padding to L

“The” “rider” “slowly” “passes” “the” “two” “pedestrians” “on” “the” “right” “.” !“[SEP]”‘ I‘[PAD]“ “[PAD]’J
Sa1 S¢2 Sa3 Sad Sa5 Sa,6 84,7 Sa,8 50,9 54,10 5,11 84,12 Sq,13 .. Saq,L
@M |1 1 1 1 0 0 0 0 0 0 0 0 0 0
(i) | 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Y, € REXL — i) | 0 0 0 0 0 0 0 0 0 0 o0 0 0 0
(v) |0 0 0 1 1 1 1 1 1 1 0 0 0 0
W |0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 8. Illustration of the labeled HMI concepts in a sentence of textual annotation.

e Problem Statement. We define the task of CG-HMI as: given a tokenized HMI textual annotation S,, the
related HMI objects P,, and identified HMI behaviors B, (e.g., maneuver behaviors) from the a-th HMI data
sample, the goal of the HMI language and sensor data co-learning by CG-HMI is to determine the types and
positions of a set of HMI concepts Y, in S,.

4 CORE MODEL DESIGNS FOR CO-LEARNING LANGUAGE AND SENSOR DATA

We first overview the module designs of CG-HMI in Sec. 4.1. Based on the processed unspoken and spoken
language, we present the designs of cross-modality graph representation in Sec. 4.2. Then, we discuss the detailed
designs of the graph encoder and concept decoder in Secs. 4.3 and 4.4, respectively.

4.1 Model Overview of CG-HMI

The overall architecture of CG-HMI is further illustrated in Fig. 9. CG-HMI first constructs the human-mobility
interaction graph (HMIG) to characterize the semantic correspondences among different modalities (Sec. 4.2).
Based on all the HMIGs formed from the HMI scenes, CG-HMI aims to capture the semantic correspondences
across these modalities, and capture their HMI concepts. CG-HMI first processes the HMIG with the cross-modality
interaction graph encoder (GIA) module (Sec. 4.3) to generate the node embeddings. The key idea of this module
is to leverage a novel graph attention network with differentiable pooling (DiffPool) to differentiate the HMIG
edges, learn the latent semantic correspondence, and generate the node embeddings of the HMIG. Then, the
concept recognition decoder module (Sec. 4.4) further decodes the node embeddings, and processes them through
the bidirectional long short-term memory (BiLSTM). Finally, CG-HMI returns the scores of the words in the textual
annotations and determines their relevance to each HMI concept, yielding the recognized HMI concepts.

4.2 Cross-Modality Graph Representation

¢ Design Motivations. Given the unspoken (i.e., visual and behavioral) and spoken (i.e., textual) languages of
the HMI scenes, we propose the construction of a cross-modality human-mobility interaction graph (HMIG)
in order to provide a unified representation to capture the semantic correspondence. Such a graph structure
characterizes the interactive relations of the different modalities, which are further retrieved to determine the
HMI concept types in the HMI scene.
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Video Frames

Interaction Graph
Encoder Module
(Sec. 4.3)
Be'CIaViO"a' Sen?or HMIG ‘ el ‘ ‘ el H leﬂ,DOOI‘ HMI Concepts Predictions
easuremen ~
Accelerometer | Gyroscope (m— ! Ya € RKXL
os os ~ AR Concept Recognition
,DW ,OW (M Decoder Module
T 100 200 30 G100 200 301 (Sec. 44)
Textual Annotations (Sec. 4.2)
The car slows as it

notices a pedestrian.

Fig. 9. Overview of the system workflow of CG-HMI.

e Detailed Designs. Our HMIG consists of modality nodes and intra-/inter-modality edges for the language
and sensor data co-learning. We transform the a-th textual annotation S,, along with the set of HMI objects P,
and maneuver behaviors B, into a graph representation G,. The formulation of G, is detailed next.

(a) Modality Nodes: Each HMIG G, consists of three types of nodes: visual, behavioral, and textual. Based on
the pre-processed unspoken language in Sec. 3.2, each HMIG in this study consists of V' = 4 visual nodes that
correspond to the four types of traffic participants and objects of interest: pedestrians, cars, traffic lights, and traffic
signs. In addition, we have a total of M = 6 behavioral nodes that represent the six maneuver classes (e.g., left/right
turns) detected in the HMI scene, and L textual nodes that represent the tokenized textual annotations. Thus, we
form G, that has a total of T = (V + M + L) nodes for CG-HMI to learn their mutual semantic correspondences.

