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Abstract  
Climate oscillations ranging from years to decades drive precipitation variability in many river basins 
globally. Current climate adaptation science estimates that the water sector will require new 
infrastructure investment of up to $100B per year1,2. However, these estimates focus on long-term 
trends, preparing for average climate conditions at mid- or end-of-century. The impact of climate 
oscillations, which bring prolonged and variable but temporary dry periods, on water supply 
augmentation needs is unknown. Current approaches for theory development in nature-society 
systems are limited in their ability to realistically capture the impacts of climate oscillations on water 
supply. Here we develop an approach to build middle-range theory on how common climate 
oscillations affect low-cost, reliable water supply augmentation strategies. We extract contrasting 
climate oscillation patterns across sub-Saharan Africa and study their impacts on a generic water 
supply system. Our approach integrates climate model projections, nonstationary signal 
processing, stochastic weather generation, and reinforcement learning-based advances in 
stochastic dynamic control. We find that longer climate oscillations often require greater water 
supply augmentation capacity but benefit more from dynamic approaches. Therefore, in settings 
with the adaptive capacity to revisit planning decisions frequently, longer climate oscillations do not 
require greater capacity. By building theory on the relationship between climate oscillations and 
least-cost reliable water supply augmentation, our findings can help planners target scarce 
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resources and guide water technology and policy innovation. This approach can be used to support 
climate adaptation planning across large spatial scales in sectors impacted by climate variability.  
 
Significance Statement 
Large-scale oscillations in the climate system create temporary dry spells lasting years to decades, 
necessitating costly infrastructure investment to maintain reliable water supply. Here, we develop 
methods to build theory on what approaches to water supply augmentation are reliable and cost-
effective in addressing common climate oscillation patterns across sub-Saharan Africa. We find 
that long, decadal oscillations require the largest infrastructure investments if traditional planning 
methods are used. However, monitoring oscillations and responding with temporary solutions that 
match the period of the oscillation can mitigate the need for new infrastructure. This underscores 
the importance of adaptive capacity in addressing long-term climate variability and targeting 
infrastructure investments for climate adaptation.  
 
Main Text 
Introduction  
Climate change impacts on precipitation will require new infrastructure in many regions to ensure 
reliable water supply for people, agriculture, and the economy1.  Many studies use climate-model 
projections of long-term regional precipitation trends to assess future water infrastructure needs3–

5. However, interannual and interdecadal variability in precipitation can have greater impacts on 
water supply than changes in long-term trends6,7.  Globally, patterns of precipitation variability are 
linked to large-scale climate oscillations in sea surface temperatures (SST) such as the El-Niño 
Southern Oscillation (ENSO, 3-7 y period) and Pacific Decadal Oscillation (PDO, 10-30 y period)8,9. 
Climate oscillations have been found to impact essential water resource benefits, such as water 
supply10, hydropower11, flood control12, and ecosystem services13, as well as other sectors including 
agriculture14 and electricity systems15.   
 
While there is a long literature on the impact of interannual variability on water supply16, we do not 
know which types of water supply augmentation strategies, ranging from short-term management 
options like reducing irrigation use to long-term infrastructure development like reservoirs17, are 
most cost effective in addressing different types of climate oscillation patterns. To address 
uncertain long-term precipitation trends, where monitoring gradual changes can indicate when 
adaptation measures are needed18,19, permanent infrastructural approaches to augmenting supply, 
such as expanding reservoir storage capacity or installing desalination or wastewater recycling 
facilities, are often cost effective20. However, permanent infrastructure investments may be less 
cost effective in addressing climate oscillations, which lead to temporary dry periods, due to 
infrequent use. We hypothesize that dynamic planning approaches, in which water supply plans 
are revisited frequently, and shorter-term management  solutions, like temporary water sourcing, 
inter-basin transfers, groundwater pumping, or demand management21–24, may be more cost 
effective in addressing climate oscillations. The effectiveness of this approach likely depends on 
the length of the oscillation period relative to the length of the augmentation approach, as well as 
how quickly adaptive plans can be revisited and implemented.  
 
