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Abstract 17 

Climate models disagree on the direction of precipitation change over ~40% of the Earth.  18 
Current characterizations of expected change use the ensemble mean, which systematically 19 
underestimates the magnitude and overestimates the time of emergence (ToE) of precipitation 20 
change in regions of high uncertainty. We develop a new approach to estimate both ToE and the 21 
potential to update uncertainty in precipitation over time with new observations. Further, we 22 
develop two new metrics that increase the usefulness of ToE for adaptation planning. The time of 23 
confidence (ToC) estimates when projections of precipitation emergence will have high 24 
confidence. Second, the advance warning time (AWT) indicates how long policymakers will 25 
have to prepare for a new precipitation regime after they know change is likely to occur. Our 26 
approach uses individual model projections that show change before averaging across models to 27 
calculate ToE. It then applies a Bayesian method to constrain uncertainty from climate model 28 
ensembles using a perfect model approach.  Results demonstrate the potential for widespread and 29 
decades-earlier precipitation emergence, with potential for end-of-century emergence to occur 30 
across 99% of the Earth compared to 60% in previous estimates. Our method reduces uncertainty 31 
in the direction of change across 8% of the globe. We find positive estimates of AWT across 32 
most of the Earth; however, in 30% of regions there is potential for no advanced warning before 33 
new precipitation regimes emerge. These estimates can guide adaptation planning, reducing the 34 
risk that policymakers are unprepared for precipitation changes that occur earlier than expected.   35 

Plain Language Summary 36 
Understanding if and when precipitation will change in response to anthropogenic warming is needed for 37 
policymakers to design adaptation plans. However, climate model projections of precipitation are highly 38 
uncertain, with models disagreeing on the direction of change across 40% of Earth’s surface. We develop 39 
a methodology for estimating when uncertainty will be resolved and estimating the emergence of new 40 
precipitation regimes, demonstrating previous estimates projected change too late. We also estimate how 41 
much advance warning time policymakers will have between learning that precipitation will change and 42 
the onset of such change. We demonstrate that precipitation change is more widespread and sooner than 43 
previously expected, but that most regions will have advance warning. Together, our findings provide 44 
information that policymakers can use to more effectively adapt to climate change before impacts occur. 45 

1 Introduction 46 

Adapting to climate change requires knowledge of both how and when the climate will change.  47 
General Circulation Models (GCMs) are the best tools for studying the evolution of future 48 
anthropogenic climate change. However, GCM projections of many key societal impacts like 49 
precipitation change exhibit large uncertainties.  Indeed, across ~40% of Earth’s surface, GCMs 50 
disagree on even the sign of precipitation change (see Figure 5a), with little progress in new 51 
GCM generations (Knutti et al., 2013; Nguyen et al., 2018; Ukkola et al., 2020).  This level of 52 
uncertainty in GCM projections has made adaptation planning more challenging as planners are 53 
uncertain of whether a climate will get wetter or drier.   54 
 55 
The magnitude of precipitation change is commonly estimated using the multi-model mean 56 
(MMM) of GCM ensembles along with a measure of model uncertainty, such as the fraction of 57 
models that agree in the direction of change (Kattsov et al., 2013; Knutti & Sedláček, 2012; 58 
Meehl, 2007; Lee et al., 2021).  Likewise, the timing of the onset of a new climate regime, often 59 
referred to as the Time of Emergence (ToE), is commonly estimated as the time when the MMM 60 
change exceeds some measure of background noise (Giorgi & Bi, 2009; King et al., 2015; 61 
Nguyen et al., 2018; Rojas et al., 2019).  In regions of high uncertainty, averaging across GCM 62 



 

 

projections with different directions of change systematically results in misleadingly low 63 
estimates in the expected magnitude of change.  This approach also provides misleadingly late 64 
estimates of ToE, posing a risk that policymakers will be unprepared for new precipitation 65 
regimes that arise earlier than anticipated.  This is an instance of Jensen’s inequality (Jensen, 66 
1906), popularized as the “flaw-of-averages” (Savage, 2002) and known to be an issue in many 67 
model-averaging applications (Cade, 2015).  A few studies of ToE have addressed the flaw in 68 
averaging ensembles before calculating ToE, (King et al., 2015; Kusunoki et al., 2020; Mahlstein 69 
et al., 2012; Maraun, 2013), but still systematically underestimates ToE by including ensemble 70 
members that do not project emergence.   71 
 72 
In addition to the bias embedded in current ToE estimates, ToE also has limited usefulness for 73 
adaptation planning in its current form. While characterizations of future climate change are 74 
typically focused on long-term change (mid- or end-of-century change; IPCC, 2021), regional 75 
adaptation decisions are made iteratively on shorter timescales. Therefore, reliable advanced 76 
warning of precipitation change a decade in advance can be more useful for adaptation planning 77 
than highly uncertain long-term projections (Herman et al., 2020).  Current estimates of the 78 
magnitude of precipitation change and ToE provide static projections of expected long-term 79 
precipitation change and emergence; the literature does not indicate how quickly these expected 80 
values can change as new observations are collected. However, recent methods from Bayesian 81 
statistics have been developed to estimate how long-term projections of change can be informed 82 
from near-term observations. Mansfield et al. (2020), for example, use Gaussian process 83 
regression (GPR) trained on GCM output to predict long-term temperature change from short-84 
term observations.  Integrating Bayesian models with GCM ensembles has been shown to reduce 85 
uncertainty in future precipitation projections (Fletcher et al., 2019; Smith et al., 2009; Tebaldi et 86 
al., 2004) and is capable of improving prediction accuracy (e.g., Massoud et al., 2020). While 87 
Bayesian methods have been applied to improve prediction of the magnitude and uncertainty of 88 
climate change, they have not addressed the time of emergence.   89 
 90 
In this study, we develop a new approach to estimating the timing of precipitation change that: 1) 91 
addresses averaging bias, 2) updates estimates with new observations to reduce uncertainty, and 92 
3) estimates the advance warning time of change for adaptation planning. We achieve this by 93 
developing a Bayesian framework applied to GCM ensembles for updating precipitation 94 
projections.  Specifically, we use a GPR that exploits correlations between near-term and long-95 
term precipitation change exhibited by GCMs (Figure S1c and d;  Meehl, 2007; Watterson, 96 
2008) to demonstrate how estimates of precipitation change can be updated over time as new 97 
observations are collected.   98 
 99 
We apply our model to iteratively update the projected magnitude of precipitation change and 100 
estimate three new metrics. First, we estimate the time of confidence (ToC), the time when the 101 
future direction of precipitation change will be known with a high degree of confidence.  We 102 
also re-evaluate ToE to correct averaging bias by estimating ToE conditional on emergence 103 
occurring; that is, using only GCM projections where emergence occurs (conditional ToE; 104 
ToEC). This is analogous to standard methods for estimating daily precipitation probabilities by 105 
first estimating the probability of non-zero precipitation and then the magnitude of precipitation 106 
when it does occur (Waymire & Gupta, 1981).  Finally, we introduce the advance warning time 107 
(AWT), which is the length of time before precipitation change emerges that policymakers will 108 
confidently know that change is coming and can prepare adaptation measures. Together, this 109 
approach improves estimates of the magnitude and timing of precipitation change both by 110 