(b) Intra-/Inter-modality Edges: Our HMIG aims to capture: (i) dependencies of nodes within the same
modality, and (ii) interactions of nodes across different modalities in the HMI scene. For instance, when CG-HMI
identified the traffic lights and pedestrians in the HMI scene (say, when the car stops at the intersection), CG-HMI
learns the intra-modality edges between the related nodes within the visual and textual categories. In the
meantime, CG-HMI associates the inter-modality edges between the above-mentioned nodes with the behavior
nodes (say, the “left turn” node). With the above edges, CG-HMI formulates the HMIG into an adjacency matrix of
Gy, denoted as C,, to characterize these intra-/inter-modality edges, and hence derives the HMI concepts from the
textual annotations. To this end, we consider G, as a weighted graph, where each matrix element C,[i, j] € [0, 1]
represents the semantic correspondence, i.e., interdependencies in the annotated HMI concepts, for each pair of
i-th and j-th nodes. C,[i, j] approaches 1 when two nodes have strong semantic correspondence, and 0 otherwise.
In the model initialization, CG-HMI sets the edge weight between the nodes i and j as C,[i, j] = 1.

Based on the above, we illustrate a concrete example of the constructed HMIG of an HMI scene in Fig. 10. Note
that the inter-modality edges are formed across the visual nodes, “car” and “traffic light”, and the behavioral node
“left turn”, indicating their semantic correspondences in such an HMI scene. If certain objects or maneuvers are
not detected in the HMI scene, their corresponding nodes in the HMIG are isolated without any edge.

4.3 Interaction Graph Encoder Designs

e Design Motivations. Our interaction graph encoder module aims to identify the most important neighboring
nodes within and across the modalities in the HMIG to generate the node embeddings. Within this module, we
will design a differentiable pooling-based graph attention network to determine the semantic correspondences
between different nodes. Our differentiable pooling-based graph attention network performs node clustering
assignment operations, which clusters the modality nodes into L clusters. This way, this module ensures that the
relevant features across different modalities are aggregated, and contribute to the final node embeddings and
HMI concept recognition.
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Fig. 10. lllustration of the cross-modality human-mobility interaction graph (HMIG).

o Detailed Designs. We have designed a differentiable pooling-based graph attention network to extract the
node embeddings. As illustrated in Figs. 11 and 12, this module performs the following two major operations, i.e.,

(a) graph feature encoding and interaction attention, and (b) node cluster assignment and embedding generation.
The details of each operation are given as follows.

Graph Feature Encoding and Interaction Attention

serT) | % L= :
Nz 1 | Adjacency Matrix
Initialize ! i v®_g, — ]
Node ' [ Node Features GIA ZE.I) | Z(')
Features (0 1 yo > v(l) >
1
________________ H
Graph Interaction Attention Details
@y, .
vO[p,2 Z:[p] xv[p, 1]
ok fr.2] P 0 2,
z02, gD
A
xV¥[p,4]
()
Z,'[3,:
3 214,

Fig. 11. Details of the graph feature encoding and interaction attention architecture in CG-HMI.

(a) Graph Feature Encoding and Interaction Attention. Fig. 11 illustrates the details of our architecture.
In particular, given the HMIG G, we associate its nodes with a set of words denoted by Q,, e.g., “traffic light” or
“left turn” for visual and behavioral nodes, and the sentence tokens S, for the textual nodes. Thus, to initialize
the node features of G,, denoted by Z,(lo), we feed words Q, to the Bidirectional Encoder Representations from
Transformers (BERT) [14] and use its output word embeddings as the initial node features, i.e., Zt(lo) = BERT (Q,),
where Z,(IO) e RT*¢"” . Furthermore, since BERT is pre-trained on a large corpus, it can generate contextual
embeddings that are useful to capture the semantic dependencies between the nodes.
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Given the feature embeddings from all modalities, Zz(zo), in order to extract the semantic correspondences,
CG-HMI stacks a total of B; graph attention layers [48]. At each layer I, CG-HMI takes in the node features,
Z,(z” € R™¢" and the adjacency matrix, C, € RT*T. Let N, be the neighborhood of a node p in the HMIG
according to the adjacency matrix C,, i.e., the nodes that have intra-/inter-modality edges from p as well as
p itself. Each graph interaction attention layer (denoted as GIA) finds the graph interaction attention weights
between two nodes p and g in the HMIG, denoted as Vgl) e R X¢(”, based on a Softmax function, i.e.,

exp(Y[p.q])

Va'[p.q) = Softmax(ylp.q)) = 5—="0 e g€ (L. T 4

where the score of edge feature embeddings between nodes p and q is given by

V.l 2o (WD (29 1p.1- W) | (2201g.1- W, ) ). ©

and Z((ll) [p,:] and Zy) [g,:] represent the features of the p-th and g-th nodes, respectively, and W, € R29" and
W, € R$"*$" are trainable weight matrices. In addition, o(-) denotes the activation function (LeakyReLU in
our study), || represents the concatenation operation, and ()" represents the matrix transpose operation. Eq. (4)
characterizes how important the interdependencies between the nodes p and q are in the related HMI scenes,
thus capturing their semantic correspondences. For instance, Fig. 11 shows that for a node p, the colors of the
edges imply the relative stronger importance V,(zl) [p, 3] of its neighbor g = 3 (with the feature Z,(Z” [3,:]).

