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Resumen. La teoria matematica de nudos estudia los encajamientos de
circulos en el espacio R3. La introduccién de teorias de homologia produce
estructuras matematicas complejas generando nuevas oportunidades de
investigacion. En este articulo brindamos una primera mirada a la homologia
de Khovanov, a la sucesion larga de Khovanov y se presenta un resumen de
los origenes historicos de dicha teoria. Ademas, usamos esta sucesioén para
calcular la homologia de los nudos toroidales T'(2,n). Uno de los objetivos
principales de esta publicacion es fomentar el estudio de la teoria de nudos y
la homologia de Khovanov en Colombia y Latinoamérica en general.
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A first look at knot theory and Khovanov homology

Abstract. The mathematical theory of knots studies the embeddings of circles
into the space R3. The introduction of homology theories results in complex
mathematical structures that generate new research opportunities. In this
article, we offer a first look into Khovanov homology, the long exact sequence
of Khovanov homology, and we present a summary of the historical origins
of the theory. Moreover, we use this sequence to calculate the homology of
torus knots T'(2,n). One of the the main objectives in publishing this article
is to popularize knot theory and Khovanov homology in Colombia and Latin-
America in general.
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1. Introduccién

La teoria matemaética de nudos es un campo fascinante de investigacion que envuelve
distintas areas de la ciencia como la matemaética, fisica, quimica, entre otras. Una de
las motivaciones para publicar este articulo es fomentar la teoria en el Encuentro In-
ternacional de Matemdticas (EIMAT) a realizarse en la Universidad del Atlantico en
Barranquilla, Colombia, en noviembre de 2023. El articulo esta organizado de la siguien-
te manera. En la seccion 2 se brinda un resumen de la historia temprana de la teoria. En
la seccion 3 presentamos las primeras definiciones formales, entre ellas los diagramas de
nudos y los movimientos de Reidemeister. En la seccién 4 se construye la homologia de
Khovanov partiendo del polinomio bracket siguiendo a [21] y en la seccion 5 se construye
la sucesion larga de la homologia de Khovanov. Finalmente, en la seccién 6 se calcula la
homologia de los nudos toroidales T'(2,n) y en la secciéon 7 se presentan posibles futuras
direcciones de investigacion.

2. Historia

La teoria de nudos, histéricamente considerada como subérea de la topologia, es ac-
tualmente un campo de investigacién matematico que se ha desarrollado intensamente
hasta alcanzar una alta independencia. Ademas de tener una fuerte conexion con otras
areas como el algebra, la combinatoria y la mecanica estadistica, goza de una historia
fascinante. Esta historia consiste de un viaje en el tiempo que nos puede llevar incluso
hasta el afio 2600 a. e. c. pasando por la Italia del siglo XV y por la Escocia del siglo
XIX. Existe evidencia clara de que la humanidad ha mostrado interés en los nudos desde
tiempos muy tempranos, de hecho podriamos solo especular que llevé a comerciantes en
Anatolia (Asia menor) en el ano 1700 a. e. c. a usar nudos y trenzas en sus sellos y firmas.
Para mas informacion al respecto y gréficas relacionadas, referirse a [3, 15]. Escavaciones
hechas en la region de Lerna por la Escuela Americana de Estudios Clasicos, bajo la
direccion del Profesor J. L. Caskey, encontraron varias impresiones de sellos en arcilla,
muchos de ellos que corresponden al afio 2200 a. e. c. contienen nudos y enlaces [5]. Es
posible encontrar evidencia ain mas temprana (2600-2500 a. e. c.) de sellos conteniendo
nudos (véase [23]). Damos un salto en el tiempo hasta el siglo I donde un fisico griego
llamado Heraklas escribié un ensayo donde daba instrucciones paso a paso de cémo atar
18 cabestrillos ortopédicos. Este trabajo sobrevivio gracias a que Oribasius de Pérgamo
(médico del emperador Juliano el Apostata) lo incluyd a finales del siglo IV en el escri-
to Sinagogas médicas, el cual incluia todo el saber médico de la época. El escrito mas
reciente de Sinagogas médicas data del siglo X y fue llevado a Italia por el griego J. Las-
caris, un refugiado de Constantinopla. El escrito de Heraklas no contenia ilustraciones y
solo hasta el ano 1500 un artista anénimo dibuj6é uno de sus nudos en el manuscrito de
Oribasius de Pérgamo. Una traduccion al latin realizada por Vidus Vidius (médico del
rey Francisco de Francia I) contiene illustraciones hechas por el artista italiano Francesco
Primaticcio; ver por ejemplo [14]. Otros artistas del renacimiento realizaron trabajos que
de alguna forma estan relacionados con los nudos como Albrecht Diirer y Leonardo da
Vinci. Es importante mencionar que la historia de los escritos de Heraklas es importante
en la teorfa de nudos aunque sean sélo aplicaciones.
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Una mirada inicial a la teoria de nudos y a la homologia de Khovanov 105

Podemos decir que la topologia y la teoria de nudos moderna tienen su origen gracias a
Gottfried Wilhelm Leibniz. Hay evidencia de una carta de Leibniz enviada a Christiaan
Huygens en 1679, en la que habla de la necesidad de un nuevo tipo de analisis. Leibniz
lo lamo6 Analysis situs o Geometria de la posicion. En la carta escribio:

No estoy satisfecho con el dlgebra, ya que no produce las demostraciones mds cortas ni
las construcciones mds hermosas de la geometria. En consecuencia, en vista de esto,
considero que necesitamos otro tipo de andlisis, geométrico o lineal, que trate
directamente con la posicion, como el dlgebra trata con la magnitud.