 

 

realistically accounting for the full range of uncertainty in GCM ensembles today and also 111 
providing an approach to reduce uncertainty in the future as new observations become available. 112 
This allows us to provide insight on how far in advance planners can expect to have confidence 113 
about new precipitation regimes, developing more useful emergence metrics for adaptation 114 
planning.  115 

2 Methods 116 

In the following, we present our modeling approach for estimating the time of confidence (ToC), 117 
the conditional time of emergence (ToEC) and the lag time between these; the advanced warning 118 
time (AWT).  First, we present the data used in our analysis.  We then present our modeling 119 
framework for estimating our metrics of interest (ToC, ToEC, and AWT) given a probabilistic 120 
Bayesian model. Finally, we present the details of the Bayesian model that updates predictions of 121 
precipitation change over time along with corresponding uncertainties using available 122 
observations. 123 

2.1 Data 124 
Analysis is conducted using a multi-model ensemble of 16 GCMs from Phase 5 of the Coupled 125 
Model Intercomparison Project (CMIP5).  CMIP5 was published ~ 11 years prior to writing this 126 
manuscript which allows us to consider how a decade of new observations, that could not have 127 
been used to tune the GCMs, can be used to update the posteriors (described below).  All GCMs 128 
are forced by the RCP 4.5 constant composition commitment scenario, where emissions follow 129 
the RCP 4.5 emissions pathway from 2005-2150, after which atmospheric concentrations of 130 
greenhouse gases are held constant at 2150 values.  We use monthly precipitation output from 131 
1850 – 2175 in our analysis. A list of GCMs used in the analysis is provided in Table S1. 132 
 133 
Observational data come from the CRU TS version 4.0 gridded data set (Harris et al., 2020), 134 
which provides monthly precipitation data over land from 1901-2020 at a 0.5°	latitude x 135 
0.5°	longitude resolution.   136 
 137 
All data are spatially averaged at a 6°latitude x 6°longitude grid cell resolution.  We conduct all 138 
analysis on standardized 5-year average increments of the log transform of annual precipitation, 139 
where data is standardized relative to the historical period; 1875-1950 for GCMs and 1901-1950 140 
for CRU. Results are retransformed and presented as percent change in precipitation. These 141 
spatial and temporal scales are chosen to be large enough to reduce noise but small enough to 142 
provide predictions on scales meaningful for decision makers, for example for river basin 143 
planning.   144 
 145 
2.2 Modeling Framework 146 
Figure 1 illustrates our method for estimating our metrics of interest. We estimate these metrics 147 
by developing a Bayesian predictive model that quantifies the uncertainty in future precipitation 148 
change from GCM ensembles and updates uncertainty with data as new observations become 149 
available. To analyze how this may reduce uncertainty in the future, we use synthetic data. 150 
Specifically, we use  a perfect model experiment approach, where one GCM at a time is left out 151 
of the ensemble (henceforth referred to as out-of-sample GCM (OOS GCM)).  The OOS GCM is 152 
treated as the true climate trajectory which we ‘observe’ over time, and the remaining GCMs are 153 
treated as the ensemble used to develop the Bayesian model’s prior mean and covariance 154 
function.  The predictive model then iteratively predicts future precipitation change (along with 155 
uncertainties of future change) as larger portions of the OOS GCM are ‘observed’.  This allows 156 



 

 

us to estimate ToC, ToEC, and AWT in each grid cell for each OOS GCM separately before 157 
aggregating across all OOS GCM results. This approach appropriately quantifies the uncertainty 158 
in ToC, ToEC, and AWT without introducing averaging bias. Additionally, we perform the same 159 
analysis but with real observational data from CRU from 1900 to 2020, reflecting new 160 
observations that have become available since CMIP5 was published. 161 

 162 

163 
Figure 1: Modeling framework illustrating how the Time of Confidence, conditional Time of 164 
Emergence, and Advanced Warning Time are estimated for one out-of-sample (OOS) GCM 165 
using the predictive model.  This is then repeated such that each GCM is treated as an OOS 166 
GCM once in each grid cell to provide an ensemble of posterior distributions and metrics.   167 