We then conduct the graph convolution based on V,(zl), and have

z8 =z Wy + b, ()

where Z,(IM) is the output of GIA, and W, and b, are trainable weight matrix and the bias, respectively.
We further denote all operations in Egs. (4), (5), and (6) (see Fig. 11) as the function of GIA(-), i.e.,

[zgl“),vy“’] = GIA (zg”,vy’) . (7)

Given the above, we recursively leverage a total of B; GIA layers within CG-HMI to extract the node features and
edge weights, i.e.,

[sz”,v?”] — GIAg, ( . (GIAI (Z,EO),VS”))) . ®)

Note that V,(IO) = C, at the first GIA layer. In the subsequent GIA layers, the matrix Vfll) represents the weights of
edges across all nodes and differs from the input C,.

(b) Node Cluster Assignment and Embedding Generation. We illustrate the details of the node cluster
assignment and embedding generation in Fig. 12. Specifically, given the node features Z((IBI) e RT?'™ and the
weighted adjacency matrix VB € RTT CG-HMI further performs the differentiable pooling [57] to determine the
clusters of nodes that have strong relevance with each other. This way, CG-HMI differentiates and identifies the
node clusters that demonstrate strong semantic interactions. For instance, Fig. 12 illustrates that the first through
the fourth nodes are fused by the differentiable pooling operation due to their interdependencies and semantic
correspondences.

In particular, given the outputs of GIA, we perform the Laplacian smoothing [25] to aggregate the local
information of each node to generate the embeddings H,(zBl) e RIX@ je,

1

_1 -5
HPY = (155131)) 2'(V£B‘)+I)'(]5331)) Tzl W, +b,, ©)
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Fig. 12. Details of node cluster assignment and embedding generation in CG-HMI.

where ]5‘(131) € RT*T represents the diagonal degree matrix, i.e., ]A)‘(,Bl) [i,i] = X; V((ZBI) [4, j]. In addition, V,(IBI) +1
imposes the self-loop operation [51] to each node with the identity matrix I € R™*7, and W, € R®*® and b, € R®
are its trainable weight matrix and the bias with w hidden units to generate the embeddings.

Then, for each node in HMIG, we find the assignment score that represents the importance of being assigned
to a node cluster. As shown in Fig. 12, CG-HMI determines the assignment matrix E,(lBl) € RT™L where E‘(,Bl) [p,c]
represents the assignment score that a node p € {1,...,T} be assigned to the cluster ¢ € {1,...,L}. In other
words, EEIBI) [p,c] = 1if the node p should be assigned to cluster ¢, and 0 otherwise.

Specifically, we calculate EéBl) by applying the Softmax function in a row-wise manner on another Laplacian
smoothing output to generate the probability of each node p being assigned to each ¢ of the L clusters, i.e.,

- - exp (X [p.cl)
g [p,c]zSoftmax(Xal [p,c])z . pefl...T), cefl,...L}, (10)

£y exp (XS p. K1)

where the score of the feature embeddings X s formally given by

X(B) — (f)éBo)

and W, € R“*“ and b, € R are the trainable parameters.

After the node cluster assignment, we further combine the node cluster assignment scores Eszl) and the
intermediate node embeddings HéBl) through an FC layer (with p hidden units). Specifically, CG-HMI finds the
updated node embeddings F,gBl) e R je.,

T
Fc(zBl) — FC ((EEIBI)) . H((]B])) , (12)

~1/2 . ~1/2
: (vgBﬂ +I) : (D;Bﬂ) 78 W, +b,, (11)

which further differentiates the features of the nodes assigned. Given the node cluster assignment Ele‘), we
further calculate the updated matrix of GIA weights, denoted as VgB‘) e REXL je.,

o T
Vz(zBl) — (EEBI)) ‘VéBl) . EEIBI)~ (13)
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4.4 HMI Concept Recognition Decoder Designs

e Design Motivations. We illustrate the module designs of our concept recognition decoder in Fig. 13. Based
on the node embeddings, the concept recognition decoder further derives the relevance score of each word with
respect to the HMI concept classes.

Concept Recognition Decoder Module

Word Embeddlngs

-C S|.-|||O|
(0) é_’ Bi ST XBz Bi STM A

Y.[1,:] e RE

‘xK

“Fc-Sigmoid

}»S? € REXL

Y.[K,] eRF

Fig. 13. Details of the concept recognition decoder module.