De cualquier manera, no es completamente claro si Leibniz tenia algin ejemplo de un
problema que perteneciera al Analysis situs. De hecho, el primer ejemplo conocido es el
famoso problema de los puentes de Konigsberg. Este problema fue propuesto por Hein-
rich Kiithn en 1735. Kiithn comunicé el problema a Leonhard Euler sugiriendo que estaria
relacionado con la geometria de la posicion. Aunque en primeras instancias podriamos
decir que Euler no estaba convencido de la utilidad o importancia de este problema, en
1736 resulta publicando un articulo donde detalla su solucion [4]. El articulo titulado
Solutio problematis ad geometriam situs pertinentis (Solucién de problemas relaciona-
dos con la geometria de la posicion) da origen a la teoria de grafos y a la topologia. El
nacimiento de la teoria de nudos se da 35 anos después cuando el matematico francés
Alexandre-Théophile Vandermonde publica el articulo Remarques sur les problemes de
situation (Comentarios sobre problemas de posiciones), en el cual incluye nudos y tren-
zas como elementos de la geometria de posicion [20]. Carl Friedrich Gauss es el siguiente
matematico que aporta trabajos de gran importancia para el desarrollo de la teoria. De
hecho, en uno de sus apuntes de 1794, titulado Una coleccion de nudos, incluye 13 dibujos
de nudos y métodos para codificarlos. Los trabajos de Gauss fueron los que principal-
mente motivaron a James Clerk Maxwell quien en su libro A treatise on electricity and
magnetism (Un tratado sobre electricidad y magnetismo) incluye dos curvas cerradas que
no pueden ser separadas, pero para las cuales el valor de la integral de Gauss es cero.
Finalmente, el ano 1847 representd grandes avances en el desarrollo de la topologia (y
por tanto de la teoria de nudos) principalmente debido a que Johan Benedict Listing, un
estudiante de Gauss, publico su monografia Vorstudien zur Topologie (Estudios prelimi-
nares en topologia), en la cual dedica mucho espacio a los nudos. Listing fue el primero
en usar la palabra topologia para referirse a la geometria de posicion.

En el afno 1876, el fisico escocés Sir William Thomson (Lord Kelvin) ideo la teoria de los
datomos de vdrtices. Kelvin creia que los d4tomos de la materia no eran més que anillos
de vortice que se enlazaban formando distintos nudos en una sustancia llamada éter.
La motivacion de Kelvin provino del trabajo de su amigo y colega Peter G. Tait, quien
habia creado un método para producir anillos de humo. Tait, por su parte, llegd a estar
interesado en este tipo de estudios gracias a la traduccién de un trabajo realizado por el
matematico aleman Hermann von Helmholtz Ueber Integrale der hydrodynamischen Glei-
chungen, welche den Wirbelbewegungen entsprechen (Sobre integrales de las ecuaciones
hidrodindmicas que corresponden a movimientos de vortice), en el cual aplica hidrodina-
mica a fenémenos electromagnéticos. En ese momento, crear una tabla de los elementos
era de una importancia significante. La teoria de Kelvin implicaba que si se creaban dos
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anillos de vértice, enlazados el uno con el otro, entonces esto formaria un atomo indes-
tructible. Tait, queriendo crear un tabla de los elementos, cred una clasificacion de estos
nudos, en lo que resultd ser uno de los trabajos més importantes en toda la historia de la
teoria de nudos. Como es bien sabido, la teoria de Kelvin fue méas tarde descartada por
la teoria de la relatividad. De cualquier modo, es impresionante ver como a partir de una
hipotesis refutada se gener6é un campo formal de investigacion alrededor de los nudos.

Como se menciono al inicio de esta seccion, la historia de la teoria de nudos comprende
muchos aspectos y seria imposible incluirlos todos en este articulo. El lector es referido a
los trabajos de Jozef H. Przytycki [15, 16, 18], que contienen gran cantidad de informacion
al respecto. Ademaés, el libro [14] ofrece una extensa discusion historica de la teoria de
nudos y temas actuales de investigacion, incluyendo coloraciones de Fox, homologia de
Yang-Baxter, polinomio de Jones, determinantes de Gram, médulos de madeja, entre
otros.

3. Introduccién a la teoria de nudos

La teoria clasica de nudos estudia los encajamientos de circulos modulo transformaciones
naturales en el espacio R3. Uno de los problemas fundamentales (e histéricos) en la teoria
es la clasificacion. Durante el siglo XIX el estudio y entendimiento de los nudos estaba
lejos de ser formal. De hecho, se entendia un nudo como una curva cerrada en el espacio,
modulo “deformaciones naturales”. La idea de isotopia ambiente no estaba formalmente
definida, por lo que estas deformaciones eran entendidas como “movimientos en el espacio
sin cortar ni pegar”. A pesar de la falta de formalidad, con mucha intuicién experimental,
varios cientificos lograron hacer aportes significativos a la teoria, como por ejemplo P. G.
Tait, T. P. Kirkman, C. N. Little y M. G. Haseman. En todo caso, métodos precisos para
diferenciar nudos no existian al momento. En esta seccién introducimos los conceptos de
enlace poligonal, movimientos de Reidemeister y A-movimientos, los cuales juegan un
papel fundamental en la formalizacién de la teoria de nudos.

Definicion 3.1.
(a) Un enlace poligonal es una coleccion de curvas cerradas poligonales simples dis-

juntas en R3. Un enlace poligonal que consiste de s6lo una curva simple es llamado
un nudo poligonal.

Figura 1. Se reemplaza el eje u con dos ejes v y w, a través de un A-movimiento.

