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Key Points:

e We develop a method to reduce uncertainty in precipitation change by integrating
observations

e If precipitation will change, emergence will be sooner and more widespread than
previous estimates

e In most regions, we expect to have advanced warning time of precipitation emergence
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Abstract

Climate models disagree on the direction of precipitation change over ~40% of the Earth.
Current characterizations of expected change use the ensemble mean, which systematically
underestimates the magnitude and overestimates the time of emergence (ToE) of precipitation
change in regions of high uncertainty. We develop a new approach to estimate both ToE and the
potential to update uncertainty in precipitation over time with new observations. Further, we
develop two new metrics that increase the usefulness of ToE for adaptation planning. The time of
confidence (ToC) estimates when projections of precipitation emergence will have high
confidence. Second, the advance warning time (AWT) indicates how long policymakers will
have to prepare for a new precipitation regime after they know change is likely to occur. Our
approach uses individual model projections that show change before averaging across models to
calculate ToE. It then applies a Bayesian method to constrain uncertainty from climate model
ensembles using a perfect model approach. Results demonstrate the potential for widespread and
decades-earlier precipitation emergence, with potential for end-of-century emergence to occur
across 99% of the Earth compared to 60% in previous estimates. Our method reduces uncertainty
in the direction of change across 8% of the globe. We find positive estimates of AWT across
most of the Earth; however, in 30% of regions there is potential for no advanced warning before
new precipitation regimes emerge. These estimates can guide adaptation planning, reducing the
risk that policymakers are unprepared for precipitation changes that occur earlier than expected.

Plain Language Summary

Understanding if and when precipitation will change in response to anthropogenic warming is needed for
policymakers to design adaptation plans. However, climate model projections of precipitation are highly
uncertain, with models disagreeing on the direction of change across 40% of Earth’s surface. We develop
a methodology for estimating when uncertainty will be resolved and estimating the emergence of new
precipitation regimes, demonstrating previous estimates projected change too late. We also estimate how
much advance warning time policymakers will have between learning that precipitation will change and
the onset of such change. We demonstrate that precipitation change is more widespread and sooner than
previously expected, but that most regions will have advance warning. Together, our findings provide
information that policymakers can use to more effectively adapt to climate change before impacts occur.

1 Introduction

Adapting to climate change requires knowledge of both Zow and when the climate will change.
General Circulation Models (GCMs) are the best tools for studying the evolution of future
anthropogenic climate change. However, GCM projections of many key societal impacts like
precipitation change exhibit large uncertainties. Indeed, across ~40% of Earth’s surface, GCMs
disagree on even the sign of precipitation change (see Figure 5a), with little progress in new
GCM generations (Knutti et al., 2013; Nguyen et al., 2018; Ukkola et al., 2020). This level of
uncertainty in GCM projections has made adaptation planning more challenging as planners are
uncertain of whether a climate will get wetter or drier.

The magnitude of precipitation change is commonly estimated using the multi-model mean
(MMM) of GCM ensembles along with a measure of model uncertainty, such as the fraction of
models that agree in the direction of change (Kattsov et al., 2013; Knutti & Sedlacek, 2012;
Meehl, 2007; Lee et al., 2021). Likewise, the timing of the onset of a new climate regime, often
referred to as the Time of Emergence (ToE), is commonly estimated as the time when the MMM
change exceeds some measure of background noise (Giorgi & Bi, 2009; King et al., 2015;
Nguyen et al., 2018; Rojas et al., 2019). In regions of high uncertainty, averaging across GCM
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projections with different directions of change systematically results in misleadingly low
estimates in the expected magnitude of change. This approach also provides misleadingly late
estimates of ToE, posing a risk that policymakers will be unprepared for new precipitation
regimes that arise earlier than anticipated. This is an instance of Jensen’s inequality (Jensen,
1906), popularized as the “flaw-of-averages” (Savage, 2002) and known to be an issue in many
model-averaging applications (Cade, 2015). A few studies of ToE have addressed the flaw in
averaging ensembles before calculating ToE, (King et al., 2015; Kusunoki et al., 2020; Mahlstein
et al., 2012; Maraun, 2013), but still systematically underestimates ToE by including ensemble
members that do not project emergence.

In addition to the bias embedded in current ToE estimates, ToE also has limited usefulness for
adaptation planning in its current form. While characterizations of future climate change are
typically focused on long-term change (mid- or end-of-century change; IPCC, 2021), regional
adaptation decisions are made iteratively on shorter timescales. Therefore, reliable advanced
warning of precipitation change a decade in advance can be more useful for adaptation planning
than highly uncertain long-term projections (Herman et al., 2020). Current estimates of the
magnitude of precipitation change and ToE provide static projections of expected long-term
precipitation change and emergence; the literature does not indicate how quickly these expected
values can change as new observations are collected. However, recent methods from Bayesian
statistics have been developed to estimate how long-term projections of change can be informed
from near-term observations. Mansfield et al. (2020), for example, use Gaussian process
regression (GPR) trained on GCM output to predict long-term temperature change from short-
term observations. Integrating Bayesian models with GCM ensembles has been shown to reduce
uncertainty in future precipitation projections (Fletcher et al., 2019; Smith et al., 2009; Tebaldi et
al., 2004) and is capable of improving prediction accuracy (e.g., Massoud et al., 2020). While
Bayesian methods have been applied to improve prediction of the magnitude and uncertainty of
climate change, they have not addressed the time of emergence.

