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Aphid infestation poses a signi昀؀cant threat to crop production, rural communities, and global food 
security. While chemical pest control is crucial for maximizing yields, applying chemicals across entire 
昀؀elds is both environmentally unsustainable and costly. Hence, precise localization and management 
of aphids are essential for targeted pesticide application. The paper primarily focuses on using deep 
learning models for detecting aphid clusters. We propose a novel approach for estimating infection 
levels by detecting aphid clusters. To facilitate this research, we have captured a large-scale dataset 
from sorghum 昀؀elds, manually selected 5447 images containing aphids, and annotated each individual 
aphid cluster within these images. To facilitate the use of machine learning models, we further process 
the images by cropping them into patches, resulting in a labeled dataset comprising 151,380 image 
patches. Then, we implemented and compared the performance of four state-of-the-art object 
detection models (VFNet, GFLV2, PAA, and ATSS) on the aphid dataset. Extensive experimental 
results show that all models yield stable similar performance in terms of average precision and recall. 
We then propose to merge close neighboring clusters and remove tiny clusters caused by cropping, 
and the performance is further boosted by around 17%. The study demonstrates the feasibility of 
automatically detecting and managing insects using machine learning models. The labeled dataset 
will be made openly available to the research community.

According to the Food and Agriculture Organization of the United  Nations1, pests annually destroy up to 40% of 
global crops, causing a speci�c loss of around $70 billion due to invasive insects. n modern agriculture, pesticides 
are extensively used to control insect populations, amounting to approximately 2 million tonnes of pesticide usage 
worldwide each  year2. However, the widespread use of pesticides contributes to environmental pollution and 
poses signi�cant threats to wildlife and human  beings2. �erefore, e�cient management of pesticide applications 
is essential for mitigating environmental impact and enhancing farmer pro�tability.

Due to practical constraints such as time, labor, and lack of automated resources or technologies, the cur-
rent management strategy is predominantly guided by a “whole �eld approach.” Farmers typically wait for 
the infestation to reach a treatment threshold before spraying the entire �eld using a linear array of nozzles. 
�is approach leads to an excessive, uniform, and continuous spray pattern, with all plants receiving the same 
treatment irrespective of their individual infection levels, while pest incidence and severity are typically only 
fractionally present in a �eld and spread spatially. Consequently, the current practice only guarantees a small 
fraction of areas receives a justi�ed amount of pesticide. Some areas may su�er from pest damage and loss of 
yields due to delayed management, while other areas may receive a super�uous spray application when there is 
no pest presence.

Timing the incidence and severity of insect infestations presents a signi�cant challenge in e�ectively managing 
crop damage and maximizing pro�ts. With the rapid advancement of robotics and arti�cial intelligence (AI), we 
aim to develop a robotic system capable of regularly scouting the �eld, utilizing AI to identify insect infestations, 
and precisely spraying a�ected areas through onboard spray nozzles. �is intelligent system will selectively apply 
pesticides only to plants with critical infestations, minimizing pesticide usage on healthy plants and the surround-
ing soil. As a result, we can reduce input costs, increase the potential yield, and minimize the environmental 
impact of pesticides. �e paper primarily focuses on a crucial component of the system: automatically detecting 
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insects using computer vision technology and assessing the performance of various deep learning models for 
detecting aphid clusters.

Object detection and recognition are crucial components in agricultural robotics, and detecting small insects 
like aphids can be particularly challenging. �e use of Convolutional Neural Networks (CNNs) for object detec-
tion and recognition was �rst proposed  in3. In 2012, the breakthrough success of deep CNNs in the ImageNet 
challenge marked a new era of this technique. Since then, CNN models have been widely used in various appli-
cations, including  biology4, medical image  analysis5, object detection and  tracking6, etc. In recent years, “end-
to-end” training models, such as  SSD7,  RetinaNet8, and  FCOS9, have been extensively studied. Object detection 
models are more suitable for detecting insects like aphids as they require both localization and classi�cation. 
�ese models can be categorized into two-stage and one-stage approaches. Two-stage methods, such as Faster 
R-CNN10 and  FPN11, �rst use Region Proposal Networks (RPNs)10 to select high-quality pre-de�ned anchor 
boxes as candidate objects, then re�ne the selected candidates in the second stage for classi�cation and bound-
ing box regression. One-stage methods, such as  RetinaNet8 and  FCOS9, directly classify and re�ne pre-de�ned 
anchor boxes or anchor points. Most recent detection models are one-stage methods due to their fast inference 
and relatively high accuracy.