(b) Sea u un segmento o eje en un enlace poligonal L en R?. Sea A un tridngulo en
R3 cuya frontera consiste de tres segmentos lineales denotados por u, v y w, de tal
modo que A N L = u. La curva poligonal L, definida como L' = (L — u) Uv U w,
es un nuevo enlace poligonal en R3. Asi, decimos que L’ ha sido obtenido desde L
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Una mirada inicial a la teoria de nudos y a la homologia de Khovanov 107

por un A-movimiento (A-move). De forma opuesta, decimos que L se obtiene
a partir de L' por un A~1-movimiento (A~!-move) (ver Figura 1). Ademais es
permitido que el tridngulo A sea degenerado de modo que el vértice v N w esté en
el mismo lado de u. En otras palabras, se permite subdivisién del segmento u como
se ilustra en la Figura 2.

as A—muvc/\ A-move A ~ ! -move

Figura 2. Subdivisién como combinacién de tres A-movimientos no degenerados.

(c) Dos enlaces poligonales se dicen ser A-equivalentes (o equivalentes combinato-
rialmente) si uno puede ser obtenido del otro a través de una sucesion finita de A-
y A~ l-movimientos.

Los enlaces poligonales son usualmente presentados con diagramas planos. En palabras
generales, los diagramas son definidos usando proyecciones del enlace que permiten des-
cribir la informacion local en cada cruce como “sobre” y “bajo”. Con miras a que esta idea
esté bien definidia, restringimos la discusién a proyecciones regulares. Sea p : R? — R?
una proyeccion y sea L C R? un enlace. Un punto P € p(L) se dice un punto multiple de
p si p~1(P) contiene mas de un punto (al niimero de puntos en p~!(P) se le denomina
la multiplicidad de P).

Definicion 3.2. La proyeccion p se dice regular si

(1) p tiene s6lo un numero finito de puntos multiples y estos tienen multiplicidad dos,

(2) ningun vértice del enlace poligonal es preimagen de un punto multiple de p.

Asi, en el caso de una proyeccion regular, las siguientes situaciones ilustradas en la Figura

3 no son permitidas.
KN

Figura 3. Situaciones no permitidas en una proyecciéon regular de un enlace poligonal.

Definicion 3.3. Un diagrama de un enlace es una proyeccion regular del enlace con la
informacién de “sobre” y “bajo” en cada cruce.

Es importante observar que por razones practicas, cuando se dibuja un diagrama se asu-
me que hay un namero “bastante grande” de segmentos lineales que componen el nudo
o enlace de modo que la traza parece estar “curvada” (ver por ejemplo, la Figura 6). En
el ano 1927 el matematico aleman Kurt Reidemeister demostré que dos diagramas, posi-
blemente orientados, son isotopicos si y sélo si estan conectados por una sucesion finita
de ciertos movimientos e isotopia planar. Actualmente, estos movimientos son conocidos
como los movimientos de Reidemeister aunque fueron primeramente ideados por el
matematico escocés James Maxwell en el ano 1870 y demostrados independientemente
por James Alexander y Garland Briggs en 1927 [1].
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108 G. MoNTOYA-VEGA

Teorema 3.4. (Teorema de Reidemeister [19]) Dos diagramas representan enlaces A-
equivalentes si y sdlo si los diagramas estan relacionados a través de una sucesion finita de
movimientos de Reidemeister R;, para i =1,2,3 y deformacion del plano del diagrama.

La Figura 4 ilustra los movimientos de Reidemeister denotados por Ry, Rs y R3. Asi,
para distinguir nudos se usan los invariantes. En palabras simples, una invariante es una
propiedad del enlace que se mantiene intacta bajo isotopia ambiente. Para demostrar que
una propiedad P(D) de un diagrama D es una invariante, se verifica que esta propiedad
se mantenga intacta bajo los movimientos de Reidemeister. Por ejemplo, las coloraciones
de Fox, el polinomio de Alexander y el polinomio de Jones son invariantes [14].

(+-f DCET (K=

Figura 4. Movimientos de Reidemeister R1, R2 y R3.

4. Homologia de Khovanov desde el polinomio bracket

El matematico estadounidense George David Birkhoff (1884-1944) introdujo el polinomio
cromatico en el ano 1912. En ese momento él estaba tratando de resolver el problema
de los cuatro colores. Sin entrar en detalle, el polinomio cromético cuenta el nimero de
coloraciones de los vértices de un grafo, de tal manera que vértices conectados por una
arista tienen asignados diferentes colores. El primer polinomio en la teoria de nudos es el
polinomio de Alexander. Este importante aporte fue hecho por el matemético estadouni-
dense James Wadell Alexander (1888-1971). Se cree que Alexander sabia del polinomio
cromatico y esto lo motivo a crear algo similar para nudos. Ademas de sus grandes aportes
en ciencia, Alexander tuvo una vida muy interesante; era millonario y un gran escalador,
lleg6 a completar ascensos populares como los Alpes suizos y las Montafias Rocosas en
Colorado. Para méas detalles acerca del polinomio de Alexander, ver por ejemplo [14]. En
el afio 1984, un nuevo polinomio fue anunciado por el matemético neozelandés Vaughan
Frederick Randal Jones (1952-2020) [6]. Tan importante fue este descubrimiento que re-
voluciond la investigacion en la teorfa de nudos a tal punto que la mayoria de temas hoy
en dia estan relacionados de alguna forma al polinomio. En Agosto del afio 1985, Louis
H. Kauffman, un matematico estadounidense nacido en 1945 y uno de los mas activos
actualmente en la investigacion en teoria de nudos, anunci6é un invariante conocido como
el polinomio bracket de dos variables. Inicialmente Kauffman creyé que habia descubier-
to o construido un invariante completamente nuevo, pero rapidamente se percaté que en
realidad habia descubierto una forma mas sencilla de obtener el polinomio de Jones [7].