This module leverages the combination of the node embeddings and the initial textual word embeddings to
ensure the critical information from the textual information can be retrieved. Furthermore, we note that HMI
concepts within the textual annotations may exhibit sequential dependencies. For instance, the car decelerates
when the driver observes the encounter with a pedestrian. Therefore, we have further designed the bi-directional
long short-term memory (BiLSTM) to capture the sequential dependencies. The bi-directional design also helps
capture the correlations when the cause (e.g., the encounter with pedestrians) and the effect (e.g., the car
decelerates) appears in an arbitrary order inside the textual annotations.

e Detailed Designs. In particular, the concept recognition decoder module first takes in the initial textual
node embeddings Z((IO) [1: L] € RP# and feeds them to the node embeddings F,(zBl) € RE¥# that is returned from
the interaction graph encoder module (Eq. (12)). This way, we obtain Q, € RF*# i,

Q. =Z91:1] o FPY, (14)

where @ represents the element-wise addition operation. Then, CG-HMI stacks a total of B, BiLSTM layers, each
of which has 1 hidden units and Tanh as the activation function, as well as a batch normalization (BN) layer to
further decode Q. The resulting word embeddings U, € R” characterize the temporal dependencies across the
input node embeddings, i.e.,

U, = BN(BiLSTMg, (...BN(BiLSTM; ((Q4))))). (15)

Given the word embeddings U, € R7, CG-HMI simultaneously feeds them through K parallel fully-connected
layers (FC) with the Sigmoid activation function. Each of the FC layer has a total of L hidden units (i.e., one
estimation per word) to generate the relevance score of each word for each of the K HMI concept classes. Each
row Y,[i,:] € R corresponds to the i-th concept class, and is given by

Yo[i,:] =FC(U,), ie{l,...,K}. (16)

The model training of CG-HMI is presented as follows. Let Y, [i,:] € R be the predicted relevance scores of each
of the L tokens for the i-th concept, and Y, [i,:] € RE as their corresponding ground-truth labels. We adopt a
relevance score threshold parameter y to convert the predicted relevance scores Y, to 1 if they are higher than y,
and to 0 otherwise. The training process of CG-HMI aims to minimize the binary cross-entropy loss between the
prediction Y, [7,:] and the ground-truth Y,[i, ], ie.,

K L
L2373 (Yali 1 -Tog (Yali. 1)) + (1 = Yali, 1) -Tog (1 = Yali 1) (17)

i=1 j=1
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5 EXPERIMENTAL STUDIES

We first present the experimental settings in Sec. 5.1, followed by the experimental results in Sec. 5.2.

5.1 Experimental Settings

¢ Baselines for Performance Comparison: We compare our proposed CG-HMI with the following baselines
and state-of-the-art approaches:

(1) BCRF [21, 40]: which takes in the textual modality and recognizes the HMI concepts based on LSTM and
conditional random filed (CRF);

(2) BCNN [12]: which extracts the character-level features through convolutional neural networks (CNNs), and
then adopts LSTM for HMI concept recognition;

(3) BTrans [14]: which leverages the bidirectional transformers architecture to find the word embeddings for
HMI concept recognition;

(4) HAN [56]: which implements the hierarchical attention network (HAN) to recognize the HMI concepts;

(5) UMGF [61]: which adapts the graph neural network approach in [61] to integrate the textual and visual data
for the HMI concept recognition;

(6) FEC [34, 36]: which leverages the concatenation of the visual and textual feature embeddings for the
multi-modal HMI concept recognition;

(7) RPAtt [41]: which implements an attention mechanism based on the textual-visual relation propagation to
recognize HMI concepts.

(8) DAT [55]: which integrates a direction-aware mechanism within multiple transformer encoders to process
each of the visual, behavioral, and textural modalities.

(9) UMT [59]: which implements a multi-modal transformer network with multi-modal attention to capture
and extract the interactions from the visual, behavioral, and textual modalities.

o Parameter Settings and Evaluation Environment Setup: Unless otherwise stated, we use the following
parameter settings by default. To train our model, we use 90% of each dataset for model training and validation,
and the rest 10% for testing. We leverage the Adam optimizer with a learning rate of 0.001. For maneuver behavior
identification, we use By = 1 layer of LSTM with = 64 hidden units to generate the maneuver embeddings. In
preparing the textual annotations, we set the maximum number of tokens L = 128, and the BERT encoder module
produces word embeddings of size ¢(*) = 768.

For the interaction graph encoder module (Sec. 4.3), we use By = 2 consecutive GIA layers, and set the number
of hidden units of all the GIA layers and the DiffPool layers as ¢ () = » = 256 (see Egs. (6), (8), (9), and (10)). For
the concept recognition decoder module (Sec. 4.4), we set y = ¢(©) = 768 for the FC layer (Eq. (12)). In addition,
we leverage B; = 1 BiLSTM layer with a total of 7 = 64 hidden units in Eq. (15). We empirically set the relevance
threshold y = 0.3.

We have performed our experiments of all evaluated approaches on an HPC server equipped with Linux
Ubuntu 18.04.5 LTS, an AMD Ryzen Threadripper 3960X 24-Core CPU, 4xGeForce RTX 3090 with GDDR5 24GB,
and 128GB RAM. With the above computing environment, the average computation time per sample for the
data pre-processing stage, model training stage, and prediction stage of our CG-HMI system prototype is 86.31ms,
19.80ms, and 8.60ms, respectively.

e Performance Metrics: In evaluating the performance, we recall that our approach is to estimate whether a
word in the textual annotation belongs to any of the HMI concepts or not (see Sec. 3.3), i.e., Y,[i, j] = 1 represents
that the j-th token belongs to the i-th HMI concept, and 0 otherwise. We follow the common practices in the
NER [52] and examine the true positive, false positive, and false negative. Then, we find the Precision, Recall, and
F1 measure (i.e., each word could be assigned a label correctly or incorrectly according to a concept) to evaluate
the performance of CG-HMI and other baseline approaches.
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5.2 Experimental Results

Table 2. Overall performance in HMI language and sensor data co-learning (%) across the three datasets.

