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Despite growing interest in early childhood computational thinking (CT), there is a lack of validated assessments
for children who are emerging readers. This paper presents validity and reliability evidence of a performance-
based assessment of CT using item response theory (IRT) from 272 children aged 4-8. Using a two-parameter
logistic model IRT model (2PL IRT), we confirmed that model- and item-level fits are acceptable. Item ana-
lyses revealed a high discriminability (M = 2.26, SD = 1.12) and a moderate item difficulty (M = —0.21; SD =
0.86), on average, across 19 items. Reliability analysis demonstrated that the assessment was substantially
reliable (marginal reliability: ry, = 0.87). Differential item functioning (DIF) analyses indicated that the
assessment estimated children’s item parameters fairly, regardless of their gender and age. However, we
confirmed gaps in latent ability (0) of CT by gender and age: boys showed higher latent ability of CT than girls,
and old children (above 72 months) showed higher latent ability than young children (below 72 months).
Findings suggest the assessment is a fair measure that can serve as a reliable and valid tool to assess CT for

children who are emerging readers.

1. Introduction

The increase in access to tangible coding toys and applications like
Scratch Jr have created more opportunities to introduce coding and
computational thinking (CT) in early childhood classrooms (Bers, 2018;
Zeng et al., 2023). Coding is a common context for developing CT, and
young children can learn to program tangible coding toys and engage in
CT before they can read and write (Bers, 2018; Relkin et al., 2020; Wang
et al., 2021). Such tangible coding environments designed for young
children who are pre-literate or emerging readers rely on symbol sys-
tems to represent codes to program an agent’s movement or actions.
Thus, young children learn to sequence using codes such as forward,
backwards, rotate right, and rotate left. Examples of coding toys and the
codes that correspond to movement are presented in Fig. 1.

Despite the increase in access to coding toys and apps, there is not an
agreed upon definition of early childhood CT nor is there agreement on
how to assess it (Clarke-Midura et al., 2021; 2023;Su & Yang, 2023).

This is due to the novelty of the field of early childhood CT (Bers, 2018;
Relkin et al., 2020; Zeng et al., 2023). In a recent review that looked at
how CT is integrated in early childhood, Su and Yang (2023) identified
four challenges for early childhood CT: the need for deeper learning of
CT, lack of valid and reliable assessments, selecting developmentally
appropriate tools, and developmentally appropriate curriculum. Other
researchers have also indicated the need for validated and reliable as-
sessments for early childhood CT (Clarke-Midura et al., 2021; Relkin
et al., 2020; Tang et al., 2020). In addition, Su and Yang (2023) found
that existing assessments of early childhood CT measure a range of
concepts from programming skills to CT skills.

Given the lack of an agreed upon definition of early childhood CT, as
part of a larger project, we operationalized a cognitive model of early
childhood CT and developed research-based curricula tasks around
tangible coding toys for kindergarten classrooms (Clarke-Midura et al.,
2023; Shumway et al., 2023). We then developed a performance-based
assessment we call CaST, which stands for computational and spatial
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thinking assessment (Clarke-Midura et al., 2021). Our intent was to
design a developmentally appropriate assessment that did not rely on
children’s reading or writing abilities and that could be used across
tangible coding toy contexts. As part of our commitment to assessment
fairness (Davidson et al., 2021), and knowing that some studies reported
differences in CT knowledge based on participant’s gender and age
(Macrides et al., 2022), we want to test that the probabilities of
answering assessment tasks correctly are attributed to children’s true
abilities in CT and do not favor or benefit participants based on their
gender or age. Our research questions are: 1) Is the CaST assessment a
reliable and valid measure of CT for a sample of children aged 4-8? 2) Does
the CaST assessment function equally for children regardless of their gender
and age?

The present study contributes to the current discourse on the chal-
lenges facing early childhood CT by providing evidence of the validity,
reliability, and fairness of CaST with a sample of 272 children. In the
sections that follow, we first discuss how CT is defined in early child-
hood and our operational definition of CT for early childhood. Next, we
describe the research on assessments of early childhood CT that has
reported validity evidence. We then discuss our methods and materials,
including participants, data, and data analysis. Finally, we present our
results followed by our discussion and conclusion.

2. Literature review
2.1. Computational thinking in early childhood

While the ideas behind computational thinking (CT) have roots in
Papert’s seminal work around LOGO (Papert, 1980), the term compu-
tational thinking was popularized by Jeannette Wing in her 2006 article
in which she described it as a skill that involves “solving problems,
designing systems, and understanding human behavior, by drawing on
the concepts fundamental to computer science” (Wing, 2006, p. 33).
Since then, researchers have developed various frameworks for defining
CT, often shaped by particular context or for a particular age group
(Angeli & Valanides, 2020; Bers, 2018; Brennan & Resnick, 2012;
Martins et al., 2023; Wang et al., 2023; Zeng et al., 2023). Yet, as
mentioned previously, there is not an agreed upon definition or frame-
work for early childhood CT. Bers (2018) writes about CT in terms of
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powerful ideas, in which she proposed seven developmentally appro-
priate ideas for early childhood CT: algorithms, modularity, control
structures, representation, hardware/software, design process, and
debugging (Bers, 2018). Other researchers in early childhood have
looked at sequencing (Angeli & Valanides, 2020; Citta et al., 2019),
debugging (Heikkila & Mannila, 2018), and decomposition (Rijke et al.,
2018). Thus, we started with these CT concepts and then spent hours in
kindergarten classrooms observing the kinds of skills children used
when they engaged with tangible coding toys (Clarke-Midura et al.,
2021, 2023, Shumway et al., 2023). Our classroom studies resulted in
what we refer to as a cognitive model of early childhood CT. For the
design of the assessment, we only focused on the skills we knew we
could observe and measure. Our cognitive model includes CT concepts
such as algorithmic thinking, decomposition (modularity), debugging,
and abstraction (Clarke-Midura et al., 2021, 2023). We also identified
pre-requisite spatial and mathematical thinking knowledge that chil-
dren used when they played with the tangible coding toys. For example,
children reason with an agent’s orientation, location, and navigation in
space. We refer to these as foundational ideas and math knowledge
(Clarke-Midura et al., 2021, Shumway et al., 2023). Table 1 lists the CT
components of our model with definitions and Table 2 lists the
pre-requisite spatial and mathematical thinking knowledge.

While most models of CT do not contain spatial thinking concepts,
many researchers have investigated the relationship between CT and
spatial ability. For example, in a sample with 1251 students in 5-10th
grade, Roman-Gonzalez et al. (2017) found a significantly positive
correlation between spatial ability and CT (r = 0.44, p < 0.01). This
result was replicated by Tsarava et al. (2022) who reported a modest,
positive association between visuospatial abilities and CT (r = 0.35,p <
0.001) in 192 3-4th primary school students. Similarly, Citta et al.
(2019) found that mental rotation ability was a significant predictor of
CT skills for students in both grades 1-2 (8 = 2.13; p = 0.02) and grades
3-6 (f = 2.37; p < 0.001). While these studies do not specifically
investigate the co-occurrence of CT and spatial thinking, they support
our position that children use spatial thinking when playing with coding
toys and our decision to include it in our model as a foundational idea.
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Fig. 1. Examples of Coding Toy for Early Childhood Computational Thinking.
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Table 1

Operational Definitions of Components of our Early Childhood CT Cognitive Model.
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CT Component Operationalized definition

Algorithm
thinking

Involves developing and using ordered sequences of instructions. Important subcomponents of algorithmic thinking are:
e Sequencing codes- Ordering and arranging codes based on knowledge of syntax and semantics

e Planning programs- Ordering and arranging codes based on knowledge of syntax and semantics
e Reading/enacting programs- Interpreting (reading) and executing (enacting) sequence of codes

Debugging

Involves recognizing bugs/errors exist, locating the specific error or bug, proposing a fix, and correcting the bug. Important subcomponents of debugging are:

e Recognizing Bug- Noticing that instructions do not work as expected or desired, or anticipating a problem before executing the program (i.e. knowing that

there is a bug)

e Locating Bug- Finding the part in the program that caused the problem (i.e. knowing where the bug is)
e Proposing Solution- Making a plan or suggestion for how the program could change (i.e., knowing how to fix it)
o Fixing Bug- Implementing a successful repair strategy (i.e. resolving the bug)

Decomposition
decomposition are:

Involves recognizing parts in part-whole relationships, building a whole from parts, and breaking a whole into parts. Important subcomponents of

e Breaking whole into parts- Recognize how whole programs can be broken down into units or segments of code to simplify the task/problem
o Building whole from parts- Writing program by combining chunks or sequencing codes one-by-one
o Relating parts to whole- Coordinating units or segments of code with one another as well as with whole program

Table 2

Foundational Ideas and Math Knowledge that are Pre-requisites for Solving CT Tasks.