Updating uncertainty in precipitation projections using OOS GCMs 168 
To estimate metrics for each OOS GCM, 𝑔, the timeseries is divided into two periods; the first 169 
period starting in 1875 until time 𝑡%&', is treated as the historical period when precipitation 170 
observations are made, henceforth referred to as OOS virtual observations.  The second period, 171 
from 𝑡%&' to 2150 is treated as the future that we seek to project (Figure 1). This allows us to 172 
project a probability distribution of future precipitation in time 𝑡 given historical OOS virtual 173 
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The prior distribution of precipitation change, 
! Δ#$, & , is developed for each out-of-sample (OOS) 
GCM, ', at time, (. The blue line indicates the prior 
mean,) * , for all years in the simulation period.Grey 
shading indicates the 1- confidence interval (CI). For 
each OOS GCM, the prior is developed using the 
remaining GCMs in the ensemble (shown in red). 
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The posterior distribution of precipitation change,  
! Δ#$, * Δ#$,*4&567 for OOS GCM, ',is shown in light 
blue for * > (<=>, and is developed by updating the 
prior based on the portion of the OOS GCM that is 
treated as observed, denoted Δ#$,*4&567I where 
observations (thick black line) begin in 1900 and end in 
(<=>. (<=> is defined as the end of the observation time 
range. The purple line indicates the posterior mean,
Δ#$, *J&_<=> .

As additional observations are used to update the 
posterior over time, the Time of Confidence, ToC, is 
defined at the earliest time when the posterior 1- CI 
(shown in medium blue) does not include zero beyond 
some year, (′′.  The posterior standard deviation at 
time (II is indicated. as -$,&II.

The Conditional Time of Emergence (ToEC) is 
defined for the posterior distribution conditioned on the 
entire observed period of OOS GCM (shown in the 
dark blue). ToEC is defined as the first year when the 
posterior is significantly different from zero at the 1-
level.   The Advanced Warning Time (AWT) is then 
the lag time between ToC and ToEC and is only 
positive if ToEC > ToC. 

Δ#$, *J&<=>

Δ#$, &II − -$,&II > 0



 

 

observations 𝑓)Δ𝑃,,./Δ𝑃,,𝒕1.2345.	 For each OOS GCM, we iteratively update the posterior over 174 
time with more OOS virtual observations, first using  𝑡%&' =1975 and then sequentially extending 175 
the historical period by 5-year increments up until 2150.  We extract the posterior mean, 176 
Δ𝑃,,.777777,	and standard deviation 𝜎,,. and use them to estimate when the precipitation will be 177 
significantly different than historical. Specifically, we define precipitation change to be 178 
significant for time 𝑡 when the 1-sigma confidence interval (Δ𝑃,,.777777 − 𝜎,,., Δ𝑃,,.777777 +	𝜎,,.)	does not 179 
contain zero.  For each grid cell, this provides us with 16 OOS GCMs, and thus 16 projections of 180 
how uncertainty is updated over time, and 16 projections of when precipitation change is 181 
significant.  182 
 183 
Updating uncertainty in precipitation projections using CRU data 184 
Using OOS GCMs to update uncertainty, as described above, allows us to simulate how 185 
uncertainty may evolve in the future as new observations are collected. Additionally, we can 186 
assess how uncertainty has changed to date using real observational data that has become 187 
available since CMIP5 was published. Analogous to the OOS GCM, we apply GPR to CRU 188 
observations by using the GCM ensemble to develop a probability distribution of future 189 
precipitation projections given CRU observations: 𝑓(Δ𝑃.|Δ𝑃>?@). We then repeat the estimation 190 
of whether precipitation change is significant as in the previous section.   191 

Defining ToC, ToE and AWT  192 
Using these precipitation projections updated over time, we next develop three new temporal 193 
metrics that estimate: when we will have confidence about the direction of precipitation change, 194 
when precipitation will enter a new climate regime, and how far in advance we will know the 195 
new regime is coming. First, the Time of Confidence (ToC), characterizes the time when we are 196 
confident that future precipitation will be significantly different from historical climatology. 197 
Second, if the future will be significantly different, what year will that difference be detectable? 198 
We define this time as the conditional Time of Emergence (ToEC) where “conditional” indicates 199 
that it is estimated only for GCM realizations when future change occurs. This is in contrast to 200 
ToEMMM , which refers to the definition often seen in the literature, defined when the MMM 201 
exceeds some level of background noise (Giorgi & Bi, 2009).  Third, the Advanced Warning 202 
Time (AWT) is the length of lead time between learning that precipitation will change and the 203 
onset of such change, estimated as ToEC – ToC. AWT thus indicates the amount of time planners 204 
will have to implement adaptation measures appropriate for the direction of precipitation change.  205 

To estimate ToC, we iteratively update the posterior 1-𝜎 CI (Δ𝑃,,.777777 −	𝜎,,., Δ𝑃,,.777777 +	𝜎,,.	)	for all  206 
𝑡	𝜖	𝑇  as 𝑡%&' is extended forward.  We define 𝑡′′ as the first year when the posterior CI doesn’t 207 
contain zero i.e. the first year precipitation change is significant.  We define 𝑇𝑜𝐶,   = 𝑡%&' for the 208 
earliest 𝑡%&' when this condition holds (See Figure 1).  That is, 𝑇𝑜𝐶,, is the time at which we 209 
know, at the 1-𝜎	level confidence, that precipitation at some time in the future will be 210 
significantly different from historical climatology.  There are instances when only a portion of 211 
the posterior CIs from 𝑡FF	to 2150 remains significantly different from zero: we only define 𝑇𝑜𝐶, 212 
if at least half of the years beyond 𝑡FF are also significantly different from zero.   213 

