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A B S T R A C T   

Despite growing interest in early childhood computational thinking (CT), there is a lack of validated assessments 
for children who are emerging readers. This paper presents validity and reliability evidence of a performance- 
based assessment of CT using item response theory (IRT) from 272 children aged 4–8. Using a two-parameter 
logistic model IRT model (2PL IRT), we confirmed that model- and item-level fits are acceptable. Item ana
lyses revealed a high discriminability (M = 2.26, SD = 1.12) and a moderate item difficulty (M = −0.21; SD =
0.86), on average, across 19 items. Reliability analysis demonstrated that the assessment was substantially 
reliable (marginal reliability: rxx = 0.87). Differential item functioning (DIF) analyses indicated that the 
assessment estimated children’s item parameters fairly, regardless of their gender and age. However, we 
confirmed gaps in latent ability (θ) of CT by gender and age: boys showed higher latent ability of CT than girls, 
and old children (above 72 months) showed higher latent ability than young children (below 72 months). 
Findings suggest the assessment is a fair measure that can serve as a reliable and valid tool to assess CT for 
children who are emerging readers.   

1. Introduction 

The increase in access to tangible coding toys and applications like 
Scratch Jr have created more opportunities to introduce coding and 
computational thinking (CT) in early childhood classrooms (Bers, 2018; 
Zeng et al., 2023). Coding is a common context for developing CT, and 
young children can learn to program tangible coding toys and engage in 
CT before they can read and write (Bers, 2018; Relkin et al., 2020; Wang 
et al., 2021). Such tangible coding environments designed for young 
children who are pre-literate or emerging readers rely on symbol sys
tems to represent codes to program an agent’s movement or actions. 
Thus, young children learn to sequence using codes such as forward, 
backwards, rotate right, and rotate left. Examples of coding toys and the 
codes that correspond to movement are presented in Fig. 1. 

Despite the increase in access to coding toys and apps, there is not an 
agreed upon definition of early childhood CT nor is there agreement on 
how to assess it (Clarke-Midura et al., 2021; 2023;Su & Yang, 2023). 

This is due to the novelty of the field of early childhood CT (Bers, 2018; 
Relkin et al., 2020; Zeng et al., 2023). In a recent review that looked at 
how CT is integrated in early childhood, Su and Yang (2023) identified 
four challenges for early childhood CT: the need for deeper learning of 
CT, lack of valid and reliable assessments, selecting developmentally 
appropriate tools, and developmentally appropriate curriculum. Other 
researchers have also indicated the need for validated and reliable as
sessments for early childhood CT (Clarke-Midura et al., 2021; Relkin 
et al., 2020; Tang et al., 2020). In addition, Su and Yang (2023) found 
that existing assessments of early childhood CT measure a range of 
concepts from programming skills to CT skills. 

Given the lack of an agreed upon definition of early childhood CT, as 
part of a larger project, we operationalized a cognitive model of early 
childhood CT and developed research-based curricula tasks around 
tangible coding toys for kindergarten classrooms (Clarke-Midura et al., 
2023; Shumway et al., 2023). We then developed a performance-based 
assessment we call CaST, which stands for computational and spatial 
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thinking assessment (Clarke-Midura et al., 2021). Our intent was to 
design a developmentally appropriate assessment that did not rely on 
children’s reading or writing abilities and that could be used across 
tangible coding toy contexts. As part of our commitment to assessment 
fairness (Davidson et al., 2021), and knowing that some studies reported 
differences in CT knowledge based on participant’s gender and age 
(Macrides et al., 2022), we want to test that the probabilities of 
answering assessment tasks correctly are attributed to children’s true 
abilities in CT and do not favor or benefit participants based on their 
gender or age. Our research questions are: 1) Is the CaST assessment a 
reliable and valid measure of CT for a sample of children aged 4–8? 2) Does 
the CaST assessment function equally for children regardless of their gender 
and age? 

The present study contributes to the current discourse on the chal
lenges facing early childhood CT by providing evidence of the validity, 
reliability, and fairness of CaST with a sample of 272 children. In the 
sections that follow, we first discuss how CT is defined in early child
hood and our operational definition of CT for early childhood. Next, we 
describe the research on assessments of early childhood CT that has 
reported validity evidence. We then discuss our methods and materials, 
including participants, data, and data analysis. Finally, we present our 
results followed by our discussion and conclusion. 

2. Literature review 

2.1. Computational thinking in early childhood 

While the ideas behind computational thinking (CT) have roots in 
Papert’s seminal work around LOGO (Papert, 1980), the term compu
tational thinking was popularized by Jeannette Wing in her 2006 article 
in which she described it as a skill that involves “solving problems, 
designing systems, and understanding human behavior, by drawing on 
the concepts fundamental to computer science” (Wing, 2006, p. 33). 
Since then, researchers have developed various frameworks for defining 
CT, often shaped by particular context or for a particular age group 
(Angeli & Valanides, 2020; Bers, 2018; Brennan & Resnick, 2012; 
Martins et al., 2023; Wang et al., 2023; Zeng et al., 2023). Yet, as 
mentioned previously, there is not an agreed upon definition or frame
work for early childhood CT. Bers (2018) writes about CT in terms of 

powerful ideas, in which she proposed seven developmentally appro
priate ideas for early childhood CT: algorithms, modularity, control 
structures, representation, hardware/software, design process, and 
debugging (Bers, 2018). Other researchers in early childhood have 
looked at sequencing (Angeli & Valanides, 2020; Città et al., 2019), 
debugging (Heikkilä & Mannila, 2018), and decomposition (Rijke et al., 
2018). Thus, we started with these CT concepts and then spent hours in 
kindergarten classrooms observing the kinds of skills children used 
when they engaged with tangible coding toys (Clarke-Midura et al., 
2021, 2023, Shumway et al., 2023). Our classroom studies resulted in 
what we refer to as a cognitive model of early childhood CT. For the 
design of the assessment, we only focused on the skills we knew we 
could observe and measure. Our cognitive model includes CT concepts 
such as algorithmic thinking, decomposition (modularity), debugging, 
and abstraction (Clarke-Midura et al., 2021, 2023). We also identified 
pre-requisite spatial and mathematical thinking knowledge that chil
dren used when they played with the tangible coding toys. For example, 
children reason with an agent’s orientation, location, and navigation in 
space. We refer to these as foundational ideas and math knowledge 
(Clarke-Midura et al., 2021, Shumway et al., 2023). Table 1 lists the CT 
components of our model with definitions and Table 2 lists the 
pre-requisite spatial and mathematical thinking knowledge. 

While most models of CT do not contain spatial thinking concepts, 
many researchers have investigated the relationship between CT and 
spatial ability. For example, in a sample with 1251 students in 5-10th 
grade, Román-González et al. (2017) found a significantly positive 
correlation between spatial ability and CT (r = 0.44, p < 0.01). This 
result was replicated by Tsarava et al. (2022) who reported a modest, 
positive association between visuospatial abilities and CT (r = 0.35, p <
0.001) in 192 3–4th primary school students. Similarly, Città et al. 
(2019) found that mental rotation ability was a significant predictor of 
CT skills for students in both grades 1–2 (β = 2.13; p = 0.02) and grades 
3–6 (β = 2.37; p < 0.001). While these studies do not specifically 
investigate the co-occurrence of CT and spatial thinking, they support 
our position that children use spatial thinking when playing with coding 
toys and our decision to include it in our model as a foundational idea. 

Fig. 1. Examples of Coding Toy for Early Childhood Computational Thinking.  
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2.2. Existing valid and reliable assessments of early childhood CT 

As mentioned previously, there is a need for validated and reliable 
assessments of early childhood CT (Zeng et al., 2023). As shown in 
Table 3, we identified seven assessments of early childhood CT (from 
nine empirical studies) that reported reliability and validity evidence. 

TechCheck is a multiple-choice assessment with 15 items (Relkin 
et al., 2020), designed to assess Bers’ powerful ideas of CT in early 
childhood (Bers, 2018). In order to gather validity and reliability evi
dence, they conducted a study with 768 children ages 5-to-9. They re
ported an acceptable reliability (α = .68), and appropriate item 
discrimination (M = 1.03) and low level of item difficulty (M = −1.25), 
on average, for their targeted population. However, the test information 
function of TechCheck peaked at low latent ability (θ); indicating this 
assessment is better at differentiating between children with relatively 
low CT ability (Relkin et al., 2020). 

TechCheck-K is a modified version of TechCheck designed specif
ically for kindergarten-aged children (Relkin & Bers, 2021). This 
assessment is akin to TechCheck in terms of the multiple-choice items 
and constructs measured, however, to make it developmentally appro
priate for kindergarten children and to adjust item difficulties, they 
reduced the number of possible answer choices from 4 to 3. They con
ducted a study with 87 children in which the item correction patterns of 
TechCheck-K were correlated with the patterns from the TechCheck (r =
0.76), suggesting that TechCheck-K can assess CT concepts in a com
parable way to TechCheck. However, the authors presented relatively 
weak level of reliability and validity evidence of the TechCheck-K. 