Definicién 4.1. El polinomio bracket clasico y reducido es una funcién definida en
el conjunto de enlaces no orientados D con imagen en el conjunto de los polinomios de
Laurent con coeficientes enteros en la variable A, { ) : D — Z[AT!]. Se caracteriza con
las condiciones iniciales (O) = 1, (DU Q) = (=A% — A72) (D) y la relacion de madeja:

Q=400 +47 00
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Una mirada inicial a la teoria de nudos y a la homologia de Khovanov 109

Definiciéon 4.2. Considere D un enlace no orientado y denote por cr(D) el conjunto de
sus cruces. Definimos un estado de Kauffman (o simplemente estado), denotado s,
del diagrama D, como una funcion s : er(D) — {4, B}. Esta funcion es entendida como
una asignaciéon de un marcador A o B a todos los cruces como se indica en la Figura
5. Denotamos por K S el conjunto de todos los estados. Ademas, en la figura se observa
coémo cada marcador genera una solucién (o suavizamiento) del cruce.

RS XK

Figura 5. Marcadores y soluciones de un cruce v.

De esta manera, el polinomio bracket del diagrama D esté dado por la siguiente formula:

<D>= Z AlsTHAI=sTHBI (42— 472)IDs1-1 (1)
s € KS

donde D, denota el sistema de circulos obtenidos por la solucién de todos los cruces
de acuerdo con los marcadores en el estado s y |Ds| denota el nimero de circulos en el
sistema.

El lector pudo haber observado la palabra reducido en la definicion 4.1. Esto sugiere co-
rrectamente que hay varias versiones de este polinomio. Dado que méas adelante usaremos
la version no reducida, la definimos a continuacion.

Definicién 4.3. El polinomio bracket no reducido es una versiéon del polinomio bracket
en la cual al enlace vacio ) le es asignado el polinomio 1. Se denota por [ | y con esta
notacién tenemos [)] =1, [O] = (=42 — A72) y [D] = (=A% — A72) < D >,

Asi, la ecuacién 1 se convierte en:

D= Y AT B (g2 - 420 (2)
s € KS

Ejemplo 4.4. En este ejemplo presentaremos como calcular el polinomio bracket reducido
y no reducido del nudo conocido como el trébol derecho. Es claro que, aunque no es la
forma optima, el polinomio puede ser calculado directamente usando la relacion de madeja
en la definicién 4.1. Aqui haremos el célculo usando los estados de Kauffman.
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S

ABA BBA

Figura 6. Estados del nudo trébol derecho.

La Figura 6 muestra un diagrama del nudo trébol con sus cruces enumerados 1,2,3 y
ademaés contiene todos sus estados con los cruces resueltos. Estos estados estan nombrados
por tres letras que representan el marcador asignado a cada cruce. Por ejemplo, el nombre
ABA indica que los cruces 1 y 3 son dados un marcador A y el cruce 2 es dado un marcador
B.

Usando las ecuaciones previamente obtenidas, sabemos que aporta cada estado al poli-
nomio:

AAA — A3_O(—A2 _ A—2)(2—1) _ A3(—A2 _ A‘2),
AAB,BAA, ABA — A*1(—A? - A72)171 = 4,
BAB,ABB,BBA — A'™2(A?2 — A7) = A1 (—A2 - A7?), y
BBB — A" 3(—A? — A7) = A73(—A% - A7)

De esta forma, el polinomio bracket reducido del nudo trébol esta dado por:
A3 (A% — AT 434+ 3ATH (A2 - AT AT3(—A% - A7)
= AT A5 — A3,

Adicionalmente, la versiéon no reducida estd dada por:

(A2 — A AT A — A=A AT+ A AL

Observe que los terminos en la ecuaciéon 2 provienen de los estados del diagrama y por
tanto tienen una interpretacion geométrica. Ademés, esta formula permite tener una
correspondencia 1-1 entre los circulos en D; y los factores (—A? — A~2). Esto motiva la
siguiente definicion.
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Definicion 4.5. Un estado de Kauffman mejorado S del diagrama D es un estado
de Kauffman s junto con una funciéon ¢ : Dy — {+, —}, la cual asigna a cada circulo de
Dg un signo positivo o un signo negativo.

Se denota al conjunto de los estados mejorados de Kauffman por EK.S (por sus siglas
en inglés Enhanced Kauffman States). Puesto que cada circulo en Dy es dado un signo
positivo o negativo, se deduce que para cada estado s existen 2/P:| estados mejorados.
Asi, el polinomio bracket puede ser expresado como una suma de monomios, provenientes
de los estados mejorados, de la siguiente manera:

[D] = Z (—1)IPsl Als™ (AI=lsTH (B (A2l (H)=lem ()] (3)
S € EKS

Denote por o(s) la diferencia entre el nimero de marcadores A (también llamados mar-
cadores positivos) y marcadores B (marcadores negativos) en el estado. Denote por 7(S)
la diferencia entre el nimero de signos positivos y negativos en el estado mejorado. Esto
es:

o(s) = s A) — By r(S) =l ()] — e )]

De esta forma, la ecuacion 3 se convierte en:
[D] _ Z (_1)|D5|AU(S)+27—(S)7 (4)
S € EKS

la cual se conoce como la férmula para el polinomio bracket no reducido en términos
de los estados mejorados. Estos estados mejorados forman una base para los grupos de
cadena y el complejo de cadena de Khovanov definidos a continuacion.

Definicion 4.6.

(I) El bigrado en los estados mejorados se define como el siguiente conjunto:

Sap(D) =S8ap =4S € EKS | a=o0(s), b=o(s)+27(9)}.