Pre-requisite Spatial and Math Knowledge Operationalized definition

Space-symbol coordination

Spatial orientation

Spatial Code Meanings

One Code to One Movement Correspondence
Spatial reasoning

Counting on

Sequencing

Linear Units

Rotation on a point

Knowing how codes or parts of programs correspond to movements or paths traveled by the agent.

Knowing that the codes always produce the same movements but depend on the agent’s orientation.

Knowing what each of the codes instructs the agent to do.

Knowing that one code produces a single discrete linear or rotational movement.

Knowing how the agent moves in 3 dimensions and thinking about them in different positions and orientations.
Knowing that one code produces a single discrete linear or rotational movement.

Knowing that you do not include the starting location when counting forward movements.

Knowing how to use a standard unit of measure to make the agent travel along a linear path.

Knowing that an agent’s rotation occurs by rotating on a fixed point at a set angle, not translating to an adjacent point.

2.2. Existing valid and reliable assessments of early childhood CT

As mentioned previously, there is a need for validated and reliable
assessments of early childhood CT (Zeng et al., 2023). As shown in
Table 3, we identified seven assessments of early childhood CT (from
nine empirical studies) that reported reliability and validity evidence.

TechCheck is a multiple-choice assessment with 15 items (Relkin
et al., 2020), designed to assess Bers’ powerful ideas of CT in early
childhood (Bers, 2018). In order to gather validity and reliability evi-
dence, they conducted a study with 768 children ages 5-to-9. They re-
ported an acceptable reliability (a = .68), and appropriate item
discrimination (M = 1.03) and low level of item difficulty (M = —1.25),
on average, for their targeted population. However, the test information
function of TechCheck peaked at low latent ability (0); indicating this
assessment is better at differentiating between children with relatively
low CT ability (Relkin et al., 2020).

TechCheck-K is a modified version of TechCheck designed specif-
ically for kindergarten-aged children (Relkin & Bers, 2021). This
assessment is akin to TechCheck in terms of the multiple-choice items
and constructs measured, however, to make it developmentally appro-
priate for kindergarten children and to adjust item difficulties, they
reduced the number of possible answer choices from 4 to 3. They con-
ducted a study with 87 children in which the item correction patterns of
TechCheck-K were correlated with the patterns from the TechCheck (r =
0.76), suggesting that TechCheck-K can assess CT concepts in a com-
parable way to TechCheck. However, the authors presented relatively
weak level of reliability and validity evidence of the TechCheck-K.

Similarly, Zapata-Caceres et al. (2020) modified their Computational
Thinking test (CTt, Roman-Gonzalez et al., 2017), for students aged 5 to
12, that they call the Beginners Computational Thinking Test (BCTt,
Zapata-Caceres et al., 2020). BCTt is 25 multiple-choice item assessment
designed to measure sequences, loops, and conditionals. In a pilot study
with 289 primary students, the BCTt showed good reliability (internal
reliability: o = 0.82; test-retest reliability: r = 0.93) and is more suitable
for students in lower grades (i.e., 1-2 graders) than upper grades (3-6

graders) based on students’ item correction patterns. This assessment
was also validated by El-Hamamsy et al. (2022) with 374 3-4 graders
using classical test theory (CTT) and item response theory (IRT). After
excluding two items that were misfitted from the original 25 items, the
results of IRT analyses with 23 items showed moderate item discrimi-
nation (M = 1.58) and relatively easy item difficulty (M = —1.57), on
average. The assessment was easier for students in grades 3-4 and the
authors claim that BCTt is more effective to use as a diagnostic tool to
“discriminate between students with low abilities in grades 3 and 4”
(El-Hamamsy et al., 2022, p. 17).

TACTIC-KIBO is an assessment for children aged 4-7 that is specific
to the KIBO robot (Relkin et al., 2019). According to the children’s
coding ability, the difficulty and complexity of the assessment tasks
gradually escalated from Level 1 to 4. This assessment was validated by
Sung (Sung, 2022) with 450 Korean children aged 5-6 years, using IRT,
CTT, and criterion validity with the Bebras Challenge (www.bebras.org)
and early numeracy tasks (Howard & Melhuish, 2017). According to IRT
results, TACTIC-KIBO had moderate mean item discriminations (M =
1.77), and item difficulties gradually increased with levels. However,
although the CFA model of TACTIC-KIBO yielded acceptable fit indices,
some items related to a specific platform (i.e., KIBO) or its specific
functions had very weak factor loadings. Additionally, this knowledge
did not correlate with the sub-factors of the Bebras tasks.

The Coding Stages Assessment (CSA) is an interview-based assess-
ment of Bers’ coding stages framework (de Ruiter & Bers, 2022). It
consists of 27 items that ask children to answer questions verbally or to
perform given tasks in ScratchJr. It is administered one-on-one by an
administrator, who observes how the child performs a given task to
determine whether he or she answers it correctly or not. Based on item
responses from 118 children (5-8 years old), visual inspection of item
characteristic curves from IRT analyses revealed good psychometric
properties, and gender and age-related item bias was not detected. A
moderate correlation (r = 0.55, p < 0.05) was found between
CSA-ScratchJr and TechCheck scores on CT, indicating that the two
assessments assessed the same CT construct. Since this assessment
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Table 3
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Synthesis of Assessment and Sample Features, Targeted CT components, and Validity and Reliability Evidence of Seven Early Childhood CT Assessments.

Validated measures Assessment Sample Targeted CT components Psychometric evidence
Format Age n Validity Reliability

TechCheck (Relkin et al., 15 unplugged 5-9 768 Algorithms, modularity, Face validity, Psychometric Inter-rater reliability

2020) multiple-choice control structure, analysis (IRT) and Criterion (Fleiss’s k = 0.63) and
items representation, debugging, validity via correlation with Internal reliability
and hardware/software TACTIC-KIBO (r = 0.54) (Cronbach’s o = 0.68)

TechCheck-K (Relkin & 15 unplugged 5-6 89 Algorithms, modularity, Correlations of the correct response  Not provided in the

Bers, 2021) multiple-choice control structure, patterns of the TechCheck-K and manuscript
items representation, debugging, the TechCheck (r = 0.76)
and hardware/software

Beginners Computational 25 unplugged- 5-12 299 Sequence, loop, conditional Face validity and Psychometric Internal reliability
Thinking test (BCTt) ( multiple choice statements, and while analysis (CTT) (Cronbach’s a = 0.82) and
Zapata-Céaceres et al., items statements test-retest reliability (r =
2020) 0.93 from 28 children)

Beginners Computational 23 unplugged- Grade 374 Sequence, loop, conditional Psychometric analysis (CTT and Internal reliability
Thinking test (BCTt) ( multiple choice 3-4 statements, and while IRT) (Cronbach’s o = 0.82 and
El-Hamamsy et al., items statements Marginal reliability ry =
2022) 0.75)

TACTIC-KIBO (Relkin 28 tasks (7 tasks 5-7 15 Algorithms, modularity, Face validity and criterion validity Inter-rater reliability by
et al., 2019) x 4 levels) control structure, via correlations with Interactive experts

representation, debugging, play sessions (IPS, r = 0.90)
and hardware/software

TACTIC-KIBO (Sung, 28 tasks (7 tasks 5-6 108 (Level Control structure, hardware, Psychometric analysis (IRT and Internal reliability
2022) x 4 levels) 4) - 332 software, representation, CTT) and criterion validity via (Cronbach’s o = 0.88)

(Level 1) algorithms, modularity, correlations with Bebras tasks (r =
debugging and design process 0.18) and early numeracy ability (r
= 0.35)

ScratchJr Coding Stage 27 computer- 5-8 118 Emergent, coding and Construct validity, Criterion Internal reliability
Assessment (CSA based open- decoding, fluency, new validity via correlations with (Guttman’s Ag = 0.94) and
ScratchJr) (de Ruiter & ended tasks Knowledge, and TechCheck (from 23 children, r = Inter-rater reliability
Bers, 2022) purposefulness 0.55), and Psychometric analysis (Cohen’s k = 0.78)

(CTT, IRT and DIF)

KIBO project rubric ( Rubric Grade 173 1st iteration: General and Face and construct validity Inter-rater reliability

Govind & Bers, 2021) 2 projects KIBO-specific programming (Cohen’s weighted x = 0.84)
skills
2nd iteration: Programming
concepts and project design

ScratchJr Project rubric ( Rubric 6-7 87 (228 Coding concepts and Project Face and construct validity and Inter-rater reliability
Unahalekhaka & Bers, projects) design criterion validity via correlation (Krippendorff’s a = 0.95)

2022)

with CSA-ScratchJr (de Ruiter &
Bers, 2022; partial r = 0.35)

Note. CTT refers to classical test theory; IRT refers to item response theory; DIF refers to differential item functioning.

involves open-ended tasks, it is relatively long to administer (M = 50
min) and has wide variations in task-solving processes between children,
both of which make it difficult to use in real-world settings.