Developing understanding of the impact of climate oscillation patterns on water supply planning 
requires new systems modeling approaches. Robust decision-making and other computational 
modeling methods develop high-fidelity but location-specific water supply strategies that are robust 
to a wide range of future climates25–30. Conversely, approaches that focus on developing location-
independent theory on human-nature systems often require simplified system representation31. 
Balancing these goals, middle-range theory aims to understand the conditions under which a 
phenomenon of interest holds for a class of cases32. This approach has been applied in 
sustainability science domains including natural resource management33, land use change34, and 
energy transitions35, but not integrated with computational decision-support modeling. Developing 
middle-range theory on the conditions under which different types of climate adaptation approaches 
can improve the reliability of infrastructure services at low cost can help water planners target 
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scarce resources for climate adaptation across regions, enabling water, food, energy, and 
economic security for more communities. 
 
Here we develop an approach to build middle-range theory on how climate oscillation patterns 
impact least-cost reliable water supply augmentation planning. We capture realistic representations 
of common climate oscillation patterns and develop theory on the planning approaches and 
augmentation techno-economics that ensure reliable water supply at the lowest cost. To do this, 
we integrate nonstationary signal processing, reinforcement learning-based stochastic 
optimization36,37, and water resource systems simulation. We apply this approach to water supply 
planning in surface-water dominated river basins in sub-Saharan Africa (SSA), where a range of 
climate oscillations impact water systems38 and new water supply is likely needed to meet growing 
demand and changing climates39. Our results show that dynamic planning approaches, where 
water supply is augmented in response to climate oscillations, can reduce the cost of water supply 
reliability for climates where long, decadal-scale oscillations dominate. However, this is only true 
when augmentation options with low capital costs are available, such as short-term drought 
management approaches, and planners have the capacity to respond quickly to changing 
oscillations. This approach can be used to support planners in targeting resources and innovating 
in technology and policy solutions across sectors impacted by climate variability.  
 
Results 
Developing middle-range theory on climate oscillation patterns and water supply planning 
We apply our approach to theory development, illustrated in Figure 1. The overall approach is to 
identify the cost structure, lifetime, and capacity of water augmentation options that result in least-
cost reliable water supply in each of five representative climates with contrasting oscillation 
patterns. First, we select the class of cases for which we aim to build theory. Hydrologically, we 
limit our cases to river basins in SSA where runoff is generated primarily by fast surface water 
processes and can be reasonably modeled using a lumped approach. Socially, we focus on cases 
where a centralized planner makes infrastructure investment decisions and has access to financing 
for large projects and where water demand is well characterized and must be reliably met. 
Additionally, given the focus on oscillations, we do not consider long-term trends in water availability 
or demand.  

 
Figure 1. Schematic illustrating approach to middle-range theory development  
 
After identifying the class of cases, we perform the modeling analysis. We start by using wavelet 
analysis to extract the dominant oscillations in subbasin-scale climate model projections of 
precipitation across SSA. We then select five climate oscillation patterns: short (s; 4-10 y period), 
medium (m; 10-30 y period), long (l; 30-60 y period), short + medium (sm), and short + long (sl). 
These ranges are chosen to represent common and contrasting oscillation ranges observed in the 
precipitation data that have meaningfully different impacts on planning. These are illustrated in the 
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left panel where the black lines represent the precipitation time series, and the smooth colored lines 
represent the signal associated with each climate oscillation.  For each climate oscillation pattern, 
we generate synthetic precipitation time series with comparable oscillations to capture stochastic 
variability in the oscillations. Next, the synthetic precipitation time series are used to force a generic 
water system model where demand is slightly higher than current runoff, necessitating water supply 
augmentation. In parallel, we characterize potential water supply augmentation options, defined 
broadly to include both infrastructural and management approaches to increasing water availability 
including water treatment, supply imports, and demand management. For generality, we 
characterize augmentation options using the following techno-economic parameters, rather than 
specific options: 1) ratio of capital costs to annual operating costs (capex/opex); 2) lifetime, the 
length of time the augmentation is available for use; 3) capacity, and 4) time to deployment (TTD), 
the length of time after the planner decides to augment supply before it is available for use. These 
parameters can represent a wide range of augmentation options. Annual management decisions 
like groundwater pumping40 can be represented by a low capex/opex ratio with short lifetime and 
TTD. In contrast, a dam39 has a high capex ratio with long lifetime and TTD, and water reuse41 has 
intermediate values.   
 