(IT) Los grupos de cadena C, (D) = C,p se definen como los grupos abelianos libres

con base Sy (D) = Sap, 1.6. Cop = ZSyp. Asi, C(D) = @ Cap(D) es grupo
a,b € Z
libre abeliano bigradado.

(III) Para un diagrama D de un enlace, se define el complejo de cadena € (D) =

{(C4,b,04,b)}, donde el mapa diferencial 9,4 : Cop — Co—2, €s definido por:

dap(S) = D (-1)'59)(8,8)8".

S € Su oy
En el item (III) de la definicion anterior S € S, v a (S,5”) se le conoce como el nimero

incidental entre S y S’. Tenemos que (S,5’) =00 (S,5’) = 1. Ademas, sabemos que es
igual a 1 si y solo si las siguientes condiciones se cumplen:
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112 G. MoNTOYA-VEGA

1. Sy S’ son idénticos, excepto en un cruce, digamos v. Ademas, s(v) = Ay s'(v) = B,
donde S y S’ son estados mejorados de s y s’ respectivamente.

2. 7(8") = 7(S) + 1 y cada componente de D5 que no pasa por el cruce v mantiene su
signo por Dg.

Note que la condicion (1) describe el hecho que el valor de o decrece en 2, mientras que la
condicion (2) representa el hecho de que el nimero de signos negativos decrece o el nimero
de cruces positivos incrementa. Finalmente, el nimero (—1)%5") requiere un orden en
los cruces del diagrama D. El namero ¢(5,S") es definido como el niimero de cruces en
D asignados un marcador B en S después del cruce v en el orden estipulado. Este orden
es suficiente para que el mapa diferencial cumpla con la condicién 0,_2p © 04 = 0. De
cualquier modo, es importante mencionar que la homologia no depende del orden de los
cruces [8].

Con la notaciéon dada hasta el momento, podemos presentar en la Figura 7 los posibles
escenarios en que los estados mejorados S y S’ son incidentales ( (5,S’) = 1). Por
ejemplo, cuando dos circulos con signos diferentes son “unidos”, el resultado debe ser un
circulo con un signo positivo.

S S'

Figura 7. Signos de los circulos después de unién (izquierda) y separacion (derecha) de los componentes.
Definicién 4.7. La homologia de Khovanov del diagrama D se define como la homo-
logia del complejo de cadena €' (D):

ker(Oa.p)

Hap(D) = im(Day2,)
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Por supuesto que la propiedad méas importante de la homologia de Khovanov es su in-
varianza bajo los movimientos de Reidemeister de segundo y tercer tipo. El siguiente
teorema establece el resultado; ver [21, 22] para una demostracion.

Teorema 4.8. Sea D un diagrama de un enlace. Los grupos de homologia

ker(Oap)

Ha D) = 3 5
+(D) im(Oat2,b)

son wnvariantes bajo los movimientos de Reidemeister de sequndo y tercer tipo. Por lo
tanto, son invariantes de enlaces no orientados enmarcados'. Ademds, el efecto del
movimiento de Reidemeister de primer tipo Ry (positivo o negativo) estd dado por
Hyp(R14(D)) = Hog1,p43(D) y Hyp(R1-(D)) = Hy—1,—3(D). Estos grupos categorifi-
can el polinomio bracket no reducido y son llamados los grupos homoldgicos enmarcados
de Khovanov.

4.1. Ejemplo: homologia del nudo trébol

Ahora presentamos a manera de ejemplo el calculo de la homologia de Khovanov para el
nudo trébol. Primero se debe asignar un orden a los cruces y obtener todos los estados,
tal cual se observa en la Figura 6. Una vez se tienen los estados de Kauffman, es posible
determinar los estados mejorados y los valores de a = o(s) y b = o(s) + 27(5). Por
ejemplo, la Figura 8 muestra los estados mejorados que corresponden al estado BBB.

o Lo
+ 0—4— O 0 O
b=3 b=-1 b=-

++O o+
b=-

—_

\

Figura 8. Estados mejorados del estado BBB.

Teniendo los valores del bigrado (a,b) para los estados mejorados del nudo trébol, el
proximo paso es construir el complejo de cadena. Recordamos que 0gp @ Cop — Ca—2p
es dado en la definiciéon 4.6. Observe que el valor de b no cambia, lo cual sugiere que para
cada valor de b podemos construir un complejo. La Figura 9 ilustra los estados mejorados
para los cuales b = o(s) + 27(5) = —5.

De este modo tenemos que: C_1,_5 = ZS_1,_5, donde

S_1-5={S € EKS | o(s)=-1, o(s) +27(S) = —5}.

IEn inglés unoriented framed knots.
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o & ® N H N

& & ® v G

Figura 9. Estados mejorados del nudo trébol para los cuales b = —5.

Similarmente, C_3 _5 = ZS_3 _5, donde
S_3_5={S € EKS | o(s)=-3, o(s) +27(S) = =5}.

Asi, el complejo obtenido para b = —5 es ilustrado en la Figura 10. Ademas, la figura
muestra los pares de estados incidentales.

015 0_3 5
0 C.; Coas >0

+

_O_
BBA @O_ ..................... >7 N BBB
_ O O BBB

PR e E QO

B0

- _Q% s O 0_ SRR

Figura 10. Complejo de cadena para b = —5.

ker(0_1,—
Se puede observar que H_; _5 = M es trivial. Ahora, para obtener H_3 _5 =
’ Zm(81,75) ’
ker(0—s,—
M7 note que ker(0_s,_5) = C_3 _5 es el grupo abeliano generado por los si-
im(0-1,-5)

guientes estados mejorados, los cuales son denotados por x,y, z para simplificar el pro-
cedimiento, como se ilustra en la Figura 11:

o O O
0"0 OHD+ 0"0
X y z

Figura 11. Generadores de ker(0_3, _5).