KIBO Project Rubric (Govind & Bers, 2021) is a rubric-based
assessment to measure KIBO projects in terms of programming con-
cepts and project design elements. A score is awarded that provides an
estimated level of mastery. Similarly, the ScractchJr Project Rubric
(Unahalekhaka & Bers, 2022) evaluates ScratchJr projects based on
coding concepts and project design. The rubric was validated in a study
with 87 children aged 6-7 years. The inter-rater reliability of the rubric
was high (Krippendorf’'s a = 0.95). Criterion validity was verified
through positive correlation (r = 0.35) between ScratchJr project rubric
scores and the Coding Stage Assessment (CSA-ScratchJr) scores (de
Ruiter & Bers, 2022), controlling for the effect of children’s gender and
grade levels.

While these assessments provide evidence of reliability and validity
through psychometric analyses, some limitations of these assessments
were identified: (a) some are tied to specific coding language or plat-
form, (b) some rely on multiple-choice format, and (c) some assessments
only work for children with relatively low CT abilities. In this regard,
there is a need for a validated assessment that can be used across a va-
riety of tangible coding toys and platforms that is developmentally
appropriate for emerging readers and provides insight into how young
children solve coding problems or use spatial knowledge to solve coding
tasks. The purpose of the present study is to test the validity and reli-
ability of a performance-based assessment that measures emerging

readers’ CT knowledge in the context of coding with tangible coding
toys. The present study contributes to the research on early childhood
CT, specifically, it contributes to understanding on how to assess CT as
an active process (Bakala et al., 2021; Martins et al., 2023).

2.3. A note on assessment fairness

In the design and administration of the CaST assessment we are
committed to fairness and ensuring that our inferences about children’s
CT learning are accurate (Clarke-Midura et al., 2021; Oliveri Elena et al.,
2019). Similarly, we want to ensure that our items are not biased and
that they do not favor children based on their gender or age (American
Educational Research Association et al., 2014). Differential item func-
tioning (DIF) analysis is one way to examine fairness in tests. DIF
analysis allows us to determine if items are performing in a biased way
towards members of a particular group. It is important to note that if
boys score higher on an exam than girls, on average, it does not mean the
items are biased in favor of boys. A DIF analysis is needed to determine if
there is bias. While some of the research on assessing CT in early
childhood reported difference in scores based on gender (Sullivan &
Bers, 2013) and age (Zapata-Caceres et al., 2020), they did not report
results of DIF analysis. Thus, a contribution of the present study is that
we conduct a DIF analysis to examine whether boys and girls and older
and younger children, matched on ability, perform differently on any of
the tasks in the assessment.
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3. Methods
3.1. Participants

Our sample consisted of 272 children (girls = 138), between 47 and
101 months old (M = 78.5; SD = 10.8), across five elementary schools in
the Western United States. For the analysis, age was split into two
groups, younger (<72 months; n = 95) and older (>72 months; n = 177).
Selecting 72 months as a splitting point in the age is guided by the
empirical work of prerequisite knowledge for the CT: math knowledge
and spatial thinking (i.e., foundational ideas in our early childhood CT
cognitive model). First, it is based on the validation studies on the
Research-based Early Math Assessment (REMA, Alkhadim et al., 2021)
that separate the sample at 72 months. Next, in the domain of spatial
thinking, compared to younger children, 6-year-old children hold a
comparable ability to adults in being aware of their mental rotation
abilities and articulating them (Estes, 1998). Given that CaST is an
interview-based performance assessment, awareness and explanation of
their spatial activities can be critical criteria to determine a threshold to
investigate developmental differences in the CT ability. In terms of prior
experience with coding, 21 children reported doing coding activities at
home and one school (n = 123) introduced coding activities starting in
kindergarten.

3.2. Measures

We developed a standardized, interview-based assessment, Compu-
tational and Spatial Thinking Assessment (CaST), using the evidence-
centered design framework (ECD). ECD is a systematic approach that
involves constructing educational assessments in terms of evidentiary
arguments (Mislevy & Haertel, 2006). This is done through an iterative
process of observing what children say or do when completing tasks in
order to make inferences about what they know and can do (Mislevy &
Haertel, 2006). This view of assessment as argument is central to dis-
cussions around validity (American Educational Research Association
et al., 2014; Kane et al., 2006) while offering what Mislevy (2007) calls
“validity by design” where, as designers, we structure our approach in
such a way that validity evidence emerges (Mislevy, 2007).

ECD consists of five layers: (a) domain analysis, (b) domain
modeling, (c), the conceptual assessment framework, (d) assessment
implementation, and (e) assessment delivery. In the first two layers, the
focus is on the purposes of the assessment, the nature of knowing, and
structures for observing and organizing knowledge. This information is
put into “design patterns” that articulate the kinds of features that
assessment tasks will need and the kinds of performances those features
will elicit. In the third layer, the conceptual assessment framework
(CAF), the focus is on the student model (what skills are being assessed),
the evidence model (how do we measure it), and the task model (situ-
ations that elicit the behaviors/evidence). These three models are
developed with the information from the first two layers in ECD — the
design pattern in particular — to provide technical details of the tasks
(such as potential student performances/products during assessment
implementation and delivery) and a specification of the kinds of features
of the tasks that will provide evidence about the student model. For
example, we identified variable features, features that make a task vary
in level of difficulty. These included administration features (enacting
the program with agent and verbalizing codes); grid features (start space
marked or unmarked, end space marked or unmarked); program fea-
tures (program length, number of turns, location of turns), task features
(starting orientation relative to students’ perspective); and for items that
involved debugging, the type and location of bug.

The assessment is unplugged and not tied to a specific coding plat-
form. Children interact with 2-D grids and a tangible agent they can pick
up and move along the grid (see Fig. 2). There are five different story
lines involving a robot, each with a separate grid (or number line) and
items that involve moving the robot from one location to another (e.g.,
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Fig. 2. Kindergarten Student Working on an Assessment Item Using (1) Arrow
Codes, (2) Activity Grid, (3) Robot Agent, (4) Administrator’s Assessment
Scripts, (5) Scoring Sheets, and (6) Example Programs to Enact or Debug.

putting a banana peel in the trash or picking up school supplies and
putting them in a backpack). The tasks use four directional codes
depicted by arrows to represent: Forward, Backward, Rotate Right, and
Rotate Left (see Fig. 3). There are 19 task-based items that assess skills in
our early childhood CT cognitive model (see Tables 1 and 2). Children
responded to tasks by either ordering and sequencing codes, enacting a
sequence of codes (by moving the agent), or debugging and fixing pro-
grams. Some tasks had only one possible correct solution whereas other
tasks had multiple possible correct solutions. Each task was scored
correct or incorrect. An example of an item is presented in Fig. 4. Note
that the left presents the item from the perspective of the administration
guide and the administrator’s view of the grid while the image on the
right presents what students see (the grid from a child’s perspective). In
this item, children are given a program that has an error. They are asked
to “fix” the program by rewriting it. For more information about the
assessment see (Clarke-Midura et al., 2021). Table 4 presents the CT
concepts that are covered in each item.

3.3. Procedure

The assessment was administered face-to-face in quiet areas in the
schools, in a one-on-one format by members of the research team. All
assessments were video recorded. Children were introduced to the
assessment through a demonstration of how to use the four directional
codes and through two sandbox items that were not scored. The as-
sessments took an average 17.5 min (SD = 3.3) per child and were
double scored based on video recordings.

3.4. Statistical analysis

Classical Test Theory (CTT) and Item Response Theory (IRT) are two
common psychometric approaches to analyze and score test data (de
Ayala, 2022). While they both provide useful information about test
performance, we used IRT for the present study due to the ability to
make stronger assumptions, such as the chance of getting items right or
wrong based on a child’s true ability. For example, when the assump-
tions of IRT are met, the parameters are sample and item independent,
meaning a child will obtain the same true ability score (i.e., 0) no matter
which a set of items within a given test that they answer (i.e., item in-
dependence) and items have the same difficulty and discrimination no
matter which student is taking the test (i.e., sample independence).