To estimate ToEC, we assume full knowledge of the OOS GCM time series, comparable to 214 
previous methods for estimating ToE (Giorgi & Bi, 2009; Mahlstein et al., 2012).  We define 215 
𝑇𝑜𝐸,	>  as the first year, 𝑡FF when the posterior CI doesn’t contain zero where the posterior is 216 
updated using all OOS virtual observations from 1875 – 2150.  It is customary in the literature to 217 



 

 

extend ToE analysis out to 2100 and if ToE does not occur by 2100, to characterize it as not 218 
emerging.  Ending our analysis in 2100 does not meaningfully alter our findings.   219 
 220 
Finally, we define AWT for each GCM 𝑔, as: 𝐴𝑊𝑇, = 𝑇𝑜𝐸,> 	− 	𝑇𝑜𝐶,.		If AWT is positive, then 221 
𝑇𝑜𝐸,>	occurred after 𝑇𝑜𝐶,K was defined (see Figure 1), indicating there was advanced warning of 222 
change.  If AWT is negative, then 𝑇𝑜𝐸,K

> 	occurs first and 𝑇𝑜𝐶,K is only established in hindsight.  223 
In these instances, we are only confident in the direction of change after the signal has emerged.  224 
 225 
Aggregating across OOS GCM projections 226 
To estimate each of our metrics (ToC, ToEC and AWT), we first estimate each metric separately 227 
for each GCM in each grid cell as described above.  We then define expected values within each 228 
grid cell by averaging over GCMs, resulting in expected values of ToC, ToEC and AWT. 229 
Importantly, we only include OOS GCMs that have a defined significant emergence before the 230 
end of our analysis in 2150 in our average. In addition to calculating averages, we also count the 231 
number of OOS GCMs that have a defined significant emergence. Additionally, we calculate 232 
averages over three subsets of GCMs: those exhibiting significant drying (𝐺M), significant 233 
wetting (𝐺N), or significant change in either direction of change (𝐺M∪N).  For example, 234 
𝐸[𝑇𝑜𝐶QR] denotes the expected value of ToC for a drier future, which is estimated as the mean 235 
ToC value for the subset of OOS GCMs that project a drier future.  This can be interpreted as: if 236 
the future will be drier, when can we expect to know?  237 

2.3 Predictive Model: Gaussian Process Regression 238 
To estimate the probabilities of future precipitation change defined in the previous section, we 239 
develop a predictive model that exploits temporal correlations in GCM projections using a 240 
Gaussian process regression (GPR) (Rasmussen & Williams, 2006).  GPR is a non-parametric 241 
Bayesian machine learning technique that estimates a posterior distribution updated with 242 
observations, either from historical data or synthetic data from the OOS GCMs. The model is 243 
developed by specifying a prior using a Gaussian process with mean 𝑚, and covariance defined 244 
by a kernel function, 𝐾. 𝑚 and 𝐾	are functions of an input vector 𝒕, which here refers to a vector 245 
of 5-year increments from 1875-2150, our study period. The mean, 𝑚(𝒕), then defines a time 246 
series of prior expected precipitation values and the kernel 𝐾 describes the similarity between 247 
precipitation values based on how close they are in time. Additionally, we define 𝒕 ≤ 𝑡%&'	as a 248 
vector of 5-year increments from 1875 to 𝑡%&', the historical period for which observations are 249 
available. Δ𝑃,,𝒕1.234 is the vector of precipitation observations during the historical period 250 
𝒕 ≤ 𝑡%&' from OOS GCM 𝑔, and Δ𝑃,,𝒕 is the vector of precipitation we are estimating across the 251 
full study period 𝒕. 252 

 253 

V
Δ𝑃,,𝒕1.234
Δ𝑃,,𝒕

W = 𝒩 Y𝑚(𝒕 ≤ 𝑡%&')
𝑚(𝒕) , V𝐾(𝒕 ≤ 𝑡%&', 𝒕 ≤ 𝑡%&') + 𝜎Z[𝐼 𝐾(𝒕 ≤ 𝑡%&', 𝒕)

𝐾(𝒕, 𝒕 ≤ 𝑡%&') 𝐾(𝒕, 𝒕) W]	, 254 

 255 
where 𝜎Z[ represents the variance of the standardized residuals of the observations.  Δ𝑃,,𝒕777777 is the 256 
mean of the posterior distribution, which is estimated as: 257 
 258 

Δ𝑃,,𝒕777777 	= 𝑚(𝒕) + 	𝐾(𝒕, 𝒕 ≤ 𝑡%&')(𝐾(𝒕 ≤ 𝑡%&', 𝒕 ≤ 𝑡%&') + 𝜎Z[𝐼)^_)Δ𝑃𝒕1.234 − 𝑚(𝑇𝒕1.234)5, 259 
 260 
Similarly, we define 𝑐𝑜𝑣)Δ𝑃,,𝒕5as the covariance of the posterior distribution, estimated as: 261 



 

 

 262 
𝑐𝑜𝑣)Δ𝑃,,𝒕5 = 	𝐾(𝒕, 𝒕) − 	𝐾(𝒕, 𝒕 ≤ 𝑡%&')(𝐾(𝒕 ≤ 𝑡%&', 𝒕 ≤ 𝑡%&') + 𝜎Z[𝐼)^_	𝐾(𝒕 ≤ 𝑡%&', 𝒕). 263 