Finally, we apply reinforcement learning-based simulation-optimization methods to develop optimal 
control policies that use information about the climate oscillation signal and water storage to 
dynamically augment capacity. “Optimal” here means the least-cost approach that maintains 100% 
reliability, defined as supplying all demand across all simulations i.e. incurring no water supply 
deficits. We simulate the optimal policies to illustrate (bottom right) how the type, timing, and 
capacity of optimal water supply augmentation differs across climates oscillations. In this example, 
we see one unit of baseload capacity, defined as capacity deployed at the outset and stays online 
for the full 100-year planning period, and two units of peaking capacity, defined as capacity 
deployed dynamically in response to dry oscillation phases. See methods for details. 

 

Figure 2: Fraction of total variance in 1950-2100 subbasin precipitation contributed by oscillation 
period range. Stippling indicates subbasins where the fraction of variance contributed by that period 
range is greater than the expected contribution from white noise. See methods for details.  

 
Wavelet analysis of climate oscillations across sub–Saharan Africa 
Having introduced the approach, we now present results from the climate oscillation analysis in 
Figure 2, which illustrates the fraction of annual precipitation variability contributed by the different 
ranges of oscillation period: s, m, and l (see Methods). Looking across subbasins in SSA, we see 
large differences in which combinations of oscillations contribute above expected fractions of 
variance, leading to diverse climate oscillation patterns. Some regions (Southern Africa, equatorial 
Africa) with a large ENSO influence do not have substantial influence from m or l oscillations, while 
others (coastal West Africa; southern Nile; parts of equatorial East Africa) have elevated variance 
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fractions from both s and m or l oscillations. This is consistent with previous work that found several 
large-scale, overlapping climate oscillations with wide ranging periods impact the variability of 
precipitation throughout Africa38,42,43. This finding highlights the importance of understanding how 
different climate oscillation patterns impact water supply planning. 

Additionally, our results show alignment with previous studies of oscillation patterns in SSA. We 
find that s oscillations explain the highest proportion of annual precipitation variance throughout the 
continent. While high frequency oscillations typically comprise the greatest share of variance in any 
time series, many subbasins, indicated by stippling, show more variance than expected compared 
to white noise. These subbasins are focused in equatorial Africa, the region of the intertropical 
convergence zone (ITCZ), as well as Southern Africa. This is consistent with previous studies that 
identify the influence of ENSO in modulating advection of moisture into these regions44–46as well 
as its influence on the position of the ITCZ42. Longer period oscillations (m or l) contribute relatively 
greater variance outside of equatorial Africa. This could be due to the stronger PDO influence in 
these regions38. The alignment of our findings with previous studies demonstrates that the wavelet 
analysis is an appropriate method for capturing a wide range of climate oscillation patterns across 
SSA to use for middle-range theory development.  

