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Driver maneuver interaction learning (DMIL) refers to the classification task with the goal of identifying different driver-
vehicle maneuver interactions (e.g., left/right turns). Existing conventional studies largely focused on the centralized collection
of sensor data from the drivers’ smartphones (say, inertial measurement units or IMUs, like accelerometer and gyroscope).
Such a centralized mechanism might be precluded by data regulatory constraints. Furthermore, how to enable an adaptive
and accurate DMIL framework remains challenging due to (i) complexity in heterogeneous driver maneuver patterns, and (ii)
impacts of anomalous driver maneuvers due to, for instance, aggressive driving styles and behaviors.

To overcome the above challenges, we propose AF-DMIL, an Anomaly-aware Federated Driver Maneuver Interaction
Learning system. We focus on the real-world IMU sensor datasets (e.g., collected by smartphones) for our pilot case study. In
particular, we have designed three heterogeneous representations for AF-DMIL regarding spectral, time series, and statistical
features that are derived from the IMU sensor readings. We have designed a novel heterogeneous representation attention
network (HetRANet) based on spectral channel attention, temporal sequence attention, and statistical feature learning
mechanisms, jointly capturing and identifying the complex patterns within driver maneuver behaviors. Furthermore, we
have designed a densely-connected convolutional neural network in HetRANet to enable the complex feature extraction and
enhance the computational efficiency of HetRANet. In addition, we have designed within AF-DMIL a novel anomaly-aware
federated learning approach for decentralized DMIL in response to anomalous maneuver data. To ease extraction of the
maneuver patterns and evaluation of their mutual differences, we have designed an embedding projection network that
projects the high-dimensional driver maneuver features into low-dimensional space, and further derives the exemplars that
represent the driver maneuver patterns for mutual comparison. Then, AF-DMIL further leverages the mutual differences of
the exemplars to identify those that exhibit anomalous patterns and deviate from others, and mitigates their impacts upon the
federated DMIL. We have conducted extensive driver data analytics and experimental studies on three real-world datasets
(one is harvested on our own) to evaluate the prototype of AF-DMIL, demonstrating AF-DMIL’s accuracy and effectiveness
compared to the state-of-the-art DMIL baselines (on average by more than 13% improvement in terms of DMIL accuracy), as
well as fewer communication rounds (on average 29.20% fewer than existing distributed learning mechanisms).
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1 INTRODUCTION

With the pervasive availability of various sensing techniques, driver behavior analytics have become a key enabler
for myriads of ubiquitous computing and mobile applications [17, 30, 34, 51, 61]. Analyzing driver’s behaviors
can further reduce the inattentive maneuvers and human driving errors [46], and provide timely and potentially
useful feedback regarding their driving behaviors (e.g., through the advanced driver assistance system or ADAS).
Furthermore, with the ever-growing prevalence of connected autonomous vehicles (CAVs) [51], the insights
from driver behavior analytics can be leveraged for autonomous driving model training [32, 52, 57] toward more
scalable CAV system development.

To enable ubiquitous driver data analytics, we focus in this work on the driver maneuver interaction learn-
ing (DMIL), i.e., identifying various types of driver maneuver behaviors (for instance, left/right turns) given
measurements from sensors available on the drivers’ smartphones or installed inside the vehicles (illustrated
in Fig. 1). Among various sensors explored in the prior studies [8, 15, 72], the mobile/vehicle-equipped inertial
measurement units (IMUs) can provide fine-grained maneuver behavior insights, and enable the ubiquitous DMIL
applications [68], especially under GPS-less or low-light urban environments [65], where GPS- or camera-based
techniques may not perform satisfactorily. Therefore, in this prototype DMIL study, we particularly take into
account the IMUs, particularly the accelerometer and gyroscope in our experimental designs, as the data sources
of our case study.
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Fig. 1. Design motivations and enabled applications of a federated DMIL framework.

Existing DMIL studies [36, 49, 63] largely consider the centrally-collected data harvested from the drivers’
smartphones, such as the IMU sensor time series. These centrally-collected sensor data samples might contain
sensitive information with potential data privacy risks, including fingerprinting drivers through the IMU time
series [43]. Thanks to the advances in the computation and storage capability of the mobile devices, a distributed
learning framework based on federated learning (FL) [41, 56] emerges as a potential workaround. Our studies
here aim to design a federated DMIL system in a decentralized manner using the model weight parameters that
are based on the local model training on multiple drivers’ mobile devices (client devices or smartphones). A
global model will be iteratively updated through aggregation of the new local model weight parameters by a
communication round between the client devices and the server. Then, the client device leverages the global
model and further fine-tunes it, say, based on their locally-collected and stored sensor datasets, into a local
model. This way, a federated DMIL system can be enabled to incorporate the driver maneuver data from a
large number of participating drivers (e.g., applications of vehicle crowdsensing or ride-sharing fleet [28]). With
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privacy-preserving implications, such as the locally-stored sensor data does not leave the client device, we can
train the DMIL model in a decentralized manner.

Toward such a federated DMIL system, this study focuses on addressing the following two major research
challenges:

Challenge A — How to effectively capture the heterogeneous feature representations of driver
maneuvers: Existing DMIL approaches often rely on the input representation of driver maneuvers, i.e., how
the maneuver patterns are structured and formatted for DMIL model learning. The complex spatial mobility
characteristics (e.g., how a turn is affected by the road curvatures and conditions), temporal signal dynamics (i.e.,
the order of the driver’s actions during a maneuver interaction), and measurement noise (e.g., collected from

the mobile IMU sensors) often make it highly challenging to cap-
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Fig. 2. The confusion matrix of a conven-
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Challenge B — How to handle anomalous driver maneuvers and 80
interactions for federated DMIL: We have observed from our real-world
driver data analysis that the federated DMIL model training may be prone
to anomalous data (e.g., aggressive driving behaviors or styles; maneuvers
that are mislabeled as different categories or classes) within the driver
maneuver datasets. However, in a federated learning (FL) setting, the server a0l
that performs the federated DMIL (say, the DMIL server) cannot access the
local driver maneuver records for further identification and validation. Our 5 o T % ot
extensive driver data analytics also revealed that such data anomalies, if left Number of Communication Rounds
unattended, may lead to DMIL performance degradation and slow model ~ Fig. 3. Performance of conventional
convergence. For instance, we illustrate an example in Fig. 3 a federated ~ federated DMIL given different per-
DMIL scenario (e.g., by taking the average of the harvested model weight centage levels of anomalous driver
parameters [41]) with different percentages of anomalous driver maneuver maneuver data.
data, such as aggressive left/right turns. We can observe that the accuracy of the deep learning approach for
DMIL drops with respect to the increased percentage of anomalous maneuvers, with more federated learning
communication rounds needed. Such a practical challenge calls for an anomaly-aware federated DMIL design
that can adaptively identify anomalous driver maneuver behaviors and subsequently enhance the federated DMIL
performance.
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To overcome the above-mentioned two major technical barriers, we propose AF-DMIL, an Anomaly-aware
Federated Driver Maneuver Interaction Learning system. Toward prototyping this DMIL system with the IMU
data, we have made the following three technical contributions:
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(i) Heterogeneous representation attention network for complex DMIL: In order to cope with the
complexities and dynamics within the driver maneuver data (Challenge A), we have designed a novel DMIL
network named HetRANet, i.e., the Heterogeneous Representation Attention Network. Specifically, we
have conducted extensive real-world IMU sensor data analytics, and taken into account three heterogeneous
representations from the accelerometer and gyroscope, i.e., spectral, time series, and statistical features.
Such heterogeneous representations aim at comprehensively characterizing the complex driver maneuver
behaviors and mitigating the ambiguity across different maneuver classes. To further capture the complex
spectral representations derived from the continuous wavelet transform (CWT), we have designed a spectral
attention module within HetRANet, along with densely-connected convolutional neural networks. The
densely-connected convolutional neural networks within HetRANet consist of dense blocks and transition
blocks, which respectively enforce the complex feature extraction and enhance the computational efficiency
of HetRANet. Via the spectral attention, temporal sequence attention, and statistical learning modules,
our HetRANet differentiates the heterogeneous representations, and yields high DMIL accuracy in our
experimental studies.

(ii) Anomaly-aware federated learning for decentralized DMIL model training: To overcome the
challenges on ubiquitous anomaly-awareness (Challenge B), we have designed a novel anomaly-aware
federated learning mechanism within AF-DMIL. Such a mechanism adapts our core DMIL model and
mitigates the impacts of anomalous driver maneuver records. Specifically, to enable the anomaly awareness
in AF-DMIL, we project the high-dimensional embeddings of each driver’s maneuver data into a low-
dimensional space, through an embedding projection network that is adapted from HetRANet. AF-DMIL
derives the exemplars that represent the maneuver patterns of the drivers, measures the mutual differences
of the exemplars across the client devices, and determines each driver’s participation weights in contributing
to the federated DMIL. With these weights, AF-DMIL adaptively finds the relative importance of different
driver maneuver embeddings, and mitigates the impacts of anomalous inputs upon the DMIL model
training. Given the increasing pervasiveness of the DMIL-enabled applications, our proposed designs can be
further integrated with the ubiquitous vehicle crowdsensing [29] and crowdsourcing settings for large-scale
driver behavior analysis applications [60] (e.g., driving safety [33], driver authentication [27], and drivers’
in-vehicle well-being [4]).