Similarly, Zapata-Cáceres et al. (2020) modified their Computational 
Thinking test (CTt, Román-González et al., 2017), for students aged 5 to 
12, that they call the Beginners Computational Thinking Test (BCTt, 
Zapata-Cáceres et al., 2020). BCTt is 25 multiple-choice item assessment 
designed to measure sequences, loops, and conditionals. In a pilot study 
with 289 primary students, the BCTt showed good reliability (internal 
reliability: α = 0.82; test-retest reliability: r = 0.93) and is more suitable 
for students in lower grades (i.e., 1–2 graders) than upper grades (3–6 

graders) based on students’ item correction patterns. This assessment 
was also validated by El-Hamamsy et al. (2022) with 374 3–4 graders 
using classical test theory (CTT) and item response theory (IRT). After 
excluding two items that were misfitted from the original 25 items, the 
results of IRT analyses with 23 items showed moderate item discrimi
nation (M = 1.58) and relatively easy item difficulty (M = −1.57), on 
average. The assessment was easier for students in grades 3–4 and the 
authors claim that BCTt is more effective to use as a diagnostic tool to 
“discriminate between students with low abilities in grades 3 and 4” 
(El-Hamamsy et al., 2022, p. 17). 

TACTIC-KIBO is an assessment for children aged 4–7 that is specific 
to the KIBO robot (Relkin et al., 2019). According to the children’s 
coding ability, the difficulty and complexity of the assessment tasks 
gradually escalated from Level 1 to 4. This assessment was validated by 
Sung (Sung, 2022) with 450 Korean children aged 5–6 years, using IRT, 
CTT, and criterion validity with the Bebras Challenge (www.bebras.org) 
and early numeracy tasks (Howard & Melhuish, 2017). According to IRT 
results, TACTIC-KIBO had moderate mean item discriminations (M =

1.77), and item difficulties gradually increased with levels. However, 
although the CFA model of TACTIC-KIBO yielded acceptable fit indices, 
some items related to a specific platform (i.e., KIBO) or its specific 
functions had very weak factor loadings. Additionally, this knowledge 
did not correlate with the sub-factors of the Bebras tasks. 

The Coding Stages Assessment (CSA) is an interview-based assess
ment of Bers’ coding stages framework (de Ruiter & Bers, 2022). It 
consists of 27 items that ask children to answer questions verbally or to 
perform given tasks in ScratchJr. It is administered one-on-one by an 
administrator, who observes how the child performs a given task to 
determine whether he or she answers it correctly or not. Based on item 
responses from 118 children (5–8 years old), visual inspection of item 
characteristic curves from IRT analyses revealed good psychometric 
properties, and gender and age-related item bias was not detected. A 
moderate correlation (r = 0.55, p < 0.05) was found between 
CSA-ScratchJr and TechCheck scores on CT, indicating that the two 
assessments assessed the same CT construct. Since this assessment 

Table 1 
Operational Definitions of Components of our Early Childhood CT Cognitive Model.  

CT Component Operationalized definition 

Algorithm 
thinking 

Involves developing and using ordered sequences of instructions. Important subcomponents of algorithmic thinking are:  
• Sequencing codes- Ordering and arranging codes based on knowledge of syntax and semantics  
• Planning programs- Ordering and arranging codes based on knowledge of syntax and semantics  
• Reading/enacting programs- Interpreting (reading) and executing (enacting) sequence of codes 

Debugging Involves recognizing bugs/errors exist, locating the specific error or bug, proposing a fix, and correcting the bug. Important subcomponents of debugging are:  
• Recognizing Bug- Noticing that instructions do not work as expected or desired, or anticipating a problem before executing the program (i.e. knowing that 

there is a bug)  
• Locating Bug- Finding the part in the program that caused the problem (i.e. knowing where the bug is)  
• Proposing Solution- Making a plan or suggestion for how the program could change (i.e., knowing how to fix it)  
• Fixing Bug- Implementing a successful repair strategy (i.e. resolving the bug) 

Decomposition Involves recognizing parts in part-whole relationships, building a whole from parts, and breaking a whole into parts. Important subcomponents of 
decomposition are:  
• Breaking whole into parts- Recognize how whole programs can be broken down into units or segments of code to simplify the task/problem  
• Building whole from parts- Writing program by combining chunks or sequencing codes one-by-one  
• Relating parts to whole- Coordinating units or segments of code with one another as well as with whole program  

Table 2 
Foundational Ideas and Math Knowledge that are Pre-requisites for Solving CT Tasks.  

Pre-requisite Spatial and Math Knowledge Operationalized definition 

Space-symbol coordination Knowing how codes or parts of programs correspond to movements or paths traveled by the agent. 
Spatial orientation Knowing that the codes always produce the same movements but depend on the agent’s orientation. 
Spatial Code Meanings Knowing what each of the codes instructs the agent to do. 
One Code to One Movement Correspondence Knowing that one code produces a single discrete linear or rotational movement. 
Spatial reasoning Knowing how the agent moves in 3 dimensions and thinking about them in different positions and orientations. 
Counting on Knowing that one code produces a single discrete linear or rotational movement. 
Sequencing Knowing that you do not include the starting location when counting forward movements. 
Linear Units Knowing how to use a standard unit of measure to make the agent travel along a linear path. 
Rotation on a point Knowing that an agent’s rotation occurs by rotating on a fixed point at a set angle, not translating to an adjacent point.  
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involves open-ended tasks, it is relatively long to administer (M = 50 
min) and has wide variations in task-solving processes between children, 
both of which make it difficult to use in real-world settings. 

KIBO Project Rubric (Govind & Bers, 2021) is a rubric-based 
assessment to measure KIBO projects in terms of programming con
cepts and project design elements. A score is awarded that provides an 
estimated level of mastery. Similarly, the ScractchJr Project Rubric 
(Unahalekhaka & Bers, 2022) evaluates ScratchJr projects based on 
coding concepts and project design. The rubric was validated in a study 
with 87 children aged 6–7 years. The inter-rater reliability of the rubric 
was high (Krippendorf’s α = 0.95). Criterion validity was verified 
through positive correlation (r = 0.35) between ScratchJr project rubric 
scores and the Coding Stage Assessment (CSA-ScratchJr) scores (de 
Ruiter & Bers, 2022), controlling for the effect of children’s gender and 
grade levels. 

While these assessments provide evidence of reliability and validity 
through psychometric analyses, some limitations of these assessments 
were identified: (a) some are tied to specific coding language or plat
form, (b) some rely on multiple-choice format, and (c) some assessments 
only work for children with relatively low CT abilities. In this regard, 
there is a need for a validated assessment that can be used across a va
riety of tangible coding toys and platforms that is developmentally 
appropriate for emerging readers and provides insight into how young 
children solve coding problems or use spatial knowledge to solve coding 
tasks. The purpose of the present study is to test the validity and reli
ability of a performance-based assessment that measures emerging 

readers’ CT knowledge in the context of coding with tangible coding 
toys. The present study contributes to the research on early childhood 
CT, specifically, it contributes to understanding on how to assess CT as 
an active process (Bakala et al., 2021; Martins et al., 2023). 

2.3. A note on assessment fairness 

In the design and administration of the CaST assessment we are 
committed to fairness and ensuring that our inferences about children’s 
CT learning are accurate (Clarke-Midura et al., 2021; Oliveri Elena et al., 
2019). Similarly, we want to ensure that our items are not biased and 
that they do not favor children based on their gender or age (American 
Educational Research Association et al., 2014). Differential item func
tioning (DIF) analysis is one way to examine fairness in tests. DIF 
analysis allows us to determine if items are performing in a biased way 
towards members of a particular group. It is important to note that if 
boys score higher on an exam than girls, on average, it does not mean the 
items are biased in favor of boys. A DIF analysis is needed to determine if 
there is bias. While some of the research on assessing CT in early 
childhood reported difference in scores based on gender (Sullivan & 
Bers, 2013) and age (Zapata-Cáceres et al., 2020), they did not report 
results of DIF analysis. Thus, a contribution of the present study is that 
we conduct a DIF analysis to examine whether boys and girls and older 
and younger children, matched on ability, perform differently on any of 
the tasks in the assessment. 

Table 3 
Synthesis of Assessment and Sample Features, Targeted CT components, and Validity and Reliability Evidence of Seven Early Childhood CT Assessments.  

Validated measures Assessment 
Format 

Sample Targeted CT components Psychometric evidence 

Age n Validity Reliability 

TechCheck (Relkin et al., 
2020) 

15 unplugged 
multiple-choice 
items 

5–9 768 Algorithms, modularity, 
control structure, 
representation, debugging, 
and hardware/software 

Face validity, Psychometric 
analysis (IRT) and Criterion 
validity via correlation with 
TACTIC-KIBO (r = 0.54) 

Inter-rater reliability 
(Fleiss’s κ = 0.63) and 
Internal reliability 
(Cronbach’s α = 0.68) 

TechCheck-K (Relkin & 
Bers, 2021) 

15 unplugged 
multiple-choice 
items 

5–6 89 Algorithms, modularity, 
control structure, 
representation, debugging, 
and hardware/software 

Correlations of the correct response 
patterns of the TechCheck-K and 
the TechCheck (r = 0.76) 

Not provided in the 
manuscript 

Beginners Computational 
Thinking test (BCTt) ( 
Zapata-Cáceres et al., 
2020) 

25 unplugged- 
multiple choice 
items 

5–12 299 Sequence, loop, conditional 
statements, and while 
statements 

Face validity and Psychometric 
analysis (CTT) 

Internal reliability 
(Cronbach’s α = 0.82) and 
test-retest reliability (r =
0.93 from 28 children) 

Beginners Computational 
Thinking test (BCTt) ( 
El-Hamamsy et al., 
2022) 

23 unplugged- 
multiple choice 
items 

Grade 
3-4 

374 Sequence, loop, conditional 
statements, and while 
statements 

Psychometric analysis (CTT and 
IRT) 