In this study, we develop a new approach to estimating the timing of precipitation change that: 1)
addresses averaging bias, 2) updates estimates with new observations to reduce uncertainty, and
3) estimates the advance warning time of change for adaptation planning. We achieve this by
developing a Bayesian framework applied to GCM ensembles for updating precipitation
projections. Specifically, we use a GPR that exploits correlations between near-term and long-
term precipitation change exhibited by GCMs (Figure Slc and d; Meehl, 2007; Watterson,
2008) to demonstrate how estimates of precipitation change can be updated over time as new
observations are collected.

We apply our model to iteratively update the projected magnitude of precipitation change and
estimate three new metrics. First, we estimate the time of confidence (ToC), the time when the
future direction of precipitation change will be known with a high degree of confidence. We
also re-evaluate ToE to correct averaging bias by estimating ToE conditional on emergence
occurring; that is, using only GCM projections where emergence occurs (conditional ToE;
ToEC). This is analogous to standard methods for estimating daily precipitation probabilities by
first estimating the probability of non-zero precipitation and then the magnitude of precipitation
when it does occur (Waymire & Gupta, 1981). Finally, we introduce the advance warning time
(AWT), which is the length of time before precipitation change emerges that policymakers will
confidently know that change is coming and can prepare adaptation measures. Together, this
approach improves estimates of the magnitude and timing of precipitation change both by
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realistically accounting for the full range of uncertainty in GCM ensembles today and also
providing an approach to reduce uncertainty in the future as new observations become available.
This allows us to provide insight on how far in advance planners can expect to have confidence
about new precipitation regimes, developing more useful emergence metrics for adaptation
planning.

2 Methods

In the following, we present our modeling approach for estimating the time of confidence (ToC),
the conditional time of emergence (ToE®) and the lag time between these; the advanced warning
time (AWT). First, we present the data used in our analysis. We then present our modeling
framework for estimating our metrics of interest (ToC, ToE®, and AWT) given a probabilistic
Bayesian model. Finally, we present the details of the Bayesian model that updates predictions of
precipitation change over time along with corresponding uncertainties using available
observations.

2.1 Data

Analysis is conducted using a multi-model ensemble of 16 GCMs from Phase 5 of the Coupled
Model Intercomparison Project (CMIP5). CMIPS was published ~ 11 years prior to writing this
manuscript which allows us to consider how a decade of new observations, that could not have
been used to tune the GCMs, can be used to update the posteriors (described below). All GCMs
are forced by the RCP 4.5 constant composition commitment scenario, where emissions follow
the RCP 4.5 emissions pathway from 2005-2150, after which atmospheric concentrations of
greenhouse gases are held constant at 2150 values. We use monthly precipitation output from
1850 — 2175 in our analysis. A list of GCMs used in the analysis is provided in Table S1.

Observational data come from the CRU TS version 4.0 gridded data set (Harris et al., 2020),
which provides monthly precipitation data over land from 1901-2020 at a 0.5° latitude x
0.5° longitude resolution.

All data are spatially averaged at a 6°latitude x 6°longitude grid cell resolution. We conduct all
analysis on standardized 5-year average increments of the log transform of annual precipitation,
where data is standardized relative to the historical period; 1875-1950 for GCMs and 1901-1950
for CRU. Results are retransformed and presented as percent change in precipitation. These
spatial and temporal scales are chosen to be large enough to reduce noise but small enough to
provide predictions on scales meaningful for decision makers, for example for river basin
planning.

2.2 Modeling Framework

Figure 1 illustrates our method for estimating our metrics of interest. We estimate these metrics
by developing a Bayesian predictive model that quantifies the uncertainty in future precipitation
change from GCM ensembles and updates uncertainty with data as new observations become
available. To analyze how this may reduce uncertainty in the future, we use synthetic data.
Specifically, we use a perfect model experiment approach, where one GCM at a time is left out
of the ensemble (henceforth referred to as out-of-sample GCM (OOS GCM)). The OOS GCM is
treated as the true climate trajectory which we ‘observe’ over time, and the remaining GCMs are
treated as the ensemble used to develop the Bayesian model’s prior mean and covariance
function. The predictive model then iteratively predicts future precipitation change (along with
uncertainties of future change) as larger portions of the OOS GCM are ‘observed’. This allows