(iii) Extensive data analytics and data-driven model studies and experimental evaluations: In order
to validate our proposed design, we have performed extensive driver maneuver data analytics to derive
the representation learning designs of AF-DMIL. We have studied two open-source datasets and one
collected on our own, which consists of a total of 6,698 driver maneuver records. We have designed various
experimental settings in order to evaluate AF-DMIL’s accuracy in identifying complex driver maneuvers
and effectiveness in handling anomalous maneuvers for federated DMIL. Our extensive experimental
results have demonstrated that our AF-DMIL achieves higher accuracy (on average 13.71% improvements
in DMIL accuracy) compared with the other baseline approaches, such as [1, 18, 42, 63, 77], and faster
convergence (on average 29.20% fewer communication rounds) than the existing distributed learning
paradigms including [10, 25, 37, 39, 41].

The rest of the paper is organized as follows. We first review the related studies in Sec. 2. Then, we present the
driver maneuver datasets studied, overview the system framework, and discuss the data preprocessing and our
problem statement in Sec. 3. After that, we introduce the proposed heterogeneous representation learning for
DMIL in Sec. 4, and provide the anomaly-aware federated DMIL designs in Sec. 5. We present the experimental
studies in Sec. 6, discuss the deployment of the proposed system in Sec. 7, and finally conclude the paper in Sec. 8.
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2 RELATED WORKS

We overview our related work in the following two categories.

e Driver Maneuver Interaction Learning (DMIL): With the advances in driver behavioral analysis and
ubiquitous vehicle computing, the DMIL problem has attracted much attention recently. Conventional DMIL
approaches often considered rule-based [8, 9] or traditional machine learning algorithms to identify the driver
maneuvers and interaction behaviors. For instance, Chen et al. [8] proposed a data-driven threshold design
based on the gyroscope readings to identify the maneuvers and lane changes [9]. Traditional machine learning
approaches, including decision trees [69], hidden Markov model [78], and random forest [7], have also been
applied to identify the driver maneuvers.

In order to capture more important features for classifying the driver maneuvers, recent studies have taken into
account the deep learning approaches for driver maneuver interaction learning. Li et al. [36] and Taherifard et
al. [63] studied the long short-term memory (LSTM), and Aboah et al. [2] considered 1-D convolutional neural
networks (CNN) to extract the temporal features and sequential dependencies [49] within the driver maneuver data.
Choi et al. [13] studied the recurrent neural network (RNN) to classify the normal and aggressive driving behaviors.
Xie et al. [71] and Bejani et al. [5] considered the CNN model to learn and capture the statistical features within the
different maneuvers. Nedorubova et al. [44] considered the spectrogram of the sensor time series [62] for human
activity recognition. These conventional learning approaches largely considered feature engineering, such as
forming feature vectors, without accounting for fusing and learning the heterogeneous representations for DMIL.
Hence these approaches may not necessarily capture the complex driver maneuvers for accurate identification.
Different from the above studies, our proposed AF-DMIL provides a novel heterogeneous representation attention
network by adaptively fusing spectral, time series, and temporal features. Our novel network designs differentiate
the different maneuver patterns, and therefore yield higher accuracy and effectiveness on DMIL than the existing
baseline approaches [5, 7, 35, 41, 63] in our experimental studies.

e Federated Learning for Behavior Recognition: Federated learning (FL) enables the mobile sensing
devices to collaboratively learn a shared model, while keeping all the training data locally on the clients or mobile
devices [35, 59, 66, 81]. Such a learning paradigm decouples the model training from the need to store the data
in the centralized server (say, cloud), which is particularly suitable for ubiquitous human activity recognition
with privacy-preserving implications [41]. Existing FL approaches [35, 75] for human activity recognition largely
consider the distributed learning processes with normal behavior or activity records that follow the consistent
behavior data distributions, while how to cope with the anomalous ones under FL settings remains challenging.
Lietal. [37] and Gu et al. [25] studied the reconstruction errors from the auto-encoder models (globally pre-trained
with the normal data on the server side) to identify the clients that may be contributing anomalous data. Liu et
al. [39] synthesized the human behavior data distributions based on the trained models to compare and identify
the abnormal behavior data. In order to mitigate the influence of anomalous data, existing studies have taken
into account the model weight parameters [80] or gradients [12] for differentiation. However, the model weight
parameters and gradients of the behavior recognition model (e.g., the DMIL models in our case) may mostly
capture the majority of normal behavior patterns (e.g., normal left or right turns) and aggregate them within
the model weight parameters or the gradients. Therefore, their designs may not well discern the anomalous
behaviors such as aggressive left or right turns that might preserve the similarity with the corresponding normal
ones, making it difficult to perform the robust federated DMIL.

Different from the above studies, our AF-DMIL provides a new anomaly-aware approach in a federated DMIL
setting by (a) providing an embedding projection network that projects the feature embeddings into low-
dimensional feature space for efficient neighbor calculation; and (b) detecting relative importance of different
drivers’ maneuver data based on the neighbors of the feature embeddings. Based on the derived participation
weights of the drivers, AF-DMIL provides feature-level differentiation of the normal and anomalous maneuver
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data different than the above-mentioned approaches. This way, AF-DMIL enhances the accuracy, adaptivity, and
robustness of the federated DMIL as validated in our experimental studies.

3 DMIL DATASETS, SYSTEM OVERVIEW & FEATURE EXTRACTION

We first present the datasets studied in Sec. 3.1, followed by the system framework of AF-DMIL in Sec. 3.2. Then, we
present the driver maneuver data preprocessing designs, the heterogeneous feature extraction, and the problem
statement of DMIL in Sec. 3.3.

3.1 Overview of DMIL Datasets Studied

We present the details of the three DMIL datasets as follows.

® DMIL Dataset 1 (DS1): We leverage an open-source driver maneuver dataset (i.e., accelerometer and gyroscope
measurements) [74] harvested by an Apple iPhone 5 with a sampling rate of 50 Hz. The dataset consists of driver
maneuvers from multiple metropolitan cities in the U.S. In this prototype study, we select and label maneuvers
collected in Manhattan and Brooklyn in New York City as well as San Francisco and San Jose in California.
In addition to the normal driver maneuver patterns such as normal acceleration and braking, we have further
taken into account the aggressive acceleration and aggressive braking identified from DS1 for evaluation of our
anomaly-aware federated DMIL.

IMU Sensor For Recording Maneuver Interactions Video For Ground-Truth Labeling
]
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Fig. 4. lllustration of our smartphone-based prototype setup and data collection setting for DS2. During the data collection,
we have enabled the main camera of the smartphone to record the maneuver behaviors for the ground-truth driver maneuver
class labeling.

o DMIL Dataset 2 (DS2): We have collected our driver maneuver dataset when driving a 2010 Toyota Prius in
our university town (situated in a rural area) in North America using an Apple iPhone XR and a Google Pixel
3. We set the sampling rate of the IMU sensors (accelerometer and gyroscope) of the Apple iPhone XR to 40Hz
and the Google Pixel 3 to 240Hz. The smartphones are mounted near the dashboard of the vehicle during data
collection, and we have the main camera facing the forward (front-view) direction during the driving, and the
recorded videos are used for ground-truth maneuver class labeling. We leverage such a mobile platform for DS2
collection to enable system prototype development studies.

We illustrate our prototype setup and data collection settings in Fig. 4. This prototype study includes the
videos recorded by the smartphone’s camera, and we label the ground-truth driver maneuver class (denoted as y)
according to the scenes within the recorded videos. We note that our entire driver maneuver data collection for
DS2 was performed in a naturalistic driving setting [61] with the minimum interference on the drivers and the
local traffic, i.e., collected during daily commutes. Our settings follow the common driving safety measures, the
local traffic rules, and the related social norms.
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o DMIL Dataset 3 (DS3): In order to emulate the DMIL scenarios with anomalous maneuver patterns, we have
further taken into account an open-source dataset from [21], which was collected with a Motorola XT1058 (with
a sampling rate of 50-200 Hz) when a driver is driving and maneuvering the 2011 Honda Civic. DS3 contains the
aggressive driving behaviors, such as aggressive left/right turns, acceleration, and braking, which are further
leveraged for the evaluation of our anomaly-aware federated DMIL designs.

Toward the prototyping of AF-DMIL, we focus on the following driver maneuver classes, i.e., left turn (LT),
aggressive left turn (ALT), right turn (RT), aggressive right turn (ART), normal acceleration (NA), aggressive
acceleration (AA), normal brake (NB), and aggressive brake (AB). Table 1 summarizes the three DMIL datasets for
our prototype studies. For DS1, we have labeled a total of 5,736 maneuver records collected by 100 drivers (50
from New York State and 50 from California State) from DS1, which consists of a total of 7 different maneuver
classes. For DS2, we have identified a total of 824 maneuvers (5 maneuver classes). DS3 consists of 4 different
maneuver classes with driving behaviors that are labeled as aggressive ones (e.g., aggressive acceleration and
aggressive braking).