However, even with state-of-the-art detection models, accurately locating individual aphids remains a chal-
lenge due to their small size. To address this challenge, TD-Net12 introduces a T-FPN (Transformer feature 
pyramid network) and a multi-resolution training method, while ZF-Net13 and  RPN10 are employed  in14 for 
aphid detection on leaves. Another model, Coarse Convolutional Neural Network (CCNN)15, is designed to 
detect small aphid clusters, and a Fine Convolutional Neural Network (FCNN) is used to re�ne the clique and 
detect individual aphids. Most existing aphid detection models primarily focus on detecting individual aphids, 
but their performance on real aphid images is not satisfactory. �ese models are o�en trained on idealized aphid 
images, making it challenging for them to detect aphids accurately in real-world scenarios where aphids tend to 
cluster together on leaves. �e task of accurately delineating and detecting densely-packed aphids individually 
is nearly impossible. Additionally, domain shi�s caused by variations in illumination and shades across di�erent 
images can signi�cantly impact the accuracy of CNN models in detecting tiny  aphids16,17.

In order to train the machine learning models to detect aphids, we captured a large collection of images in the 
sorghum �elds of the State of Kansas during the aphids growing season. �en, we carefully examined all images 
and selected and labeled 5447 images that exhibited signs of aphid infestation. In this study, we manually annotate 
the outline of the aphid clusters rather than labeling individual aphids. �e size of these clusters can indicate the 
severity of the aphid  infestation18. Since the aphid clusters are much larger than individual aphids, most standard 
object detection models can e�ectively localize these clusters. Using the annotated dataset, we implemented and 
compared the performance of four state-of-the-art detection models. Despite creating bounding boxes around 
aphid clusters, accurately dividing these clusters can still pose challenges that impact the detectors’ performance. 
To address this, we merged closely located clusters into larger ones and adjusted the coordinates of the bounding 
boxes accordingly, forming a minimum bounding box around the merged clusters.

Our experiments on the generated dataset demonstrate that these models can accurately estimate the extent 
of aphid infestation from real-world images, providing valuable information for farmers to make timely decisions 
regarding pest control. �e main contributions of this study are summarized below.

• We have collected a large collection of real-world images from sorghum �elds and manually selected and 
labeled over 5000 aphid-contaminated images. �is is the �rst dataset using real-world images and employing 
cluster annotations instead of individual aphids.

• We evaluated the performance of four state-of-the-art detection models on the generated dataset, and we 
observed improved accuracy by merging nearby clusters and excluding tiny clusters from training.

• �e existing detection models could be directly utilized for our dataset and the trained detectors could be 
employed in real-world �elds to detect those aphid clusters. �ere is no need for sophisticated designs for 
detecting individual aphids, which makes it more feasible for real-world scenarios.

Part results of this paper have been published at AAAI 2023  Workshop19. �is is a substantial extension of the 
Workshop paper with more details of the dataset creation, deep learning models for object detection, experi-
mental results, and analyses. �e created dataset can be freely accessed by the research community from Harvard 
Dataverse at https:// doi. org/ 10. 7910/ DVN/ N3YJXG.

Dataset generation
Aphid dataset. Instead of having a much closer view of the aphids and generating the aphid labels individu-
ally for the existing aphid  datasets20, we created the aphid dataset that contains images that have a relatively far 
view of the aphids in the real-world �elds and the aphids are labeled by clusters instead of individuals since the 
aphids are frequently densely clustered together. �e images we have taken and collected are shown in Fig. 1. It 
provides ground truth for both detection and segmentation. Our generated aphid dataset is more applicable to 
the elimination of the aphids if robots or intelligent cars are utilized.

Data collection. To collect the images, we developed an imaging rig equipped with three GoPro Hero 5 
cameras. �is rig allows us to capture images of canopy leaves at three di�erent heights, corresponding to view 1, 
view 2, and view 3 respectively. By doing so, we are able to enhance the dataset by capturing aphid clusters from 
various perspectives at multiple height levels. In Fig. 1, we present three annotated sample images represent-
ing the three views. Using this device, we extensively gathered a large collection of images from sorghum �elds 
located in both Northern and Southern regions of the State of Kansas. �ese images were captured speci�cally 
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in areas where aphid infections were identi�ed. However, it is important to note that the majority of the images 
are actually aphid-free.

To annotate the dataset, we sought guidance from aphid experts and trained a team of eight research assistants 
to examine and label the dataset. We carefully examined all the images and eliminated those without aphids. 
Consequently, we successfully selected 5447 images that contain an adequate number of aphids. �e distribution 
of these images among the three views is illustrated in Fig. 2a.

Data labeling. �e aphid clusters present in the selected images were meticulously annotated by profession-
ally trained researchers using Labelbox, a tool speci�cally designed for data  labeling21. �e annotation process 
involved two main steps: creating segmentation masks for each image and generating detection bounding boxes 
based on these masks. �ese annotations provide valuable information for accurately identifying and studying 
the aphid populations within the images.