157 us to estimate ToC, ToE®, and AWT in each grid cell for each OOS GCM separately before

158  aggregating across all OOS GCM results. This approach appropriately quantifies the uncertainty
159 in ToC, ToE®, and AWT without introducing averaging bias. Additionally, we perform the same
160  analysis but with real observational data from CRU from 1900 to 2020, reflecting new

161  observations that have become available since CMIP5 was published.
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The prior distribution of precipitation change,

f (APg, t), is developed for each out-of-sample (OOS)
GCM, g, at time, t. The blue line indicates the prior
mean, m(t), for all years in the simulation period. Grey
shading indicates the 16 confidence interval (Cl). For
each OOS GCM, the prior is developed using the
remaining GCMs in the ensemble (shown in red).
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The posterior distribution of precipitation change, \ -
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blue for t > t,,¢, and is developed by updating the
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As additional observations are used to update the
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The Conditional Time of Emergence (ToEC) is
defined for the posterior distribution conditioned on the
entire observed period of OOS GCM (shown in the
dark blue). ToE® is defined as the first year when the
posterior is significantly different from zero at the 1o
level. The Advanced Warning Time (AWT) is then
the lag time between ToC and ToE® and is only -
positive if TOEC > ToC. 15
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163
164  Figure 1: Modeling framework illustrating how the Time of Confidence, conditional Time of

165  Emergence, and Advanced Warning Time are estimated for one out-of-sample (OOS) GCM
166  using the predictive model. This is then repeated such that each GCM is treated as an OOS
167  GCM once in each grid cell to provide an ensemble of posterior distributions and metrics.

168 Updating uncertainty in precipitation projections using OOS GCMs

169  To estimate metrics for each OOS GCM, g, the timeseries is divided into two periods; the first
170 period starting in 1875 until time t,,, is treated as the historical period when precipitation

171  observations are made, henceforth referred to as OOS virtual observations. The second period,
172 from t,;, to 2150 is treated as the future that we seek to project (Figure 1). This allows us to
173 project a probability distribution of future precipitation in time t given historical OOS virtual
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observations f (APg’t |APg.tstobs)' For each OOS GCM, we iteratively update the posterior over

time with more OOS virtual observations, first using t,,s =1975 and then sequentially extending
the historical period by 5-year increments up until 2150. We extract the posterior mean,

Fg,t, and standard deviation g, , and use them to estimate when the precipitation will be
significantly different than historical. Specifically, we define precipitation change to be
significant for time t when the 1-sigma confidence interval (Fg,t — Og.t» Fg,t + 0,,) does not
contain zero. For each grid cell, this provides us with 16 OOS GCMs, and thus 16 projections of
how uncertainty is updated over time, and 16 projections of when precipitation change is
significant.

Updating uncertainty in precipitation projections using CRU data

Using OOS GCMs to update uncertainty, as described above, allows us to simulate how
uncertainty may evolve in the future as new observations are collected. Additionally, we can
assess how uncertainty has changed to date using real observational data that has become
available since CMIP5 was published. Analogous to the OOS GCM, we apply GPR to CRU
observations by using the GCM ensemble to develop a probability distribution of future
precipitation projections given CRU observations: f (AP;|APcgy). We then repeat the estimation
of whether precipitation change is significant as in the previous section.

Defining ToC, ToE and AWT

Using these precipitation projections updated over time, we next develop three new temporal
metrics that estimate: when we will have confidence about the direction of precipitation change,
when precipitation will enter a new climate regime, and how far in advance we will know the
new regime is coming. First, the Time of Confidence (ToC), characterizes the time when we are
confident that future precipitation will be significantly different from historical climatology.
Second, if the future will be significantly different, what year will that difference be detectable?
We define this time as the conditional Time of Emergence (ToE®) where “conditional” indicates
that it is estimated only for GCM realizations when future change occurs. This is in contrast to
ToEMMM "which refers to the definition often seen in the literature, defined when the MMM
exceeds some level of background noise (Giorgi & Bi, 2009). Third, the Advanced Warning
Time (AWT) is the length of lead time between learning that precipitation will change and the
onset of such change, estimated as TOE®— ToC. AWT thus indicates the amount of time planners
will have to implement adaptation measures appropriate for the direction of precipitation change.

To estimate ToC, we iteratively update the posterior 1-o CI (Fg,t — Ogtr Fg.t + g, ) forall
teT ast,ps is extended forward. We define t"’ as the first year when the posterior CI doesn’t
contain zero i.e. the first year precipitation change is significant. We define ToC,; = ¢, for the
earliest t,,s when this condition holds (See Figure 1). That is, ToC,, is the time at which we

know, at the 1-o level confidence, that precipitation at some time in the future will be
significantly different from historical climatology. There are instances when only a portion of
the posterior Cls from t" to 2150 remains significantly different from zero: we only define ToC,

if at least half of the years beyond t" are also significantly different from zero.