Impact of climate oscillation patterns on optimal water infrastructure augmentation 
Next, we present results from the optimization analysis on the impacts of contrasting climate 
oscillation patterns on least cost reliable water supply augmentation approaches in Figure 3. First, 
results show that climates with longer oscillation periods often but not always require a greater 
average capacity of water supply augmentation. When storage capacity is low (panel a), 
maintaining reliable supply requires additional baseload capacity across all climate oscillation 
patterns. This is a static approach to addressing climate variability by adding capacity at the outset 
to be prepared for future uncertainty. The downside of the static approach, however, is that it risks 
stranding assets with long lifetimes that are used infrequently.  Additionally, in climate oscillation 
patterns with longer periods, we see an increasing amount of peaking capacity, which is brought 
online dynamically in response to low storage levels and dry oscillation phases. See Figure S1 for 
an illustration of dynamic vs. static approaches.  

 
Figure 3: Capacity and lifetime of optimal infrastructure augmentation by climate oscillation pattern. 
Top row: Average capacity across simulations of baseload vs. peaking supply infrastructure. 
Bottom row: Distribution of lifetime of peaking capacity by climate, with red each point representing 
one capacity augmentation and surrounding violin plot representing density of lifetimes across 
simulations. Black points and bars show oscillation half-period average and range. Left column: 
Existing storage =4x monthly demand. Right column: Existing storage =8x monthly demand. 
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Results are from baseline scenario where: no water supply deficit is incurred (i.e. 100% reliability), 
demand is 7% greater than mean annual runoff, and capex is 4x annual opex.
 
However, when more storage is available (panel b), the direct relationship between oscillation 
period and capacity disappears. The s climate oscillation pattern has higher, rather than lower, 
average capacity. This is driven by the limited value of peaking capacity for addressing short 
oscillations due to two reasons. First, responding dynamically to short oscillations with <10 year 
periods would require frequent augmentation and associated capex, which is four times of the cost 
of annual opex in our base case. Second, the short oscillation signal is noisier than longer oscillation 
signals, so the policy is not able to learn clear patterns in the signal and anticipate future oscillations 
as easily.  
 
We also identify a striking relationship between the oscillation period length and the lifetime of the 
peaking augmentation capacity, shown in panels c) and d). Similar to the average capacity results, 
we see longer lifetimes for peaking capacity associated with longer climate oscillations. More 
specifically, when there is no baseload capacity (panel d), the distribution of lifetimes of the peaking 
capacity is centered around the oscillation half period. Compound climate oscillation patterns, like 
sl, have a bimodal distribution with high density of lifetimes centered about each oscillation half 
period. When lower storage leads to baseload capacity (panel c), lifetimes are shorter, centered 
around approximately the oscillation quarter-period. This result is driven by the dynamic behavior 
of peaking capacity, responding only to dry oscillation phases. When ample storage is available 
and oscillations are > 10 years, baseload capacity is not cost effective because it is used less 
frequently, and peaking capacity addresses the full dry phase of the oscillations. However, without 
storage, a greater volume of baseload capacity is cost effective, leading peaking capacity to 
address only the most severe part of dry oscillations. Figure S2 shows these results for additional 
storage/demand ratios, demonstrating that the relationship between oscillation period length and 
peaking capacity lifetime does not depend on the specific values of storage and demand shown in 
Figure 3. It does depend on the choice to focus on cases where reliability is always met. Figure S5 
shows that minimal baseload capacity is used when substantially higher water supply deficit is 
allowed, a fundamental change from the peaking behavior discussed here. 
 
Interactions between climate oscillation patterns and augmentation techno-economics 
Next, we analyze the role of techno-economic parameters, which vary considerably across 
augmentation options, in mediating the effect of climate oscillation patterns on least cost   
augmentation approaches (Figure 4). For example, large-scale water reuse technologies may have 
high capex and require several years to deploy, while non-infrastructural augmentation options, 
such as repurposing irrigation water from fallowed agriculture fields, may require little capital but 
incur high annual costs. We find that increasing the capex/opex ratio of available water 
augmentation favors augmentation approaches with more capacity and longer lifetimes. This 
reflects a shift to a greater proportion of baseload, rather than peaking capacity. Instead of 
responding dynamically and incurring multiple large capital costs, it is more cost effective to build 
excess capacity early and keep it online for a long time. This is demonstrated in Figure 4a), where 
the average capacity across simulations increases and eventually plateaus at an integer increment 
corresponding to the amount of baseload capacity added. This finding holds when higher water 
supply deficit is allowed, though the differences across climate oscillation patterns diminish. See 
Figure S6. In contrast, lower capex/opex ratios favor optimal water supply augmentation strategies 
that respond dynamically, augmenting supplies in response to the dry phase of an oscillation.  
 