Internal reliability 
(Cronbach’s α = 0.82 and 
Marginal reliability rxx =

0.75) 
TACTIC-KIBO (Relkin 

et al., 2019) 
28 tasks (7 tasks 
× 4 levels) 

5–7 15 Algorithms, modularity, 
control structure, 
representation, debugging, 
and hardware/software 

Face validity and criterion validity 
via correlations with Interactive 
play sessions (IPS, r = 0.90) 

Inter-rater reliability by 
experts 

TACTIC-KIBO (Sung, 
2022) 

28 tasks (7 tasks 
× 4 levels) 

5–6 108 (Level 
4) – 332 
(Level 1) 

Control structure, hardware, 
software, representation, 
algorithms, modularity, 
debugging and design process 

Psychometric analysis (IRT and 
CTT) and criterion validity via 
correlations with Bebras tasks (r =
0.18) and early numeracy ability (r 
= 0.35) 

Internal reliability 
(Cronbach’s α = 0.88) 

ScratchJr Coding Stage 
Assessment (CSA 
ScratchJr) (de Ruiter & 
Bers, 2022) 

27 computer- 
based open- 
ended tasks 

5–8 118 Emergent, coding and 
decoding, fluency, new 
Knowledge, and 
purposefulness 

Construct validity, Criterion 
validity via correlations with 
TechCheck (from 23 children, r =
0.55), and Psychometric analysis 
(CTT, IRT and DIF) 

Internal reliability 
(Guttman’s λ6 = 0.94) and 
Inter-rater reliability 
(Cohen’s κ = 0.78) 

KIBO project rubric ( 
Govind & Bers, 2021) 

Rubric Grade 
2 

173 
projects 

1st iteration: General and 
KIBO-specific programming 
skills 
2nd iteration: Programming 
concepts and project design 

Face and construct validity Inter-rater reliability 
(Cohen’s weighted κ = 0.84) 

ScratchJr Project rubric ( 
Unahalekhaka & Bers, 
2022) 

Rubric 6–7 87 (228 
projects) 

Coding concepts and Project 
design 

Face and construct validity and 
criterion validity via correlation 
with CSA-ScratchJr (de Ruiter & 
Bers, 2022; partial r = 0.35) 

Inter-rater reliability 
(Krippendorff’s α = 0.95) 

Note. CTT refers to classical test theory; IRT refers to item response theory; DIF refers to differential item functioning. 
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3. Methods 

3.1. Participants 

Our sample consisted of 272 children (girls = 138), between 47 and 
101 months old (M = 78.5; SD = 10.8), across five elementary schools in 
the Western United States. For the analysis, age was split into two 
groups, younger (<72 months; n = 95) and older (≥72 months; n = 177). 
Selecting 72 months as a splitting point in the age is guided by the 
empirical work of prerequisite knowledge for the CT: math knowledge 
and spatial thinking (i.e., foundational ideas in our early childhood CT 
cognitive model). First, it is based on the validation studies on the 
Research-based Early Math Assessment (REMA, Alkhadim et al., 2021) 
that separate the sample at 72 months. Next, in the domain of spatial 
thinking, compared to younger children, 6-year-old children hold a 
comparable ability to adults in being aware of their mental rotation 
abilities and articulating them (Estes, 1998). Given that CaST is an 
interview-based performance assessment, awareness and explanation of 
their spatial activities can be critical criteria to determine a threshold to 
investigate developmental differences in the CT ability. In terms of prior 
experience with coding, 21 children reported doing coding activities at 
home and one school (n = 123) introduced coding activities starting in 
kindergarten. 

3.2. Measures 

We developed a standardized, interview-based assessment, Compu
tational and Spatial Thinking Assessment (CaST), using the evidence- 
centered design framework (ECD). ECD is a systematic approach that 
involves constructing educational assessments in terms of evidentiary 
arguments (Mislevy & Haertel, 2006). This is done through an iterative 
process of observing what children say or do when completing tasks in 
order to make inferences about what they know and can do (Mislevy & 
Haertel, 2006). This view of assessment as argument is central to dis
cussions around validity (American Educational Research Association 
et al., 2014; Kane et al., 2006) while offering what Mislevy (2007) calls 
“validity by design” where, as designers, we structure our approach in 
such a way that validity evidence emerges (Mislevy, 2007). 

ECD consists of five layers: (a) domain analysis, (b) domain 
modeling, (c), the conceptual assessment framework, (d) assessment 
implementation, and (e) assessment delivery. In the first two layers, the 
focus is on the purposes of the assessment, the nature of knowing, and 
structures for observing and organizing knowledge. This information is 
put into “design patterns” that articulate the kinds of features that 
assessment tasks will need and the kinds of performances those features 
will elicit. In the third layer, the conceptual assessment framework 
(CAF), the focus is on the student model (what skills are being assessed), 
the evidence model (how do we measure it), and the task model (situ
ations that elicit the behaviors/evidence). These three models are 
developed with the information from the first two layers in ECD – the 
design pattern in particular – to provide technical details of the tasks 
(such as potential student performances/products during assessment 
implementation and delivery) and a specification of the kinds of features 
of the tasks that will provide evidence about the student model. For 
example, we identified variable features, features that make a task vary 
in level of difficulty. These included administration features (enacting 
the program with agent and verbalizing codes); grid features (start space 
marked or unmarked, end space marked or unmarked); program fea
tures (program length, number of turns, location of turns), task features 
(starting orientation relative to students’ perspective); and for items that 
involved debugging, the type and location of bug. 

The assessment is unplugged and not tied to a specific coding plat
form. Children interact with 2-D grids and a tangible agent they can pick 
up and move along the grid (see Fig. 2). There are five different story 
lines involving a robot, each with a separate grid (or number line) and 
items that involve moving the robot from one location to another (e.g., 

putting a banana peel in the trash or picking up school supplies and 
putting them in a backpack). The tasks use four directional codes 
depicted by arrows to represent: Forward, Backward, Rotate Right, and 
Rotate Left (see Fig. 3). There are 19 task-based items that assess skills in 
our early childhood CT cognitive model (see Tables 1 and 2). Children 
responded to tasks by either ordering and sequencing codes, enacting a 
sequence of codes (by moving the agent), or debugging and fixing pro
grams. Some tasks had only one possible correct solution whereas other 
tasks had multiple possible correct solutions. Each task was scored 
correct or incorrect. An example of an item is presented in Fig. 4. Note 
that the left presents the item from the perspective of the administration 
guide and the administrator’s view of the grid while the image on the 
right presents what students see (the grid from a child’s perspective). In 
this item, children are given a program that has an error. They are asked 
to “fix” the program by rewriting it. For more information about the 
assessment see (Clarke-Midura et al., 2021). Table 4 presents the CT 
concepts that are covered in each item. 

3.3. Procedure 

The assessment was administered face-to-face in quiet areas in the 
schools, in a one-on-one format by members of the research team. All 
assessments were video recorded. Children were introduced to the 
assessment through a demonstration of how to use the four directional 
codes and through two sandbox items that were not scored. The as
sessments took an average 17.5 min (SD = 3.3) per child and were 
double scored based on video recordings. 

3.4. Statistical analysis 

Classical Test Theory (CTT) and Item Response Theory (IRT) are two 
common psychometric approaches to analyze and score test data (de 
Ayala, 2022). While they both provide useful information about test 
performance, we used IRT for the present study due to the ability to 
make stronger assumptions, such as the chance of getting items right or 
wrong based on a child’s true ability. For example, when the assump
tions of IRT are met, the parameters are sample and item independent, 
meaning a child will obtain the same true ability score (i.e., θ) no matter 
which a set of items within a given test that they answer (i.e., item in
dependence) and items have the same difficulty and discrimination no 
matter which student is taking the test (i.e., sample independence). 

Our analysis was conducted in five steps described below. We used 
the ltm package (Rizopoulos, 2006) for checking unidimensionality 
assumption, mirt package (Chalmersmirt, 2012) for IRT analyses, difR 
package (Magis et al., 2010) and mirt package (Chalmersmirt, 2012) for 

Fig. 2. Kindergarten Student Working on an Assessment Item Using (1) Arrow 
Codes, (2) Activity Grid, (3) Robot Agent, (4) Administrator’s Assessment 
Scripts, (5) Scoring Sheets, and (6) Example Programs to Enact or Debug. 
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DIF analyses, psych package (Revelle, 2023) for exploratory factor an
alyses (EFAs), lavaan package (Rosseel, 2012) for confirmatory factor 
analyses (CFAs), and afex package (Singmann et al., 2023) for ANOVAs. 
All analyses were conducted with R version 4.3.2 (R Core Team, 2023). 

3.4.1. Assumptions check 
To answer RQ 1, we employed IRT. We tested the three assumptions 

of IRT (see Table 5): (a) unidimensionality, (b) local independence, and 
(c) functional form (de Ayala, 2022). 

3.4.1.1. Unidimensionality. For the assumption of unidimensionality, 
we performed exploratory factor analysis (EFA) and modified parallel 
analysis (Drasgow & Lissak, 1983) to check whether a single latent 
factor was held among students’ item responses. In EFA, we extracted 
one factor and examined whether a single factor holds more than 20% of 
variance which is prerequisite to obtain stable parameter in the IRT 
framework (Reckase, 1979). Furthermore, in modified parallel analysis, 

satisfying the assumption of unidimensionality indicated that the second 
eigenvalues from the observed data was not substantially different from 
the second eigenvalues from the simulated data. 