To estimate ToE®, we assume full knowledge of the OOS GCM time series, comparable to
previous methods for estimating ToE (Giorgi & Bi, 2009; Mahlstein et al., 2012). We define
ToE ; as the first year, t"" when the posterior CI doesn’t contain zero where the posterior is
updated using al/ OOS virtual observations from 1875 — 2150. It is customary in the literature to
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extend ToE analysis out to 2100 and if ToE does not occur by 2100, to characterize it as not
emerging. Ending our analysis in 2100 does not meaningfully alter our findings.

Finally, we define AWT for each GCM g, as: AWT, = ToEg — ToCy. If AWT is positive, then
ToE, g occurred after ToCy, was defined (see Figure 1), indicating there was advanced warning of
change. If AWT is negative, then ToEgi occurs first and ToCy, is only established in hindsight.
In these instances, we are only confident in the direction of change after the signal has emerged.

Aggregating across OOS GCM projections

To estimate each of our metrics (ToC, ToE“ and AWT), we first estimate each metric separately
for each GCM in each grid cell as described above. We then define expected values within each
grid cell by averaging over GCMs, resulting in expected values of ToC, ToE® and AWT.
Importantly, we only include OOS GCMs that have a defined significant emergence before the
end of our analysis in 2150 in our average. In addition to calculating averages, we also count the
number of OOS GCMs that have a defined significant emergence. Additionally, we calculate
averages over three subsets of GCMs: those exhibiting significant drying (Gp), significant
wetting (Gy,), or significant change in either direction of change (Gp /). For example,

E[ToCg, ] denotes the expected value of ToC for a drier future, which is estimated as the mean
ToC value for the subset of OOS GCMs that project a drier future. This can be interpreted as: if
the future will be drier, when can we expect to know?

2.3 Predictive Model: Gaussian Process Regression

To estimate the probabilities of future precipitation change defined in the previous section, we
develop a predictive model that exploits temporal correlations in GCM projections using a
Gaussian process regression (GPR) (Rasmussen & Williams, 2006). GPR is a non-parametric
Bayesian machine learning technique that estimates a posterior distribution updated with
observations, either from historical data or synthetic data from the OOS GCMs. The model is
developed by specifying a prior using a Gaussian process with mean m, and covariance defined
by a kernel function, K. m and K are functions of an input vector £, which here refers to a vector
of 5-year increments from 1875-2150, our study period. The mean, m(t), then defines a time
series of prior expected precipitation values and the kernel K describes the similarity between
precipitation values based on how close they are in time. Additionally, we define t < t,,s as a
vector of 5-year increments from 1875 to t,,, the historical period for which observations are
available. APy ;< . is the vector of precipitation observations during the historical period

t < tops from OOS GCM g, and AP, is the vector of precipitation we are estimating across the

full study period t.

[APg,tstobs] _ (m(t < tobs) [K(t < tops t S tops) + 07l K(t < typs, t)])
AP, m(t) K(tt <ty K(t,t) ’

where 02 represents the variance of the standardized residuals of the observations. Py ¢ 1s the
mean of the posterior distribution, which is estimated as:

AP =m(t) + K(t,t < tops) (K(E < tops t < tops) + 021D H(APrsr,,, — M(Tisr,,,))

Similarly, we define cov(APg't)as the covariance of the posterior distribution, estimated as:
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cov(AP,,) = K(t,t) — K(t,t < tops) (K& < tops, t < tops) + 0217 K(E < tops, B).

These posterior mean estimates, along with their covariance, provide us with the posterior
probability distribution of the underlying mean change in precipitation at any time t:
f (APglt |APg:t5tobs)' This is then used to estimate ToC, ToE and AWT, as described above. We

use g, ; to denote the standard deviation of cov(APg,t) going forward.

Further details regarding model parameterization are found in the SI (Text S1).

Predictive Model Validation

Finally, we validate the model by testing how well the posterior distribution,

fAPy st |APy t<t,,.)> predicts OOS GCM precipitation values after t,,,¢ given values of ¢,
equal to 2000, 2020, 2040, 2060 and 2080. We find good model agreement: on average between
68 and 70% of APy ¢t ops Vvalues (across all grid cells and all OOS GCMs) fall within the 68%
posterior CI, and between 93.5 and 94.7% of APy ;. , values fall within the 95% posterior CL.
There is some spatial variability to accuracy with polar regions performing slightly better (94-
96% accuracy) compared to the tropics (92-93% accuracy). In addition, using the entire GCM
simulation period, we find that at the 95% CI, the model is able to accurately predict long-term
(i.e. 23" century) direction of change with an 81% accuracy by 2020 and an 85% accuracy by
2050. This validates that the Bayesian model is in-fact narrowing in on the “true” OOS future
climate trajectory.

3 Results

Updating uncertainty in precipitation projections with new observations

Our modeling results indicate that we can expect substantial near-term uncertainty reductions in
long-term precipitation projections (Figure 2). We include illustrations of uncertainty reductions
over time when precipitation projections are constrained by OOS virtual observations (Figure 2
subplots).