Our analysis was conducted in five steps described below. We used
the Itm package (Rizopoulos, 2006) for checking unidimensionality
assumption, mirt package (Chalmersmirt, 2012) for IRT analyses, difR
package (Magis et al., 2010) and mirt package (Chalmersmirt, 2012) for
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Fig. 3. Arrow Codes Used in the CaST Assessment.
ITEM 8: SCISSORS TO THE BACKPACK MATERIALS
& * | want the robot to take the scissors to the backpack. & t t t c &)
* The robot starts here facing this direction. (orient) )
* | gave it these instructions to land on the backpack 1 ' t f’ but my >
instructions don’t work. I - ‘
«  Vll show you (say and enact) () *@‘ (reorient). =
* Use these arrows (gesture) to fix the instructions so that the robot lands on
the backpack. |
* Prompts: Can you fix the instructions? Rewrite the instructions to get the |
robot to the backpack. ! Fl E’?i
Fig. 4. An Example of CaST Assessment from the Administration Guide (Left) and Student Perspective (Right).
bl satisfying the assumption of unidimensionality indicated that the second
Table 4

CT Concepts Involved in Items.

Item CT Concepts Item CT Concepts

Item 1 AT, Decomposition Item 11 AT, Debugging
Item 2 AT Item 12 AT

Item 3 AT Item 13 AT, Debugging
Item 4 AT, Debugging Item 14 AT, Decomposition
Item 5 AT Item 15 AT, Decomposition
Item 6 AT, Debugging Item 16 AT, Decomposition
Item 7 AT Item 17 AT

Item 8 AT, Debugging Item 18 AT

Item 9 AT Item 19 AT, Debugging
Item 10 AT, Debugging

Note. AT refers to algorithmic thinking.

DIF analyses, psych package (Revelle, 2023) for exploratory factor an-
alyses (EFAs), lavaan package (Rosseel, 2012) for confirmatory factor
analyses (CFAs), and afex package (Singmann et al., 2023) for ANOVAs.
All analyses were conducted with R version 4.3.2 (R Core Team, 2023).

3.4.1. Assumptions check

To answer RQ 1, we employed IRT. We tested the three assumptions
of IRT (see Table 5): (a) unidimensionality, (b) local independence, and
(c) functional form (de Ayala, 2022).

3.4.1.1. Unidimensionality. For the assumption of unidimensionality,
we performed exploratory factor analysis (EFA) and modified parallel
analysis (Drasgow & Lissak, 1983) to check whether a single latent
factor was held among students’ item responses. In EFA, we extracted
one factor and examined whether a single factor holds more than 20% of
variance which is prerequisite to obtain stable parameter in the IRT
framework (Reckase, 1979). Furthermore, in modified parallel analysis,

Table 5
Statistical Methods and Cutoff to Meet Three Assumptions of IRT.

eigenvalues from the observed data was not substantially different from
the second eigenvalues from the simulated data.

3.4.1.2. Local dependence. The second assumption is local dependence
that the responses to one item should be independent of the responses to
the other items. In the context of unidimensional scale, violating this
assumption (i.e., local dependence) can lead to inflated reliability and
weaken the accuracy in estimating person parameters. We used Yen’s Q3
statistics (Yen, 1984) to detect local dependence through the residual
correlations among pairs of items. Considering both the sample size and
the number of items (Christensen et al., 2017), we set a cutoff for the
average residual correlation to lower than 0.3.

3.4.1.3. Functional form. The last assumption is the functional form that
the given data should be fitted to the function specified by the model.
The assumption was examined by fitting data to three different IRT
models, including Rasch (variant of 1PL model), two (2PL) and three
parameters (3PL) model. Among diverse model fit indices, Akaike in-
formation criterion (AIC, Akaike, 1974) and Bayes Information Criterion
(BIC, Schwarz, 1978) were used to determine the final model. A model
with the lowest AIC and BIC was selected as the best fitting model. As
relative model fit, we also use loglikelihood and conducted model
comparisons using log-likelihood ratio test.

3.4.2. Fitting IRT models

Next, we checked model level fit indices and item level fit indices. At
the model level of goodness of fit, the limited-information statistics Mz
with its p-value, Root Mean Square Error of Approximation (RMSEA)
and standardized root mean squared residual (SRMR) were compre-
hensively considered as indicators of the goodness of fit of the model

Assumptions Statistical Methods

Cutoff

1. Unidimensionality
factor analysis

Checking the proportion of variances explained by a single factor using exploratory

Proportion of variance explained by a single factor >20% (
Reckase, 1979)

A comparison of observed and simulated second eigenvalues (Drasgow & Lissak, 1983)

2. Local
Independence
3. Functional form

Yen’s Qs statistics (Yen, 1984)

Q3 < 0.3 (Christensen et al., 2017)

Model comparison to three IRT models through log-likelihood ratio test
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(Maydeu-Olivares & Joe, 2005, 2006). According to Maydeu-Olivares &
Joe (2006), a non-significant Mz with RMSEA below 0.089 and with
SRMR below 0.05 were proposed cut-off values for good fit. At the item
level of goodness of fit, we used signed chi-square (S — y) item-fit sta-
tistics (Orlando & Thissen, 2003) with RMSEA. The cutoff values for
good fit were a non-significant S — y? with RMSEA close to 0.

3.4.3. Estimating item parameters and marginal reliability

After assessing model- and item-level fit, we fitted the selected model
to the data to calibrate item parameters for the 19 items. For example, in
the case of 2PL model, as a slope parameter, discrimination parameter
(a) refers to how well items distinguish between the different levels of
children’s CT ability. The difficulty parameter (b) is a location parameter
that reflects how difficult an item is. The 2PL IRT model can estimate
person location (0) based on their item response patterns and item pa-
rameters, which reflect the latent ability of children’s CT. Additionally,
we plotted item characteristic curves for the visual inspection of the
relationships between item discrimination (a) and difficulty (b) ac-
cording to children’s CT latent ability (6). We then examined test in-
formation function (TIF) to investigate the preciseness of test in the
relationship to level of children’s CT ability. The peak point of the test
information function refers to where a test provides the most psycho-
metric information, so it is the most reliable at measuring a child’s CT
ability. In addition to calculating the reliability of the composite test
scores (i.e., Cronbach’s o and McDonald’s ®) under the framework of
classical test theory, we estimated IRT marginal reliability (rxx) (Cheng
et al., 2012; Green et al., 1984) which is “the ratio of the true score
variance to the total variance, expressed with respect to the estimated
latent ability” (Andersson & Xin, 2018, p. 33). In the context of holding
local independence assumption, the use of marginal reliability prevents
overestimation of reliability and in turn allows for estimation of more
precise reliability coefficients (Sireci et al., 1991).

3.4.4. Differential item functioning

We assessed differential item functioning (DIF) to check for biases in
items. There are two widely used approaches for detecting DIF (Millsap,
2011): (a) observed variable analysis (e.g., sum score on a test) and (b)
latent variable analysis (e.g., latent ability 6). The observed variable
analysis posits this probability is dependent on the sum scores of test (s)
which serves as a proxy to one’s true ability (0), whereas in latent var-
iable analysis, the probability of responding correctly is conditioned on
the latent ability (0). Due to our relatively small sample size (Belzak,
2020) for conducting DIF analyses, we used a logistic regression with
sum scores as an observed variable analysis (Swaminathan & Rogers,
1990) and two-parameter logistic IRT model with a log-likelihood test as
a latent variable analysis (LRT) (Thissen et al., 1986) to detect potential
DIF items. This approach first matches the sum scores (or latent ability
(6) in LRT) between two sub-groups and then statistically tests whether
the relationships between a probability of correct answer and the total
scores differ by two sub-groups.

Under the logistic regression with sum scores approach, we first built
a baseline model for each item ; (see Model 1) in which the probability of
a correct item (p in Model 1) was regressed on the sum scores (s). Next,
the sub-group variables (g) and the interaction between total scores and
sub-group variables (s xg) were entered into the baseline model (Model
2). When comparing the fit of Model 1 and Model 2, either g, # 0 (i.e.,
coefficient for the sub-group effect) or f; # 0 (i.e., coefficient for the
interaction effect between sum scores and sub-group effect) indicate a
DIF item.

Model 1: In |:1Iiip|} =fo+ P1 X 5.