3.4.1.2. Local dependence. The second assumption is local dependence 
that the responses to one item should be independent of the responses to 
the other items. In the context of unidimensional scale, violating this 
assumption (i.e., local dependence) can lead to inflated reliability and 
weaken the accuracy in estimating person parameters. We used Yen’s Q3 
statistics (Yen, 1984) to detect local dependence through the residual 
correlations among pairs of items. Considering both the sample size and 
the number of items (Christensen et al., 2017), we set a cutoff for the 
average residual correlation to lower than 0.3. 

3.4.1.3. Functional form. The last assumption is the functional form that 
the given data should be fitted to the function specified by the model. 
The assumption was examined by fitting data to three different IRT 
models, including Rasch (variant of 1PL model), two (2PL) and three 
parameters (3PL) model. Among diverse model fit indices, Akaike in
formation criterion (AIC, Akaike, 1974) and Bayes Information Criterion 
(BIC, Schwarz, 1978) were used to determine the final model. A model 
with the lowest AIC and BIC was selected as the best fitting model. As 
relative model fit, we also use loglikelihood and conducted model 
comparisons using log-likelihood ratio test. 

3.4.2. Fitting IRT models 
Next, we checked model level fit indices and item level fit indices. At 

the model level of goodness of fit, the limited-information statistics M2 
with its p-value, Root Mean Square Error of Approximation (RMSEA) 
and standardized root mean squared residual (SRMR) were compre
hensively considered as indicators of the goodness of fit of the model 

Fig. 3. Arrow Codes Used in the CaST Assessment.  

Fig. 4. An Example of CaST Assessment from the Administration Guide (Left) and Student Perspective (Right).  

Table 4 
CT Concepts Involved in Items.  

Item CT Concepts Item CT Concepts 

Item 1 AT, Decomposition Item 11 AT, Debugging 
Item 2 AT Item 12 AT 
Item 3 AT Item 13 AT, Debugging 
Item 4 AT, Debugging Item 14 AT, Decomposition 
Item 5 AT Item 15 AT, Decomposition 
Item 6 AT, Debugging Item 16 AT, Decomposition 
Item 7 AT Item 17 AT 
Item 8 AT, Debugging Item 18 AT 
Item 9 AT Item 19 AT, Debugging 
Item 10 AT, Debugging   

Note. AT refers to algorithmic thinking. 

Table 5 
Statistical Methods and Cutoff to Meet Three Assumptions of IRT.  

Assumptions Statistical Methods Cutoff 

1. Unidimensionality Checking the proportion of variances explained by a single factor using exploratory 
factor analysis 
A comparison of observed and simulated second eigenvalues (Drasgow & Lissak, 1983) 

Proportion of variance explained by a single factor >20% ( 
Reckase, 1979) 

2. Local 
Independence 

Yen’s Q3 statistics (Yen, 1984) Q3 < 0.3 (Christensen et al., 2017) 

3. Functional form Model comparison to three IRT models through log-likelihood ratio test   
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(Maydeu-Olivares & Joe, 2005, 2006). According to Maydeu-Olivares & 
Joe (2006), a non-significant M2 with RMSEA below 0.089 and with 
SRMR below 0.05 were proposed cut-off values for good fit. At the item 
level of goodness of fit, we used signed chi-square (S – χ2) item-fit sta
tistics (Orlando & Thissen, 2003) with RMSEA. The cutoff values for 
good fit were a non-significant S – χ2 with RMSEA close to 0. 

3.4.3. Estimating item parameters and marginal reliability 
After assessing model- and item-level fit, we fitted the selected model 

to the data to calibrate item parameters for the 19 items. For example, in 
the case of 2PL model, as a slope parameter, discrimination parameter 
(a) refers to how well items distinguish between the different levels of 
children’s CT ability. The difficulty parameter (b) is a location parameter 
that reflects how difficult an item is. The 2PL IRT model can estimate 
person location (θ) based on their item response patterns and item pa
rameters, which reflect the latent ability of children’s CT. Additionally, 
we plotted item characteristic curves for the visual inspection of the 
relationships between item discrimination (a) and difficulty (b) ac
cording to children’s CT latent ability (θ). We then examined test in
formation function (TIF) to investigate the preciseness of test in the 
relationship to level of children’s CT ability. The peak point of the test 
information function refers to where a test provides the most psycho
metric information, so it is the most reliable at measuring a child’s CT 
ability. In addition to calculating the reliability of the composite test 
scores (i.e., Cronbach’s α and McDonald’s ω) under the framework of 
classical test theory, we estimated IRT marginal reliability (rxx) (Cheng 
et al., 2012; Green et al., 1984) which is “the ratio of the true score 
variance to the total variance, expressed with respect to the estimated 
latent ability” (Andersson & Xin, 2018, p. 33). In the context of holding 
local independence assumption, the use of marginal reliability prevents 
overestimation of reliability and in turn allows for estimation of more 
precise reliability coefficients (Sireci et al., 1991). 

3.4.4. Differential item functioning 
We assessed differential item functioning (DIF) to check for biases in 

items. There are two widely used approaches for detecting DIF (Millsap, 
2011): (a) observed variable analysis (e.g., sum score on a test) and (b) 
latent variable analysis (e.g., latent ability θ). The observed variable 
analysis posits this probability is dependent on the sum scores of test (s) 
which serves as a proxy to one’s true ability (θ), whereas in latent var
iable analysis, the probability of responding correctly is conditioned on 
the latent ability (θ). Due to our relatively small sample size (Belzak, 
2020) for conducting DIF analyses, we used a logistic regression with 
sum scores as an observed variable analysis (Swaminathan & Rogers, 
1990) and two-parameter logistic IRT model with a log-likelihood test as 
a latent variable analysis (LRT) (Thissen et al., 1986) to detect potential 
DIF items. This approach first matches the sum scores (or latent ability 
(θ) in LRT) between two sub-groups and then statistically tests whether 
the relationships between a probability of correct answer and the total 
scores differ by two sub-groups. 

Under the logistic regression with sum scores approach, we first built 
a baseline model for each item i (see Model 1) in which the probability of 
a correct item (p in Model 1) was regressed on the sum scores (s). Next, 
the sub-group variables (g) and the interaction between total scores and 
sub-group variables (s ×g) were entered into the baseline model (Model 
2). When comparing the fit of Model 1 and Model 2, either β2 ∕= 0 (i.e., 
coefficient for the sub-group effect) or β3 ∕= 0 (i.e., coefficient for the 
interaction effect between sum scores and sub-group effect) indicate a 
DIF item. 

Model 1: ln
[

pi
1−pi

]
= β0 + β1 × s. 

Model 2: ln
[

pi
1−pi

]
= β0 + β1 × s + β2 × g + β3 × s × g. 

On the other hand, LRT compared the fit of two nested models: a 

compact model which assume that item parameters were equivalent 
between two groups, and an augmented model which allows for freely 
estimating item parameters (i.e., item difficulty and discrimination) for 
each group. To identify DIF items, LRT calculate the test statistics χ2

C for 
a compact model and χ2

A for an augmented model, respectively. If the 
differences in the test statistics between two models (i.e., χ2

LRT) with two 
degrees of freedom (i.e., dfC - dfA) were statistically significant, it in
dicates the presence of a DIF effect in the item. 

χ2
LRT = χ2

C − χ2
A 

Using latent ability in detecting DIF allowed us to control for mea
surement error, and to detect intercept and slope DIF in the regression 
models (Belzak, 2020). While there are limitations of using the LRT with 
a small sample size, we conjecture that using both observed and latent 
variable analyses for DIF detection provides more robust evidence of DIF 
by comparing the two different results (Davidson et al., 2021). Further, 
to prevent inflation of type 1 error from the multiple comparisons, we 
adopted the Benjamini-Hochberg correction procedure (B–H) (Benja
mini & Hochberg, 1995) to adjust alpha levels (Thissen et al., 2002). 

3.4.5. Examining difference in latent ability of CT 
We further examined the differences in children’s CT ability by 

gender and age by conducting a two-way Analysis of Variance (ANOVA) 
with the latent ability (θ) of children’s CT estimated from 2 PL IRT 
model as a dependent variable, and gender and age as factors. 

4. Results 

4.1. Descriptive statistics 

Table 6 presents the proportion of correct item rates for all items by 
gender and age groups. Prior to the main analysis, we conducted a two- 
way ANOVA to identify (a) gender and age gaps in total CaST scores and 
(b) their potential interaction effects. There was no interaction effect 
between gender and age, F(1, 268) = 0.59, p = 0.444, η2

p = 0.00, whereas 
salient main effects were identified. Specifically, boys had higher mean 
scores of CaST than girls, F(1, 268) = 5.75, p = 0.017, η2

p = 0.02, and 
older children had higher mean scores of CaST than younger children, F 
(1, 268) = 39.87, p < 0.001, η2

p = 0.13. 

4.2. Reliability 

To check consistency in scoring process by two independent raters, 
Cohen’s Kappa (Cohen, 1960), an index of inter-rater reliability, was 
calculated. The observed κ was 0.91, indicating a high level of inter-rater 
reliability (Landis & Koch, 1977). Internal reliability and general factor 
saturation were assessed for the 19 items in the form of Cronbach’s 
alpha and McDonald’s omega, respectively. The CaST assessment 
showed high internal consistency (α = 0.91) and saturation (ω = 0.92). 