First, we consider when at least half of the OOS GCMs are confident that 2100 precipitation will
be significantly different at the 1-sigma confidence level (see Methods). For the prior
distribution, we find that only 36% of grid cells (weighted by area) meet the 1-sigma significance
criteria for at least half of OOS GCMs (Figure 2 maps). This means that in 64% of grid cells, the
majority of the OOS GCM prior 1-sigma Cls of 2100 precipitation change contain zero and are
therefore not significant. In approximately half of these grid cells (31% of global surface area),
the majority of OOS GCM projections do not emerge by 2100. However, in ~1/4 (2/3™%) of the

remaining grid cells (equivalent to 8% (20%) of global surface area), the posterior APy ;14 Cls

are significant for more than half of OOS GCMs for t,,s = 2020 (t,,s = 2060). The reduction of
this uncertainty across OOS GCMs for these select time periods is indicated by stippling color in
Figure 2’s map. This uncertainty reduction is expected to occur in both wet and dry regions of
high uncertainty, and in particular over land in the lower latitudes. This underscores that
although GCMs disagree on future precipitation trends across 64% of the planet, by integrating
OOS observations up to 2020 (2060) we can expect to have confidence in the direction of 2100
precipitation change in ~13% (31%) of this area.
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Figure 2 subplots illustrate how uncertainty reductions can lead to emerging trends in locations
where the prior range encompasses zero (e.g. Syria). They also show how uncertainty in the
precipitation trend is reduced over time, which can inform us that long-term change may be
insignificant (Kenya), or more extreme than the prior range (Greenland). This indicates that
near-term observations are highly valuable in constraining long-term change, thus providing
useful insights for adaptation planning.

5 Mombasa, Kenya ; Damascus, Syria 3 Nuuk, Greenland
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Figure 2: Global map of the multi-model mean percentage change in annual precipitation in 2070
— 2100 relative to 1900 — 1950; subplots illustrate uncertainty updating over time for one OOS
GCM example (bee-csm1; see methods). There is no stippling if the prior mean magnitude of 2100
precipitation change exceeds 1o for at least half of the OOS GCMs. Otherwise, yellow (red)
stippling indicates that the posterior mean magnitude of 2100 precipitation change exceeds lo
when t,;, is equal to 2020 (2060) for at least half of the OOS GCMs. Black stippling indicates
that fewer than half of OOS GCMs posterior means 2100 change exceed 1o in 2060 (i.e. when
tops = 2060). Subplots illustrate the evolution of f (AP, >t , |APg <, ) for one possible OOS
GCM trajectory in sample grid cells at a 6°x6° resolution. Y-axes corresponds to precipitation
change in units of standard deviations in log (P) relative to historical mean log(P). Black lines
show precipitation trajectories at 5-year averages for the OOS GCM. Grey shading indicates the
prior 1o confidence interval for f (AP, ). Dots indicate the last year of OOS data, t,s, used in
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updating posterior distribution, f (AP s>t , |APg s<¢,, ), for three time periods; t,,s = 2020 (light

blue), t,,s = 2050 (medium) blue, and t,,s = 2080 (dark blue). Shading indicates a 10 (68%)
confidence interval.

Global Estimates of ToE, ToC, and AWT

Figure 2 aggregates across all OOS GCM members, including members that do not emerge. We
next consider the time of confidence for only the OOS GCMs that do exhibit emergence. Figure
3 illustrates our global estimates of expected ToE®, ToC, and AWT. Early ToC occurs in
regions of high certainty in future change, whereas late ToCs occur in regions where the MMM
signal is small relative to the noise ratio; ToC and the MMM signal to noise ratio are strongly
negatively correlated (with Spearman’s rank correlation of p = —0.85, p-value << 0.01). Of
particular note, our model suggests that ToC is expected to have been defined by 2020 over most
land regions, with the exception of Australia. This suggests that if we constrain GCM projections
with historical observational data in our Bayesian framework, there is potential to have
confidence the future will be wetter or drier in most land regions.

Expected ToEC is shown in the second row of Figure 3, illustrating both earlier and more
widespread expected ToEC values relative to TOEMMM estimates (for comparison see Figure 5b;
Giorgi & Bi, (2009)). Regions where models tend to agree on long-term change (e.g. polar
regions) also have early expected ToE® values. Regions that, according to GCMs, could get
wetter but it is unlikely, coincide with late ToEGCW estimates (e.g. southeastern US and northern

Africa; Figure 3d). These expected ToE® estimates indicate that there is potential for widespread
emergence, globally, throughout this century (Figure 3f). This is in contrast to ToEMMM
estimates (Giorgi & Bi, 2009; Figure 5b) where emergence is constrained to regions with strong
agreement across GCMs. However, similar to TOEMMM expected ToEC also correlates strongly
with the MMM signal to noise ratio (with Spearman’s rank correlation of p = —0.68, p-value
<< 0.01), thus providing similar spatial patterns of relative emergence to earlier methods, while
emerging much earlier on average. This is quantified further in Figure 4.