Aphid cluster de�nition. In the �eld, aphid clusters can exhibit various patterns, including low density, high 
density, and varying degrees of sparsity, as illustrated in Fig. 1. When it comes to labeling each individual aphid, 
irrespective of its density, a considerable amount of time and resources would be required, potentially wasting 
e�orts on areas without a signi�cant threat. Conversely, setting the threshold too high could lead to overlooking 
areas with substantial aphid infestations, resulting in potential �nancial losses.

Figure 1.  Original images with annotations. �e light blue areas represent an annotated aphid cluster. Aphid 
clusters are mostly tiny compared to the original image size. In (a) and (c), the areas circled by red lines 
represent clusters we do not need to annotate since those areas only contain very few sparsely distributed aphids. 
�e criteria is an aphid cluster should have more than 6 closely located aphids.

Figure 2.  Statistical summary of the created dataset.
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To address this challenge and ensure consistency and productivity and avoid ambiguities, we consulted agri-
cultural experts to establish a pragmatic de�nition of an aphid cluster. A�er careful consideration, we de�ned an 
aphid cluster as “an area containing six or more closely located aphids.” �is threshold strikes a balance between 
the need to accurately identify aphid clusters and the practical limitations of time and resources. Further illustra-
tion and interpretation of this threshold are shown in Fig. 1a,c, respectively. �is de�nition ensures that areas 
with a critical level of aphid infestation are not overlooked while still optimizing the allocation of resources.

Data labeling. A�er careful examination, we have eliminated redundant images and those without aphid clus-
ters, resulting in a total of 5447 labeled photos. Redundant images refer to those captured from very close view-
points, leading to signi�cant visual similarities among the images. �is data selection process ensures that the 
�nal dataset comprises visually distinct images with the presence of aphid clusters, enabling deep CNN models 
to learn and generalize e�ectively from the available data. In summary, the percentages of photos from views 1, 
2, and 3 are shown in Fig. 2a. �e size of the labeled masks ranges from 1 to 1,250,193 pixels. 77.0% of the masks 
have a size smaller than 5000 pixels. Since masks with larger sizes are rare and sparsely distributed, we only plot 
the histogram of masks with less than 5000 pixels in Fig. 2b. More than half of the masks are smaller than 1500 
pixels, with the most popular size interval [201, 301]. Among all masks, the median size is 1442 pixels and the 
mean is 7867 pixels. �e median is more representative, while the mean value is a�ected by the extremely large 
masks.

Tenfold cross-validation. Cross-validation22 is a resampling method to evaluate and pick models on a small 
dataset. Popular computer vision datasets commonly have more than 10k images, e.g., MS  COCO23 has more 
than 200k labeled images. Our dataset only has a little over 5000 images. Following cross-validation22, we split 
our dataset into 10 groups. To ensure each group has a similar percentage of images from views 1, 2, and 3, we 
separately shu�e the images and split them into 10 subgroups for each view. �en the �nal cross-validation 
groups are formed by picking one subgroup from each view. �us, images from each view will be evenly distrib-
uted in each group.

Image patches. �e majority of the masks, as shown in Fig. 2b, have a size smaller than 1500 pixels, which is less 
than 0.015% of the original image size ( 3648 × 2736 ). In addition, most detection and segmentation models are 
trained and tested on much smaller images. We decide to split the original high-de�nition images into smaller 
square patches with side 400 pixels. During this process, some masks will be separated into di�erent patches 
and will have some exclusions. To ensure each mask’s completeness in at least one of the �nal patches, the patch 
generation is done with 50% overlapping, meaning the next patch overlaps 50% with the previous patch both 
horizontally and vertically. An original 3648 × 2736 image generates 221 patches for the detection and segmen-
tation tasks.

Patch generation is conducted a�er dividing the dataset into 10 cross-validation groups. �is division ensures 
that no information from one original photo is used in any other group, maintaining the integrity of the evalu-
ation process. A�er cropping, we discard patches without an aphid cluster since the CNN models already have 
su�cient negative samples available from the backgrounds of other patches. By discarding patches without 
aphid clusters, we can focus on training the models using patches that contain the desired positive samples. 
In summary, the number of patches in each cross-validation group is shown in Table 1 with a total of 151,380 
image patches in the dataset.

Object detection models
For object detection, the recognition and localization of objects in videos or images require both classi�cation 
and localization components. Typically, detection models consist of two separate branches dedicated to clas-
si�cation and localization, respectively. �e classi�cation branch performs similarly to standard classi�cation 
tasks, where it categorizes the contents enclosed by bounding boxes. On the other hand, the localization branch 
predicts the o�sets relative to anchor boxes in anchor-based detection models or anchor points in anchor-free 
detection models. �ese predicted o�sets are then converted into bounding box coordinates based on the anchor 
boxes or anchor points, contributing to the �nal predictions.