Table 1. Statistics of the three datasets studied for DMIL.
Maneuver Classes Involved
LT [ALT | RT [ART [ UT [ NA [ AA[ NB [ AB
DS1 729 | N/A | 454 | N/A | 778 | 2,175 | 148 | 1,298 | 154
DS2 128 | N/A 64 N/A | 178 249 | N/A | 205 | N/A
| DS3 [[N/A] 33 [N/A| 33 [NA[NAT] 36 [ NA | 36 |

Datasets

In evaluating the heterogeneous representation learning designs, we focus on the five conventional maneuver
classes, i.e., LT, RT, UT, NA, and NB. To emulate the federated DMIL with the anomalous maneuver patterns, we
infuse the aggressive maneuvers — that is, ALT, ART, AA, and AB — within the drivers’ maneuvering data of
DS1 and DS3 with respect to each of the corresponding classes of normal maneuvers — that is, LT, RT, NA, and
NB. For instance, we emulate the scenarios (e.g., due to mislabeling) when the aggressive left turns (ALTs) are
introduced to the maneuver class of left turns (LTs) to form a mixture of anomalous and normal maneuvers, and
evaluate the performance of our federated DMIL and other approaches.

3.2 Overview of System Framework

(a) Driver Maneuver Data Preprocessing (b) Driver Maneuver Interaction (c) Anomaly-aware
and Feature Extraction Representation Learning and Identification Federated Learning
IMU Sensor HetRANet Drivers’ Client
Spectral I~~|_ Devices Server
Representations a| Spectral Channel Attention ‘
) (Sec. 4.2) Anomaly-Aware
¢ Time Series _ | Temporal Sequence Attention Federated
Sensor Data Representations > (Sec. 4.3) Learning
—_— — - ) Update
_ | Statistical Feature Learning ‘ ! v
Data Statistical g (Sec. 4.3) / HetRANet
Preprocessing Representations

Maneuver Labels

Fig. 5. Overview of our proposed AF-DMIL’s system framework.

We overview the system framework of AF-DMIL in Fig. 5, which consists of the following three phases:
(a) Driver Maneuver Data Preprocessing and Feature Extraction: In this phase, AF-DMIL preprocesses
the collected IMU sensor data and extracts the heterogeneous features for DMIL. AF-DMIL first performs the
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coordinate alignment to align the IMU sensor values (the local coordinate system) with the vehicle’s (earth)
coordinate system. Afterwards, AF-DMIL segments the time series, filters the resulting segments based on a
Kalman filter [70], and normalizes the segments into the range of [-1, 1]. Given the preprocessed data for each
driver indexed by d, AF-DMIL extracts and generates three heterogeneous representations of the input driver
maneuvers, i.e., spectral representations P?, time series representations T¢, and statistical feature representations
sd.

(b) Driver Maneuver Interaction Representation Learning and Identification: In this phase, AF-DMIL
further takes in and learns the input representations with our proposed heterogeneous representation attention
network (HetRANet), which consists of three parallel modules of spectral channel attention, temporal sequence
attention, and statistical feature learning. AF-DMIL combines the outputs of the above three modules to produce
the probability scores of different driver maneuver interaction classes.

(c) Anomaly-Aware Federated Learning: In this phase, AF-DMIL further trains the local models of HetRANet
on different client devices (the drivers’ smartphones). Specifically, each client device downloads the global model
weight parameters of HetRANet from the server, and trains the DMIL model with the local maneuver dataset
at the driver’s side. We note that on the client device side, AF-DMIL projects the high-dimensional embedding
features to a low-dimensional space through an embedding projection network. Per driver maneuver class,
AF-DMIL retrieves the mean of the projected embeddings as the exemplar to represent the driver’s maneuver
patterns. Each client device uploads the resulting model weight parameters of the local HetRANet along with
the sets of exemplars for the maneuver classes studied. The DMIL server then performs the maneuver anomaly
detection, and derives the participation weights for the contributing drivers based on their relative importance.
The participation weights help differentiate and exclude the anomalous driver maneuvers, and mitigate their
impacts upon the global DMIL model training at the DMIL server.

3.3 Driver Maneuver Data Preprocessing, Feature Extraction, and DMIL Problem Statement

e Driver Maneuver Data Preprocessing: In order to perform the DMIL

studies, we align the IMU sensor data collected by the smartphone, i.e., Y
acceleration (in m/s?) and angular velocity (in rad/s), to the vehicle’s co-
ordinate system. This way, we can reflect the vehicle dynamics regardless
of how the smartphone is mounted. Specifically, we leverage the rotation
matrix provided by Android or iOS APIs [3, 23], which fuses the accelerom-
eter, gyroscope, and magnetometer, and transform the IMU readings from
the smartphone’s coordinate system (x’, y’, and 2z’ in Fig. 6) to the ones
of the vehicle’s coordinate system (x, y, and z in Fig. 6). We denote the Y
aligned time series of acceleration with respect to the three axes as ay, ay,
and a., and we similarly have the aligned angular velocity series as gy, g,
and g,.

We further segment the aligned IMU sensor time series with a sliding
window into segments of length w and 50% overlap (further evaluation
can be referred to Sec. 6). AF-DMIL feeds each time series segment through
a Kalman filter [70] to mitigate the noise due to the inherent imperfection of smartphone IMU sensors. We
normalize each time series segment with respect to each axis based on the min-max normalization into the range
of [—1,1]. We then pad each time series with zeros to ensure that all the time series segments have an equal
length of w. We note that as the IMUs are inherently noisy and the vehicle is non-static during maneuvering, it is
very unlikely to observe a long sequence of zeros from IMU data, and our DMIL model can still distinguish the
padded zero sequence.

Fig. 6. lllustration of the coordinate
systems of the vehicle (left) and the
smartphone (right) before the coordi-
nate alignment.
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e Driver Maneuver Feature Extraction: Based on the processed data, in this prototype study, we will derive
the following three heterogeneous representations.

(a) Time Series Representations: For each d-th driver (d € {1,...,U}), we preprocess and obtain a set of N x 6

. . d .
time series segments, denoted as T4 = {td’l, R } where each element is given by

6 = a1 ). 0
and a%’, aZ’, adl gt gy ,and g% € R (each is of length w) respectively correspond to the time series values of
accelerometer and gyroscope. Here, the x, y, and z axes are all at the vehicle’s coordinate system.

(b) Spectral Representations: Recall that as illustrated in Fig. 2, using only time series representation may not
necessarily differentiate the complex driver maneuvers. We further generate the spectral representations of the
driver maneuvers based on the continuous wavelet transform (CWT) [24] of the time series representations
. CWT is based on the classical short-time Fourier transform, while allowing for the variable time-frequency
resolutions [50]. In our DMIL studies, we adopt the Ricker wavelet function, i.e., the Mexican hat wavelet
function [50], with V different scales of the wavelet function (from 1 to V = 50 in our case), and derive the
spectral representation.

In particular, for each scale y € {1, ..., V} and translational value b (b = 0 in our current study), we convolve
the Ricker wavelet function at each time step t, denoted as G(-), with each of the six time series segments in i,
denoted as H (t), and obtain the spectral representations p%. For each time step of a time series segment, 7 (t),
we denote the continuous wavelet transformation (CWT) process, which is approximated by the rectangular
integration in our implementation, with the scale y by CWT (H (1), y), i.e.,

CWT (H (1), y) = % /m (7{(1‘) X G (%)) dt ~ % D (7—((t) %G (?)) . @)
- t=1

We perform the CWT (H(t),y) operation upon each time step t € {1,...,w} with respect to each scale y €

{1,...,V} of the Ricker wavelet function, and then obtain the corresponding 2-D spectral representations for each

zl, fl, gz g gy ,and @ g € RV*@ for each driver d. Based on

. . d, .
the above, we then transform the time series representations of a driver d, denoted as T = {td’l, LN }, into
the spectral representations of the driver maneuvers, i.e.,

axis of the accelerometer and gyroscope, i.e., ii’l,

d .
pd — {pd,l"”’pd,N } where p%i = [adi, Zl’ adi gl ,gy gi| e RVxoxs, (3)

Here each element of p%’ corresponds to the wavelet coefficient (of dimension V x w) for each axis of the IMU
sensors studied.

(b) U-Turn (c) Right Turn
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Fig. 7. Time series and spectral representations of three driver maneuver samples: (a) left turn; (b) U-turn; and (c) right turn.
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We illustrate three examples of time series (angular velocity with respect to the z-axis), left turn, U-turn, and
right turn, as well as the corresponding spectral representations in Figs. 7(a), (b), and (c). Specifically, we can
observe that the left turn and U-turn exhibit similar shapes in terms of time series representation, as illustrated
in Figs. 7(a) and (b). With the derived spectral representations (see Figs. 7(d) and (e)), we may further differentiate
the complex driver maneuvers and enable more accurate DMIL.