Model 2: ln[l‘j—"pj =Po+ P XS+ Py x g+ Pz X SX g

On the other hand, LRT compared the fit of two nested models: a
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compact model which assume that item parameters were equivalent
between two groups, and an augmented model which allows for freely
estimating item parameters (i.e., item difficulty and discrimination) for
each group. To identify DIF items, LRT calculate the test statistics y2 for
a compact model and y2 for an augmented model, respectively. If the
differences in the test statistics between two models (i.e., %) with two
degrees of freedom (i.e., dfc - dfa) were statistically significant, it in-
dicates the presence of a DIF effect in the item.
Xiwr =Xe — X

Using latent ability in detecting DIF allowed us to control for mea-
surement error, and to detect intercept and slope DIF in the regression
models (Belzak, 2020). While there are limitations of using the LRT with
a small sample size, we conjecture that using both observed and latent
variable analyses for DIF detection provides more robust evidence of DIF
by comparing the two different results (Davidson et al., 2021). Further,
to prevent inflation of type 1 error from the multiple comparisons, we
adopted the Benjamini-Hochberg correction procedure (B-H) (Benja-
mini & Hochberg, 1995) to adjust alpha levels (Thissen et al., 2002).

3.4.5. Examining difference in latent ability of CT

We further examined the differences in children’s CT ability by
gender and age by conducting a two-way Analysis of Variance (ANOVA)
with the latent ability (0) of children’s CT estimated from 2 PL IRT
model as a dependent variable, and gender and age as factors.

4. Results
4.1. Descriptive statistics

Table 6 presents the proportion of correct item rates for all items by
gender and age groups. Prior to the main analysis, we conducted a two-
way ANOVA to identify (a) gender and age gaps in total CaST scores and
(b) their potential interaction effects. There was no interaction effect
between gender and age, F(1, 268) = 0.59, p = 0.444, 115 =0.00, whereas
salient main effects were identified. Specifically, boys had higher mean
scores of CaST than girls, F(1, 268) = 5.75, p = 0.017, ;7; = 0.02, and
older children had higher mean scores of CaST than younger children, F
(1, 268) = 39.87, p < 0.001, ’75 =0.13.

4.2. Reliability

To check consistency in scoring process by two independent raters,
Cohen’s Kappa (Cohen, 1960), an index of inter-rater reliability, was
calculated. The observed k was 0.91, indicating a high level of inter-rater
reliability (Landis & Koch, 1977). Internal reliability and general factor
saturation were assessed for the 19 items in the form of Cronbach’s
alpha and McDonald’s omega, respectively. The CaST assessment
showed high internal consistency (a = 0.91) and saturation (o = 0.92).

4.3. Verifying model assumptions

Table 5 summarizes statistical approaches and cutoffs to check three
IRT assumptions. To check unidimensionality, we conducted EFA and
confirmed that the first factor explained 31.0% of the variance, which
was acceptable to meet unidimensionality (Reckase, 1979). The results
of the modified parallel analysis (Drasgow & Lissak, 1983) showed that
there was not a statistical difference (p = 0.25) between the second ei-
genvalues from the observed data (A = 1.33) and simulated data (A =
1.22) and a sharp elbow was detected between the number of first and
second eigenvalue, both of which supported the unidimensionality (see
Fig. 5).

For local independence, we calculated Yen’s Qs statistics (Yen,
1984), the correlation between the residuals of pairs of items, and
identified that there were two pairs of items with Qs statistic of 0.3 or
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Table 6
Descriptive Statistics for CaST Correct Item Rates per Each Item by Gender and Age.
Item Total (n = 272) Gender Age
Girl (n = 138) Boy (n = 134) Younger (n = 95) Older (n = 177)
M SD M SD M SD M SD M SD

Item 1 0.64 0.48 0.55 0.50 0.73 0.45 0.51 0.50 0.71 0.45
Item 2 0.64 0.48 0.59 0.49 0.69 0.46 0.46 0.50 0.74 0.44
Item 3 0.50 0.50 0.44 0.50 0.57 0.50 0.34 0.48 0.59 0.49
Item 4 0.65 0.48 0.65 0.48 0.66 0.48 0.61 0.49 0.68 0.47
Item 5 0.40 0.49 0.37 0.48 0.43 0.50 0.30 0.46 0.45 0.50
Item 6 0.43 0.50 0.36 0.48 0.51 0.50 0.25 0.44 0.53 0.50
Item 7 0.22 0.41 0.20 0.40 0.23 0.42 0.11 0.31 0.28 0.45
Item 8 0.39 0.49 0.30 0.46 0.48 0.50 0.18 0.39 0.50 0.50
Item 9 0.42 0.49 0.36 0.48 0.49 0.50 0.24 0.43 0.51 0.50
Item 10 0.45 0.50 0.44 0.50 0.46 0.50 0.25 0.44 0.56 0.50
Item 11 0.43 0.50 0.37 0.48 0.49 0.50 0.26 0.44 0.51 0.50
Item 12 0.25 0.43 0.19 0.39 0.31 0.46 0.13 0.33 0.31 0.46
Item 13 0.34 0.47 0.31 0.47 0.36 0.48 0.19 0.39 0.41 0.49
Item 14 0.77 0.43 0.78 0.42 0.75 0.43 0.72 0.45 0.79 0.41
Item 15 0.90 0.30 0.88 0.32 0.92 0.28 0.83 0.38 0.94 0.24
Item 16 0.66 0.47 0.65 0.48 0.67 0.47 0.60 0.49 0.70 0.46
Item 17 0.79 0.41 0.79 0.41 0.78 0.41 0.64 0.48 0.86 0.34
Item 18 0.32 0.47 0.29 0.46 0.35 0.48 0.12 0.32 0.43 0.50
Item 19 0.64 0.48 0.67 0.47 0.60 0.49 0.50 0.50 0.71 0.45
Total 9.82 5.42 9.20 5.47 10.46 5.04 7.22 4.66 11.22 5.29

Note. M refers to mean, and SD refers to standardized deviation.
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Fig. 5. Modified Parallel Analysis Plot for Undimensionality Assumption.

greater over than mean residual correlation, Items 2 and 3 (r = 0.32) and
Items 9 and 12 (r = —0.30). However, eliminating the items yielded only
minor changes in model- and item-fits. This indicated that including
these items flagged in the local dependence is not problematic. For
functional form, Table 7 presents model fits of three IRT models, Rasch,
2PL, and 3PL.The results of log-likelihood ratio test indicated that 2PL
was a better fit than the Rasch model, ;(2(18) = 174.58, p < 0.001;
however, the 3PL model was not a better fit than the 2PL, y%(19) =
22.66, p = 0.253. Therefore, we selected the 2PL model as the final
model.

Table 7
Comparison of Three IRT Model Fit Indices (Rasch, 2PL and 3PL).
Model  AIC BIC LogLik Model Loglikelihood
comparison Ratio Test
Rasch 4956.16 5028.28 —2458.08 - -
2PL 4817.58 4954.60 —2370.79 Rasch vs. 2PL.  »%(18) = 174.58,
p < 0.001
3PL 4832.92 5038.45 —2359.46 2PL vs. 3PL )(2(19) = 22.66, p
=0.253

Note. AIC refers to AIC refers to Akaike information criterion; BIC refers to
Bayesian information criterion; Loglik refers to log likelihood; LRT; 2PL refers to
two-parameter item response theory model; 3PL refers to three-parameter item
response theory model.

4.4. Assessing model and item-level fits

To assess model-level fit, we used M, with its accompanying p-value,
RMSEA, and SRMR, jointly. Our results showed that, despite significant
M values (M2 = 248.00, p < 0.001), other two metrics (RMSEA = 0.05,
SRMR = 0.05) were good fits; thus, we regarded the results of model-
level fit as acceptable. Furthermore, to assess item-level fit, we used
the signed chi-square (S — »?) item-fit statistics (Orlando & Thissen,
2003) and RMSEA. As a cutoff for the good model fit, S — 42 is
non-significant and RMSEA is recommended below 0.08. Table 8 shows
all items fitted to the 2PL model.