Interestingly, the mid-range climate oscillation patterns (sm, m, sl) have longer average lifetimes at 
high capex/opex ratios compared to s and l (Figure 4c). This reflects that more dynamic peaking 
behavior occurs in both oscillation extremes when capex/opex ratios are high. Responding 
dynamically to long oscillations is cost effective because it requires the least number of new capital 
expenses, while responding dynamically to short oscillations is cost effective because it reduces 
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the amount of capacity required, only adding peaking capacity in the most severe droughts. Figure 
S3 illustrates this process over time for a few simulations representing different climate oscillations.  
 
 

 
Figure 4: Influence of capex/opex ratio and TTD on average capacity (top row) and lifetime (bottom 
row) of optimal water augmentation by climate oscillation pattern (colored lines). Baseline scenario 
values of capex/opex and TTD shown in grey bar. Results show the least-cost solution with 100% 
reliability (i.e. incurs no deficit), assuming existing storage of 4x demand 
 
Finally, we find that increasing TTD has only a modest effect on optimal augmentation strategy, 
leading to a slight increase in average capacity and no consistent trend in average lifetime (Figure 
4 b,d). This contrasts our initial hypothesis that longer TTD makes it more difficult to respond in real 
time to dry conditions. This may be due to two factors. First, the length of the dry phase (oscillation 
half period) is long compared to the TTD range; an extra year may not affect the dynamics in a 20-
year oscillation. Second, we assume that the planner knows the current phase of the climate 
oscillation signal, providing insight on whether precipitation is likely to increase or decrease in the 
future, which may offset the effect of greater TTD. Collectively, the results in Figure 4 highlight that 
the types of water augmentation options available in a basin have a large influence on the amount 
and timing of capacity that is needed for low-cost reliable water supply. 
 
Decision frequency impacts on least-cost water augmentation 
Our previous results demonstrate that a dynamic strategy that augments supply in response to dry 
oscillation phases can maintain reliable water supply at lower cost when oscillations are long and 
costs are dominated by operating, rather than capital, expenses. However, this finding assumes 
that water supply planners can revisit augmentation decisions monthly. In practice, water supply 
plans are often revisited only once every 10 years. Our final result, illustrated in Figure 5, assesses 
the impact of decision frequency on the cost of water supply augmentation required under different 
climate oscillation patterns.  
 
Results illustrate three main findings. First, total costs increase as the time between decisions 
increases, and this cost increase is greater for climate oscillation patterns with a m or l component. 
The nonlinear shape of the curves suggest that, for regions currently making decisions every 10 
years, a large increase in decision frequency, to ~2 years, is required to achieve substantial cost 
savings. This reflects the cost savings of revisiting decisions more often when a dynamic approach 
is used to augment supply. Indeed, much of the cost increase in m and l climate oscillation patterns 
results from a transition from a dynamic to a static water supply augmentation approach. Figure S4 
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illustrates this in a few simulations over time. Second, when augmentation decisions are revisited 
monthly, the total cost is about the same for all climate oscillation patterns except s. This highlights 
the challenge of planning for oscillations longer than 5 years: static approaches with enough 
capacity to weather long dry phases are prohibitively expensive, but dynamic approaches come 
with increased incurrence of capital costs. Third, the variance in costs is greater for climate 
oscillation patterns with an s component.  Optimal control policies for s oscillations rely primarily on 
baseload capacity, with rare deployment of additional short-term (~1 year) peaking capacity to 
buffer emergency shortages. The occurrence of this “emergency peaking” behavior (illustrated in 
Figure S1), is highly variable across simulations, driving high variance in costs because emergency 
peaking is costly. These results demonstrate the benefit of building adaptive capacity in planning 
institutions to revisit decisions more frequently, especially in regions facing climate oscillation 
patterns with long periods.  
 