(c) Statistical Representations: To derive a comprehensive representation of the driver maneuvers, we form
the statistical representation, denoted as ¢ = {s®!, ..., s®N d}, by extracting statistical representations — that
is, minimum, maximum, and average values of each time series segment — from the time series of the driver d,
denoted as T%, i.e.,

shi = [min (az’i), max (aﬁ’i), average (aﬁ’i), ..., min (gf’i), max (gf’i), average (gg’i)] € R¥¥18,
e Problem Statement for DMIL: The problem formulation of AF-DMIL is to take in the heterogeneous

representations in terms of spectral, time series, and statistical features, i.e., M4 = {Pd, T4, Sd}, and returns the
estimated labels of the driver maneuvers or classes for each driver d (d € {1,...,U}).

4 HETEROGENEOUS REPRESENTATION LEARNING FOR DMIL

We first overview the heterogeneous representation learning architecture of AF-DMIL (Sec. 4.1), followed by the
detailed designs of spectral channel attention (Sec. 4.2), as well as temporal sequence attention and statistical
feature learning (Sec. 4.3).

__________ Embeddings

: Spectral pas I Spectral Channel > i

, Representations Attention Spec

! Time Series td¢ | | Temporal Sequence di N di
: Representations '_’ Attention > Bren; > Concat B

: Statistical s%* | Statistical Feature L, g

, Representations ]'_’ Learning Stat

Fig. 8. Overview of the HetRANet network architecture.

4.1 Overview of HetRANet for DMIL

We overview the architecture of our proposed heterogeneous representation attention network (HetRANet) in
Fig. 8. In particular, given the spectral, time series, and statistical representations for the i-th driver maneuver
interaction, HetRANet processes them through the following three modules: (a) a spectral channel attention
module takes in the spectral representations p% € P? and generates the embedding Eg;ec € R%; (b) a temporal
sequence attention module extracts temporal information (such as the order of the driving actions) from the time

series representations, %! € T¢, and generates the embedding Ei’eimp € R%; and (c) a statistical feature learning

module takes in the statistical representations, s%' € $¢, and generates the embedding E(siiit € R%. At the final

estimation, HetRANet concatenates the resulting three embeddings, denoted as Eg’i , E%i ,and Eg’i , and further
pec emp tat

returns the driver maneuver class label.

4.2 Spectral Channel Attention Module

e Design Motivations. Through the feature extraction in Sec. 3.3, AF-DMIL derives the spectral representations
from the multiple axes of the IMU sensors. We note from our data analytics that different axes of the IMU sensors
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may contribute differently in identifying different maneuvers. For instance, we have observed that the angular
velocity around the z-axis of the gyroscope, denoted as gg’i, may particularly help differentiate the turning
maneuvers (e.g., left turn). Therefore, the key idea of our spectral channel attention is to account for each IMU
sensor axis as a channel and leverage a channel attention mechanism to assist the DMIL model in distinguishing
them. In addition to the channel attention, we have further designed the densely-connected convolution blocks to
reuse and fine-grain the features across different layers. This way, AF-DMIL further identifies the most important
channels in the spectral representations with respect to different maneuver classes, refines the feature extraction,
and yields high DMIL accuracy.

Spectral Channel Attention

Input &
r - l;d,_i T i Channel 6 ____________ )
| A ! | Attentions N Dense <B Embedding
! ! ic2 Z - 4 d,i q
e ! ! . 1
|Vi 1| GonveD i D e} Transition -» *ESpec e R
H ' H H Blocks
Iy . v ii "
I e ! - :
, 8 A i > | 7 t H
___________ | /a3
GAP Softmax|

(- 1m{Convzo™

Global Averages

Fig. 9. lllustration of the designs of our proposed spectral channel attention module in HetRANet.

o Detailed Designs. We illustrate in Fig. 9 the processing steps of the spectral representations by the spectral
channel attention module, which consists of (a) channel attention and (b) dense transition.

(a) Channel Attention: Specifically, given the spectral representations of the i-th maneuver of the driver d,
denoted as p% € RV*®*6 e first process it with a 2-D convolution (Conv2D) layer with 6 filters (equivalent to
the number of the sensor axes) to obtain the latent feature maps Hj, € R*2*¢, where ¢; and c; represent the
width and the height of each latent feature map after the convolution layer, respectively.

We then further have a global average pooling (GAP) [38], a more generalizable alternative to flattening and
fully connected layers, to convert the convolutional output feature maps to a vector, which helps mitigate the
model over-fitting issues. The global average pooling aggregates the channel-wise information upon the latent
feature maps Hp, and forms the aggregated feature map as Hj, € RIX1x6,

To further differentiate the channel-wise aggregated global information from Hj,, AF-DMIL integrates a total of
Bj consecutive Conv2D layers with a kernel size 1 X 1, which extracts the features along the channel dimension
to obtain the latent channel features, denoted as z, € R?*1*6.

Given the above, we find the spectral attention scores, denoted as z}’) € R®, based on a softmax operation
upon z, along its last dimension that corresponds to the channels, i.e.,

exp(zy|j
z;, = sof tmax (zp[j1) = P(—p[JD’ (4)
2 exp(zp[j])
where j € {1,..., 6} represents each of the six IMU sensor axes in our current DMIL designs, i.e., {az’i, az’i, ag’i, gﬁ’i, gi’i, gf’i }

Afterwards, we impose the channel-wise attention scores z;, upon Hy, by multiplying them along the channel
dimension. We hence obtain the output of our spectral channel attention, denoted as ﬁ(o), ie.,

HY = H, © 2, € R, )
where the operator © represents the Hadamard product, i.e., the element-wise multiplication.

(b) Dense Transition: Given the output of the channel attention, we further design the densely-connected
convolutional neural networks for AF-DMIL to reuse and refine the features extracted. We present the designs of
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First B3 Layers Dense Block Transition Block
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2nd Layer 3rd Layer Bs-th Layer " S
F(
- Dropout
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Output of the first Dense Transition Block 'I:I'S)
Fig. 10. Details of the first dense transition (DT) block, where BN represents the batch normalization and AvgPool represents
the average pooling.

the dense transition (DT) blocks within our densely-connected convolutional neural networks in Fig. 10. Each DT
block consists of a dense block and a transition block. The dense block enforces the dense connections across
its layers, i.e., the input to each layer is the output of all the preceding layers. Such connections improve the
gradient flow beyond the conventional convolutional neural networks (CNNs) by mitigating the gradient vanishing
issues [31]. On the other hand, the role of transition blocks is to further reduce the feature dimensions after each
dense block, enabling a lightweight and computationally-efficient architecture.

We present the designs of the dense block and the transition block as follows.

— Dense Block: At each dense block I (I € {1,..., B2}), we pass the hidden feature map ITII(,I_I) through a dense
block and obtain the feature map of ﬁlgl). Specifically, each dense block consists of a total of Bs 2-D convolution

neural network (Conv2D) layers. For each dense block I, we let Ff)l’o) be the output of the o-th Conv2D layer.
Conventional convolutional neural networks stack the Conv2D layers and each layer takes in the output only
from its preceding layer, which may overlook the important dependencies across these layers and result in the
under-utilization of the extracted features. Instead of simple stacking, at each Conv2D layer indexed by (o + 1), we
concatenate and take in the outputs from all the preceding Conv2D layers, i.e.,

(Lo+1) _ (1,1) (Lo)
Fp = Conv2D (ReLU (BN (concat [Fp P ]))) (6)

and we have F}(,l’l) = Conv2D (ReLU (BN (ITI}(,I_I)))). Based on Eq. (5), we initially set the input of the first Conv2D

layer at the first dense block as FI(JI’I) = ITI}(,O).
— Transition Block: After the dense block, as illustrated in Fig. 10, we then further process the feature map

F}(,I’B3) by a transition block. Specifically, we feed the output of the dense block through the batch normalization

—(
operation (with the RelU activation function), and a Conv2D layer, and obtain the feature map H}(, ), ie.,

=) 1B

H, = Conv2D (ReLU (BN (Ff, 3>))) . )

Then, AF-DMIL regularizes the transition block by a dropout layer (Dropout) and compresses the feature map

—(1 ~
HI() ) with an average pooling (AvgPool) layer. This way, we obtain the output, denoted as HI(,I) , of the I-th dense

transition layer, i.e.,

. —()
H,’ = AvgPool (Dropout (Hp )) (8)

which will be further fed to the (I + 1)-th dense block.
We summarize all the operations for the I-th DT layer in Egs. (6), (7), and (8), as the function DT(+), i.e.,

o (-
By = ot ()", 9)
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To summarize, we stack a total of B, dense transition (DT) blocks to take in ITI;O) and obtain ITII(,BZ). Then, we flatten
the output of the dense transition blocks, denoted as ITI}()BZ), to reshape it into a vector, and further process it
through a total of B, fully connected (FC) layers (with the ReLU activation function) and obtain E‘Sigec € R?', where
each of the first (B4-1) FC layers has ¢4 neurons while the last one has g; neurons.