4.5. Estimating item parameters

To interpret the estimated item parameters, we adopted Baker’s
guideline (Baker, 2001). According to the guideline (Baker, 2001), the
theoretical range of item difficulty is from —4.0 to 4.0, but the practical

Table 8
Item-level Fit Indices.
Item s-7 RMSEA
s-7 daf p
Item 1 22.68 14 0.07 0.05
Item 2 11.10 12 0.52 0.00
Item 3 7.32 12 0.84 0.00
Item 4 12.15 15 0.67 0.00
Item 5 9.29 12 0.68 0.00
Item 6 8.00 8 0.43 0.00
Item 7 8.74 8 0.37 0.02
Item 8 2.38 7 0.94 0.00
Item 9 11.31 8 0.19 0.04
Item 10 5.26 11 0.92 0.00
Item 11 10.75 10 0.38 0.02
Item 12 11.07 8 0.20 0.04
Item 13 13.72 12 0.32 0.02
Item 14 10.86 13 0.62 0.00
Item 15 7.39 9 0.60 0.00
Item 16 14.93 15 0.46 0.00
Item 17 5.71 9 0.77 0.00
Item 18 18.98 11 0.06 0.05
Item 19 9.80 13 0.71 0.00

Note. S — 2 refers to signed chi-square; df refers to degree of freedom; RMSEA
refers to root-mean-square error of approximation.
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range is —2.80 (very easy) to 2.80 (very difficult). Item discrimination
was interpreted as “very low” for values between 0.01 and 0.34, “low”
for values between 0.35 and 0.64, “moderate” for values between 0.65
and 1.34, “high” for values between 1.35 and 1.69, and “Very high” for
values higher than 1.7 (Baker, 2001).

In Table 9, parameter estimates showed a wide range of item
discrimination from moderate (Item 4 = 0.91) to very high (Item 6 =
4.66), with a high item discrimination across items, on average (M =
2.26, SD = 1.12). Item difficulty ranged from very easy (Item 15 =
—2.40) to hard (Item 7 = 0.92), with a moderate level of difficulty across
items (M = —0.21, SD = 0.86). Fig. 6 presents ICC for Item 15, which is
on the far left, represents low difficulty and discrimination, whereas ICC
for Item 7 and 12, which are on the far right, represent items with the
highest item difficulties.

4.6. Test information function and marginal reliability

Fig. 7 shows the test information function (blue line in Fig. 7 left)
with its standard errors (yellow dotted line in Fig. 7 left) and the mar-
ginal reliability according to the latent abilities of CT (Fig. 7 right). The
test information function indicated that most item information is pro-
vided for children who possess average level of latent ability (0, x-axis)
from —1.0 to 1.5. The results implied that CaST assessment is the most
precise measure for average CT ability (Max. item information = 25.0;
standard error of estimate = 0.45), whereas this measure works poorly
for children with extremely low or high latent abilities of CT. The
marginal reliability (ry) for the CaST was 0.87, which is highly
acceptable. Specifically, as shown in Fig. 7 right, the CaST assessment
scores are reliable (i.e., ryx > 0.70) in the medium range of the latent
abilities of CT from (i.e., approximately —1.5 < 6 < 1.8 in x-axis),
whereas this measure holds low reliability especially in the range of high
latent abilities of CT (i.e., 0 > 2.0 in x-axis).

4.7. DIF analyses

To answer RQ 2, we conducted DIF analyses to check if the items
functioned equally, regardless of a child’s gender or age. Table 10
indicated that all items showed non-significant differences in B-H
correction p-values by age or gender, indicating no item was flagged for
either logistic regression with sum scores or LRT. This suggests that the
19 items measure children’ CT latent ability fairly, regardless of their
gender and age.

Table 9
Estimates of the Item Discrimination and Difficulty Parameters Using Two-
parameter IRT Model.

Item discrimination Item difficulty

Item 1 1.16 —0.63
Item 2 1.69 —0.53
Item 3 2.16 —0.01
Item 4 0.91 —0.83
Item 5 2.18 0.34
Item 6 4.66 0.21
Item 7 3.01 0.92
Item 8 4.06 0.35
Item 9 3.65 0.25
Item 10 2.51 0.16
Item 11 3.12 0.23
Item 12 3.25 0.80
Item 13 2.27 0.55
Item 14 0.95 —1.47
Item 15 1.10 —2.40
Item 16 0.93 —0.86
Item 17 1.55 -1.19
Item 18 2.36 0.60
Item 19 1.46 —0.54
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4.8. Differences in latent ability of CT by gender and age

As shown in Table 11, a two-way ANOVA result showed that the
interaction effect was non-significant, F(1, 268) = 0.76, p = 0.386, ;7; =
0.00, but there were main effects of age, F(1, 268) = 45.02, p < 0.001, nﬁ
= 0.14, and gender, F(1, 268) = 6.17, p = 0.014, ’73 = 0.02. Specifically,
boys (M = 0.11, SD = 0.89) showed significantly higher CT abilities than
girls (M = —0.11, SD = 0.98). For age, the older group (>72 months; M
= —0.26, SD = 0.90) showed a higher latent ability of CT than the
younger group (<72 months; M = —0.48, SD = 0.84) and its magnitude
was large. Boys outperformed girls and older children outperformed
younger children in the latent abilities of CT. Considering the results of
both the ANOVA of latent ability and the DIF analyses, we can conclude
that that the identified differences in CaST scores by gender and age (see
4.1. Descriptive statistics) were due to differences in true ability of CT,
rather than due to items that were designed to favor certain subgroups.

5. Discussion
5.1. Discussion

5.1.1. Item characteristics of CaST

The goal of the present study is to provide evidence of validity,
reliability, and fairness for CaST, a performance assessment of early
childhood CT using IRT. Our results showed robust psychometric char-
acteristics, including high reliability, unidimensionality, acceptable
levels of item fit indices and parameters, and no evidence of DIF effects
with a sample of 272 children ages 4-8.

IRT analyses showed that the assessment has good psychometric
properties for young children. It has a high level of item discrimination
(M = 2.26, SD = 1.12), on average, ranging from moderate to very high.
Based on our test information function, the assessment provides the
most information for children with average latent ability; it provides
little information for children with low latent ability (i.e., below —1.5 SD
below average) and high latent ability (i.e., above 2.0 SD above average)
of CT. This result is different from previous findings on CT assessments
for young children that found test information peaked at relatively low
latent ability (El-Hamamsy et al., 2022; Relkin et al., 2020). In other
words, TechCheck works well for discriminating between children with
relatively low CT ability, whereas the assessment in the present study is
better at reliably measuring children with average levels of CT. This
suggests that our assessment has a distinct functionality to assess young
children’s CT that is not being met by other assessments. As mentioned
above, early childhood researchers have not reached consensus on what
skills constitute CT or how to assess CT. Our findings contribute to un-
derstanding about the kinds of CT abilities and skills that are develop-
mentally appropriate for early childhood and how we can measure these
skills in an active way, which we elaborate on in the next section. From a
test development perspective, we now have evidence about how our
items are performing that will help us re-design some of our items and
design new items to specifically focus on children who fall in the lower
and upper bands of CT ability.

5.1.2. Why certain items are more difficult for young children?

Similar to previous research on CT assessments for young children,
we found that our assessment demonstrated moderate item difficulty
levels (M = —0.21, SD = 0.86). However, as shown in Table 9, the item
difficulty of our assessment varied widely. For example, looking at
Table 9, item 15 has an item discrimination of 1.10 and item difficulty of
—2.40. This was the easiest item on the assessment. Fig. 8 shows item 15
from the administration guide. In the item, children are asked to use a
stick to mark where in the program the robot would stop at the tree.
Some of the variable features in this item made it easy: the starting
orientation of the robot is the same as the child’s and the person
administrating the assessment points to the two landmarks (the tree and
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Fig. 6. Item Characteristic Curves for 19 Items of the Assessment.
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Item Characteristic Curves (ltem 6-10)

Note. X-axis refers to children’s latent ability (0) of CT; Y-axis refers to the probability of the correct response.
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Fig. 7. Test Information Function with its Standard Errors (Left) and Marginal Reliability according to Different Levels of Latent Abilities (6) of CT (Right).

Note. In the blue line of the left figure (Test Information Function), the X-axis refers to the children’s latent ability (6) of CT and the Y-axis refers to the amount of
information provided by the item responses. In the yellow dotted line of the left figure, the X-axis refers to the children’s latent ability (0) of CT and the Y-axis refers
to the standard error of the test information. In the right figure (Marginal Reliability), the X-axis refers to the children’s latent ability (0) of CT and the Y-axis refers to

marginal reliability.

the house). This item assessed children’s ability to coordinate the robot
movement to the program and to decompose a program based on a
landmark. This is an item that we will remove from our assessment
because we want to reduce the number of items and this particular item
does not provide a lot of discriminating information about children’s
understanding of CT.