 264 
These posterior mean estimates, along with their covariance, provide us with the posterior 265 
probability distribution of the underlying mean change in precipitation at any time 𝑡: 266 
𝑓)Δ𝑃,,./Δ𝑃,,𝒕1.2345.	 This is then used to estimate ToC, ToE and AWT, as described above.  We 267 

use 𝜎,,. to denote the standard deviation of 𝑐𝑜𝑣)Δ𝑃,,.5	going forward.  268 
 269 
Further details regarding model parameterization are found in the SI (Text S1). 270 
 271 
Predictive Model Validation  272 
Finally, we validate the model by testing how well the posterior distribution, 273 
𝑓(Δ𝑃,,𝒕b.234	|Δ𝑃,,𝒕1.234), predicts OOS GCM precipitation values after 𝑡%&' given values of 𝑡%&' 274 
equal to 2000, 2020, 2040, 2060 and 2080.  We find good model agreement: on average between 275 
68 and 70% of Δ𝑃,,.b._%&'	  values (across all grid cells and all OOS GCMs) fall within the 68% 276 
posterior CI, and between 93.5 and 94.7% of Δ𝑃,,𝒕b.234	values fall within the 95% posterior CI.  277 
There is some spatial variability to accuracy with polar regions performing slightly better (94-278 
96% accuracy) compared to the tropics (92-93% accuracy).  In addition, using the entire GCM 279 
simulation period, we find that at the 95% CI, the model is able to accurately predict long-term 280 
(i.e. 23rd century) direction of change with an 81% accuracy by 2020 and an 85% accuracy by 281 
2050.  This validates that the Bayesian model is in-fact narrowing in on the “true” OOS future 282 
climate trajectory.   283 
 284 
3 Results 285 

Updating uncertainty in precipitation projections with new observations 286 

Our modeling results indicate that we can expect substantial near-term uncertainty reductions in 287 
long-term precipitation projections (Figure 2).  We include illustrations of uncertainty reductions 288 
over time when precipitation projections are constrained by OOS virtual observations (Figure 2 289 
subplots).   290 
 291 
First, we consider when at least half of the OOS GCMs are confident that 2100 precipitation will 292 
be significantly different at the 1-sigma confidence level (see Methods). For the prior 293 
distribution, we find that only 36% of grid cells (weighted by area) meet the 1-sigma significance 294 
criteria for at least half of OOS GCMs (Figure 2 maps).  This means that in 64% of grid cells, the 295 
majority of the OOS GCM prior 1-sigma CIs of 2100 precipitation change contain zero and are 296 
therefore not significant. In approximately half of these grid cells (31% of global surface area), 297 
the majority of OOS GCM projections do not emerge by 2100.  However, in ~1/4 (2/3rds) of the 298 
remaining grid cells (equivalent to 8% (20%) of global surface area), the posterior Δ𝑃,,[_dd7777777777	CIs 299 
are significant for more than half of OOS GCMs for 𝑡%&' = 2020 (𝑡%&' = 2060).  The reduction of 300 
this uncertainty across OOS GCMs for these select time periods is indicated by stippling color in 301 
Figure 2’s map.  This uncertainty reduction is expected to occur in both wet and dry regions of 302 
high uncertainty, and in particular over land in the lower latitudes. This underscores that 303 
although GCMs disagree on future precipitation trends across 64% of the planet, by integrating 304 
OOS observations up to 2020 (2060) we can expect to have confidence in the direction of 2100 305 
precipitation change in ~13% (31%) of this area.     306 



 

 

Figure 2 subplots illustrate how uncertainty reductions can lead to emerging trends in locations 307 
where the prior range encompasses zero (e.g. Syria).  They also show how uncertainty in the 308 
precipitation trend is reduced over time, which can inform us that long-term change may be 309 
insignificant (Kenya), or more extreme than the prior range (Greenland).  This indicates that 310 
near-term observations are highly valuable in constraining long-term change, thus providing 311 
useful insights for adaptation planning.  312 

 313 

Figure 2: Global map of the multi-model mean percentage change in annual precipitation in 2070 314 
– 2100 relative to 1900 – 1950; subplots illustrate uncertainty updating over time for one OOS 315 
GCM example (bcc-csm1; see methods). There is no stippling if the prior mean magnitude of 2100 316 
precipitation change exceeds 1𝜎 for at least half of the OOS GCMs.  Otherwise, yellow (red) 317 
stippling indicates that the posterior mean magnitude of 2100 precipitation change exceeds 1𝜎 318 
when 𝑡%&' is equal to 2020 (2060) for at least half of the OOS GCMs. Black stippling indicates 319 
that fewer than half of OOS GCMs posterior means 2100 change exceed 1𝜎 in 2060 (i.e. when 320 
𝑡%&' = 2060).  Subplots illustrate the evolution of 𝑓(Δ𝑃,	,𝒕b.234|Δ𝑃,,𝒕1.234) for one possible OOS 321 
GCM trajectory in sample grid cells at a 6°x6° resolution.  Y-axes corresponds to precipitation 322 
change in units of standard deviations in log	(𝑃) relative to historical mean log(P).  Black lines 323 
show precipitation trajectories at 5-year averages for the OOS GCM. Grey shading indicates the 324 
prior 1𝜎 confidence interval for 𝑓(Δ𝑃,,𝒕).  Dots indicate the last year of OOS data, 𝑡%&', used in 325 
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updating posterior distribution, 𝑓(Δ𝑃,,𝒕b.234|Δ𝑃,,𝒕1.234),  for three time periods; 𝑡%&' = 2020 (light 326 
blue), 𝑡%&' = 2050 (medium) blue,  and 𝑡%&' = 2080 (dark blue).  Shading indicates a 1𝜎 (68%) 327 
confidence interval. 328 