The third row of Figure 3 shows the expected AWT conditional on future change. Green
regions delineate regions where AWT is positive, indicating advance warning of future change
and brown colors delineate regions where AWT is negative, indicating that ToC occurs only in
hindsight after ToE® has occurred. Negative AWT values are widespread in regions where there
is potential for future change of opposite sign to the GPR prior. For example, in regions where
the prior indicates a future more likely to be wet, a longer duration of a drying trend is required
before we have confidence that the future is in fact drying, and not simply exhibiting an
anomalous drought. In these instances, ToE® has already occurred before we have confidence
that the trend will continue. Because most global surface area is projected to be wetter, negative
AWT values are more wide spread for drier futures. AWT patterns thus exhibit similarities with
the MMM magnitude and uncertainty in GCM projections (Figure 5a) and are positively
correlated with the MMM signal to noise ratio (with Spearman’s rank correlation of p =
0.45, p-value << 0.01).
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Figure 3: Spatial patterns of expected time of confidence (ToC), conditional time of emergence
(ToEC), and advanced warning time (AWT). (a) The CMIP5 multi-model expected ToC in
which we learn that the future will be wetter at the 1o confidence level. (b) as in (a) but for a
future that is drier. (c) as in (a) but for the future that is either wetter or drier. (d) The expected
time of emergence conditioned on the future GCM projection being wetter at the 10 confidence
level. (e) as in (d) but for a drier future. (f) as in (d) but for a future that is either wetter or drier.
(g) Expected AWT for a wetter future (i.e. (d) minus (a)). (h) as in (g) but for a drier future. (i)
as in (g) but for a future that is either wetter or drier. For (a) - (i), values are estimated at the

6° latitude x 6° longitude grid cell level and smoothed using a moving 10° x 10° degree moving
window. The colors are saturated at 2020 and 2100. These years were chosen so as to illustrate
locations where we should have sufficient observations to be able to detect ToC at the time of
writing this paper, and also to focus on what we can learn over the course of the 21 century.
Locations that are white occur where the metric is never defined.

Figure 4(a — ¢) compares the cumulative emergence of expected ToEC to that of ToEMMM

at both the 1-0 and 2-0 level. This shows that by 2050, ToE® is expected to have occurred over
75% of Earth’s surface area at the 1o level, much higher than the 40% estimate from the
ToEMMM approach (Figure 5¢). To be clear, this indicates that over 75% of global surface area, it
is expected that if emergence occurs, it will do so prior to 2050. This difference in extent of
precipitation emergence between ToE estimation methods remains pronounced throughout the
century, such that by 2100 there is potential for ToE® to be defined over 99% of Earth’s surface
area, compared to 57% from the TOEMMM approach. The contrast between ToE methods is most
pronounced in regions that could dry, where ToEGCD is expected to have occurred over 41% of
Earth’s surface area by 2050, but TOEMMM estimates only 9% of surface area to have dry
emergence by 2050. This suggests the need for greater urgency in adaptation planning in the
agriculture and water sectors in many water-stressed regions than previously anticipated.
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Figure 4 (d — f) shows the cumulative areal extent of expected ToC in regions that could become
wetter, drier, or both. Our GPR approach suggests that by 2020 (2050), expected ToC will be
defined over as much as 57% (78%) of global surface area (Figure 4 f). Note that expected ToC
only encompasses OOS GCMs that exhibit emergence. This therefore indicates that across 57%
(78%) of global surface area, if mean precipitation is changing, we can expect to be confident by
2020 (2050) in the direction of this change. In the remaining 43% (22%) of surface area, we
expect to still be uncertain about the direction of future precipitation change in these years.

Figure 4 (g — 1) shows the cumulative distribution of AWT for regions with a future that could be
significantly wetter, drier, or both. For regions that could be wetter in the future (over as much
as ~87% of global surface area at the 1o level), the majority of regions (~60% of global surface
area) have a positive AWT with about 25% of global surface area seeing the potential to have
negative AWT for wet regions. The remaining 2% of surface area reflects the potential error
where ToC is defined in instances that do not emerge. The majority of regions that could be
drier, however, are expected to have a negative AWT (~34% of global surface area at the 1o
level), compared to 20% of global surface area where a positive AWT of a dry future is
expected. This again underscores the challenges that planners face for preparing for water stress,
as most regions are not expected to have advance warning of new, drier climates before they
occur.