Por otro lado, note que la imagen de 0_;,_5 es el grupo abeliano cuya base esta dada
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Una mirada inicial a la teoria de nudos y a la homologia de Khovanov 115

por el conjunto ilustrado en la Figura 12:
o +.0 ) S o S
{(& T8, (R &), (& T}
Figura 12. Base para im(90—1,—5).

Por lo tanto, el grupo homolégico H_3 _5 esta dado por

ZA{x,y, 2}

H_- = .
3 {x+2,—y—2z,z+y}

,—5

Estas relaciones son equivalentes a tener z = —z = y y 2 = 0. Asi, este cociente es Zs,
un grupo de torsion. El proceso para los otros grupos homologicos es anéalogo (ver por
ejemplo [10]). El Cuadro 1 contiene la homologia de Khovanov completa para el nudo
trébol.

bla || 3 | -1 | t | 3 |
7 Y/
3 Y/
-1 /
-5 Lo
-9 7
Cuadro 1. Homologia de Khovanov del nudo trébol.

5. Sucesion larga de Khovanov

De una forma similar en la que se construye la homologia de Khovanov, podemos ca-
tegorificar la relacion de madeja en la definicion del polinomio bracket (Definicion 4.1).
Recuerde que en la definicién 4.6 se da el siguiente conjunto:

Sap(D) =S8, ={S € EKS | a=o0(s), b=o0(s)+27(5)},

el cual sirve como base para los grupos abelianos libres C, ; = ZS, 5. Sea v un cruce fijo
del diagrama D. Considere los conjuntos Sf;f y Sfl’)v definidos como sigue:

ShV={S € Sap | s(v)=A} y SP"={S € Sup | s(v) =B},

ie. ngv contiene todos los estados mejorados S con bigrado (a, b) que tienen un marcador

A en el cruce v; de forma analoga, Sf;)v contiene todos los estados mejorados S con
bigrado (a,b) que tienen un marcador B en el cruce v. De esta forma, podemos observar
que:
Av B,v
Sa7b = Sa,b 8 Sa,b :
Usando la misma notacién de la construccion de la homologia de Khovanov, denotamos
los grupos abelianos generados por estos conjuntos por:
\<
/

X
U / U
Sy = Cly 8Dy = Cly
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donde v = X Asi, al nivel de grupos se obtienen las siguientes igualdades:

XX

Cap = Cop © Cop o equivalentemente ZS,p, = ZS:;)U U ZSB Y

/

Observe que el complejo (C, / ,Oa,p) €s un sub-complejo de cadena de (Cqp, ap), 0 €0

XX
/ / .
otras palabras 9(C,, ") C C,_,; . En contraste, note que esto no es necesariamente

/

. / . .
cierto para (C,, ,04,) puesto que 0, podria cambiar el marcador del cruce de A a
B, como fue discutido en la construcciéon de la homologia de Khovanov. La siguiente
sucesion exacta corta puede ser escrita:

/
>< « /\/ 5 Cx >< 0.

0 ——m—Cpp, ——Cpp —— b /Cab

En esta sucesion, o toma un estado mejorado del diagrama D con marcador B en el
cruce v y lo envia al estado mejorado de D que asigna un marcador B al cruce v y los
demas cruces mantienen sus marcadores y los circulos mantienen sus signos. Por otro
lado, el mapa ( envia a los estados mejorados con marcador B en el cruce v a cero y
a cada estado mejorado con marcador A en el cruce v al estado mejorado de D con el
cruce v dado un marcador A y los demaés cruces y circulos preservan sus marcadores y
signos, respectivamente.

XX X

Observe que C, ;, Ca C.p y existe un mapa conector entre los complejos
de cadena de la homologla de Khovanov:

XXX

Cas /Ca b Ca-2p -
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Asi, obtenemos la siguiente sucesion larga de homologias:

/
._>Ha,b<><>L>Ha,b</\/>L>Ha,b /\/X
. /
u)[{a 2b(><) %s ————— H,_2.( /\ H, 2y /\/X
MHQ_4,I,<X> & Haoay /\

Note las siguientes igualdades obtenidas al solucionar el cruce:

X ( c/b\\

Ca,b a+1 b+1 Y a, a 1, b 1-
De tal modo que, podemos obtener la siguiente sucesion corta de complejo de cadenas
de diagramas:
a / B N\
00— a+1 b+1 Ca b Cafl,bfl 07

la cual genera la siguiente sucesién conocida como la sucesién larga de la homologia
de Khovanov:

/
v Hoq1p11( >< —>Hab x)—>Ha 1,o—1(

)( )(

Bs

aConn
u) Ha—l,b+1(><) O Hy 2p(7N) ——"— Hy 35-1(

AN

B

800”"
% Ha73,b+1(><) 2 Hoygp(/N) ——— -

El siguiente resultado se obtiene directamente de la construcciéon previa, por tal motivo
omitiremos su demostracion.

Corolario 5.1.

s /
(1) Si Ha+17(,+1(><) = 0 entonces By : Ha+17b+1(x) — Hy (/) es un monomorfis-
mo.

% N\
(2) Si Ha_17b+1(><) =0 entonces B, : Ha+1,b+1(/\) — Hg, 1 (/) es un epimorfismo.