A crucial factor for building a successful detection model lies in e�ectively dividing positive and negative 
samples. Regardless of whether pre-de�ned anchor boxes or anchor points are utilized, it is necessary to catego-
rize the samples as positives or negatives. Negative samples represent the background and do not contribute to 
predicting object locations, while positive samples play a vital role in predicting the corresponding object loca-
tions. For example, in anchor-based models, anchor samples can be classi�ed as positives if their Intersection over 
Union (IoU) with ground truth objects exceeds certain thresholds (e.g., 0.5). However, recent detection models 
have moved away from using �xed IoU thresholds, as small objects may have signi�cantly fewer corresponding 
positive samples compared to larger objects. Consequently, modern detection models tend to calculate adaptive 

Table 1.  Number of patches in each group.

Sum 1 2 3 4 5 6 7 8 9 10

151,380 14,778 15,392 14,567 15,720 15,943 14,929 15,272 15,276 14,140 15,363
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thresholds based on statistical properties among the  samples24,25 or compute the dynamic thresholds based on 
the training  status26,27.

Most generic state-of-the-art detection models are based on Feature Pyramid  Networks11 where the detection 
results come from various feature maps with di�erent sizes to detect objects with various shapes and sizes, as 
illustrated in Fig. 3. �e backbone is Convolutional Neural Networks (CNNs) for extracting the features from 
the images. Deep layers have relatively strong semantic information while the shallow layer may not contain 
enough semantic information. �us, FPN is utilized to merge the adjacent features from the deeper layers to 
the shallower layers so that the shallow layers could have strong semantic information and be exploited to 
generate the classi�cation scores and localization predictions. �e head is to predict the bounding boxes and 
classes in the corresponding boxes and the same head is applied to all feature maps from FPN. �ere are two 
branches in the head for classi�cation and bounding box regression. Since the NMS (Non-Maximum Suppres-
sion) algorithm is based on the classi�cation scores to eliminate the duplicates, some high-quality bounding 
boxes might be removed due to their low classi�cation scores. �us some methods estimate localization quality 
for classi�cation  prediction28 or introduce the predictions to divide the positives and negatives dynamically to 
reduce the gap between the classi�cation branch and regression branch. Recently,  Transformers29 were intro-
duced to computer vision and some transformer-based detection  models30,31 achieve excellent results on COCO 
 benchmark23. However, Transformer-based models usually require a much longer time to converge compared 
to CNN-based models.

We have chosen four state-of-the-art object detectors to train, evaluate, and compare their performance on 
the aphid dataset that we have created. (1) ATSS (Adaptive Training Sample Selection)24 calculates the adaptive 
IoU thresholds based on the mean and standard deviation of the IoUs between the candidate anchor boxes and 
the ground truth objects to select the positive samples instead of using �xed thresholds. (2) GFLV2 (Generalized 
Focal Loss V2)28 utilizes statistics of bounding box distributions as the Localization Quality Estimation (LQE). 
�us the high-quality bounding boxes could have a high probability to be kept instead of suppressed with the 
NMS (Non-Maximum Suppression) algorithm. (3)  PAA26 dynamically divides the positive samples and nega-
tive samples using GMM (Gaussian Mixture Model) based on the classi�cation and localization scores of the 
samples in a probabilistic way. (4)  VFNet25 is based on  ATSS24 algorithm, and employs IoU-aware Classi�cation 

Backbone

Head Head Head Head Head

Classification Localization

Head

Conv

FPN

Conv

Figure 3.  A classic detection model with Feature Pyramid Networks (FPN). �e backbone is utilized as the 
feature extractor that acquires the semantic information from the information. FPN propagates the semantic 
information from the deeper layers to the shallower layers so that all features in FPN could have enough 
semantic information. �e head generates the predictions from the various features from FPN.
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Score (IACS) as the classi�cation so� target using the IoUs between the predicted bounding boxes and their 
corresponding ground truth objects. �us high-quality predicted boundary boxes might have high scores than 
those low-quality boxes. In addition, star-shaped box feature representation is introduced to further re�ne the 
predicted boxes so that they could be closer to the ground truth objects.

Model training. �e images we collected are real-world images in the �elds with high resolutions (i.e., 
3648 × 2736 ) and various illuminations and occlusions, making it extremely challenging to detect aphids using 
existing detection models, even when the bounding boxes are based on aphid clusters rather than individual 
aphids. To address this challenge, we perform cropping on each labeled image, dividing them into smaller 
patches of size 400 × 400 for more e�ective detection. Additionally, the entire image patch dataset is divided 
into 10 subsets and we evaluate the detection models on the dataset by tenfold cross-validation.

All models exploit 0.001 as the initial learning rate with the total training epoch being 12. �e initial learning 
rate is utilized for 9 epochs and the learning rate is reduced by 10 for the last 3 epochs. SGD (Stochastic Gradient 
Descent) is employed as the optimizer to train the model. �e momentum and weight decay are 0.9 and 0.0005, 
respectively. �e batch size is 16 and the warmup iterations are 500. �e detection models are implemented 
using PyTorch with  Python332.