As shown in Table 9, item 7 has a difficulty of 0.92, making it one of
the hardest items for children in our sample. Fig. 9 depicts item 7 from
the administrator’s perspective where they read the script, orient the
agent, and hand the child the program they are to enact. Fig. 10 shows

10

the item from a child’s perspective. It shows the item grid (A), the ro-
bot’s starting orientation which is 90° to the left (B), and, if they move it
correctly, the robot’s ending location and orientation (C). This item
assesses children’s ability to enact a program when the robot does not
share their orientation. Part of what makes item 7 difficult for children is
that the robot’s starting orientation is 90° to their left, which requires
them to take on the perspective of the robot. It requires understanding
that a forward movement is always a forward movement regardless of
the robot’s orientation. We found that many children enact the program
from their own perspective or orientation (Jiang et al., 2023). Our
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Table 10
Statistic of DIF Analysis for Gender and Age Using Logistic Regression with sum scores and 2-parameter Logistic IRT with Likelihood Ratio Tests.

Gender Age

Logistic regression with sum scores LRT Logistic regression with sum scores LRT

Stat p B-H Ay? p B-H Stat P B-H Ay? D B-H
Item 1 5.70 0.058 0.157 5.12 0.077 0.291 2.18 0.337 0.523 3.02 0.221 0.624
Item 2 3.69 0.158 0.308 1.75 0.417 0.495 2.12 0.346 0.523 2.21 0.331 0.648
Item 3 1.16 0.559 0.625 0.71 0.700 0.782 0.81 0.665 0.709 2.15 0.341 0.648
Item 4 2.04 0.360 0.456 3.29 0.193 0.334 2.76 0.252 0.523 2.72 0.257 0.624
Item 5 2.86 0.239 0.379 2.21 0.331 0.449 3.43 0.180 0.523 4.23 0.121 0.586
Item 6 3.64 0.162 0.308 6.14 0.046 0.291 4.89 0.087 0.413 4.37 0.112 0.586
Item 7 3.07 0.216 0.372 4.01 0.135 0.291 0.58 0.749 0.749 0.38 0.829 0.875
Item 8 5.81 0.055 0.157 5.41 0.067 0.291 2.69 0.261 0.523 1.71 0.425 0.674
Item 9 1.61 0.446 0.530 1.96 0.376 0.476 3.70 0.158 0.523 2.67 0.263 0.624
Item 10 6.79 0.034 0.157 8.03 0.018 0.171 2.06 0.358 0.523 1.01 0.605 0.751
Item 11 0.72 0.697 0.735 0.52 0.770 0.813 1.15 0.564 0.670 0.92 0.632 0.751
Item 12 4.59 0.101 0.239 3.49 0.174 0.331 0.80 0.672 0.709 0.69 0.707 0.790
Item 13 6.41 0.041 0.157 4.73 0.094 0.291 3.06 0.216 0.523 3.74 0.154 0.586
Item 14 2.59 0.274 0.400 2.26 0.323 0.449 1.34 0.513 0.670 1.40 0.498 0.675
Item 15 5.84 0.054 0.157 2.87 0.238 0.377 5.59 0.061 0.387 1.96 0.376 0.649
Item 16 2.23 0.328 0.445 3.96 0.138 0.291 6.69 0.035 0.387 4.19 0.123 0.586
Item 17 7.12 0.028 0.157 4.22 0.121 0.291 210 0.351 0.523 1.43 0.488 0.675
Item 18 0.39 0.824 0.824 0.37 0.830 0.830 6.24 0.044 0.387 5.22 0.074 0.586
Item 19 10.80 0.005 0.086 11.21 0.004 0.070 1.20 0.548 0.670 0.17 0.918 0.918

Note. LRT refers to 2-parameter logistic IRT model with log-likelihood tests; B-H refers to each p-value adjusted by Benjamini-Hochberg correction approach.

findings are similar to studies on LOGO that found children tended to use
their own perspective when programming the Turtle and struggled to
program when they were not able to take on the Turtle’s perspective

Table 11
The Result of a Two-way ANOVA by Age and Gender.

Factors Sum of df Mean F p ES
Squares Square (y,g)
Age 34.08 1 34.08 45.02 <0.001 0.14 ROBOT VACUUMS (UNKNOWN DESTINATION)
Gender 4.67 1 4.67 6.17 0.014 0.02
Age x 0.57 1 0.57 0.76 0.386 0.00 * Now the robot starts here facing this direction (orient)

Gender  and uses these instructions.
Error 202.91 268 0.76

* Please move the robot using these instructions.

. _statistics: 2
Note. df refers to degree of freedom; F refers to F-statistics; ES (,) refers to + Prompt: Show me how these instructions tell the robot to move.

partial eta-partial squared as an effect size of measure.

Fig. 9. Item 7 from Administration Guide Perspective.

BOX TO POST OFFICE MATERIALS
o . o .
am ° The robot starts on the box facing this direction (orient). @w[Tttett

(point) and then on the post office (point)

*  Use this stick to cut the instructions so the robot stops on the tree.

*  Prompt: Show me the part of the instructions that would take Robot to the

tree. @

Possible Correct Answers

tttett]

Fig. 8. Item 15 from Administration Guide Perspective.
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Fig. 10. Item 7 From Child’s Perspective.

Note. A: Item grid for robot vacuums a room, B: Robot in starting orientation of 90° to the left of child’s orientation, C: Robots ending location and orientation.

(Cuneo & Toronto, 1985; Fay & Mayer, 1987). For example, Mayer and
Fay (1987) found that children often used an egocentric perspective
when programming the Turtle in LOGO rather than a Turtle-centric
perspective. The findings in the present study also align with recent
studies that have shown relationships between concepts of spatial
thinking and CT in early childhood (Citta et al., 2019; Roman-Gonzalez
et al., 2017; Tsarava et al., 2022).

As mentioned previously, most frameworks of CT do not contain or
mention spatial thinking skills (Zeng et al., 2023). However, many en-
vironments that are used to teach coding in early childhood use tangible
coding toys or coding that represents movement either in a physical or
virtual space. Such movement requires that children understand spatial
and mathematical concepts such as the codes always produce the same
movements but depend on the agent’s orientation, knowing that an
agent’s rotation occurs by rotating on a fixed point at a set angle, not
translating to an adjacent point. The findings in the present study further
contribute to a developmental understanding of CT for early childhood.
Regardless of whether or not an item was easy or difficult, our findings
provide useful information about what types of tasks are developmen-
tally appropriate for young children or what skills are needed to engage
in tasks designed around tangible coding toys or agents.

5.1.3. Test fairness and gender and age differences in CT ability

5.1.3.1. Test fairness through DIF. In terms of test fairness, we con-
ducted a DIF analysis to explore whether our items favored children of a
particular gender or age. We did not find any evidence of item bias based
on gender and age. Our results are similar to the findings of de Ruiter
and Bers (2022), who did not find any evidence of bias based on gender.
However, they did find that one item showed evidence of DIF using
Mentel-Haenszel tests based on age. Our findings indicate that our
assessment can serve as an appropriate scale for comparing children’s
CT abilities by gender and age.

We also tested for main effects and potential interaction effects of age
and gender on the children’s latent ability (6). While both main effects of
gender and age were significant, their interaction effect was not signif-
icant. In terms of the non-significant interaction effect, this result is
aligned with Sullivan and Bers (2016) in which no interaction effect
between gender and grade levels was detected in robot and program-
ming tasks. It may be due to the relatively narrow range of age range in
the present study (4-8 years old), compared to previous studies (e.g.,
below 6 vs. 6-8 vs. above 8 years) (Rijke et al., 2018), which made it
difficult to detect salient gender gaps. Future research is needed to re-
cruit a wide range of children to explore whether the magnitude of
gender differences in CT varies by age.

5.1.3.2. Differences in CT ability by age. We found that older children
had significantly higher latent ability of CT than younger children. This
finding is consistent with previous research that found children’s age is a
critical factor when designing and implementing lessons on CT and
programming (Bati, 2022; McCormick & Hall, 2022). Saxena et al.
(2020) designed CT activities with Bee-Bot to teach algorithm design for
two age groups: K-1 (aged 3 to 4) and K-2 (aged 5 to 6). While K-2
children mastered algorithm design, K-1 children only partially solved
the tasks and struggled with directional language. These findings high-
light the need for developmentally appropriate practices in early
childhood (NAEYC & Fred Rogers Center for Early Learning and Chil-
dren’s Media, 2012). Technology and media have potential to enhance
children’s learning experiences when educators make decisions care-
fully and the integration of these media into learning activities are
developmentally appropriate for children. Similarly, researchers have
been calling for developmentally appropriate assessments of CT for early
childhood (Clarke-Midura et al., 2023; Relkin et al., 2023). Relkin et al.
(2023) recently proposed a grade-specific CT assessment, TechCheck K,
1, and 2 and its normalization scoring system. While the work of Relkin
et al. and our findings contribute to understanding of how to assess CT in
early childhood, there is a need for further research on what it means to
design and implement developmentally appropriate CT curricula and
assessments in early childhood classrooms.