Model DS1 DS2 DS3
Recall | Precision | F1 || Recall [ Precision | F1 || Recall | Precision | F1
[CG—HMI[ 961 [ 789 [867] 962 [ 733 [832] 911 | 781 [841
BCRF 81.2 68.6 744 [ 78.0 65.3 714 || 807 55.5 65.7
BCNN 81.9 66.2 732 || 786 63.6 703 || 771 55.6 64.6
BTrans | 829 52.9 64.6 || 79.6 50.8 62.0 || 76 504 | 60.6
HAN 82.7 76.4 794 [ 794 734 76.2 [ 767 62.7 69.0
UMGF 74.1 63.1 68.2 || 712 60.6 654 || 66.2 56.8 614
FEC 913 75.0 823 || 8238 58.0 68.2 || 865 74.2 79.8
RPAtt | 949 70.6 80.9 || 86.8 56.9 68.7 || 96.2 63.3 76.8
DAT 94.8 66.4 781 [ 807 60.8 694 ]| 867 57.1 68.9
UMT 915 69.1 78.7 || 784 66.6 721 || 860 60.9 713

e Overall Model Performance: We first overview the evaluation result across all HMI concept classes of
CG-HMI well as the baseline approaches in Table 2. One can observe that our proposed model outperforms all the
baseline schemes for all the datasets. In particular, CG-HMI achieves 10.0%, 16.7%, and 11.5% higher recall; 11.3%,
11.5%, and 18.4% higher precision; and 11.1%, 13.9%, and 15.4% higher F1 measure on average for each of DS1,
DS2, and DS3, respectively. Compared to other single-modality and conventional multi-modality approaches,
CG-HMTI fuses the visual and behavioral modalities with the textual modality through the novel graph interaction
fusion upon the HMIGs, and thus yields higher accuracy in recognizing the HMI concepts.

In our experimental studies, we can observe that the single-modality approaches like BCRF, BCNN, and BTrans
achieved generally lower recall, precision, and F1 measure than other multi-modality approaches. The single-
modality approaches focus only on the textual modality and may thus not extract the semantic relations with
other modalities. In addition, while the multi-modality approaches such as UMGF, FEC, and RPAtt considered both
the visual and textual modalities, their feature integration designs may not suffice to accurately recognize all the
HMI concepts.

In particular, UMGF and RPAtt focus on incorporating the explicit visual characteristics of the objects, which,
however, might not necessarily help extract the implicit HMI concepts. While FEC leverages feature concatenation
to fuse cross-modal information, it overlooks the possible relations across different modalities and thus may not
capture the more subtle and implicit HMI concepts. While the transformer-based approaches like DAT and UMT
can be adapted to account for the visual, behavioral, and textual modalities, their transformer designs have not
comprehensively modeled the semantic correspondence across the modalities as our proposed cross-modality
designs in CG-HMI. Therefore, they may not comprehensively capture the intrinsic and implicit interactions
between the mobility system users and the mobility environments, and yield low accuracy in retrieving the
concepts of the interaction events.