4.3. Verifying model assumptions 

Table 5 summarizes statistical approaches and cutoffs to check three 
IRT assumptions. To check unidimensionality, we conducted EFA and 
confirmed that the first factor explained 31.0% of the variance, which 
was acceptable to meet unidimensionality (Reckase, 1979). The results 
of the modified parallel analysis (Drasgow & Lissak, 1983) showed that 
there was not a statistical difference (p = 0.25) between the second ei
genvalues from the observed data (λ = 1.33) and simulated data (λ =
1.22) and a sharp elbow was detected between the number of first and 
second eigenvalue, both of which supported the unidimensionality (see 
Fig. 5). 

For local independence, we calculated Yen’s Q3 statistics (Yen, 
1984), the correlation between the residuals of pairs of items, and 
identified that there were two pairs of items with Q3 statistic of 0.3 or 
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greater over than mean residual correlation, Items 2 and 3 (r = 0.32) and 
Items 9 and 12 (r = −0.30). However, eliminating the items yielded only 
minor changes in model- and item-fits. This indicated that including 
these items flagged in the local dependence is not problematic. For 
functional form, Table 7 presents model fits of three IRT models, Rasch, 
2PL, and 3PL.The results of log-likelihood ratio test indicated that 2PL 
was a better fit than the Rasch model, χ2(18) = 174.58, p < 0.001; 
however, the 3PL model was not a better fit than the 2PL, χ2(19) =

22.66, p = 0.253. Therefore, we selected the 2PL model as the final 
model. 

4.4. Assessing model and item-level fits 

To assess model-level fit, we used M2 with its accompanying p-value, 
RMSEA, and SRMR, jointly. Our results showed that, despite significant 
M2 values (M2 = 248.00, p < 0.001), other two metrics (RMSEA = 0.05, 
SRMR = 0.05) were good fits; thus, we regarded the results of model- 
level fit as acceptable. Furthermore, to assess item-level fit, we used 
the signed chi-square (S – χ2) item-fit statistics (Orlando & Thissen, 
2003) and RMSEA. As a cutoff for the good model fit, S – χ2 is 
non-significant and RMSEA is recommended below 0.08. Table 8 shows 
all items fitted to the 2PL model. 

4.5. Estimating item parameters 

To interpret the estimated item parameters, we adopted Baker’s 
guideline (Baker, 2001). According to the guideline (Baker, 2001), the 
theoretical range of item difficulty is from −4.0 to 4.0, but the practical 

Table 6 
Descriptive Statistics for CaST Correct Item Rates per Each Item by Gender and Age.  

Item Total (n = 272) Gender Age 

Girl (n = 138) Boy (n = 134) Younger (n = 95) Older (n = 177) 

M SD M SD M SD M SD M SD 

Item 1 0.64 0.48 0.55 0.50 0.73 0.45 0.51 0.50 0.71 0.45 
Item 2 0.64 0.48 0.59 0.49 0.69 0.46 0.46 0.50 0.74 0.44 
Item 3 0.50 0.50 0.44 0.50 0.57 0.50 0.34 0.48 0.59 0.49 
Item 4 0.65 0.48 0.65 0.48 0.66 0.48 0.61 0.49 0.68 0.47 
Item 5 0.40 0.49 0.37 0.48 0.43 0.50 0.30 0.46 0.45 0.50 
Item 6 0.43 0.50 0.36 0.48 0.51 0.50 0.25 0.44 0.53 0.50 
Item 7 0.22 0.41 0.20 0.40 0.23 0.42 0.11 0.31 0.28 0.45 
Item 8 0.39 0.49 0.30 0.46 0.48 0.50 0.18 0.39 0.50 0.50 
Item 9 0.42 0.49 0.36 0.48 0.49 0.50 0.24 0.43 0.51 0.50 
Item 10 0.45 0.50 0.44 0.50 0.46 0.50 0.25 0.44 0.56 0.50 
Item 11 0.43 0.50 0.37 0.48 0.49 0.50 0.26 0.44 0.51 0.50 
Item 12 0.25 0.43 0.19 0.39 0.31 0.46 0.13 0.33 0.31 0.46 
Item 13 0.34 0.47 0.31 0.47 0.36 0.48 0.19 0.39 0.41 0.49 
Item 14 0.77 0.43 0.78 0.42 0.75 0.43 0.72 0.45 0.79 0.41 
Item 15 0.90 0.30 0.88 0.32 0.92 0.28 0.83 0.38 0.94 0.24 
Item 16 0.66 0.47 0.65 0.48 0.67 0.47 0.60 0.49 0.70 0.46 
Item 17 0.79 0.41 0.79 0.41 0.78 0.41 0.64 0.48 0.86 0.34 
Item 18 0.32 0.47 0.29 0.46 0.35 0.48 0.12 0.32 0.43 0.50 
Item 19 0.64 0.48 0.67 0.47 0.60 0.49 0.50 0.50 0.71 0.45 
Total 9.82 5.42 9.20 5.47 10.46 5.04 7.22 4.66 11.22 5.29 

Note. M refers to mean, and SD refers to standardized deviation. 

Fig. 5. Modified Parallel Analysis Plot for Undimensionality Assumption.  

Table 7 
Comparison of Three IRT Model Fit Indices (Rasch, 2PL and 3PL).  

Model AIC BIC LogLik Model 
comparison 

Loglikelihood 
Ratio Test 

Rasch 4956.16 5028.28 −2458.08 – – 
2PL 4817.58 4954.60 −2370.79 Rasch vs. 2PL χ2(18) = 174.58, 

p < 0.001 
3PL 4832.92 5038.45 −2359.46 2PL vs. 3PL χ2(19) = 22.66, p 

= 0.253 

Note. AIC refers to AIC refers to Akaike information criterion; BIC refers to 
Bayesian information criterion; Loglik refers to log likelihood; LRT; 2PL refers to 
two-parameter item response theory model; 3PL refers to three-parameter item 
response theory model. 

Table 8 
Item-level Fit Indices.  

Item S – χ2 RMSEA 

S – χ2 df p 

Item 1 22.68 14 0.07 0.05 
Item 2 11.10 12 0.52 0.00 
Item 3 7.32 12 0.84 0.00 
Item 4 12.15 15 0.67 0.00 
Item 5 9.29 12 0.68 0.00 
Item 6 8.00 8 0.43 0.00 
Item 7 8.74 8 0.37 0.02 
Item 8 2.38 7 0.94 0.00 
Item 9 11.31 8 0.19 0.04 
Item 10 5.26 11 0.92 0.00 
Item 11 10.75 10 0.38 0.02 
Item 12 11.07 8 0.20 0.04 
Item 13 13.72 12 0.32 0.02 
Item 14 10.86 13 0.62 0.00 
Item 15 7.39 9 0.60 0.00 
Item 16 14.93 15 0.46 0.00 
Item 17 5.71 9 0.77 0.00 
Item 18 18.98 11 0.06 0.05 
Item 19 9.80 13 0.71 0.00 

Note. S – χ2 refers to signed chi-square; df refers to degree of freedom; RMSEA 
refers to root-mean-square error of approximation. 
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range is −2.80 (very easy) to 2.80 (very difficult). Item discrimination 
was interpreted as “very low” for values between 0.01 and 0.34, “low” 
for values between 0.35 and 0.64, “moderate” for values between 0.65 
and 1.34, “high” for values between 1.35 and 1.69, and “Very high” for 
values higher than 1.7 (Baker, 2001). 

In Table 9, parameter estimates showed a wide range of item 
discrimination from moderate (Item 4 = 0.91) to very high (Item 6 =
4.66), with a high item discrimination across items, on average (M =
2.26, SD = 1.12). Item difficulty ranged from very easy (Item 15 =

−2.40) to hard (Item 7 = 0.92), with a moderate level of difficulty across 
items (M = −0.21, SD = 0.86). Fig. 6 presents ICC for Item 15, which is 
on the far left, represents low difficulty and discrimination, whereas ICC 
for Item 7 and 12, which are on the far right, represent items with the 
highest item difficulties. 

4.6. Test information function and marginal reliability 

Fig. 7 shows the test information function (blue line in Fig. 7 left) 
with its standard errors (yellow dotted line in Fig. 7 left) and the mar
ginal reliability according to the latent abilities of CT (Fig. 7 right). The 
test information function indicated that most item information is pro
vided for children who possess average level of latent ability (θ, x-axis) 
from −1.0 to 1.5. The results implied that CaST assessment is the most 
precise measure for average CT ability (Max. item information ≅ 25.0; 
standard error of estimate ≅ 0.45), whereas this measure works poorly 
for children with extremely low or high latent abilities of CT. The 
marginal reliability (rxx) for the CaST was 0.87, which is highly 
acceptable. Specifically, as shown in Fig. 7 right, the CaST assessment 
scores are reliable (i.e., rxx > 0.70) in the medium range of the latent 
abilities of CT from (i.e., approximately −1.5 < θ < 1.8 in x-axis), 
whereas this measure holds low reliability especially in the range of high 
latent abilities of CT (i.e., θ > 2.0 in x-axis). 

4.7. DIF analyses 

To answer RQ 2, we conducted DIF analyses to check if the items 
functioned equally, regardless of a child’s gender or age. Table 10 
indicated that all items showed non-significant differences in B–H 
correction p-values by age or gender, indicating no item was flagged for 
either logistic regression with sum scores or LRT. This suggests that the 
19 items measure children’ CT latent ability fairly, regardless of their 
gender and age. 