5.1.3.3. Differences in CT ability by gender. The present study found that
boys outperformed girls on the CaST assessment and that this difference
was not due to bias in the items but due to children’s true latent CT
ability. We offer three possible explanations for these differences: lack of
developmentally appropriate and meaningful curriculum, the use of sum
scores, and spatial thinking, which we discuss briefly below.

Findings on gender and CT ability in early childhood are mixed with
some studies indicating that CT abilities were not predicted by a child’s
gender (El-Hamamsy et al., 2022; Papadakis et al., 2016; Relkin et al.,
2020) and other studies suggesting boys had higher CT abilities (Angeli
& Valanides, 2020; Sullivan & Bers, 2013). In a recent systematic review
on CT and programming in early childhood, Bati (2022) reported that
studies on early childhood CT were more likely to find differences in
gender related to motivational and social factors rather than ability or
performance. They suggested that a potential reason for any gender
differences is due to the lack of developmentally and suitable content
related to children’s needs. For example, Sullivan and Bers (2013) found
that girls and boys perform similarly on items related to concepts such as
debugging but boys score higher on conditionals and fitting robot gear.
Angeli and Valanides (2020) found that boys benefit more from indi-
vidual, kinesthetic, spatially directed, and manipulative-based activities
with cards and girls benefit more from collaborative writing activities
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(Bati, 2022). While most of the research on broadening participation of
women in CS is focused on middle school through college, findings
suggest that CS education often emphasizes curriculum, tools, and ma-
terials that are historically aligned more closely with male interests than
female interests (Peppler & Wohlwend, 2018) and females prefer
collaboration, real-world projects, and those that emphasize creativity
and aesthetics (Buechley & Hill, 2010; Guzdial et al., 2012; Margolis
et al.,, 2011). This further supports the need for developmentally
appropriate curriculum related to children’s interests and needs in early
childhood settings.

Another possible explanation for why our findings tell a slightly
different story on gender differences in CT ability than previous studies
is because most of the other studies used the sum of observed scores
whereas the present study used latent ability scores (0), which control
for the measurement errors as a proxy to children’s CT ability. These
different approaches to scoring (i.e., whether measurement errors are
controlled or not) have potential to result in inconsistent patterns of
gender difference in CT abilities.

Finally, the findings on gender differences in CT ability could be
related to differences in spatial thinking ability. CaST is different from
other CT measures due to its focus on the spatial thinking that is required
to solve some of the tasks. Research has found that boys perform better
on tests of spatial thinking than girls. For example, a recent meta-
analysis on spatial thinking (Lauer et al., 2019) found that gender dif-
ferences in spatial ability occurred from an early age (g = 0.20 for 3-7
years). As mentioned above, as far back as LOGO, researchers have been
documenting the relationship between spatial thinking and CT. It could
be that boys in our sample started kindergarten with more spatial
thinking knowledge than the girls, which influenced their performance
on CaST. More research is needed to understand the relationship be-
tween spatial thinking and CT. Overall, the findings in the present study
indicate the importance of finding developmentally appropriate ways to
use tangible coding toys in preschool and kindergarten classrooms in
order to provide girls with experiences and opportunities to play with
tangible coding toys in meaningful ways.

5.2. Limitations and suggestions for future research

Several limitations of the current study should be considered when
interpreting the potential strengths and psychometric evidence of the
CaST. First, our results showed that 19 CaST items are well fitted to 2PL
IRT model, test information function (Fig. 7 left) showed that most item
information is centered around the range of —1.0 to 1.5 of the X-axis (6,
latent abilities of CT). This indicates that CaST functions well to assess
average ability of children, whereas this measure is less sensitive to
assess children with very low or high levels of CT. In future work we plan
to develop more items and modify some of the variable features to
extend the range of our test information.

Second, the sample size in the present study might be regarded as
modest. However, according to de Ayala (2022), determining the sample
size for IRT analysis should involve multiple considerations, including
the type of response, the length of the item, person distribution and the
number of parameters to be estimated, rather than hard-and-fast rules.
Further, Morizot et al. (2007) stated that for dichotomously scored
items, it is possible to have as few as 200 participants for unbiased an-
alyses for 2PL IRT models. Accordingly, the sample size of 272 in the
present study is sufficient to fit the IRT model with dichotomous re-
sponses. However, administering CaST with a large sample in a future
study will allow for stable and accurate parameter estimations under
more complex IRT models.

Third, our efforts to validate CaST substantially are aligned with
sources for validity evidence: content, cognitive process, internal
structure (see Appendix A), conceptually related constructs, and
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consequence of testing (American Educational Research Association
et al., 2014). However, we could not confirm evidence on the relation-
ships with criteria due to the restrictions on administration of other as-
sessments. Future studies should investigate not only the level of
association with other early childhood CT assessments, but also the
predictive relationships with general cognitive abilities.

Lastly, as a potential moderator of explaining differences in CT
abilities, the current study focused on investigation of gender and age.
Although potential gender gaps and developmental appropriateness of
assessment of early childhood CT are critical to consider, other de-
mographic factors should also be included as potential moderators of CT
ability in future studies.

6. Conclusion

Early childhood computational thinking is an emerging field (Zeng
et al., 2023). The present study contributes to knowledge and under-
standing of early childhood CT by providing evidence for using
performance-based assessments to make valid and reliable inferences
about young children’s CT knowledge that is not dependent on their
reading or writing ability. Our findings show that gender differences in
CT understanding exists as early as primary school and indicate the
importance of providing girls opportunities to play with tangible coding
toys and to gain foundational spatial, math, and CT skills early in pre-
school and primary school. Finally, while children’s access to tangible
coding toys and apps has increased, more research is needed on how we
can support teachers’ use of these tools for meaningful CT learning in
early childhood classrooms.

7. Selection and participation

Data for this study were collected at five different schools in the
Rocky Mountain region of the U.S. All children participated in this study
voluntarily. In accordance with the Institutional Review Broad pro-
tocols, we followed a two-step process in which parents were first
invited to consent to their child’s participation. Children who had
parental consent were then invited to participate, were informed about
the data collection procedures, and told that they could opt out or
withdraw at any time. Children then provided verbal assent to partici-
pate in the study.
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Appendix A. Internal Structure of CaST Assessment
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To find validity evidence of internal structure, we conducted a confirmatory factor analysis (CFA) with diagonally weighted least squares (DWLS)
estimator, and the results showed acceptable model fit indices, X2(152) = 242.20, p < 0.001, CFI = 0.99, TLI = 0.99, RMSEA = 0.05, 90% CI [0.04,
0.06], SRMR = 0.08. The overall factor loadings were higher than 0.4 across 19 items. The CFA results support validity evidence of internal structure

and unidimensionality of the assessment.

Table Al
The Results of Confirmatory Factor Analysis.

Factor Loading SE z-score Standardized Factor Loading p-value
Item 1 1.00 0.59 <0.001
Item 2 1.25 0.15 8.14 0.74 <0.001
Item 3 1.40 0.15 9.18 0.83 <0.001
Item 4 0.86 0.14 6.32 0.51 <0.001
Item 5 1.34 0.16 8.65 0.79 <0.001
Item 6 1.61 0.17 9.51 0.96 <0.001
Item 7 1.42 0.15 9.26 0.84 <0.001
Item 8 1.57 0.17 9.39 0.93 <0.001
Item 9 1.55 0.17 9.38 0.92 <0.001
Item 10 1.42 0.16 8.74 0.84 <0.001
Item 11 1.51 0.16 9.24 0.89 <0.001
Item 12 1.48 0.16 9.36 0.88 <0.001
Item 13 1.36 0.15 8.81 0.80 <0.001
Item 14 0.81 0.15 5.31 0.48 <0.001
Item 15 0.86 0.18 4.87 0.51 <0.001
Item 16 0.86 0.14 5.95 0.51 <0.001
Item 17 1.13 0.16 7.18 0.67 <0.001
Item 18 1.37 0.15 9.05 0.81 <0.001
Item 19 1.13 0.14 8.01 0.67 <0.001
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