e Detailed Performance on the Three Datasets: We further demonstrate the performance of different
approaches in identifying the HMI concepts with respect to the three different datasets. For each dataset, we
show the recall, precision, and F1 measure regarding the HMI concepts of (i) mobility system status, (ii) traffic
environment status, (iii) interactions with pedestrians, (iv) interactions with other vehicles, and (v) interactions
with road infrastructures. We can see that CG-HMI achieves better performance for all the HMI concept classes
compared with other baseline approaches, i.e., on average 11.1%, 13.9%, and 15.4% higher F1 measure, 11.3%,
11.5%, and 18.4% higher precision, and 10.0%, 16.7%, and 11.5% higher recall with respect to DS1, DS2, and DS3.
Furthermore, we can also see that the other approaches, particularly the single-modality approaches, generally
achieve much lower performance in identifying the HMI concepts related to the complex interaction behaviors,
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Table 3. Detailed HMI language and sensor data co-learning results for different HMI concepts in DS1 (%).
Recall Precision F1 Measure
() [ G) [Gi) [Gv) [ &) [[ @O [G) [GD) ][ Gv) [ &) [| & [ G ]G [ Gv) [ @)
[CG—HMI [ 955 [ 95.7 [ 96.5[95.2 [ 97.9 [[76.9 [ 77.1 [ 78.1 [ 80.0 [ 82.8 || 85.2 [ 85.4 [ 86.3 [ 86.9 [ 89.7 |
BCRF 82.2 | 87.6 | 83.2 | 81.1 | 72.4 || 68.2 | 70.9 | 71.2 | 72.1 | 60.6 || 74.5 | 78.3 | 76.7 | 76.3 | 65.9
BCNN 86.7 | 81.7 | 81.8 | 78.3 | 81.1 || 71.7 | 66.7 | 66.0 | 57.9 | 68.9 || 78.4 | 73.4 | 73.1 | 66.6 | 74.5
BTrans | 84.5 | 83.9 | 80.7 | 78.4 | 87.1 || 58.5 | 56.7 | 49.6 | 40.3 | 59.5 || 69.1 | 67.6 | 61.4 | 53.2 | 70.7
HAN 753 | 74.0 | 87.6 | 96.4 | 80.6 || 69.3 | 91.0 | 724 | 74.0 | 75.3 || 72.2 | 72.2 | 81.6 | 83.7 | 77.8
UMGF 74.5 | 73.7 | 76.2 | 75.2 | 71.3 || 63.2 | 57.3 | 58.6 | 75.1 | 61.6 || 68.3 | 64.4 | 66.2 | 75.1 | 66.1
FEC 90.7 | 90.9 | 91.6 | 90.4 | 93.0 || 73.0 | 73.2 | 74.1 | 76.0 | 78.6 || 80.9 | 81.1 | 82.0 | 85.6 | 85.2
RPAtt 90.3 | 94.0 | 97.1 | 100 | 93.1 || 69.1 | 66.3 | 78.8 | 66.4 | 72.2 || 78.2 | 77.7 | 86.9 | 79.8 | 81.3
DAT 94.6 | 93.5 | 954 | 952 | 955 || 64.9 | 62.3 | 58.9 | 76.9 | 69.2 || 77.0 | 74.8 | 72.8 | 85.1 | 80.2
UMT 92.7 | 942 | 91.2 | 90.2 | 89.3 || 58.2 | 69.5 | 70.3 | 74.2 | 73.1 || 71.5 | 79.9 | 79.4 | 814 | 80.3

Model

Table 4. Detailed language and sensor data co-learning results for different HMI concepts in DS2 (%).
Recall Precision F1 Measure

@ | G | @) | Gv) | ) ] () | @) | GiD) | Gv) | (v) || () | () | (D) | Gv) | (v)
CG—HMI | 96.1 | 95.4 | 93.1 | 100 | 96.5 || 70.6 | 74.2 | 70.1 | 82.6 | 69.2 || 81.4 | 83.5 | 80.1 | 90.5 | 80.6
BCRF 789 | 84.1 | 79.9 | 77.8 | 69.5 || 65.4 | 68.1 | 68.3 | 69.2 | 58.1 715 | 75.2 | 73.6 | 73.2 | 63.3
BCNN 83.2 | 784 | 785 | 75.1 | 77.8 || 68.8 | 64.0 | 63.3 | 55.5 | 66.1 753 | 70.5 | 70.1 | 63.9 | 71.5
BTrans | 81.2 | 80.5 | 77.4 | 75.2 | 83.6 || 56.1 | 54.4 | 47.6 | 38.6 | 57.1 66.3 | 649 | 589 | 51.1 | 67.8
HAN 72.2 | 71.1 | 84.1 | 925 | 77.3 || 66.5 | 87.3 | 69.5 | 71.0 | 72.2 (| 69.2 | 78.3 | 76.1 | 80.3 | 74.7
UMGF 71.5 | 70.7 | 73.1 | 72.1 | 68.4 || 60.6 | 55.0 | 56.2 | 72.1 | 59.1 65.6 | 619 | 63.6 | 72.1 | 63.4
FEC 87.7 | 92.3 | 89.4 | 583 | 86.3 || 67.4 | 639 | 64.1 | 33.3 | 61.3 || 76.2 | 75.5 | 74.6 | 423 | 71.6
RPAtt 93.1 | 81.1 | 78.5 | 100 | 81.5 || 68.3 | 59.3 | 52.3 | 47.3 | 57.4 (| 78.7 | 68.5 | 62.7 | 64.2 | 67.3
DAT 86.8 | 80.7 | 93.5 | 77.2 | 65.6 || 64.5 | 59.7 | 783 | 60.7 | 41.1 74.0 | 68.6 | 85.2 | 68.0 | 50.6
UMT 84.2 | 80.1 | 89.2 | 66.8 | 71.9 || 69.2 | 63.3 | 75.4 | 58.2 | 67.2 || 75.9 | 70.7 | 81.7 | 62.2 | 69.4

Model

Table 5. Detailed language and sensor data co-learning results for different HMI concepts in DS3 (%).
Recall Precision F1 Measure