 329 
 330 
Global Estimates of ToE, ToC, and AWT 331 
 332 
Figure 2 aggregates across all OOS GCM members, including members that do not emerge.  We 333 
next consider the time of confidence for only the OOS GCMs that do exhibit emergence.  Figure 334 
3 illustrates our global estimates of expected ToEC, ToC, and AWT.  Early ToC occurs in 335 
regions of high certainty in future change, whereas late ToCs occur in regions where the MMM 336 
signal is small relative to the noise ratio; ToC and the MMM signal to noise ratio are strongly 337 
negatively correlated (with Spearman’s rank correlation of 𝜌 = −0.85	,	p-value << 0.01).  Of 338 
particular note, our model suggests that ToC is expected to have been defined by 2020 over most 339 
land regions, with the exception of Australia. This suggests that if we constrain GCM projections 340 
with historical observational data in our Bayesian framework, there is potential to have 341 
confidence the future will be wetter or drier in most land regions.  342 

Expected ToEC is shown in the second row of Figure 3, illustrating both earlier and more 343 
widespread expected ToEC values relative to ToEMMM estimates (for comparison see Figure 5b; 344 
Giorgi & Bi, (2009)).  Regions where models tend to agree on long-term change (e.g. polar 345 
regions) also have early expected ToEC values.  Regions that, according to GCMs, could get 346 
wetter but it is unlikely, coincide with late 𝑇𝑜𝐸Qo

> 	estimates (e.g. southeastern US and northern 347 
Africa; Figure 3d).  These expected ToEC estimates indicate that there is potential for widespread 348 
emergence, globally, throughout this century (Figure 3f).  This is in contrast to ToEMMM 349 
estimates (Giorgi & Bi, 2009; Figure 5b) where emergence is constrained to regions with strong 350 
agreement across GCMs.  However, similar to ToEMMM, expected ToEC also correlates strongly 351 
with the MMM signal to noise ratio (with Spearman’s rank correlation of 𝜌 = −0.68	,	p-value 352 
<< 0.01), thus providing similar spatial patterns of relative emergence to earlier methods, while 353 
emerging much earlier on average. This is quantified further in Figure 4.  354 

The third row of Figure 3 shows the expected AWT conditional on future change.  Green 355 
regions delineate regions where AWT is positive, indicating advance warning of future change 356 
and brown colors delineate regions where AWT is negative, indicating that ToC occurs only in 357 
hindsight after ToEC has occurred.  Negative AWT values are widespread in regions where there 358 
is potential for future change of opposite sign to the GPR prior.  For example, in regions where 359 
the prior indicates a future more likely to be wet, a longer duration of a drying trend is required 360 
before we have confidence that the future is in fact drying, and not simply exhibiting an 361 
anomalous drought.  In these instances, ToEC has already occurred before we have confidence 362 
that the trend will continue. Because most global surface area is projected to be wetter, negative 363 
AWT values are more wide spread for drier futures.  AWT patterns thus exhibit similarities with 364 
the MMM magnitude and uncertainty in GCM projections (Figure 5a) and are positively 365 
correlated with the MMM signal to noise ratio (with Spearman’s rank correlation of 𝜌 =366 
0.45	,	p-value << 0.01).     367 
 368 



 

 

 369 
Figure 3: Spatial patterns of expected time of confidence (ToC), conditional time of emergence 370 
(ToEC), and advanced warning time (AWT).  (a) The CMIP5 multi-model expected ToC in 371 
which we learn that the future will be wetter at the 1𝜎 confidence level. (b) as in (a) but for a 372 
future that is drier.  (c) as in (a) but for the future that is either wetter or drier.  (d) The expected 373 
time of emergence conditioned on the future GCM projection being wetter at the 1𝜎 confidence 374 
level. (e) as in (d) but for a drier future. (f) as in (d) but for a future that is either wetter or drier. 375 
(g) Expected AWT for a wetter future (i.e. (d) minus (a)). (h) as in (g) but for a drier future.  (i) 376 
as in (g) but for a future that is either wetter or drier. For (a) - (i), values are estimated at the 377 
6°	latitude x 6°	longitude grid cell level and smoothed using a moving 10°	x 10° degree moving 378 
window.  The colors are saturated at 2020 and 2100.  These years were chosen so as to illustrate 379 
locations where we should have sufficient observations to be able to detect ToC at the time of 380 
writing this paper, and also to focus on what we can learn over the course of the 21st century.  381 
Locations that are white occur where the metric is never defined. 382 
 383 
 384 

Figure 4(a – c) compares the cumulative emergence of expected ToEC to that of ToEMMM 385 
at both the 1-𝜎 and 2-𝜎 level.  This shows that by 2050, ToEC is expected to have occurred over 386 
75% of Earth’s surface area at the 1𝜎 level, much higher than the 40% estimate from the 387 
ToEMMM approach (Figure 5c). To be clear, this indicates that over 75% of global surface area, it 388 
is expected that if emergence occurs, it will do so prior to 2050.  This difference in extent of 389 
precipitation emergence between ToE estimation methods remains pronounced throughout the 390 
century, such that by 2100 there is potential for ToEC to be defined over 99% of Earth’s surface 391 
area, compared to 57% from the ToEMMM approach. The contrast between ToE methods is most 392 
pronounced in regions that could dry, where 𝑇𝑜𝐸QR