4.3 Temporal Sequence Attention, Statistical Feature Learning, and Model Training

¢ Design Motivations. In addition to the spectral attention, our AF-DMIL further leverages the temporal sequence
attention and statistical feature learning modules to further extract the interdependencies of driver maneuvers
with respect to the time series and statistical feature representations. This way, AF-DMIL further learns and
captures the heterogeneous representations of the driver maneuvers, and yields accurate DMIL results.

o Detailed Designs. We present the detailed designs of the two modules, (a) temporal sequence attention and
(b) statistical feature learning, as follows.

Temporal Attention

|
i Talalegoly B H)oxis
P T N ET e I
| t )l <1

Embedding

X B :
470 8 FC 1o B, € R®

Fig. 11. Network structure of the temporal sequence attention module in HetRANet.

(a) Temporal Sequence Attention Module: We illustrate in Fig. 11 the temporal sequence attention module
design for the i-th time series representation of the driver d, denoted as t*. In particular, we first process it with
a mask layer to discard the padded zero values, and the output is further processed through a total of Bs long
short-term memory (LSTM) layers (with a total of /; units), and obtain the hidden state H; € R®*/* and cell state
C; € Ri*1 Then, we take into account a linear layer with hyperparameters, i.e., W; € RIixh W, € Ri*h and
W; € REXL 0 fuse the information within the hidden state and the cell state, and obtain z; i.e.,

Zy = tanh (HtW1 + WZCt) - Ws. (10)
We further find the temporal sequence attention scores, denoted as z; € R®, i.e.,
2 = pr(zt LD (11)
=7 exp(z )
where o represents the segment length of the hidden state H;. We further multiply the temporal sequence
attention scores z; with the hidden state embeddings H; obtained from the LSTM layers for the weighted feature
embeddings ﬁt, ie., ﬁt = H; © z|, based on the Hadamard product (element-wise multiplication).

Afterwards, we further process the hidden features H, with a total of B¢ FC layers (with the ReLU activation
function) followed by a dropout layer, and obtain the final embeddings of the time series representation, denoted
as Ef';’eimp € R?2, where each of the first (B¢-1) FC layers has a total of c5 neurons while the last one has a total of
g2 neurons.

(b) Statistical Feature Learning Module: In particular, we feed the statistical representations of the i-th maneuver
interaction for the driver d, denoted as s%, through a total of B; consecutive FC layers (with the ReLU activation
function) followed by a dropout layer. Each of the first (B;-1) FC layers has ¢ neurons and the last one has g3
neurons. Then, the statistical feature learning module returns the statistical feature embeddings, denoted as
EX e R®.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 180. Publication date: December 2023.



180:14 « Tabatabaie and He

e Model Training Design. The proposed HetRANet processes the heterogeneous representations, and finally
obtains and concatenates the embeddings as

E4 = concat ([Ed’i K o

(q1+q2+93)
Spec’ "~ Temp’ Stat]) € RHTETRL (12)

To identify the driver maneuver class, we feed the embeddings E%’ through an FC layer, and obtain a vector
v® € RX that corresponds to the K driver maneuver classes. We then obtain the probability score through a
softmax function, i.e.,

. exp (v¥[k
.. v L

ke &P (VA [K])
where v’ € RK. Let y%! = [yd’i [1],...,y% [K]] be the ground-truth label vector (in one-hot encoding) for
the i-th maneuver of the driver d. We train the model of HetRANet based on cross-entropy loss between the
ground-truths y*! and the probability scores p%' (see Appendix).

(13)

5 ANOMALY-AWARE FEDERATED LEARNING FOR DMIL

We first overview the anomaly-aware federated DMIL designs in Sec. 5.1, and then present the details of the
anomaly-aware parameter filtering in Sec. 5.2.

Global Model

Local Model

Local Dataset

DMIL Server

Client Device <
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Fig. 12. Overview of our proposed anomaly-aware federated DMIL: (a) the local model training at the driver’s client device;
and (b) the global model learning at the DMIL server.

5.1 Overview of Anomaly-Aware Federated DMIL

We illustrate the overall workflow of our proposed anomaly-aware federated DMIL in Fig. 12, which consists of
(a) the local model training and (b) the global model training.

(a) Local Model Training: At each communication round, the DMIL server randomly selects U drivers’ client
devices for local DMIL model training. Each client device downloads the latest global model weight parameters
of HetRANet — that is, aggregated model weight parameters from the previous communication round — from the
DMIL server to train the local HetRANet model using its local dataset. In the meantime, the client’s device obtains
the low-dimensional feature projection of the output embeddings of HetRANet, and derives the exemplars of
projected embeddings. Both the exemplars and the model weight parameters are uploaded at each communication
round to the DMIL server for global model training.

(b) Global Model Training: After collecting the model weight parameters and exemplars from the client
devices, the DMIL server leverages the low-dimensional exemplars to determine the participation weight of each
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client device with respect to each driver maneuver class. Then, the DMIL server filters away the model weight
parameters of those client devices that are estimated to have low participation weights at the current round.
After that, the DMIL server leverages the remaining model weight parameters for the global model training. Here
we follow the paradigm of federated averaging (FedAvg) [41] to aggregate the model weight parameters, and
the resulting global model of HetRANet is used for future communication rounds of federated DMIL. AF-DMIL
performs the multiple updates of the HetRANet model at the client device (i.e., passing multiple rounds of the
local dataset) before transmitting the updated local model weight parameters to the DMIL server for the global
model update. Multiple steps of local model updates can help overcome the limitations of FedSGD [10] (which
performs one step) when the frequent communication of a single update step per client device may not be feasible
under dynamic DMIL.

5.2 Anomaly-Aware Parameter Filtering Designs

(i) Neighbor Determination and Weight Parameter Filtering

(i) Feature Projection and Exemplar Determination DMIL Server
- — — T T T T T T . - — 4
I_Driver’s Client Device Exemplar
| () . 2 Neighbors
Local Local d,i Embedding i .. Mean .
| Dataset ! Hetranet| T E P Projection Network | | B ’ >

- - - - - s e e . T/ g 9 Neighbors

2 Neighbors

Fig. 13. Illustration of the anomaly-aware mechanism in AF-DMIL. We note that the steps (i) and (ii) are respectively performed
at the client device and the DMIL server sides.

e Design Motivations. Our proposed anomaly-aware parameter
filtering aims to determine the relative importance of the drivers’
maneuver patterns and identify the anomalies that have the sig- Normal ® 0.20
nificant deviation in terms of maneuver patterns. Then AF-DMIL Clos’:r;\f;?ga}:ggfs._’ g;g 3
filters away the corresponding model weight parameters before the
federated DMIL is performed in the global model training. The key
idea of AF-DMIL is to project the maneuver feature embeddings from
the high-dimensional space to a low-dimensional one that preserves
the maneuver patterns. Such projection helps characterize the key
aspects of maneuver patterns that can further discern the anomalous
maneuvers. AF-DMIL leverages their mutual closeness to determine
the anomalous ones and mitigate their impacts in the federated
DMIL. AF-DMIL determines the participation weight of the client
device (corresponding to a participating driver) with respect to each
maneuver class k € {1,..., K}, gains the fine-grained understand-
ing regarding each driver’s contributions to federated DMIL, and
filters away the model weight parameters that correspond to the
anomalous maneuver patterns.

o Detailed Designs. To this end, we present the detailed designs of our anomaly-aware parameter filtering in
Fig. 13, which consists of the following two major steps: (i) feature projection and exemplar determination, and
(ii) neighbor determination and parameter filtering.

(i) Feature Projection and Exemplar Determination: As illustrated in Fig. 13(i), for each client device of driver
d, we project the feature embeddings output from the local HetRANet model (at the client device side) through
an embedding projection network based on FC layers, and obtain their low-dimensional projections. Such a

Fig. 14. lllustration of our participation
weight determination. For instance, the data
point highlighted has (x]”cl = 9 close neighbors
and has a low density in its neighborhood.
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projection from the high-dimensional feature space of the driver maneuvers to a low-dimensional one helps
enable the driver maneuver pattern upload to the DMIL server with privacy-preserving implications [19, 45].
Furthermore, AF-DMIL finds the neighbors of each client device with respect to each maneuver class in order to
form fine-grained characterization regarding each driver’s contributions to the federated DMIL.

Specifically, for each maneuver class k, the embedding projection network integrates a total of Bg consecutive
FC layers (with the ReLU activation) to project the resulting feature embeddings from the local HetRANet at the
driver d, denoted as E% € R(@1+%:+®) (j ¢ {1, e Nd}) in Eq. (12). Each of the first (Bg-1) FC layers has c; neurons
and the last one has g, neurons. This way, we process E% and obtain the projected low-dimensional features as
R4 € R% (g4 < q1 + g2 + ¢3) for all N4 maneuvers of a driver d. We then adopt the softmax function (similar to
Eq. (13)) upon the projected low-dimensional features R%!, and further train the embedding projection network
with ground-truth maneuver classes with cross-entropy loss function (Eq. (17)) to ensure that the low-dimensional
projected features maintain the essential maneuver patterns from the high-dimensional data.