@ | Gi) | @) | Gv) | (v )] @) | Gi) |G | Gv) | (v) @ | Gi) | (i) | Gv) | (v)
CG—HMI | 89.3 | 93.3 | 93.6 | 93.7 | 85.5 || 72.2 | 81.5 | 72.7 | 78.7 | 85.5 || 79.8 | 87.0 | 81.8 | 85.5 | 85.5
BCRF 81.8 | 83.0 | 89.6 | 81.2 | 68.3 613 | 61.3 | 62.1 | 69.9 | 20.5 70.1 | 71.0 | 785 | 71.4 | 31.5
BCNN 79.3 | 80.2 | 81.1 | 76.8 | 68.2 || 62.1 | 61.9 | 65.3 | 63.0 | 25.7 69.6 | 69.8 | 723 | 69.2 | 37.3
BTrans | 78.2 | 79.8 | 76.0 | 67.4 | 79.2 || 49.1 | 52.0 | 49.1 | 42.7 | 59.2 60.3 | 62.9 | 59.6 | 52.2 | 67.6
HAN 75.1 | 84.1 | 89.2 | 73.,5 | 61.6 57.5 | 759 | 754 | 53.8 | 51.2 65.1 | 79.9 | 81.7 | 62.1 | 55.9
UMGF 66.7 | 67.3 | 67.5 | 68.9 | 64.1 || 56.9 | 51.5 | 52.7 | 67.5 | 55.35 || 61.4 | 583 | 59.1 | 68.2 | 59.4
FEC 84.8 | 88.6 | 88.9 | 89.0 | 81.2 || 68.6 | 77.4 | 69.1 | 74.7 | 81.2 758 | 82.6 | 77.7 | 81.2 | 81.2
RPAtt 91.2 | 100 | 99.0 | 96.0 | 95.0 56.4 | 73.4 | 62.2 | 59.6 | 67.8 69.6 | 84.6 | 76.4 | 73.5 | 79.1
DAT 85.9 | 87.2 | 81.8 | 85.1 | 93.7 || 58.3 | 60.9 | 54.9 | 54.0 | 57.7 69.5 | 71.8 | 65.7 | 66.1 | 71.4
UMT 86.4 | 829 | 833 | 86.3 | 91.2 || 62.6 | 66.2 | 56.1 | 56.2 | 63.8 72.6 | 73.6 | 67.1 | 68.1 | 75.2

Model

such as interactions with pedestrians or other vehicles. It is mainly because these baseline approaches do not
account for the semantic interactions and behavioral information of the textual, visual, and behavioral sensor
modalities, thus yielding lower accuracy in the HMI learning.

e Model Ablation Studies: Taking DS1 as an example, we have performed the model ablation studies on
CG-HMI to evaluate the importance of different modules, and we show the corresponding F1 scores in Fig. 14.
Specifically, we have compared the full version of CG-HMI (labeled as (1)) with the following variations of CG-HMI:

(2) w/o V: which implements CG-HMI without the visual modality (i.e., video frames of the HMI scenes).
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(3) w/o B: which implements CG-HMI without the behavioral modality (i.e., maneuvers performed by the car
drivers or e-scooter riders in the HMI scenes).

(4) w/ T: which implements CG-HMI without both behavioral and visual modalities.

(5) w/ PMI: which leverages the point-wise mutual information [50] of the words, instead of our proposed
HMIG representation design, to calculate their co-occurrence within the textual annotation to construct
the edges between them.

(6) w/ sim: which constructs the graph by connecting every pair of nodes only based on the cosine similarity
of their corresponding embeddings [15, 20].

(7) w/o GCN: which only leverages the graph convolutional network (GCN) without the differentiable pooling-
based graph attention network.

We can observe the performance degradation of variations (2), (3), and (4), i.e., removals of visual, behavioral, or
both modalities, compared with (1), which corroborates the importance of our proposed cross-modality fusion
designs. Furthermore, in terms of the interaction graph design, we can see that the point-wise mutual information
(5), the similarity across the node embeddings (6), and the graph convolution operation (7) cannot extract sufficient
semantic interaction knowledge, and hence yield lower accuracy than (1).

100.
=95
%90 86.0
2ocl DI 07 o2 03 BT mim
N B e B 5
Lo [ N N

65. N |

m @ () @) 6) (6) @
Model Variation
Fig. 14. Ablation studies of CG-HML.

® Model Sensitivity Studies: We further focus on DS1 and perform the model sensitivity studies regarding
the important parameters of CG-HMI. Fig. 15(a) shows its F1 scores with different numbers of GIA layers (B;) in
the interaction graph encoder module. Fig. 15(b) also illustrates the performance of CG-HMI for different numbers
of hidden units (¢")) in each GIA layer. We can observe that the small number of GIA layers or the number of
hidden units does not suffice to provide accuracy estimation, while further increasing the number of GIA layers
or hidden units makes it hard for the model to generalize. Therefore, we set B; = 2 and ®(?) = 256 by default. We
further show in Fig. 15(c) the impact of the number of the BiLSTM layers. We can observe that in general one
BiLSTM layer suffices to capture the sequential dependencies within the textual annotations. The inclusion of two
or more layers of recurrent layers may render the model training more challenging, and therefore, we observe a
drop in the performance (up to 11.3% in our experimental studies).