4.8. Differences in latent ability of CT by gender and age 

As shown in Table 11, a two-way ANOVA result showed that the 
interaction effect was non-significant, F(1, 268) = 0.76, p = 0.386, η2

p =

0.00, but there were main effects of age, F(1, 268) = 45.02, p < 0.001, η2
p 

= 0.14, and gender, F(1, 268) = 6.17, p = 0.014, η2
p = 0.02. Specifically, 

boys (M = 0.11, SD = 0.89) showed significantly higher CT abilities than 
girls (M = −0.11, SD = 0.98). For age, the older group (≥72 months; M 
= −0.26, SD = 0.90) showed a higher latent ability of CT than the 
younger group (<72 months; M = −0.48, SD = 0.84) and its magnitude 
was large. Boys outperformed girls and older children outperformed 
younger children in the latent abilities of CT. Considering the results of 
both the ANOVA of latent ability and the DIF analyses, we can conclude 
that that the identified differences in CaST scores by gender and age (see 
4.1. Descriptive statistics) were due to differences in true ability of CT, 
rather than due to items that were designed to favor certain subgroups. 

5. Discussion 

5.1. Discussion 

5.1.1. Item characteristics of CaST 
The goal of the present study is to provide evidence of validity, 

reliability, and fairness for CaST, a performance assessment of early 
childhood CT using IRT. Our results showed robust psychometric char
acteristics, including high reliability, unidimensionality, acceptable 
levels of item fit indices and parameters, and no evidence of DIF effects 
with a sample of 272 children ages 4–8. 

IRT analyses showed that the assessment has good psychometric 
properties for young children. It has a high level of item discrimination 
(M = 2.26, SD = 1.12), on average, ranging from moderate to very high. 
Based on our test information function, the assessment provides the 
most information for children with average latent ability; it provides 
little information for children with low latent ability (i.e., below −1.5 SD 
below average) and high latent ability (i.e., above 2.0 SD above average) 
of CT. This result is different from previous findings on CT assessments 
for young children that found test information peaked at relatively low 
latent ability (El-Hamamsy et al., 2022; Relkin et al., 2020). In other 
words, TechCheck works well for discriminating between children with 
relatively low CT ability, whereas the assessment in the present study is 
better at reliably measuring children with average levels of CT. This 
suggests that our assessment has a distinct functionality to assess young 
children’s CT that is not being met by other assessments. As mentioned 
above, early childhood researchers have not reached consensus on what 
skills constitute CT or how to assess CT. Our findings contribute to un
derstanding about the kinds of CT abilities and skills that are develop
mentally appropriate for early childhood and how we can measure these 
skills in an active way, which we elaborate on in the next section. From a 
test development perspective, we now have evidence about how our 
items are performing that will help us re-design some of our items and 
design new items to specifically focus on children who fall in the lower 
and upper bands of CT ability. 

5.1.2. Why certain items are more difficult for young children? 
Similar to previous research on CT assessments for young children, 

we found that our assessment demonstrated moderate item difficulty 
levels (M = −0.21, SD = 0.86). However, as shown in Table 9, the item 
difficulty of our assessment varied widely. For example, looking at 
Table 9, item 15 has an item discrimination of 1.10 and item difficulty of 
−2.40. This was the easiest item on the assessment. Fig. 8 shows item 15 
from the administration guide. In the item, children are asked to use a 
stick to mark where in the program the robot would stop at the tree. 
Some of the variable features in this item made it easy: the starting 
orientation of the robot is the same as the child’s and the person 
administrating the assessment points to the two landmarks (the tree and 

Table 9 
Estimates of the Item Discrimination and Difficulty Parameters Using Two- 
parameter IRT Model.   

Item discrimination Item difficulty 

Item 1 1.16 −0.63 
Item 2 1.69 −0.53 
Item 3 2.16 −0.01 
Item 4 0.91 −0.83 
Item 5 2.18 0.34 
Item 6 4.66 0.21 
Item 7 3.01 0.92 
Item 8 4.06 0.35 
Item 9 3.65 0.25 
Item 10 2.51 0.16 
Item 11 3.12 0.23 
Item 12 3.25 0.80 
Item 13 2.27 0.55 
Item 14 0.95 −1.47 
Item 15 1.10 −2.40 
Item 16 0.93 −0.86 
Item 17 1.55 −1.19 
Item 18 2.36 0.60 
Item 19 1.46 −0.54  
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the house). This item assessed children’s ability to coordinate the robot 
movement to the program and to decompose a program based on a 
landmark. This is an item that we will remove from our assessment 
because we want to reduce the number of items and this particular item 
does not provide a lot of discriminating information about children’s 
understanding of CT. 

As shown in Table 9, item 7 has a difficulty of 0.92, making it one of 
the hardest items for children in our sample. Fig. 9 depicts item 7 from 
the administrator’s perspective where they read the script, orient the 
agent, and hand the child the program they are to enact. Fig. 10 shows 

the item from a child’s perspective. It shows the item grid (A), the ro
bot’s starting orientation which is 90◦ to the left (B), and, if they move it 
correctly, the robot’s ending location and orientation (C). This item 
assesses children’s ability to enact a program when the robot does not 
share their orientation. Part of what makes item 7 difficult for children is 
that the robot’s starting orientation is 90◦ to their left, which requires 
them to take on the perspective of the robot. It requires understanding 
that a forward movement is always a forward movement regardless of 
the robot’s orientation. We found that many children enact the program 
from their own perspective or orientation (Jiang et al., 2023). Our 

Fig. 6. Item Characteristic Curves for 19 Items of the Assessment. 
Note. X-axis refers to children’s latent ability (θ) of CT; Y-axis refers to the probability of the correct response. 

Fig. 7. Test Information Function with its Standard Errors (Left) and Marginal Reliability according to Different Levels of Latent Abilities (θ) of CT (Right). 
Note. In the blue line of the left figure (Test Information Function), the X-axis refers to the children’s latent ability (θ) of CT and the Y-axis refers to the amount of 
information provided by the item responses. In the yellow dotted line of the left figure, the X-axis refers to the children’s latent ability (θ) of CT and the Y-axis refers 
to the standard error of the test information. In the right figure (Marginal Reliability), the X-axis refers to the children’s latent ability (θ) of CT and the Y-axis refers to 
marginal reliability. 
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findings are similar to studies on LOGO that found children tended to use 
their own perspective when programming the Turtle and struggled to 
program when they were not able to take on the Turtle’s perspective 

Table 10 
Statistic of DIF Analysis for Gender and Age Using Logistic Regression with sum scores and 2-parameter Logistic IRT with Likelihood Ratio Tests.   

Gender Age 

Logistic regression with sum scores LRT Logistic regression with sum scores LRT 

Stat p B–H Δχ2 p B–H Stat p B–H Δχ2 p B–H 

Item 1 5.70 0.058 0.157 5.12 0.077 0.291 2.18 0.337 0.523 3.02 0.221 0.624 
Item 2 3.69 0.158 0.308 1.75 0.417 0.495 2.12 0.346 0.523 2.21 0.331 0.648 
Item 3 1.16 0.559 0.625 0.71 0.700 0.782 0.81 0.665 0.709 2.15 0.341 0.648 
Item 4 2.04 0.360 0.456 3.29 0.193 0.334 2.76 0.252 0.523 2.72 0.257 0.624 
Item 5 2.86 0.239 0.379 2.21 0.331 0.449 3.43 0.180 0.523 4.23 0.121 0.586 
Item 6 3.64 0.162 0.308 6.14 0.046 0.291 4.89 0.087 0.413 4.37 0.112 0.586 
Item 7 3.07 0.216 0.372 4.01 0.135 0.291 0.58 0.749 0.749 0.38 0.829 0.875 
Item 8 5.81 0.055 0.157 5.41 0.067 0.291 2.69 0.261 0.523 1.71 0.425 0.674 
Item 9 1.61 0.446 0.530 1.96 0.376 0.476 3.70 0.158 0.523 2.67 0.263 0.624 
Item 10 6.79 0.034 0.157 8.03 0.018 0.171 2.06 0.358 0.523 1.01 0.605 0.751 
Item 11 0.72 0.697 0.735 0.52 0.770 0.813 1.15 0.564 0.670 0.92 0.632 0.751 
Item 12 4.59 0.101 0.239 3.49 0.174 0.331 0.80 0.672 0.709 0.69 0.707 0.790 
Item 13 6.41 0.041 0.157 4.73 0.094 0.291 3.06 0.216 0.523 3.74 0.154 0.586 
Item 14 2.59 0.274 0.400 2.26 0.323 0.449 1.34 0.513 0.670 1.40 0.498 0.675 
Item 15 5.84 0.054 0.157 2.87 0.238 0.377 5.59 0.061 0.387 1.96 0.376 0.649 
Item 16 2.23 0.328 0.445 3.96 0.138 0.291 6.69 0.035 0.387 4.19 0.123 0.586 
Item 17 7.12 0.028 0.157 4.22 0.121 0.291 2.10 0.351 0.523 1.43 0.488 0.675 
Item 18 0.39 0.824 0.824 0.37 0.830 0.830 6.24 0.044 0.387 5.22 0.074 0.586 
Item 19 10.80 0.005 0.086 11.21 0.004 0.070 1.20 0.548 0.670 0.17 0.918 0.918 

Note. LRT refers to 2-parameter logistic IRT model with log-likelihood tests; B–H refers to each p-value adjusted by Benjamini-Hochberg correction approach. 

Table 11 
The Result of a Two-way ANOVA by Age and Gender.  