Then, for each maneuver class k studied, AF-DMIL finds the mean of the projected features (R%!)’s with respect
to all the N¢ maneuvers as the exemplar of the maneuver class for a driver d, and uploads all the exemplars as
the maneuver patterns of the driver to the DMIL server. For each driver d, we denote the k-th exemplar as ez
(k € {1,...,K}), and we let rd = {ef, e, e}i(} represent the set of a total of derived K exemplars (corresponding
to the number of the maneuver classes).

(ii) Neighbor Determination and Weight Parameter Filtering: Given the collected model weight parameters and
the exemplars, the DMIL server further leverages the exemplars to determine the neighbors of the client devices.
Then the DMIL server identifies the client devices whose maneuver patterns deviate significantly from others’,
and determines the anomalous maneuver patterns. Our proposed design aims to examine the neighborhood of
each exemplar that represents the driver maneuver patterns, and determine those that are significantly far away
from others by quantifying their mutual closeness relative to the entire dataset.

Specifically, to adaptively determine the relative closeness of different exemplars, AF-DMIL first finds the
average distance of all exemplar pairs for the same maneuver class k across all the U participating drivers in a
communication round of federated DMIL, i.e.,

A= ﬁ(z ¢ (ei’ei'))’ (19

d+d’
where ez erd, ez/ eT¥, and £ (ez, ez/) represents the Euclidean distance between the exemplars ez and e‘]f’.
Then, for any given pair of exemplars eg and e‘]f', the DMIL server decides that they are the close neighbors with

each other if their mutual Euclidean distance is no greater than the average distance of all the exemplar pairs at
the server, i.e.,

, 1, if (ed, ed/) < Ag;

o(efe)=gh MLk ) = (15
0, otherwise.

Given above, the DMIL server counts the total number of the close neighbors of driver d’s exemplars

(Y (eg, ez/) = 1) in each communication round of the federated DMIL, and finds the participation weight

of driver d (regarding the k-th maneuver class) based on the number of close neighbors, i.e.,

U
af = Y v(elef). (16)
d'+d
Then, given the total close neighbors of an exemplar for a driver d, the DMIL server identifies it as an
anomalous maneuver pattern if it does not have enough close neighbors, i.e., O‘Z < §-U (6 = 0.8 in our study and
U is the number of the client devices involved per communication round), and the model weight parameters of

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 180. Publication date: December 2023.



Driver Maneuver Interaction Identification with Anomaly-Aware Federated Learning on Heterogeneous Feature Representations « 180:17

this client device are filtered and excluded from the federated DMIL at this communication round. Then AF-DMIL
follows the paradigm of federated averaging [41] and aggregates the remaining model weight parameters for the
global model training.

We illustrate an example of the projected embeddings for the left turn maneuver class (visualized through
principle component analysis) in Fig. 14 for multiple drivers in a communication round. Here we project the
embeddings into a 3-D space based on the first three principal components (PCs). We can observe that the
determination of the close neighbors helps AF-DMIL identify the anomalous maneuver patterns and reduce the
impacts from the corresponding client devices in the federated DMIL.

6 EXPERIMENTAL STUDIES

We first present the experimental settings including the baseline approaches in Sec. 6.1. Then, we present our
experimental results in terms of maneuver identification and federated DMIL in Sec. 6.2.

6.1 Experimental Settings

e Baseline Comparison: To evaluate the DMIL performance, we compare the performance of AF-DMIL with the
following models.

o ResNet-P and ResNet-T: which leverage the residual networks (ResNet) [26] to process the spectral and
time series representations, respectively.

e ALSTM: which adapts two LSTM layers with 64 hidden units with the attention mechanism [63] and processes
the time series representations.

e Conv2D-P and Conv2D-T: which leverage three Conv2D layers with kernels of sizes 3 X 3,5x 5, and 7 X 7,
and 32 hidden units to process the spectral and time series representations, respectively.

e Conv1D-T: which implements three 1-dimension convolutional (Conv1D) layers to process the time series
representations.

e LSTM and GRU: which respectively process the time series representations with LSTM and gated recurrent
unit (GRU).

e ICGN [18]: which adapts the inception network [58], convolutional neural networks, and gated recurrent
unit (GRU) layers to process the time series, spectral, and statistical feature representations.

e TED [77]: which adapts the transformer encoder architecture to process the time series, spectral, and
statistical feature representations.

o ECN [42]: which implements an ensemble convolutional network based on 1-D convolutional neural network,
recurrent network, and auto-encoder neural network to process the time series representations.

o ST-HAR [1]: which forms the spatio-temporal neural network by combining LSTM layers with convolutional
residual layers to process the time series representations.

e MWConv [71]: which implements a multi-sliding window fusion mechanism based on convolutional layers
to process the statistical features extracted from time series representations. We use three sliding windows
of size 10, 8, and 6 seconds to extract the features.

e TDBC [67]: which adopts the transformer encoder-decoder architecture to process the time series represen-
tations.

® SVM, RF, and GBDT: Support vector machine (SVM), random forest (RF) [7], and gradient boosting decision
tree (GBDT) [69] are further considered to process the statistical feature representations.

In addition to conventional federated stochastic gradient descent (FedSGD) [10] and federated averaging
(FedAvg) [41], we have also compared the performance of our proposed anomaly-aware federated DMIL with the
following distributed learning mechanisms:
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e AER [25, 37]: which first pre-trains an instance of HetRANet model upon the DMIL server with publicly
available normal data (a portion of DS1 in our setting). Then, AER processes the drivers’ client devices’ local
features with the pre-trained model to identify the anomalous maneuvers.

e DIST [39]: which synthesizes the behavioral data distributions based on the local DMIL models (harvested
from the drivers’ client devices) to identify the anomalous driver maneuvers.

e Model Parameter Settings: Unless otherwise stated, we use the following parameters at each phase of
DMIL by default.

(a) Driver Maneuver Data Preprocessing and Feature Extraction: We set the size of the sliding window w to 10
seconds (400 samples on average) with an overlap of 50% to segment the sensor time series. As different datasets
may have different sampling frequencies in the driver maneuver data collection, we have performed the IMU
sensor data resampling during the preprocessing and empirically set the resampling as 40Hz.

(b) Driver Maneuver Interaction Representation Learning and Identification: We set our model parameters of
HetRANet as follows. For the spectral channel attention module, we adopt the 3 X 3 kernel and 6 filters of the
Conv2D layer (Fig. 9). In addition, in order to calculate the channel attention scores (Fig. 9), we use B; = 2 Conv2D
layers which have three and six 1 X 1 kernel filters, respectively. After the channel attention, we incorporate
a total of B, = 3 DT blocks, each of which consists of B; = 2 dense blocks (Fig. 10). For the temporal sequence

attention module, we use Bs = 1 LSTM layer with I; = 8 units (Fig. 11). Each of the spectral attention, time
d,i

sequence attention, and statistical feature learning modules uses three FC layers, i.e., By = B¢ = By = 3 for ESpec’

Ei’eimp, and Egt;t Among them, the first two FC layers have 32 neurons, i.e., ¢4 = ¢5 = ¢ = 32, while the last layer
has 64 neurons, i.e., g1 = q2 = g3 = 64. We use a dropout rate of 10% for all the dropout layers.

In evaluating the designs of HetRANet, we have further augmented the driver maneuver datasets to create
balanced maneuver classes for DMIL evaluation. Specifically, we have performed data augmentation on DS1 and
DS2 to generate a total of 2,500 and 1,000 records for 5 maneuver classes (LT, RT, UT, NA, and NB), i.e., 500 and
200 records per maneuver class for DS1 and DS2, respectively. In evaluating the HetRANet, we leverage 80% of
the datasets to cross-validate the model (i.e., five-fold cross-validation) in a centralized DMIL setting. We note
that our model evaluation is performed in a user-independent setting (say, driver-independent). In other words,
a driver’s maneuver data will be either inside the training data or the validation data, and therefore the DMIL
model will not capture the driver-dependent correlation during the cross-validation.

(c) Anomaly-aware Federated Learning: At each client device, AF-DMIL iterates the local model update for
five times (with the local minibatch size as 32) before communicating with the DMIL server for global model
updates. For the embedding projection network, we use three FC layers, Bs = 3. Among them, the first two layers
have ¢; = 32 neurons, while the last one has g, = 16 neurons. We note that unlike the evaluation of HetRANet in
(b), our evaluation of the anomaly-aware federated learning does not use the augmented datasets, and aims to
emulate the real-world scenarios of federated DMIL when different numbers of maneuver classes or types may be
uploaded. We demonstrate the accuracy of AF-DMIL and other DMIL baseline approaches after 20 communication
rounds. At each communication round, the DMIL server selects U = 25 (i.e., the global batch size) client devices
(drivers) to participate. We use the Adam optimizer for the model training, and the learning rates at the client
device and the DMIL server are both set as 0.01.