¢ Result Visualization and Case Studies: We have further visualized the relevance scores for the words in
the textual annotations along with the video frames and the IMU sensor measurements in Fig. 16 to illustrate the
HMI learning results. The warmer colors imply the larger relevance scores for each word (the tokenized unit).
We also highlighted the ground-truth HMI concepts in green boxes. We can observe from the high relevance
scores that CG-HMI accurately identifies the underlying HMI concepts.

We further visualize two examples of the HMIGs learned by CG-HMI from DS1 in Figs. 17(a) and (b), and one
from DS3 in Fig. 17(c). In particular, we have visualized the average graph interaction attention weights, Vy),
across all the nodes to show the semantic interaction and correspondence captured by CG-HMI. We note that the
words in blue, green, and red fonts represent the visual, behavioral, and textual nodes, respectively. Fig. 17(a)
shows the semantic correspondence between the words related to the traffic lights and the textual nodes related to
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Fig. 15. Sensitivity studies results of CG-HMI: (a) number of GIA layers; (b) number of units in GIA layers; and (c) number of
BiLSTM layers.
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Fig. 16. Examples of the relevance scores estimated by CG-HMI for the HMI concepts from DS1 (left) and DS3 (right).

the pedestrian, extracting the HMI concepts of mobility system status and interactions with pedestrians. Fig. 17(b)
demonstrates the strong correspondence of the textual nodes related to the mobility system status as well as the
traffic lights and the acceleration behavior. Fig. 17(c) shows the e-scooter rider’s interactions with the pedestrians,
where the deceleration behavior is mapped towards the scene. We can observe from the three figures that the
semantic correspondence has been captured by the HMIG representation, yielding the understandable results of
the language and sensor data co-learning.

We further provide in Fig. 18 an illustrative example of determining the types and positions of a set of HMI
concepts. We compare CG-HMI with the baseline model DAT [55] which was adapted to fuse multi-modal data. Note
that (i), (ii), and (v) in Fig. 18 correspond to mobility system status, traffic environment status, and interactions
with road infrastructures. We can observe that compared to DAT, CG-HMI further captures the intra-modality
semantic correspondence across the textual annotations, and hence can identify the HMI concept regarding
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Fig. 17. Examples of the learned HMIGs by CG-HMI (words in blue, green, and red fonts represent visual, behavioral, and
textual nodes, respectively) as well as the HMI scenes. (a) and (b) are from DS1. (c) is from DS3.

interactions with the road infrastructure. Furthermore, CG-HMI achieves more fine-grained recognition from the
tokens in the textual annotations while discarding the irrelevant information.

The car is merging into the left lane due to it being clear of traffic
CG-HMI (@)= s = — — R —
0% — (i)

The car is merging into the left lane due to it being clear of traffic

DAT o e .

Fig. 18. An example (from DS1) of the identified HMI concepts by CG-HMI and a baseline model named DAT. We note that (i),
(i), and (v) correspond to mobility system status, traffic environment status, and interactions with road infrastructures.

6 DEPLOYMENT DISCUSSION

We would like to discuss further the deployment of CG-HMI in the following two aspects.

¢ Integration with Other Modalities: Our current prototype studies focused on 3 different modalities — i.e.,
visual, behavioral, and textual modalities — to co-learn the language and sensor data. CG-HMI could be further
modified or extended to include more information modalities for understanding more complicated HMI scenes in
AV or other emerging smart mobility systems. For instance, modalities, such as LIDAR measurements [18, 33, 35],
speech commands or audio signals [20, 54], and magnetic field measurement can be further integrated for more
comprehensive object detection and context recognition. This way, we can enable more fine-grained HMI learning.
¢ Extension to Other HMI Concepts: Our current studies focus on the designs of fusing three modalities (i.e.,
visual, behavioral, and textual) for identifying five different HMI concepts in the HMI scenes. Nevertheless, our
formulation of CG-HMI, and the unified representations based on HMIGs, are general enough to be extended to
other more fine-grained and complex HMI scenes and concepts [24, 40], such as mobility system user status
under different lighting conditions, pedestrians’ walking patterns when interacting with the vehicle, and vehicle
trajectory when interacting with the other traffic participants. By fusing the unspoken and spoken language, our
proposed designs can help analyze the causality or accountability, which is part of our future work.
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7 CONCLUSION

We have proposed CG-HMI, a novel cross-modality graph-based language and sensor data co-learning approach
to extract the HMI concepts from the HMI scenes. Specifically, we have designed a novel graph interaction
fusion model with differentiable pooling-based graph attention to extract the inter- and intra-modality semantic
correspondences and interactions from a unified graph representation of visual, behavioral, and textual modalities.
The resulting graph embeddings are processed further to identify the existence and positions of the HMI concepts
within the annotations, which benefits the further downstream HCI tasks and ubiquitous computing applications.
Via extensive system prototype studies upon three real-world HMI datasets (two on car driving and one on
e-scooter riding), we have corroborated the effectiveness and accuracy of our CG-HMI in recognizing the important
HMI concepts from the complex HMI scenes.
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