Factors Sum of 
Squares 

df Mean 
Square 

F p ES 
(η2

p) 

Age 34.08 1 34.08 45.02 <0.001 0.14 
Gender 4.67 1 4.67 6.17 0.014 0.02 
Age ×

Gender 
0.57 1 0.57 0.76 0.386 0.00 

Error 202.91 268 0.76    

Note. df refers to degree of freedom; F refers to F-statistics; ES (η2
p ) refers to 

partial eta-partial squared as an effect size of measure.  

Fig. 8. Item 15 from Administration Guide Perspective.  

Fig. 9. Item 7 from Administration Guide Perspective.  
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(Cuneo & Toronto, 1985; Fay & Mayer, 1987). For example, Mayer and 
Fay (1987) found that children often used an egocentric perspective 
when programming the Turtle in LOGO rather than a Turtle-centric 
perspective. The findings in the present study also align with recent 
studies that have shown relationships between concepts of spatial 
thinking and CT in early childhood (Città et al., 2019; Román-González 
et al., 2017; Tsarava et al., 2022). 

As mentioned previously, most frameworks of CT do not contain or 
mention spatial thinking skills (Zeng et al., 2023). However, many en
vironments that are used to teach coding in early childhood use tangible 
coding toys or coding that represents movement either in a physical or 
virtual space. Such movement requires that children understand spatial 
and mathematical concepts such as the codes always produce the same 
movements but depend on the agent’s orientation, knowing that an 
agent’s rotation occurs by rotating on a fixed point at a set angle, not 
translating to an adjacent point. The findings in the present study further 
contribute to a developmental understanding of CT for early childhood. 
Regardless of whether or not an item was easy or difficult, our findings 
provide useful information about what types of tasks are developmen
tally appropriate for young children or what skills are needed to engage 
in tasks designed around tangible coding toys or agents. 

5.1.3. Test fairness and gender and age differences in CT ability 

5.1.3.1. Test fairness through DIF. In terms of test fairness, we con
ducted a DIF analysis to explore whether our items favored children of a 
particular gender or age. We did not find any evidence of item bias based 
on gender and age. Our results are similar to the findings of de Ruiter 
and Bers (2022), who did not find any evidence of bias based on gender. 
However, they did find that one item showed evidence of DIF using 
Mentel-Haenszel tests based on age. Our findings indicate that our 
assessment can serve as an appropriate scale for comparing children’s 
CT abilities by gender and age. 

We also tested for main effects and potential interaction effects of age 
and gender on the children’s latent ability (θ). While both main effects of 
gender and age were significant, their interaction effect was not signif
icant. In terms of the non-significant interaction effect, this result is 
aligned with Sullivan and Bers (2016) in which no interaction effect 
between gender and grade levels was detected in robot and program
ming tasks. It may be due to the relatively narrow range of age range in 
the present study (4–8 years old), compared to previous studies (e.g., 
below 6 vs. 6–8 vs. above 8 years) (Rijke et al., 2018), which made it 
difficult to detect salient gender gaps. Future research is needed to re
cruit a wide range of children to explore whether the magnitude of 
gender differences in CT varies by age. 

5.1.3.2. Differences in CT ability by age. We found that older children 
had significantly higher latent ability of CT than younger children. This 
finding is consistent with previous research that found children’s age is a 
critical factor when designing and implementing lessons on CT and 
programming (Bati, 2022; McCormick & Hall, 2022). Saxena et al. 
(2020) designed CT activities with Bee-Bot to teach algorithm design for 
two age groups: K-1 (aged 3 to 4) and K-2 (aged 5 to 6). While K-2 
children mastered algorithm design, K-1 children only partially solved 
the tasks and struggled with directional language. These findings high
light the need for developmentally appropriate practices in early 
childhood (NAEYC & Fred Rogers Center for Early Learning and Chil
dren’s Media, 2012). Technology and media have potential to enhance 
children’s learning experiences when educators make decisions care
fully and the integration of these media into learning activities are 
developmentally appropriate for children. Similarly, researchers have 
been calling for developmentally appropriate assessments of CT for early 
childhood (Clarke-Midura et al., 2023; Relkin et al., 2023). Relkin et al. 
(2023) recently proposed a grade-specific CT assessment, TechCheck K, 
1, and 2 and its normalization scoring system. While the work of Relkin 
et al. and our findings contribute to understanding of how to assess CT in 
early childhood, there is a need for further research on what it means to 
design and implement developmentally appropriate CT curricula and 
assessments in early childhood classrooms. 

5.1.3.3. Differences in CT ability by gender. The present study found that 
boys outperformed girls on the CaST assessment and that this difference 
was not due to bias in the items but due to children’s true latent CT 
ability. We offer three possible explanations for these differences: lack of 
developmentally appropriate and meaningful curriculum, the use of sum 
scores, and spatial thinking, which we discuss briefly below. 

Findings on gender and CT ability in early childhood are mixed with 
some studies indicating that CT abilities were not predicted by a child’s 
gender (El-Hamamsy et al., 2022; Papadakis et al., 2016; Relkin et al., 
2020) and other studies suggesting boys had higher CT abilities (Angeli 
& Valanides, 2020; Sullivan & Bers, 2013). In a recent systematic review 
on CT and programming in early childhood, Bati (2022) reported that 
studies on early childhood CT were more likely to find differences in 
gender related to motivational and social factors rather than ability or 
performance. They suggested that a potential reason for any gender 
differences is due to the lack of developmentally and suitable content 
related to children’s needs. For example, Sullivan and Bers (2013) found 
that girls and boys perform similarly on items related to concepts such as 
debugging but boys score higher on conditionals and fitting robot gear. 
Angeli and Valanides (2020) found that boys benefit more from indi
vidual, kinesthetic, spatially directed, and manipulative-based activities 
with cards and girls benefit more from collaborative writing activities 

Fig. 10. Item 7 From Child’s Perspective. 
Note. A: Item grid for robot vacuums a room, B: Robot in starting orientation of 90◦ to the left of child’s orientation, C: Robots ending location and orientation. 
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(Bati, 2022). While most of the research on broadening participation of 
women in CS is focused on middle school through college, findings 
suggest that CS education often emphasizes curriculum, tools, and ma
terials that are historically aligned more closely with male interests than 
female interests (Peppler & Wohlwend, 2018) and females prefer 
collaboration, real-world projects, and those that emphasize creativity 
and aesthetics (Buechley & Hill, 2010; Guzdial et al., 2012; Margolis 
et al., 2011). This further supports the need for developmentally 
appropriate curriculum related to children’s interests and needs in early 
childhood settings. 

Another possible explanation for why our findings tell a slightly 
different story on gender differences in CT ability than previous studies 
is because most of the other studies used the sum of observed scores 
whereas the present study used latent ability scores (θ), which control 
for the measurement errors as a proxy to children’s CT ability. These 
different approaches to scoring (i.e., whether measurement errors are 
controlled or not) have potential to result in inconsistent patterns of 
gender difference in CT abilities. 

Finally, the findings on gender differences in CT ability could be 
related to differences in spatial thinking ability. CaST is different from 
other CT measures due to its focus on the spatial thinking that is required 
to solve some of the tasks. Research has found that boys perform better 
on tests of spatial thinking than girls. For example, a recent meta- 
analysis on spatial thinking (Lauer et al., 2019) found that gender dif
ferences in spatial ability occurred from an early age (g = 0.20 for 3–7 
years). As mentioned above, as far back as LOGO, researchers have been 
documenting the relationship between spatial thinking and CT. It could 
be that boys in our sample started kindergarten with more spatial 
thinking knowledge than the girls, which influenced their performance 
on CaST. More research is needed to understand the relationship be
tween spatial thinking and CT. Overall, the findings in the present study 
indicate the importance of finding developmentally appropriate ways to 
use tangible coding toys in preschool and kindergarten classrooms in 
order to provide girls with experiences and opportunities to play with 
tangible coding toys in meaningful ways. 

5.2. Limitations and suggestions for future research 

Several limitations of the current study should be considered when 
interpreting the potential strengths and psychometric evidence of the 
CaST. First, our results showed that 19 CaST items are well fitted to 2PL 
IRT model, test information function (Fig. 7 left) showed that most item 
information is centered around the range of −1.0 to 1.5 of the X-axis (θ, 
latent abilities of CT). This indicates that CaST functions well to assess 
average ability of children, whereas this measure is less sensitive to 
assess children with very low or high levels of CT. In future work we plan 
to develop more items and modify some of the variable features to 
extend the range of our test information. 

Second, the sample size in the present study might be regarded as 
modest. However, according to de Ayala (2022), determining the sample 
size for IRT analysis should involve multiple considerations, including 
the type of response, the length of the item, person distribution and the 
number of parameters to be estimated, rather than hard-and-fast rules. 
Further, Morizot et al. (2007) stated that for dichotomously scored 
items, it is possible to have as few as 200 participants for unbiased an
alyses for 2PL IRT models. Accordingly, the sample size of 272 in the 
present study is sufficient to fit the IRT model with dichotomous re
sponses. However, administering CaST with a large sample in a future 
study will allow for stable and accurate parameter estimations under 
more complex IRT models. 

Third, our efforts to validate CaST substantially are aligned with 
sources for validity evidence: content, cognitive process, internal 
structure (see Appendix A), conceptually related constructs, and 

consequence of testing (American Educational Research Association 
et al., 2014). However, we could not confirm evidence on the relation
ships with criteria due to the restrictions on administration of other as
sessments. Future studies should investigate not only the level of 
association with other early childhood CT assessments, but also the 
predictive relationships with general cognitive abilities. 