>  is expected to have occurred over 41% of 393 
Earth’s surface area by 2050, but ToEMMM estimates only 9% of surface area to have dry 394 
emergence by 2050. This suggests the need for greater urgency in adaptation planning in the 395 
agriculture and water sectors in many water-stressed regions than previously anticipated. 396 
 397 
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Figure 4 (d – f) shows the cumulative areal extent of expected ToC	in regions that could become 398 
wetter, drier, or both.  Our GPR approach suggests that by 2020 (2050), expected 𝑇𝑜𝐶 will be 399 
defined over as much as 57% (78%) of global surface area (Figure 4 f).  Note that expected ToC 400 
only encompasses OOS GCMs that exhibit emergence.  This therefore indicates that across 57% 401 
(78%) of global surface area, if mean precipitation is changing, we can expect to be confident by 402 
2020 (2050) in the direction of this change. In the remaining 43% (22%) of surface area, we 403 
expect to still be uncertain about the direction of future precipitation change in these years.  404 
 405 
Figure 4 (g – i) shows the cumulative distribution of AWT for regions with a future that could be 406 
significantly wetter, drier, or both.  For regions that could be wetter in the future (over as much 407 
as ~87% of global surface area at the 1𝜎 level), the majority of regions (~60% of global surface 408 
area) have a positive AWT with about 25% of global surface area seeing the potential to have 409 
negative AWT for wet regions.  The remaining 2% of surface area reflects the potential error 410 
where ToC is defined in instances that do not emerge.  The majority of regions that could be 411 
drier, however, are expected to have a negative AWT (~34% of global surface area at the 1𝜎 412 
level), compared to 20% of global surface area where a positive AWT of a dry future is 413 
expected. This again underscores the challenges that planners face for preparing for water stress, 414 
as most regions are not expected to have advance warning of new, drier climates before they 415 
occur.  416 
 417 

 418 
Figure 4. Expected time of emergence (ToE), time of confidence (ToC), and advanced warning 419 
time (AWT) conditioned on future change.  (a) – (c) Cumulative percentage of global surface 420 
area where expected ToEC  (𝐸(𝑇𝑜𝐸>)),		is defined conditional on change (solid lines), compared 421 
to ToEMMM estimates (dashed lines).  Colored (black) indicate when 𝐸(𝑇𝑜𝐸>),	 is defined at the 422 
1𝜎 (2𝜎)	confidence level. (a) Shows the percent of global surface area where 𝐸)𝑇𝑜𝐸Qo

> 5,	  423 
indicates a wetter future.  (b) as in (a) but for a drier future.  (c) as in (a) but for either wetter or 424 
drier future. (d) – (f) as in (a) – (c) but for the expected time of confidence (ToC). (g) – (i) as in 425 
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(a) – (c) but for the expected advanced warning time.  Negative values indicate the fraction of 426 
global surface area where 𝑇𝑜𝐸>   occurs before ToC. 427 
 428 
 429 
Expected change and ToE estimates based on historical data 430 
 431 
Finally, we evaluate expected changes in precipitation and expected ToE given available 432 
observations over land and compare this with MMM estimates. In this analysis, we use historical 433 
precipitation data instead of OOS GCMs as the observations in the Bayesian model, reflecting 434 
the best available information to date rather than potential future observations.  Figure 5 provides 435 
an update of expected future precipitation change 𝑓(Δ𝑃[dqr|Δ𝑃>?@,𝒕1[d[d), and ToE estimates, 436 
		𝐸(𝑇𝑜𝐸>?@) given observed precipitation from CRU TS data available from 1900 – 2020 (Harris 437 
et al., 2020).  Note that this is different than ToEC since we are not estimating ToE conditional 438 
on future change, however, it is an improvement from ToEMMM as it constrains future projections 439 
of change using available observations.  For our Bayesian estimated precipitation change, we 440 
select the year 2085 as it is the mid-point over the MMM averaged time period and thus provides 441 
a more direct comparison across methods.  442 
 443 
Both the MMM and Bayesian modeling approach result in similar patterns of expected 444 
precipitation change given CRU observations.  For the Bayesian model, we note less uncertainty 445 
over land and more pronounced drying in mid-latitudes relative to the MMM approach (Figure 446 
5(a) and (c)).  According to our model and observations, 	𝐸(𝑇𝑜𝐸>?@> ) has occurred prior to 2020 447 
over most of the land area North of 30°𝑁 along with some regions in Northern Africa, which 448 
have been drying, and parts of southern South America. While much of the uncertainty shown in 449 
Figure 5(c) coincides with regions of late ToC shown in Figure 5(c), one exception is over much 450 
of Africa. This suggests that either emergence will not occur over much of Africa or that data 451 
and/or GCM projections are insufficiently accurate to provide reliable indicators of change.  This 452 
calls for improved data collection and modeling efforts over Africa, as many populations in this 453 
continent are highly vulnerable to precipitation change (Niang et al., 2015) and thus require the 454 
best information for adaptive responses to climate change.   455 
 456 



 

 

 457 
Figure 5. Standard versus Bayesian modeled expected change and time of emergence (ToE).  (a) 458 
CMIP5 multi-model mean (MMM) projected percent change in precipitation (%Δ𝑃) in 2070-459 
2100 relative to 1900-1950.  Grey areas indicate where change is within 5% of historical 460 
values.  Stippling indicates where fewer than 70% of models agree on the direction of 461 
change.  (b) Time of Emergence of precipitation signal following Giorgi and Bi (2009), where 462 
the signal is the MMM 30-year moving average and the noise is the square root of the MMM 463 
historical decadal variance. Values prior to 2000 and after 2100 are saturated.  White indicates 464 
regions where the signal never exceeds the noise throughout the simulation period. (c) Bayesian 465 
expected change in precipitation in 2085 relative to 1901-1950 values, conditioned on CRU 466 
observational precipitation data available from 1901 – 2020 (Harris et al., 2020). Stippling 467 
indicates where the probability of change in less than 70%.  (d) Expected ToE conditioned on 468 
CRU observations (E(𝑇𝑜𝐸>?@)).  White indicates where data is missing over the oceans, or 469 
where expected emergence over land is not projected to occur given available observations.   470 