(3) Si Ha+1,b+1(><) =0= Ha,l,bﬂ()() entonces B3, : Ha+1,b+1(x) — Ha,b(><) es

un isomorfismo.
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6. Homologia de nudos toroidales T(2,n)

La familia de nudos toroidales T'(2,n) ha sido siempre de gran interés para la investiga-
cién en teorfa de nudos. La homologia de Khovanov para estos nudos fue calculada en
primera instancia por el creador de esta teoria de homologia, el matematico ruso Mikhail
Khovanov? [8]. Luego el matematico polaco Jozef Przytycki utilizo un método diferente
para calcular esta homologia; en particular, en su método us6 la conexién que existe entre
la homologia de Khovanov y la homologia de Hochschild [17]. En esta seccion presenta-
mos una nueva forma para obtener este resultado usando directamente la sucesiéon larga
previamente construida.

Definicién 6.1. Un enlace toroidal del tipo (p,q) (también llamado (p, ¢)-enlace) es un
enlace equivalente a una curva contenida en un toro estandar T2. Esta curva envuelve
p veces alrededor de la longitud y ¢ veces alrededor del meridiano. Si p y ¢ son primos
relativos, entonces el enlace tiene un s6lo componente y se denomina un nudo toroidal.

\/ :
Sea v = /\ un cruce fijo.

Note que un suavizamiento vertical en v produce el nudo trivial con 1 —n “giros”. Ahora
construimos la sucesion larga de la homologia de Khovanov. Primero, observe que mante-
ner el cruce (trivialmente) no cambia el diagrama de T'(2,n), un suavizamiento horizontal
resulta en el diagrama T'(2,n — 1), y finalmente, un suavizamiento vertical resulta en el
nudo trivial con “enmarcado girado” 1 —n veces. Por ejemplo, oberve la Figura 13 la cual
ilustra este proceso para el nudo toroidal 7'(2, 3).

(2,2) (izquierda), nudo toroidal T'(2,n) = T'(2,3) (centro), y
(derecha).

Figura 13. nudo toroidal T(2,n — 1) =T
el nudo trivial con enmarcado 1 —n = —2

El siguiente teorema establece la homologia de Khovanov para nudos toroidales T'(2,n)
con n > 0.

Teorema 6.2. Sea T'(2,n) un nudo toroidal con n > 0. Su homologia de Khovanov
H,,(T(2,n)) es dada por:

Z  para (a,b) = (n,n) o (a,b) = (—n,—3n),

Z paraa=mn—2s,b=n—4s+4 donde s es par y 0 < s < n,
Hop(T(2,n)) =< Z paraa=mn—2s,b=mn—4s donde s es impar y 3 < s <mn,

Zo paraa=mn—2s,b=n—4s+4 donde s es impar y 3 < s <n,

0  de otra forma.

Demostracion: La herramienta principal que usamos en la prueba de este resultado es la
sucesion larga de la homologia de Khovanov (5). La demostracion procede por induccion
sobre n. Para n = 1: El nudo toroidal T'(2,1) es el nudo trivial con un “giro” positivo.
Su homologia esta dada por:

Hop(T(2,1)) = { Z vpara (a,b) = (1,3 +£2),

0 de lo contrario.

2Una resefia histérica de esta homologia puede ser encontrada en [14].
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Observe que H;1(T(2,1)) = Z y note que (a,b) = (1,1) = (n,n), lo cual significa
que el teorema se cumple. Ademas, note que Hy5(7(2,1)) = Z y (a,b) = (1,5) =
(n—2s,n—4s+4)=(1-2(0),1—4(0) +4) para s = 0 y el teorema se cumple. Por lo
tanto, concluimos que el teorema se cumple para el caso n = 1.

Para n = 2: El nudo toroidal T'(2, 2) es llamado el enlace de Hopf. El teorema se cumple
como puede ser verificado con el Cuadro 23.

bla || 2 | 0 | 2 |
6 Z
2 Z
-2 7
-6 7

Cuadro 2. Homologia de Khovanov del nudo toroidal T'(2,2).

Supongamos como hipétesis inductiva que el resultado se cumple para n—1, donde n >
2. Ademas considere el caso en el que el mapa 5, : Hy 5(T(2,n)) — Hy—1,-1(T(2,n—1))
no es necesariamente un isomorfismo. Asi, analizamos la sucesion larga de la homologia
de Khovanov. Recordamos que, al solucionar un cruce v con un suavizamiento de tipo
B, obtenemos el nudo trivial con enmarcado 1 — n, i.e. Tg(2,n) = O'~". Por lo tanto,
su homologia estéd dada por:

Z vpara (z,y) = (1 —n,3(1 —n) +2),
0 de otra forma.

1.0 = {

Esto significa que (. no es necesariamente un isomorfismo cuando H, ,(O'") # 0.
Esto es, H, ,(O'™™) # 0 cuando (z,y) = (1 = n,3(1 —n) —2) = (1 —n,1 —3n) o
(z,y)=(1—-n,3(1—n)+2)) =(1 —n,5—3n).

Caso (I) Supongamos que (z,y) = (1 —n,1 — 3n):
En la sucesion larga de homologia de Khovanov, en cercanias de Hl,n’l,gn(ol_”),
tenemos:

8Conn a,
—— Hi 1 3.(T(2,n - 1)) % Hip13,(O'7") ————

H_n’_gn(T(2,n)) LH_n_L_gn_l(T(Q, n — 1)) —_— .

Por la hipétesis inductiva, Hi_p —1-3,(T(2,n — 1)) vy H_p_1,-3,—1(T(2,n — 1)) son
triviales. Entonces, la sucesion previa se convierte en:

(o)

_n g
Hl—n,1—3n(Ol ) —————

Bs

H_, _3,(T(2,n)) 0

Ast, Hi—p1-3,(OY ") = H_,, _3,(T(2,n)) = Z, y por tanto el teorema se cumple, pues
(a,b) = (—n, —3n).