Lastly, as a potential moderator of explaining differences in CT 
abilities, the current study focused on investigation of gender and age. 
Although potential gender gaps and developmental appropriateness of 
assessment of early childhood CT are critical to consider, other de
mographic factors should also be included as potential moderators of CT 
ability in future studies. 

6. Conclusion 

Early childhood computational thinking is an emerging field (Zeng 
et al., 2023). The present study contributes to knowledge and under
standing of early childhood CT by providing evidence for using 
performance-based assessments to make valid and reliable inferences 
about young children’s CT knowledge that is not dependent on their 
reading or writing ability. Our findings show that gender differences in 
CT understanding exists as early as primary school and indicate the 
importance of providing girls opportunities to play with tangible coding 
toys and to gain foundational spatial, math, and CT skills early in pre
school and primary school. Finally, while children’s access to tangible 
coding toys and apps has increased, more research is needed on how we 
can support teachers’ use of these tools for meaningful CT learning in 
early childhood classrooms. 

7. Selection and participation 

Data for this study were collected at five different schools in the 
Rocky Mountain region of the U.S. All children participated in this study 
voluntarily. In accordance with the Institutional Review Broad pro
tocols, we followed a two-step process in which parents were first 
invited to consent to their child’s participation. Children who had 
parental consent were then invited to participate, were informed about 
the data collection procedures, and told that they could opt out or 
withdraw at any time. Children then provided verbal assent to partici
pate in the study. 
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Appendix A. Internal Structure of CaST Assessment 

To find validity evidence of internal structure, we conducted a confirmatory factor analysis (CFA) with diagonally weighted least squares (DWLS) 
estimator, and the results showed acceptable model fit indices, χ2(152) = 242.20, p < 0.001, CFI = 0.99, TLI = 0.99, RMSEA = 0.05, 90% CI [0.04, 
0.06], SRMR = 0.08. The overall factor loadings were higher than 0.4 across 19 items. The CFA results support validity evidence of internal structure 
and unidimensionality of the assessment.  

Table A1 
The Results of Confirmatory Factor Analysis.   

Factor Loading SE z-score Standardized Factor Loading p-value 

Item 1 1.00   0.59 <0.001 
Item 2 1.25 0.15 8.14 0.74 <0.001 
Item 3 1.40 0.15 9.18 0.83 <0.001 
Item 4 0.86 0.14 6.32 0.51 <0.001 
Item 5 1.34 0.16 8.65 0.79 <0.001 
Item 6 1.61 0.17 9.51 0.96 <0.001 
Item 7 1.42 0.15 9.26 0.84 <0.001 
Item 8 1.57 0.17 9.39 0.93 <0.001 
Item 9 1.55 0.17 9.38 0.92 <0.001 
Item 10 1.42 0.16 8.74 0.84 <0.001 
Item 11 1.51 0.16 9.24 0.89 <0.001 
Item 12 1.48 0.16 9.36 0.88 <0.001 
Item 13 1.36 0.15 8.81 0.80 <0.001 
Item 14 0.81 0.15 5.31 0.48 <0.001 
Item 15 0.86 0.18 4.87 0.51 <0.001 
Item 16 0.86 0.14 5.95 0.51 <0.001 
Item 17 1.13 0.16 7.18 0.67 <0.001 
Item 18 1.37 0.15 9.05 0.81 <0.001 
Item 19 1.13 0.14 8.01 0.67 <0.001  
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Magis, D., Béland, S., Tuerlinckx, F., & De Boeck, P. (2010). A general framework and an 
R package for the detection of dichotomous differential item functioning. Behavior 
Research Methods, 42, 847–862. https://doi.org/10.3758/BRM.42.3.847 

Margolis, J., Goode, J., & Bernier, D. (2011). The need for computer science. Education 
Leader, 68, 68–72. 

Martins, E. C., da Silva, L. G. Z., & Neris, V. P. de A. (2023). Systematic mapping of 
computational thinking in preschool children. Int. J. Child-Comput. Interact., 36, 
Article 100566. https://doi.org/10.1016/j.ijcci.2023.100566 

Maydeu-Olivares, A., & Joe, H. (2005). Limited- and full-information estimation and 
goodness-of-fit testing in 2n contingency tables. Journal of the American Statistical 
Association, 100, 1009–1020. https://doi.org/10.1198/016214504000002069 

Maydeu-Olivares, A., & Joe, H. (2006). Limited information goodness-of-fit testing in 
multidimensional contingency tables. Psychometrika, 71, 713–732. https://doi.org/ 
10.1007/s11336-005-1295-9 

Mayer, R. E., & Fay, A. L. (1987). A chain of cognitive changes with learning to program 
in Logo. Journal of Educational Psychology, 79, 269–279. https://doi.org/10.1037/ 
0022-0663.79.3.269 

McCormick, K. I., & Hall, J. A. (2022). Computational thinking learning experiences, 
outcomes, and research in preschool settings: A scoping review of literature. 
Education and Information Technologies, 27, 3777–3812. https://doi.org/10.1007/ 
s10639-021-10765-z 

Millsap, R. E. (2011). Statistical approaches to measurement invariance. New York, NY, US: 
Routledge/Taylor & Francis Group.  

Mislevy, R. J. (2007). Validity by design. Educational Research, 36, 463–469. https://doi. 
org/10.3102/0013189X07311660 

Mislevy, R. J., & Haertel, G. D. (2006). Implications of evidence-centered design for 
educational testing. Educational Measurement: Issues and Practice, 25, 6–20. https:// 
doi.org/10.1111/j.1745-3992.2006.00075.x 

Morizot, J., Ainsworth, A. T., & Reise, S. P. (2007). Toward modern psychometrics: 
Application of item response theory models in personality research. In R. W. Robins, 
R. C. Fraley, & R. F. Krueger (Eds.), Handb. Res. Methods personal. Psychol. (pp. 
407–423). New York, NY, US: The Guilford Press.  

NAEYC & Fred Rogers Center for Early Learning and Children’s Media. (2012). 
Technology and interactive media as tools in early childhood programs serving children 
from birth through age 8 (Joint position statement), Latrobe, PA. Retrieved from https 
://www.naeyc.org/sites/default/files/globally-shared/downloads/PDFs/resources 
/position-statements/ps_technology.pdf. 

Oliveri Elena, M., Lawless, R., & Mislevy, R. J. (2019). Using evidence-centered design to 
support the development of culturally and linguistically sensitive collaborative 
problem-solving assessments. International Journal of Testing, 19, 270–300. https:// 
doi.org/10.1080/15305058.2018.1543308 

Orlando, M., & Thissen, D. (2003). Further investigation of the performance of S-X2: An 
item fit Index for use with dichotomous item response theory models. Applied 
Psychological Measurement, 27, 289–298. https://doi.org/10.1177/ 
0146621603027004004 

Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2016). Developing fundamental 
programming concepts and computational thinking with scratchJr in preschool 
education: A case study. International Journal of Mobile Learning and Organisation, 10, 
187–202. https://doi.org/10.1504/IJMLO.2016.077867 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. USA: Basic Books, 
Inc.  

Peppler, K., & Wohlwend, K. (2018). Theorizing the nexus of STEAM practice. Arts 
Education Policy Review, 119, 88–99. https://doi.org/10.1080/ 
10632913.2017.1316331 

R Core Team. (2023). R: A language and environment for statistical computing. https:// 
www.R-project.org/. 

Reckase, M. D. (1979). Unifactor latent trait models applied to multifactor tests: Results 
and implications. Journal of Educational Statistics, 4, 207–230. https://doi.org/ 
10.2307/1164671 

Relkin, E., & Bers, M. U. (2019). Designing an assessment of computational thinking 
abilities for young children. In L. E. Cohen, & S. Waite-Stupiansky (Eds.), STEM early 
child. Learn. Sci. Technol. Eng. Math. Strengthen learn. (pp. 83–98). Routledge.  

Relkin, E., & Bers, M. (2021). TechCheck-K: A measure of computational thinking for 
kindergarten children. In 2021 IEEE glob. Eng. Educ. Conf. EDUCON (pp. 1696–1702). 
https://doi.org/10.1109/EDUCON46332.2021.9453926 

Relkin, E., de Ruiter, L., & Bers, M. U. (2020). TechCheck: Development and validation of 
an unplugged assessment of computational thinking in early childhood education. 
Journal of Science Education and Technology, 29, 482–498. https://doi.org/10.1007/ 
s10956-020-09831-x 

Relkin, E., Johnson, S. K., & Bers, M. U. (2023). A normative analysis of the TechCheck 
computational thinking assessment. Educational Technology & Society, 26, 118–130. 
https://doi.org/10.30191/ETS.202304_26(2).0009 

Revelle, W. (2023). Procedures for psychological, psychometric, and personality research. 
psych: https://CRAN.R-project.org/package=psych. 

Rijke, W. J., Bollen, L., Eysink, T. H. S., & Tolboom, J. L. J. (2018). Computational 
thinking in primary school: An examination of abstraction and decomposition in 
different age groups. Informatics in Education, 17, 77–92. https://doi.org/10.15388/ 
infedu.2018.05 

Rizopoulos, D. (2006). ltm: An R package for latent variable modeling and item response 
analysis. Journal of Statistical Software, 17, 1–25. https://doi.org/10.18637/jss.v017. 
i05 
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