�e evaluation metric used for the detection models is Average Precision (AP), which measures the area under 
the Precision-Recall (PR) curve. �e PR curve illustrates the trade-o� between the Precision rate and the Recall 
rate of the detection models. �e Precision rate quanti�es the proportion of correctly predicted samples among 
all predicted positive samples. It is calculated as the ratio of the number of true positive samples to the total 
number of predicted positive samples. �e Recall rate represents the proportion of correctly predicted samples 
among all ground truth positive samples. It is computed as the ratio of the number of true positive samples to 
the total number of actual positive samples. �e precision and the recall are calculated below.

In object detection tasks, it is essential to not only predict the correct labels but also consider the accuracy of the 
bounding boxes. �e quality of the predicted bounding boxes is commonly evaluated using IoU (Intersection 
over Union), which measures the overlap between predicted bounding boxes and their corresponding ground 
truth boxes. IoU is calculated as the ratio of the intersection area to the union area of two bounding boxes. PAS-
CAL  VOC33 selects 0.5 as the IoU threshold which indicates that the detection is a success if the IoU between 
the predicted bounding box and the ground truth bounding box is over 0.5 if the classi�cation label is correctly 
predicted.  COCO23 chooses the IoU threshold from 0.5 to 0.95 with the step of 0.05, calculates the AP for each 
of the thresholds, and �nally averages them. In this paper, we harness the IoU threshold from PASCAL VOC 
and the generated annotation �les are also in xml format used by PASCAL  VOC33.

Results
During the experiments, we implemented and compared four state-of-the-art detection models using a tenfold 
cross-validation approach. To facilitate the evaluation process, we have cropped 400 × 400 patches from the 
high-resolution images and organized them into 10 distinct groups for cross-validation. In each fold of the 
cross-validation, one group is designated as the testing data while the remaining groups are merged to form the 
training data for that speci�c validation. However, due to the nature of labeling aphids based on clusters, some 
small clusters that are in close proximity to each other are labeled individually, as shown in Fig. 4. In this case, 
the bounding boxes overlap, which may confuse the learning models during training and a�ect the performance 
of the detection models.

To address this issue, we preprocess the ground truth labels by merging the bounding boxes of small clusters 
if they are su�ciently close to each other. Speci�cally, in our experiments, we merge the bounding boxes of 
clusters if their closest distance is less than or equal to 10 pixels, as illustrated in Fig. 4. By merging these closely 
located clusters, we treat them as a whole object, enabling the detection models to more e�ectively recognize 
and detect these merged clusters. Our experiments demonstrate that this strategy is particularly useful for small 
clusters that are challenging to detect, even with the utilization of state-of-the-art detectors. Moreover, in cases 
where clusters are densely located and di�cult to separate, the merging process facilitates the detection models 
and boosts their performance in real-world scenarios.

When we crop the original images into 400 × 400 small patches, some aphid clusters are cropped into di�erent 
patches that may result in extremely small patches along the border of the image patches. �ese tiny patches con-
tribute nothing to the training process but greatly compromise the accuracy of the testing data. Some examples of 
the image patches that contain the tiny partial aphid clusters a�er cropping is demonstrated in Fig. 5. �ese tiny 
cluster patches are located along the border of the image patches. To further improve the model performance, we 
remove these tiny clusters (i.e., areas that are less than 1% of the patch) from the annotation. As demonstrated in 
Table 2, the performance of all models is improved by around 17% a�er removing these tiny clusters.

In Table 2, “Test 9” indicates folder 9 is utilized as the testing data and the others are merged for training. 
Since tenfold cross-validation is performed, we conducted 10 independent experiments for each fold validation. 
�e average precision (AP) and Recall of each experiment are tabulated in Table 2 for di�erent models. �e mean 
and the standard deviation are calculated across the tenfold cross-validation. In the “Method” column, “original” 

(1)Precision =
True Positive

True Positive + False Positive

(2)Recall =
True Positive

True Positive + False Negative
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indicates the detection models are applied to the originally labeled dataset; “+merge 10” indicates the results a�er 
merging the bounding boxes of close clusters. “+rm 0.01” represents the results a�er removing the tiny clusters.

Based on the observations from Table 2, it is evident that all the detection models exhibit similar performance 
in terms of both Average Precision (AP) and recall across di�erent versions of the datasets (original, +merge 10, 
and +rm0.01). Analyzing the mean and standard deviation values provided in Table 2, we can conclude that all 
four models yield comparable results, although the recall rate of the  PAA26 model is slightly higher compared to 
the other detectors. �is is primarily due to the fact that PAA generates a larger number of predicted bounding 
boxes compared to the other models. For instance, in the case of the “+merge 10” version of the dataset, the 
mean recall for PAA is 87.6, while the corresponding values for the other three models are 83.7, 82.6, and 83.3, 
respectively. Additionally, examining the standard deviation values across all validations, we can observe that 
the variations in AP and recall are small for all the detection models. �is suggests that the detection results are 
consistent and stable across each validation, further bolstering the reliability of the �ndings.