3Un resultado bien conocido, vea por ejemplo [10].
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Caso (II) Supongamos que (z,y) = (1 —n,5 — 3n):

En la sucesion larga de homologia de Khovanov, en cercanias de Hl,n’g),gn(ol_”),
tenemos:

3 8Conn
0 —— H27n,473n<T(27n)> B—>H1,n’3,3n(T(2,n - 1)) %
Hl—n,5—3n(olin) ’Lﬁ H—n,4—3n(T(23 Tl)) L}

H—n—173—3n(T(27n - 1)) —_— .

Por la hipotesis inductiva H_,,_13-3,(T(2,n — 1)) = 0y Hi_n3-3,(T(2,n — 1)) =
H_(n_1),-3(n—1) = Z. Asi, la sucesiéon previa se convierte en:

B (99om)
0—— H27n74,3n<T(2,n)> 7
7 — S H_ 43n(T(2,10)) Be g

Las entradas restantes en la sucesion se determinan entendiento el mapa If07% 5, :
7Z — 7. En general hay dos posibilidades: el mapa es el mapa cero o es multi-
plicaciéon por k > 0. Supongamos primero que 8?52%,371 es el mapa cero. En es-
te caso, Hg,n,4,3n(T(2,n)) = Hlfnygfgn(T(Zn — 1)) =7Z y H,n,4,3n(T(2,n)) =
Hipns-3,(OY ™) = Z. Asi, Hy_p4-3,(T(2,n)) = Z y en ese caso tenemos que
(a,b) = (2—n,4-3n) = (n—2n+2,n—4n+4) = (n—2(n—1),n—4(n—1)) = (n—2s,n—4s),
para s = n — 1. De forma similar, H_,, 4_3,(T(2,n)) = Z, donde (a,b) = (—n,4 —3n) =
(n —2s,n —4s + 4), para s = n, y asi, el teorema se cumple. Finalmente, suponga que
afj’ﬁg,gn es multiplicacién por k > 0. Ese caso particular fue estudiado en 2006 por M.
Pabiniak, J. H. Przytycki, y R. Sazdanov¢ en [13] usando el algebra A, = Z[z] / (z™), la
cual para m = 2 esté fuertemente relacionada con la homologia de Khovanov [8, 2]. Cuan-
do n es par, 816'_0}}%_3” es elmapa ceroy asi Hy_p 4—3,(T(2,1)) =Z = H_j, 4—3,(T(2,n)),
como se observo en la parte previa. Cuando n es impar, 310_",’}%_% es multiplicacién por
k = 2y obtenemos que Hy_p 4-3,(T(2,n)) =0, H_p, 4—3,(T(2,n)) = Zs, y asi el teorema
se cumple.

6.2. Ejemplo: tablas de homologia para T(2,11) y T(2,12)

En esta seccion presentamos las tablas de homologia de Khovanov, en el Cuadro 3 y el
Cuadro 4 para T'(2,11) y T'(2,12), respectivamente. Observe que H, »(T'(2,n)) tiene so-
porte en dos diagonales que contienen (n,n) o (n,n+4). En otras palabras, H, ,(T'(2,n))
es no trivial solamente para (a,b) = (n—2s,n—4s) o (a,b) = (n—2s,n—4s+4). Ademas,
H, (T (2,n)) tiene torsién solamente en grupos para los cuales (a,b) = (n—2s,n—4s+4).
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blal-11]|-9]-7][-5]-3]|-1]1[3]5][7]9]11]

15

Z

11

Z

7

3

Ly

-1

-5

Ly

-9

-13

Ly

-17

-21

Lo

-25

-29

L

-33

Z

b|al-12]-10|-8]-6|-4]-2[0] 2 [4] 6 [8]10]12]

Cuadro 3. Homologia de Khovanov del nudo toroidal T'(2,11).

16

Z

12

Z

oo

Ly

Ly

ZLo

Ly

Z Z

Z

Cuadro 4. Homologia de Khovanov del enlace toroidal T'(2,12).

7. Conclusién

121

Gran parte de la investigacién actual en teoria de nudos esté conectada al polinomio de
Jones y ahora, ademas, incluye el concepto de categorificaciéon. En particular, las teo-
rias de homologfa en contextos topolégicos generan estructuras matematicas que abren
muchas posibilidades para préoximas investigaciones. Por ejemplo, actualmente hay mu-
cha investigacion activa en la homologia de Khovanov (par e impar), la homologia de
Khovanov-Rozansky, la homologia de Yang-Baxter, homologia de quandles, entre otras.
Sin duda la mayor parte de la literatura en teoria de nudos esta en inglés, aunque existen
algunos trabajos en espaifiol como [9, 18]. Con miras a atacar esa brecha del idioma, una
traduccion parcial al inglés de este trabajo es ofrecida en [11]. El lector es referido a los
trabajos de Bar-Natan y Khovanov para una discusion detallada de la homologia de Kho-
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vanov [2, 8|. Para una introducciéon completa a distintos temas actuales de investigacion
en teoria de nudos se recomienda [14]. En cuanto al uso de la sucesion larga de Khovanov,
es pertinente decir que existen futuros posibles caminos de investigacion. Por ejemplo,
se puede considerar la familia de nudos “pretzel” de tres columnas ya que resolver un
cruce de forma vertical produciria un nudo trivial con cierto nimero de “giros”. Se podria
también tratar de aplicar una metodologia similar para nudos toroidales de tipo T'(3,n).
Ademas, se ha verificado que la sucesion larga de Khovanov puede ser muy ttil en crear
nudos cuya homologia contenga tipos especificos de torsion [12].
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