In our experimental studies with the DS1 and DS3 (see Sec. 3.1), we consider by default the local datasets at
15% of the participating client devices contain the anomalous maneuvers (i.e., the aggressive ones from DS1
and DS3). For each driver that is selected to have anomalous maneuver patterns in a communication round, we
infuse the aggressive maneuvers from the DS1 and DS3 into the normal maneuvers that have the same types
of maneuvering, and therefore each maneuver class of the local dataset becomes a mixture of aggressive and
normal maneuvers (say, aggressive and normal left turns).
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e Experimental Settings: We have performed all the experiments on a deep learning HPC with four GPUs
of GeForce RTX 3090 (with 24GB GDDR5 memory), an AMD Ryzen Threadripper 3960X 24-Core CPU, and
128GB RAM. We have implemented all the models studied with TensorFlow 2.6.2 and Python 3.6.9. In terms
of computation overhead, our data preprocessing, HetRANet training, and DMIL prediction respectively takes
26.92ms, 3.72ms, and 0.23ms per sample. We have also evaluated the performance of AF-DMIL on Google Pixel 3,
where the model training takes 11.71ms per sample, and extracting and recognizing each maneuver takes 47.20ms
on average, which suffices to support efficient and ubiquitous DMIL in practice. We also evaluate the performance
of DMIL under the conventional federated learning based on federated stochastic gradient descent (FedSGD [10])
and federated averaging (FedAvg [41]) to validate our proposed anomaly-aware federated DMIL designs.

o Performance Metrics: We evaluate the accuracy of DMIL, i.e., the number of correct predictions versus the
total number of driver maneuvers, as the performance metric for DMIL. In addition, by considering the normal
and anomalous maneuvers as positive and negative cases, respectively, we have included the precision, recall,
F1 score, and false negative rate (FNR) of our proposed anomaly-aware federated learning in identifying the
anomalous maneuver patterns.

6.2 Experimental Results
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Fig. 15. DMIL performance of different approaches (%) with respect to DS1 and DS2.

e Overall Performance: We first compare the performance (in terms of mean accuracies and standard
deviations) of AF-DMIL in identifying the driver maneuvers in Fig. 15. We can observe in Fig. 15 that AF-DMIL
outperforms the other baseline approaches on average by 14.01% and 13.41% on DS1 and DS2, respectively.
Specifically, we can see that the deep learning-based approaches, such as ResNet-T, ICGN, ST-HAR, and TDBC
cannot provide comprehensive representation learning of the heterogeneous maneuver patterns upon the complex
driver maneuvers, thus yielding lower DMIL accuracy and fewer performance variations. Traditional machine
learning methods, such as SVM, RF, and GBDT, cannot effectively characterize the high-dimensional driver maneuver
patterns, and hence achieve lower DMIL accuracy. In addition, we have also observed from the performance of
the baseline approaches that it is overall more challenging to distinguish the normal acceleration (NA) from the
normal braking (NB). This is mainly due to the similar sensor readings along different axes despite the forward
direction, and the baseline approaches did not further differentiate the important axes.

Unlike the above-mentioned approaches, our HetRANet within AF-DMIL extracts and differentiates the complex
driver maneuver patterns and thus outperforms the other baselines in the DMIL (including ICGN and TED that
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take in the three different representations). Furthermore, thanks to the densely-connected convolutional neural
networks, our HetRANet captures the spectral representations that are related to the driver’s behaviors and
interactions when steering the vehicle, and learns the heterogeneous representations for enhanced DMIL accuracy.

e Model Ablation Studies: We have conducted extensive model ablation studies to evaluate the different
design components in AF-DMIL. Specifically, we compare the complete model of AF-DMIL (labeled as (1)) with the
following variations: AF-DMIL without (2) spectral attention, (3) time sequence attention, (4) statistical feature
learning modules, and (5) AF-DMIL without dense transition, as well as with (6) spectral representations only, (7)
time series only, and (8) statistical features only.

) @ ©) @ ©) ©) ™ ®)

Model Variation
Fig. 16. Model ablation studies for AF-DMIL.

We demonstrate the results of the ablation studies in Fig. 16. We can observe that the heterogeneous represen-
tations captured by the three modules in HetRANet are important for accurate DMIL, and hence their removals
yield results of lower DMIL accuracy compared with (1). Furthermore, the DMIL performance degradation from
that of (1) to that of (5) has demonstrated the importance of our proposed densely-connected convolutional
neural networks. Thanks to the designs of dense blocks and transition blocks, our HetRANet can extract and
learn the important maneuver patterns for accurate DMIL. We can observe that the time series representation
only (labeled as (7)) tend to have the lowest performance drop from (1), which is mainly because the time series
representation serves as the direct indicator of the maneuver. However, all three heterogeneous representations
are important for the DMIL, and simple reliance upon only one of them (variations (6)-(8)) may not necessarily
capture driver maneuver patterns and therefore yield lower accuracy.
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Fig. 17. Sensitivity studies of AF-DMIL on the model parameter settings (a) the number of DT blocks; (b) number of Conv2D
layers per DT block; and (c) the number of filters within the Conv2D layers of the DT block.

e Model Parameter and Data Processing Sensitivity Studies: We have conducted sensitivity studies on
the important model parameters of AF-DMIL in Fig. 17. Specifically, we show the impacts of the number of dense
transition blocks and Conv2D layers per DT block in Figs. 17(a) and 17(b), respectively. We can observe that when
the number of DT blocks (B, in Fig. 10) and that of Conv2D layers per DT block (Bs in Eq. (7)) are small, increasing
their numbers can help improve the performance of AF-DMIL due to the efficient gradient flow within the dense
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connections [31]. However, as their numbers further increase, we can observe that the performance of AF-DMIL
starts to deteriorate as the over-complicated HetRANet model may start to fit upon the noise within the driver
maneuver patterns and yield under-generalization in DMIL and lower accuracy. Therefore, we set B, = 3 and
Bs = 2 by default. Similarly, we have conducted the model sensitivity studies upon the number of filters within
the Conv2D layers in the DT blocks in Fig. 17(c). We can observe that as the number of filters in the DT blocks
increases, the accuracy of AF-DMIL first improves due to extraction of more important spectral features, and then
degrades likely owing to the over-complicated structures of DT blocks. In this prototype study, we thus set the
number of filters (Conv2D layers) in the DT blocks as 32.

We have further performed the sensitivity studies regarding (a) the sizes of sliding windows, (b) the sizes
of the segment overlap (for the sliding windows), and (c) threshold § (relative percentage) for the neighbor
determination and parameter filtering. Specifically, from Fig. 18(a) we can observe that a small sliding window
(say, 2.5s in our studies) may result in the incomplete characterization of the driver maneuver, and therefore the
DMIL performance drops. On the other hand, a large sliding window (e.g., larger than 10s) may not necessarily
improve the performance, since it may involve multiple maneuvers within one segment, rendering it hard to
perform accurate DMIL. Regarding the sizes of overlap, we can see from Fig. 18(b) that a large overlap (say,
more than 50%) may result in segments containing multiple maneuvers and low DMIL accuracy, while a small
overlap size may not necessarily characterize a single maneuver and hence lead to performance degradation.
Furthermore, as illustrated in Fig. 18(c), a threshold § that is too large or too small may lead to over-sensitive or
under-sensitive detection of the anomalous driver patterns. Based on the above, we set by default the window
size as 10s, 50% overlap, and threshold § = 0.8 in our experimental studies.

o Studies on Federated DMIL: We further evaluate our designs in anomaly-aware federated DMIL.
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Fig. 19. DMIL performance of different approaches with our anomaly-aware federated learning algorithm (indicated by
darker colors) and FedAvg [41] method (%).
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— Improved DMIL Performance: As illustrated in Fig. 19, we evaluate AF-DMIL and the baseline models with the
presence of anomalous behaviors within the maneuver data. Specifically, we leverage our proposed anomaly-aware
federated learning algorithm and FedAvg [41] to train the models. We can observe that compared to the FedAvg
algorithm, our proposed anomaly-aware federated learning enhances the DMIL performance by identifying and
filtering the model weight parameters that correspond to the potentially anomalous driver maneuver patterns.
On average, our proposed anomaly-aware federated DMIL further enhances the mean DMIL accuracy by 7.02%
for all schemes evaluated in Fig. 19 compared with the other anomaly-agnostic designs.

— Performance in Identifying Anomalous Maneuvers: We evaluate the performance of the proposed anomaly-
aware federated learning within AF-DMIL to validate its efficiency, effectiveness, and robustness. We further
illustrate the precision, recall, F1 measure, and false negative rate (FNR) of our proposed anomaly-aware federated
DMIL given different percentages of anomalous driver maneuvers in Fig. 20(a). We also further evaluate the
performance of the other distributed learning mechanisms, i.e., AER and DIST, in Figs. 20(b) and 20(c). We can
observe that as the percentage of anomalous maneuvers increases, the precision, F1 measure, and recall in
identifying the anomalous maneuvers start to decrease, while the FNR increases. Despite these, our proposed
designs within AF-DMIL still achieve a more robust performance (say, in general with precision/F1 measure/recall
over 90% and with FNR below 10%) than the other two approaches. We can see that AF-DMIL achieves on average
15.68%, 13.10%, and 14.26% higher in terms of precision, recall, and F1 score, and 13.35% lower FNR, compared
with the other distributed learning mechanisms evaluated.
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Fig. 21. (a) Accuracy (%) of AF-DMIL vs. percentage of anomalous maneuver patterns for AF-DMIL. (b) Performance convergence

studies of different model training approaches. (c) Performance convergence studies given different numbers of participating
drivers for AF-DMIL.