To assess the impact of IoU thresholds on the experimental results, we have conducted additional experi-
ments with varying IoU thresholds. We used split 1 as the test set and the remaining 9 splits were combined to 
form the train set in this experiment. �e IoU thresholds represent the required IoU value between the predicted 
bounding box and the ground truth bounding box for successful detection. For example, an IoU threshold of 
0.5 indicates that a prediction would be considered successful if its IoU with the corresponding ground truth is 
greater than 0.5, along with the correct classi�cation. �erefore, lowering the IoU threshold generally leads to 
improved performance of the detection models, and vice versa.

Table 2.  �e mean and standard deviation of tenfold cross-validation on state-of-the-art detection models.

AP (recall) Method VFNet GFLV2 PAA ATSS

Test 10

Original 42.7 (79.3) 42.4 (78.2) 42.2 (82.9) 42.2 (78.6)

+merge 10 46.7 (83.9) 45.9 (82.3) 45.4 (87.3) 46.3 (83.0)

+rm 0.01 60.3 (97.1) 60.3 (96.3) 60.3 (98.5) 60.6 (97.2)

Test 9

Original 44.2 (81.9) 44.2 (81.2) 43.4 (85.3) 43.9 (81.7)

+merge 10 47.1 (85.3) 47.2 (84.7) 46.6 (89.0) 47.1 (85.1)

+rm 0.01 60.5 (97.2) 60.4 (97.1) 61.4 (98.4) 61.3 (97.5)

Test 8

Original 42.3 (80.7) 41.7 (79.6) 41.4 (84.8) 42.1 (80.4)

+merge 10 45.2 (84.3) 45.6 (83.3) 44.6 (87.8) 45.6 (83.5)

+rm 0.01 59.5 (97.2) 59.1 (96.4) 58.9 (98.7) 59.6 (97.2)

Test 7

Original 43.0 (81.3) 42.7 (80.1) 42.2 (84.5) 43.0 (80.7)

+merge 10 45.9 (84.3) 46.1 (83.5) 45.2 (88.4) 45.9 (84.7)

+rm 0.01 58.0 (96.7) 58.5 (96.3) 59.5 (98.5) 59.6 (97.2)

Test 6

Original 41.4 (80.8) 41.0 (79.5) 40.7 (84.6) 41.5 (80.4)

+merge 10 44.2 (83.5) 43.9 (82.0) 43.6 (87.9) 44.0 (83.2)

+rm 0.01 57.2 (96.9) 57.1 (96.1) 57.8 (98.3) 57.1 (97.1)

Test 5

Original 43.3 (80.5) 42.5 (79.6) 42.4 (83.7) 43.0 (80.0)

+merge 10 46.3 (84.0) 45.9 (83.3) 45.4 (87.5) 46.1 (83.5)

+rm 0.01 60.3 (96.3) 60.6 (95.9) 60.8 (98.4) 60.8 (96.8)

Test 4

Original 43.3 (81.0) 42.9 (79.8) 42.0 (84.5) 43.1 (80.7)

+merge 10 45.0 (83.8) 45.4 (82.3) 44.5 (87.4) 45.6 (83.6)

+rm 0.01 59.0 (96.7) 59.1 (95.8) 59.0 (98.4) 59.8 (96.9)

Test 3

Original 38.9 (79.9) 38.9 (78.2) 39.1 (84.1) 39.5 (79.4)

+merge 10 42.2 (83.1) 41.8 (81.9) 42.1 (87.3) 42.5 (82.6)

+rm 0.01 56.5 (96.4) 56.3 (96.0) 56.5 (97.9) 57.0 (96.7)

Test 2

Original 41.5 (80.0) 41.6 (78.8) 40.9 (83.7) 41.2 (79.5)

+merge 10 44.3 (82.9) 44.1 (81.6) 43.5 (87.4) 43.8 (82.3)

+rm 0.01 56.7 (97.2) 56.6 (96.4) 57.0 (98.5) 57.6 (97.2)

Test 1

Original 38.4 (79.0) 38.2 (76.6) 37.9 (82.4) 38.5 (78.5)

+merge 10 41.3 (81.9) 41.3 (81.0) 41.0 (85.7) 41.3 (81.7)

+rm 0.01 55.2 (96.5) 55.3 (95.4) 55.8 (98.1) 56.2 (96.6)

Mean

Original 41.9 (80.4) 41.6 (79.2) 41.2 (84.1) 41.8 (80.0)

+merge 10 44.8 (83.7) 44.7 (82.6) 44.2 (87.6) 44.8 (83.3)

+rm 0.01 58.3 (96.8) 58.3 (96.2) 58.7 (98.4) 59.0 (97.0)

Std

Original 1.91 (0.90) 1.84 (1.27) 1.65 (0.89) 1.70 (1.00)

+merge 10 1.89 (0.92) 1.93 (1.09) 1.68 (0.86) 1.85 (1.03)

+rm 0.01 1.87 (0.35) 1.90 (0.45) 1.89 (0.23) 1.82 (0.28)
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Table 3.  �e experimental results with di�erent IoU thresholds for split 1 as the tst.