 471 

4. Discussion 472 

Averaging across uncertain GCM ensembles has led to a literature that systematically 473 
underestimates the magnitude of potential precipitation change and overestimates the amount of 474 
uncertainty. This has led to a further systematic overestimation of the time of emergence of the 475 
anthropogenic signal (e.g. see Stocker et al., 2013 and references therein).  Further, the common 476 
characterization of static uncertainty in climate science has challenged the development of 477 
adaptation approaches that respond to evolving uncertainty. While the adaptation literature has 478 
widely adopted adaptive management approaches, most of those approaches underestimate the 479 
value of adaptive management by not explicitly quantifying opportunities to reduce uncertainty 480 
in the future (Fletcher et al., 2019). To our knowledge, the present manuscript provides the first 481 
framework to globally quantify the potential for present and future uncertainty reductions in a 482 
Bayesian modeling framework.  This is achieved by treating OOS GCMs as potential future 483 
observations in our Bayesian model, illustrating how future projections of precipitation change 484 
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and uncertainty will be updated if the OOS GCM trajectory is observed. In doing so we can 485 
iteratively update uncertainty distributions and re-evaluate the significance of the climate signal.  486 
As such, this is the first study to develop a framework that estimates the time in which we will be 487 
able to confidently predict that the future will be significantly wetter or drier than historical 488 
values (ToC). Our analysis shows that according to GCM projections, presently there has been 489 
sufficient anthropogenic change to define ToC over most surface area (Figure 3c) and reduce the 490 
uncertainty in the direction of change across 8% of global surface area (Figure 2) at a 1-sigma 491 
confidence level, which equates to a 13% reduction in the areal extent of uncertainty in the 492 
direction of precipitation change.   493 
 494 
This methodology was tested on annual mean precipitation for emissions scenario (RCP 4.5) and 495 
at one spatial scale (6° latitude x 6° longitude).  In line with the Time of Emergence literature on 496 
precipitation change, we expect that ToC and ToE would be sensitive to seasonal choices, choice 497 
of extremes, spatial scale of interest, and the emissions trajectory (Gaetani et al., 2020; Maraun, 498 
2013; Nguyen et al., 2018; Rojas et al., 2019). 499 

We apply our methodology to address the MMM flaw in estimating the time of emergence (ToE) 500 
by both calculating ToE on individual GCMs rather than the MMM and only estimating ToE 501 
conditional on future emergence occurring.  As such, we identify widespread potential for ToEC 502 
onset. We show that if emergence does occur it will be substantially earlier than the literature 503 
currently predicted (Giorgi & Bi, 2009; Mahlstein et al., 2012).   We find that 75% of the Earth’s 504 
surface may see emergence of new precipitation regimes by 2050, which is 90% higher than 505 
estimated extent of emergence at that time from Giorgi & Bi (2009). Our estimates of ToEC are 506 
earlier than TOEMMM over 88% of global surface area, with a mean ToEC of 2043 across 507 
locations where TOEMMM predicts no emergence.  These findings indicate a broad need to 508 
consider earlier adoption of adaptation measures globally.   509 

An additional advantage of our approach to calculating ToE is that we use a novel Bayesian 510 
modeling framework to constrain estimates of ToE from GCMs using observations of 511 
precipitation change. While common ensemble approaches indicate that GCMs either project no 512 
change or are uncertain about future change across ~40% of global surface area (Figure 5a) and 513 
across 45% of global land area.  We find there is potential to reduce this uncertainty to 29% of 514 
global surface area (a 35% reduction in areal extent of uncertainty over land) using historical 515 
precipitation data from CRU as observations in a Bayesian model to improve projections. This 516 
highlights the value of integrating physical models of the climate system with data-driven 517 
methods using hybrid approaches in improving projections of climate change impacts (e.g. 518 
Lickley et al., 2020, 2021).  Patterns of early expected ToE, conditional on CRU observations are 519 
largely consistent with observed signal to noise ratios of mean precipitation change (Hawkins et 520 
al., 2020).  521 

Finally, the lag time between learning with confidence that future change will occur (ToC) and 522 
the emergence of such change (ToE) provides the advanced warning time (AWT) for planners. 523 
We find that over most global surface area, there is positive AWT (Figure 3i and Figure 4i), 524 
especially in regions with high agreement across GCMs in projections of significant change, with 525 
an average of 38 years (26 years) of advance warning at the 1-𝜎 level (2-𝜎 level). This provides 526 
an estimate of how much time policymakers will have to plan adaptations in advance of knowing 527 
adaptations are needed. However, we find negative AWT estimates over ~30% of global surface 528 
area, concentrated in locations with a low but non-zero chance of drying.  In these areas, 529 



 

 

policymakers face “deep” uncertainty (Walker et al., 2013), necessitating more challenging and 530 
costly adaptation strategies that will be robust to a wide range of future climate conditions. 531 

Data and Code. 532 

All code will be made available through a published github repository prior to publication. All 533 
GCM data used in this work are available at https://esgf-node.llnl.gov/projects/cmip5/ .  534 
Observational data comes from Harris et al. (2020) and is available at 535 
https://crudata.uea.ac.uk/cru/data/hrg/.  536 
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