- Dynamic Federated DMIL Evaluation: In addition, we further show in Fig. 21 the federated DMIL performance
of AF-DMIL in terms of (a) the percentage of anomalous maneuver patterns within the datasets, (b) DMIL
performance convergence, and (c) number of participating drivers.
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We first demonstrate in Fig. 21(a) the performance of AF-DMIL given different proportions of anomalous
maneuver patterns within the training data. Thanks to the augmented anomaly-awareness, we can observe that
even with a large percentage of the anomalous maneuvers included, AF-DMIL can still achieve overall high DMIL.

We then show in Fig. 21(b) the performance convergence of AF-DMIL with respect to communication rounds. Our
proposed anomaly-aware federated DMIL in AF-DMIL identifies and filters away the anomalous maneuver patterns,
and hence with the filtered maneuver patterns AF-DMIL converges much faster (i.e., with fewer communication
rounds) than other learning designs such as FedAvg and FedSGD which do not account for anomalous maneuver
patterns, as well as the anomaly detection designs in AER and DIST. We note that both AER and DIST assume the
known normal distributions of the input behavior patterns, which, however, may not adapt to the complex and
dynamic driver maneuvers, thus yielding low DMIL accuracy. With the anomaly-aware designs, our proposed
DMIL achieves on average 29.20% fewer communication rounds than the above-mentioned approaches before
converging to a reasonable DMIL accuracy (say, 85%).

We show in Fig. 21(c) the performance convergence of AF-DMIL under different numbers of participating client
devices (drivers). We can observe that in general a small number of client devices (per communication round)
may slow down the global HetRANet model training process, while enrollment of more client devices might make
it faster for AF-DMIL to converge to high DMIL accuracy, at the potential costs of more communication overheads
between the client devices and the DMIL server. Given the ubiquitous computing scenarios such as large-scale
DMIL, we can observe that our proposed AF-DMIL can achieve in general high accuracy and scalable system
deployment.

7 DEPLOYMENT DISCUSSION

We discuss the deployment of AF-DMIL as follows.

— Settings in Federated DMIL: Our proposed anomaly-aware federated
DMIL designs provide the DMIL insights, including the embedding projec-
tion and mutual closeness of exemplars, from an honest-majority setting (i.e.,
the majority of the participating drivers are contributing normal maneuver
data) [22, 53]. Further defense measures for handling the data poisoning
attacks and other data privacy and security designs are outside the scope
of our proposed studies, and can be referred to [6]. In addition, our cur-
rent studies take into account the aggressive maneuvers as the anomalous
maneuvers for evaluating the robustness [20, 55] of anomaly-aware feder-
Fig. 22. Performance under leave- ated DMIL, which is considered more challenging than noisy or incorrect
one-user-out settings. maneuver labeling [20] based on our experimental observations. We have

evaluated the scenarios with maneuver class mislabeling such as the case
that a left turn is mislabeled as a right turn, and observed that the maneuver class mislabeling (e.g., due to noisy
measurements, improper segmentation, and human errors) can be more detectable than the aggressive ones by
the anomaly-federated DMIL. This is mainly due to the discernible differences across the different maneuver

- G A
Tt

Accuracy (%)
oo}
o

80 g

70

AF-DMIL TED ResNet-P

types. Therefore, we focus on detecting the anomalous maneuvers (e.g., aggressive), which is important for
other ubiquitous computing (e.g., ADAS) applications such as driving style monitoring and feedback for more
accountable driving [14, 55].

— Labeling Driver Maneuver Classes: In our current DMIL settings, similar to other federated human activity
recognition studies [35, 54, 66], we consider the driver maneuver class labels are provided and fed to the DMIL
after the driver maneuver data collection is performed. We note that the driver maneuver class labeling can be
performed through explicit (say, through recorded videos segmentation [79] or GPS trajectories [76]) or implicit
(say, via model self-training [64] or semi-supervised learning [16]) mechanisms, which is outside the scope of our
current studies and is part of our future work.
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— Supporting Large-scale Anomaly-Aware Federated DMIL: We note that in practice the comparison operation
required for the anomaly detection could be facilitated through parallelism (e.g., GPU and existing factorization
optimization [40]) or hierarchical computation designs. This way, the overall computation time can be significantly
reduced. For instance, the anomaly-aware parameter filtering can be performed in a hierarchical manner [73], i.e.,
partitioning the harvested maneuver data in terms of space (say, different districts of a city), time (e.g., different
periods of a day), and other contextual factors, to reduce the comparison operations and support metropolitan-
scale DMIL. We also note that distribution shifts — that is, the training and testing datasets may not follow the
same distribution - generally exist due to different cars, data collection settings, and participating drivers, etc.
We have evaluated AF-DMIL under the leave-one-user-out setting (i.e., training the model upon other drivers’
data and validate on a single driver) in Fig. 22, and show the violin plot of the accuracy values of one hundred
drivers (compared with TED and ResNet-P), where the wider regions indicate higher probability densities. We
have observed that AF-DMIL captures the important maneuver patterns in characterizing the heterogeneous
representations and mitigates the impacts (e.g., individual differences). In the interest of space, and our current
focus, further adaptation, such as meta model adaptation [35], will be considered in our future studies.

— Extension to Broader DMIL Problems: Despite our current focus on DMIL based on the IMU sensors, our model
designs of HetRANet can be also extended to asynchronous federated DMIL [11], other maneuver classes (e.g.,
left/right lane changes), as well as additional sensing modalities (e.g., LIDAR) that are increasingly pervasive in
the emerging ADAS and CAV techniques [4, 27, 33].

8 CONCLUSION

We have designed AF-DMIL, a novel anomaly-aware federated driver maneuver interaction learning system,
toward ubiquitous driver maneuver interaction learning. Leveraging the smartphone IMU sensor data, we have
designed and derived three heterogeneous representations for AF-DMIL regarding spectral, time series, and
statistical features. In order to capture and identify the complex patterns within driver maneuver behaviors, we
have designed a heterogeneous representation attention network (HetRANet) based on spectral channel attention
learning, temporal sequence attention learning, and statistical feature learning. In addition, we have integrated
a novel anomaly-aware federated learning algorithm to identify the anomalous maneuvers (e.g., aggressive
maneuvers), and mitigate their negative impacts upon the federated DMIL. We have conducted extensive real-
world driver data analytics and experimental studies on three real-world datasets (one is collected on our own) to
evaluate the prototype of AF-DMIL, demonstrating AF-DMIL’s accuracy, adaptivity, and robustness compared to
the state-of-the-art DMIL.
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APPENDIX

We list the major symbols used in AF-DMIL formulation in Table 2.

Table 2. Major symbols in the designs of AF-DMIL.

Notations | Definitions H Notations | Definitions

N4 Total segments for each driver d. ¢ The set of all the exemplars for each driver d.

pd'i, tdi gdi | The i-th spectral, time series, and U Total drivers in a communication round.
statistical representations for each driver d. ei The k-th exemplar of each driver d

7, 7, Spectral channel and temporal sequence attention scores. RZ The k-th feature projections for each driver d.

E® Embeddings of the i-th driver maneuver interaction. K Total number of the maneuver interaction classes.

% [k] Output probability of the i-th maneuver record. yi Ground-truth label for the i-th maneuver of each driver d.
for the d-th driver and k-th maneuver class. ai k-th participation weight for each driver d.

The cross-entropy loss for model training of HetRANet is formally given by

U N¢ K

loss = — Z Z Z (yd’i[k] -log ! [k]) ,

d=1 i=1 k=1

(17)

where N¥ is the total number of maneuvers for a driver d € {1,...,U}.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 180. Publication date: December 2023.



	Abstract
	1 Introduction
	2 Related Works
	3 DMIL Datasets, System Overview & Feature Extraction
	3.1 Overview of DMIL Datasets Studied
	3.2 Overview of System Framework
	3.3 Driver Maneuver Data Preprocessing, Feature Extraction, and DMIL Problem Statement

	4 Heterogeneous Representation Learning for DMIL 
	4.1 Overview of HetRANet for DMIL
	4.2 Spectral Channel Attention Module
	4.3 Temporal Sequence Attention, Statistical Feature Learning, and Model Training

	5 Anomaly-Aware Federated Learning for DMIL
	5.1 Overview of Anomaly-Aware Federated DMIL
	5.2 Anomaly-Aware Parameter Filtering Designs

	6 Experimental Studies
	6.1 Experimental Settings
	6.2 Experimental Results

	7 Deployment Discussion
	8 Conclusion
	References