(a) 100 (b) 100 (©) 100
= = ToE"™M (1) = = ToE"M (1)

E(ToEgW) (10) |~
= = ToEMM (25) i = = ToEM™M (25)
60 Enoegw> (20), 7~ snoegn> (27) 60

40 [ -=-—7 40 40 ToE"™M (1)
. P . E(TuEgW ) )

20 AL & 20 ® 20 L7 |m = TeE ey
4 -t 14 E(T 2
% ’ / (oS )(2)

80 E(TcEgD) (10) 80

% Global Surface Area
% Global Surface Area
Global Surface Area

0 0
2000 2050 2100 2150 2200 2000 2050 2100 2150 2200 2000 2050 2100 2150 2200

(d) 100 (&) 100

~

Na]
2
8

80 80 80

60 60 60

40 40 40

% Global Surface Area
% Global Surface Area
% Global Surface Area

E(ToCg ) (10)

E(ToC, ) (10) E(ToCq ) (10)

20 20 20

E(ToCg ) (22) E(ToCq ) (27) E(ToCs,, ) @)

0 0 0
2000 2050 2100 2150 2200 2000 2050 2100 2150 2200 2000 2080 2100 2150 2200
(h) 100 (i) 100

80

~
ga
=
5
3

®
3
®
8

@
3

60

IS
S

40

EAWT, ) (10)

% Global Surface Area

% Global Surface Area
% Global Surface Area

E(AWTG ) (10) E(AWT, ) (10)

n
S

20

E(AWT, ) (27)

E(AWT, ) (20)

EAWT, ) (20)

0 0 0
-100 -50 0 50 100 150 -100 -50 0 50 100 150 -100 -50 0 50 100 150
Advanced Warning Time (years) Advanced Warning Time (years) Advanced Warning Time (years)

Figure 4. Expected time of emergence (ToE), time of confidence (ToC), and advanced warning
time (AWT) conditioned on future change. (a)— (c) Cumulative percentage of global surface
area where expected ToEC (E(ToE®)), is defined conditional on change (solid lines), compared
to TOEMMM estimates (dashed lines). Colored (black) indicate when E(ToE®), is defined at the
lo (20) confidence level. (a) Shows the percent of global surface area where E (TOEGCW),
indicates a wetter future. (b) as in (a) but for a drier future. (c) as in (a) but for either wetter or
drier future. (d) — (f) as in (a) — (c) but for the expected time of confidence (ToC). (g) — (i) as in
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(a) — (c) but for the expected advanced warning time. Negative values indicate the fraction of
global surface area where ToE€ occurs before ToC.

Expected change and ToE estimates based on historical data

Finally, we evaluate expected changes in precipitation and expected ToE given available
observations over land and compare this with MMM estimates. In this analysis, we use historical
precipitation data instead of OOS GCMs as the observations in the Bayesian model, reflecting
the best available information to date rather than potential future observations. Figure 5 provides
an update of expected future precipitation change f(AP,og5|APcry ¢<2020), and ToE estimates,

E(ToEcgy) given observed precipitation from CRU TS data available from 1900 — 2020 (Harris
et al., 2020). Note that this is different than ToE® since we are not estimating ToE conditional
on future change, however, it is an improvement from ToEMMM ag it constrains future projections
of change using available observations. For our Bayesian estimated precipitation change, we
select the year 2085 as it is the mid-point over the MMM averaged time period and thus provides
a more direct comparison across methods.

Both the MMM and Bayesian modeling approach result in similar patterns of expected
precipitation change given CRU observations. For the Bayesian model, we note less uncertainty
over land and more pronounced drying in mid-latitudes relative to the MMM approach (Figure
5(a) and (c)). According to our model and observations, E(ToE&gy) has occurred prior to 2020
over most of the land area North of 30°N along with some regions in Northern Africa, which
have been drying, and parts of southern South America. While much of the uncertainty shown in
Figure 5(c) coincides with regions of late ToC shown in Figure 5(c), one exception is over much
of Africa. This suggests that either emergence will not occur over much of Africa or that data
and/or GCM projections are insufficiently accurate to provide reliable indicators of change. This
calls for improved data collection and modeling efforts over Africa, as many populations in this
continent are highly vulnerable to precipitation change (Niang et al., 2015) and thus require the
best information for adaptive responses to climate change.
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Figure 5. Standard versus Bayesian modeled expected change and time of emergence (ToE). (a)
CMIP5 multi-model mean (MMM) projected percent change in precipitation (%AP) in 2070-
2100 relative to 1900-1950. Grey areas indicate where change is within 5% of historical
values. Stippling indicates where fewer than 70% of models agree on the direction of

change. (b) Time of Emergence of precipitation signal following Giorgi and Bi (2009), where
the signal is the MMM 30-year moving average and the noise is the square root of the MMM
historical decadal variance. Values prior to 2000 and after 2100 are saturated. White indicates
regions where the signal never exceeds the noise throughout the simulation period. (c¢) Bayesian
expected change in precipitation in 2085 relative to 1901-1950 values, conditioned on CRU
observational precipitation data available from 1901 — 2020 (Harris et al., 2020). Stippling
indicates where the probability of change in less than 70%. (d) Expected ToE conditioned on
CRU observations (E(ToEgy)). White indicates where data is missing over the oceans, or
where expected emergence over land is not projected to occur given available observations.