AP (recall) IoU threshold VFNet GFLV2 PAA ATSS

Original

0.5 38.4 (79.0) 38.2 (76.6) 37.9 (82.4) 38.5 (78.5)

0.25 51.2 (89.0) 51.3 (88.2) 49.2 (91.6) 51.5 (89.3)

0.75 16.2 (37.0) 15.5 (34.5) 16.5 (38.8) 15.7 (35.7)

Merge 10

0.5 41.3 (81.9) 41.3 (81.0) 41.0 (85.7) 41.3 (81.7)

0.25 54.0 (90.6) 54.1 (90.1) 52.5 (93.5) 54.5 (90.8)

0.75 18.8 (43.4) 17.8 (40.7) 19.4 (45.5) 17.8 (41.6)

Merge 10 + rm 0.01

0.5 55.2 (96.5) 55.3 (95.4) 55.8 (98.1) 56.2 (96.6)

0.25 68.9 (99.0) 69.1 (98.8) 68.6 (99.8) 70.0 (99.2)

0.75 27.5 (61.8) 26.2 (59.1) 28.1 (63.5) 27.3 (61.1)

Figure 4.  Some examples of merging clusters that are close enough (10 pixels) to each other. �e segmentation 
masks are utilized to illustrate the changes in the bounding boxes before and a�er the merging process. �e 
white areas are the masks for aphid clusters. �e green bounding boxes in the masks are the originally labeled 
boxes and the red bounding boxes in the masks are the merged results. Some clusters are merged as a whole for 
detection and the detection models might not recognize those small clusters individually but could be relatively 
easy to detect as a whole.

Figure 5.  Several examples of image patches contain extremely small partial ground truth a�er cropping. In 
most cases, the small partial ground truth bounding boxes appear at the border of the image patches, which 
is illustrated above with red bounding boxes. If those image patches are in the training set, the contribution of 
those patches is almost zero for training the detection models. If those image patches are in the testing set, the 
overall performance would drop since even the best detection model cannot accurately localize those small 
partial aphid clusters at the border. �us removing those small partial aphid clusters is meaningful in both 
training and evaluation.
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Table 3 shows the experimental results. It clearly demonstrates that as the IoU threshold decreases from 0.5 
to 0.25, the accuracy of the detection models increases. Conversely, increasing the IoU threshold from 0.5 to 
0.75 results in a decrease in accuracy. �is trend highlights the trade-o� between strict localization requirements 
and overall detection accuracy. If the precise location of aphid clusters is not of paramount importance, a lower 
IoU threshold, such as 0.25, can be employed. �is threshold allows for a more lenient criterion in determining 
successful detections while still maintaining a satisfactory level of accuracy.

Discussion
In recent years, the application of deep learning models for object detection and recognition in real-world 
scenarios has gained signi�cant popularity and success. However, when it comes to recognizing and localizing 
insects like aphids, several challenges arise due to their small size and the inherent di�culties in capturing high-
quality images in real-world agricultural settings. Moreover, from an agricultural perspective, it is not practical 
or meaningful to detect individual aphids if the objective is to address infestations or mitigate potential damage. 
Instead, focusing on detecting aphids as clusters is more applicable and relevant. �us, it is desirable to identify 
and label aphids as clusters. �is approach recognizes the natural tendency of aphids to cluster together, allowing 
for a more practical and e�ective detection strategy in real-world agricultural contexts.

Labeling aphid clusters presents a unique challenge due to the absence of well-de�ned boundaries compared 
to common objects like cars or humans. Unlike such objects, aphid clusters exhibit irregular shapes and sizes 
that can vary signi�cantly from one cluster to another. To address this challenge, we employ a two-step labeling 
approach: �rst, we label the aphid clusters using masks, and then we generate bounding boxes based on these 
masks, as depicted in Fig. 4. �e irregular shapes and sizes of the aphid cluster masks make their detection 
more challenging compared to objects with regular shapes and sizes. However, the area covered by these masks 
or bounding boxes can provide valuable insights into the severity of aphid infestation. Larger areas occupied 
by aphid clusters indicate a more severe infection, signaling the need for protective measures and appropriate 
interventions.

Due to the irregular shapes and sizes of aphid clusters, the initial labeling process may not yield perfect 
accuracy, necessitating post-processing techniques. A straightforward and e�ective method to enhance detection 
performance is to merge the bounding boxes of small, neighboring clusters. �is approach is particularly ben-
e�cial as many state-of-the-art object detectors struggle to accurately recognize small objects. As demonstrated 
in Table 2, merging the bounding boxes of neighboring clusters leads to notable improvements in detection 
performance. �e performance is further improved a�er removing the tiny clusters caused by image cropping. 
Using the generated dataset, state-of-the-art detection models can be directly employed to detect and recognize 
the aphid clusters.

In our experiments, all four models yield comparable results. Some detection results are visualized in Fig. 6 
using  VFNet25 as the detection model. We can see that the detection results are very close to the ground truth. 
However, the irregular sizes and shapes of aphid clusters pose a challenge, occasionally leading to duplicate 
detections around the true clusters. As a consequence, the number of false positives increases, thereby impact-
ing the overall accuracy of the detection. Figure 7 showcases some instances of poor detection results, high-
lighting the di�culty in accurately detecting irregular aphid clusters. Additionally, it is important to note that 
certain sorghum diseases, such as leaf blight, can result in leaf lesions that bear similarities to aphid clusters. As 
a consequence, the models may erroneously identify the lesions as aphids, leading to false positive detections. 
�is can be mitigated by incorporating a broader range of training samples to provide the models with a more 
comprehensive understanding of the various appearances and features.

�e NMS (Non-Maximum Suppression) algorithm is commonly employed in detection models to eliminate 
duplicate detections. It operates by setting an IoU threshold, which determines the overlap allowed between 
bounding boxes before considering them duplicates. �e NMS algorithm ranks the detection results by their 
con�dence scores, starting with the highest score. �e top-scoring result is retained, while any subsequent results 
with bounding boxes that have an IoU exceeding the threshold are discarded. To explore the in�uence of IoU 
thresholds on detection performance, we conduct experiments by varying the IoU thresholds, as depicted in 
Fig. 8. �e results indicate that the IoU threshold of 0.5 yields the best performance for all detection models and 

Figure 6.  Some good detection results with  VFNet25 as the detection model. �e red bounding boxes are the 
ground truth boxes and the green bounding boxes are the predicted bounding boxes. �e predicted bounding 
boxes whose con�dence scores are higher than 0.3 are shown in the image patches. �ose detection results are 
almost perfect considering the minor errors when those ground truth clusters are labeled.
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datasets. While varying the IoU threshold in the NMS algorithm does not signi�cantly enhance the performance 
of the detection models on the aphid dataset.

Conclusion
In this study, we have collected a large aphid dataset from sorghum �elds and annotated the dataset based on 
aphid clusters. We have also implemented and compared the performance of four state-of-the-art detection 
models on the dataset and achieved promising results on aphid cluster detection. To improve the detection per-
formance, we preprocessed the dataset by merging the bounding boxes of neighboring clusters and removing 
extremely small clusters. Consequently, our annotated dataset can be readily utilized with existing object detec-
tion models, thus increasing its relevance in real-world scenarios. �e resulting dataset and trained models hold 
the potential to assist farmers in accurately estimating aphid infestation levels and enabling timely and precise 
pesticide application. Furthermore, the approach and analysis serve as a valuable resource that can inspire further 
research for the detection and recognition of other insects.

Data availability
�e created dataset is available at Harvard Dataverse via https:// doi. org/ 10. 7910/ DVN/ N3YJXG.

Received: 6 February 2023; Accepted: 12 July 2023

Figure 7.  Some bad detection results with  VFNet25 as the detection model. �e red boxes are the ground truth 
and the green boxes are the predicted bounding boxes. �e predicted bounding boxes whose con�dence scores 
are higher than 0.3 are shown in the image patches. �e most common problem for detecting aphid clusters is 
that there are many duplicates generated around the ground truth clusters (false positives) since there are no 
�xed sizes and shapes for aphid clusters, as illustrated in the examples above. �us the predicted bounding boxes 
for parts of the clusters are frequently generated.

Figure 8.  �e IoU threshold in NMS algorithm v.s. average precision. Similar to Table 2, “original” indicates 
the dataset is our originally labeled dataset; “10 pixels” represents the neighboring clusters within 10 pixels are 
merged with a single bounding box; “10 pixels + rm 0.01” illustrates that merging neighboring clusters within 
10 pixels and removing tiny clusters (less than 0.01 of the area of the patches) are implemented for the dataset. 
Split 1 is utilized as the testing data and the other 9 splits are merged as the training data. �e four detection 
models have the same trend and the performance is extremely unpleasing when the threshold is close to 1. �e 
IoU threshold of around 0.5 could yield the best performance with all detection models and annotations. In the 
experiments, 0.6 is utilized as the default IoU threshold for NMS algorithm and all the experimental results are 
based on 0.6 as the IoU threshold of NMS.

https://doi.org/10.7910/DVN/N3YJXG
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