4. Discussion

Averaging across uncertain GCM ensembles has led to a literature that systematically
underestimates the magnitude of potential precipitation change and overestimates the amount of
uncertainty. This has led to a further systematic overestimation of the time of emergence of the
anthropogenic signal (e.g. see Stocker et al., 2013 and references therein). Further, the common
characterization of static uncertainty in climate science has challenged the development of
adaptation approaches that respond to evolving uncertainty. While the adaptation literature has
widely adopted adaptive management approaches, most of those approaches underestimate the
value of adaptive management by not explicitly quantifying opportunities to reduce uncertainty
in the future (Fletcher et al., 2019). To our knowledge, the present manuscript provides the first
framework to globally quantify the potential for present and future uncertainty reductions in a
Bayesian modeling framework. This is achieved by treating OOS GCMs as potential future
observations in our Bayesian model, illustrating how future projections of precipitation change
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and uncertainty will be updated if the OOS GCM trajectory is observed. In doing so we can
iteratively update uncertainty distributions and re-evaluate the significance of the climate signal.
As such, this is the first study to develop a framework that estimates the time in which we will be
able to confidently predict that the future will be significantly wetter or drier than historical
values (ToC). Our analysis shows that according to GCM projections, presently there has been
sufficient anthropogenic change to define ToC over most surface area (Figure 3¢) and reduce the
uncertainty in the direction of change across 8% of global surface area (Figure 2) at a 1-sigma
confidence level, which equates to a 13% reduction in the areal extent of uncertainty in the
direction of precipitation change.

This methodology was tested on annual mean precipitation for emissions scenario (RCP 4.5) and
at one spatial scale (6° latitude x 6° longitude). In line with the Time of Emergence literature on
precipitation change, we expect that ToC and ToE would be sensitive to seasonal choices, choice
of extremes, spatial scale of interest, and the emissions trajectory (Gaetani et al., 2020; Maraun,
2013; Nguyen et al., 2018; Rojas et al., 2019).

We apply our methodology to address the MMM flaw in estimating the time of emergence (ToE)
by both calculating ToE on individual GCMs rather than the MMM and only estimating ToE
conditional on future emergence occurring. As such, we identify widespread potential for ToE®
onset. We show that if emergence does occur it will be substantially earlier than the literature
currently predicted (Giorgi & Bi, 2009; Mabhlstein et al., 2012). We find that 75% of the Earth’s
surface may see emergence of new precipitation regimes by 2050, which is 90% higher than
estimated extent of emergence at that time from Giorgi & Bi (2009). Our estimates of ToE® are
earlier than TOEMMM over 88% of global surface area, with a mean ToEC of 2043 across
locations where TOEMMM predicts no emergence. These findings indicate a broad need to
consider earlier adoption of adaptation measures globally.

An additional advantage of our approach to calculating ToE is that we use a novel Bayesian
modeling framework to constrain estimates of ToE from GCMs using observations of
precipitation change. While common ensemble approaches indicate that GCMs either project no
change or are uncertain about future change across ~40% of global surface area (Figure 5a) and
across 45% of global land area. We find there is potential to reduce this uncertainty to 29% of
global surface area (a 35% reduction in areal extent of uncertainty over land) using historical
precipitation data from CRU as observations in a Bayesian model to improve projections. This
highlights the value of integrating physical models of the climate system with data-driven
methods using hybrid approaches in improving projections of climate change impacts (e.g.
Lickley et al., 2020, 2021). Patterns of early expected ToE, conditional on CRU observations are
largely consistent with observed signal to noise ratios of mean precipitation change (Hawkins et
al., 2020).

Finally, the lag time between learning with confidence that future change will occur (ToC) and
the emergence of such change (ToE) provides the advanced warning time (AWT) for planners.
We find that over most global surface area, there is positive AWT (Figure 3i and Figure 4i),
especially in regions with high agreement across GCMs in projections of significant change, with
an average of 38 years (26 years) of advance warning at the 1-o level (2-o level). This provides
an estimate of how much time policymakers will have to plan adaptations in advance of knowing
adaptations are needed. However, we find negative AWT estimates over ~30% of global surface
area, concentrated in locations with a low but non-zero chance of drying. In these areas,
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policymakers face “deep” uncertainty (Walker et al., 2013), necessitating more challenging and
costly adaptation strategies that will be robust to a wide range of future climate conditions.

Data and Code.

All code will be made available through a published github repository prior to publication. All
GCM data used in this work are available at https://esgf-node.llnl.gov/projects/cmip5s/ .
Observational data comes from Harris et al. (2020) and is available at
https://crudata.uea.ac.uk/cru/data/hrg/.
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