 
Figure 5: Total cost of water supply augmentation alternatives over 100-year planning period by 
climate oscillation pattern and decision revisit time. Costs here refer to the total capital and 
operating costs over the 100 year planning period, quantified in capex units where 1 capex unit = 
the capex of 1 additional unit of augmentation. Scatter points correspond to 10 simulations from 
the optimal policy from each climate oscillation pattern and decision frequency. Colored bands 
present a second-order polynomial trend line to interpolate between decision frequencies. Results 
shown for baseline scenario where no water supply deficit is incurred (i.e. 100% reliability), 
capex/opex ratio = 4, and storage/demand = 4. 
 
Discussion  
In this study we analyze the impact of climate oscillations with periods ranging from years to 
decades on water supply augmentation planning. Much of climate adaptation science has focused 
on long-term trends, preparing for average climate conditions at end-of century. However, our 
results highlight the large influence of interannual and interdecadal variability on precipitation and 
demonstrate that a wide range of contrasting climate oscillation patterns impact precipitation across 
SSA. This underscores the importance of understanding how oscillations with different periods 
impact planning in water supply and other precipitation-dependent sectors – impacts which are less 
obvious than long-term trends alone.  
 
Our results identify opportunities to reduce the need for large, long-lived projects to manage climate 
variability. While climates with longer oscillation periods often require a greater average capacity 
of water supply augmentation with longer lifetimes, longer oscillations also make it easier to 
leverage dynamic peaking augmentation strategies, reducing the average capacity needed to 
maintain reliability. This is because dry spells occur less frequently and because monitoring longer 
oscillation signals provides more advance warning of dry spells. Conversely, dynamic peaking has 
limited usefulness in addressing short oscillations. Responding dynamically to short oscillations 
would require augmentation every 2-5 years and incur high capital costs each time, and the 
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noisiness of the climate signal increases the frequency supply is augmented but not needed. The 
dynamic approach is more effective when augmentation strategies have lower capex/opex ratios, 
suggesting that either short-term management approaches technology innovation to reduce capital, 
rather than operating, costs may be especially useful in regions with long oscillations. 
 
Additionally, a planner’s ability to revisit augmentation decisions frequently reduces the cost of 
reliable water supply by making dynamic augmentation cheaper. Indeed, when decisions can be 
revisited annually, the cost of maintaining reliability is about the same across all climate oscillation 
patterns. When decisions can only be revisited every 10 years, the cost in l climate oscillations in 
nearly double the cost in s climate oscillations. This suggests an important interaction: adaptive 
capacity to respond nimbly to dry periods is more important in settings where low capex, non-
infrastructural strategies such as inter-basin transfers, crop fallowing, and managed aquifer storage 
are available. In settings where institutions cannot revisit decisions frequently, large infrastructural 
augmentation options that leverage economies of scale are more cost effective. This has important 
equity implications, as large infrastructure projects frequently have negative environmental and 
social impacts on local communities. This suggests an opportunity for multilateral development 
agencies to focus on investing in adaptive capacity that enables dynamic augmentation approaches 
rather than large infrastructure investments like dams and pipelines, especially in regions where 
precipitation variability is driven by longer-term oscillations. Looking across domains, we 
hypothesize that while long-term climate oscillations challenge infrastructure service provision, 
building adaptive capacity to monitor oscillations and respond with temporary solutions that match 
the period of the oscillation can reduce the need for new infrastructure. 
 
While basin-specific case studies guided by local expertise are essential, building theory on the 
conditions under which different adaptation solutions are effective can play an important role in 
planning as well. Understanding the broad classes of water supply augmentation approaches that 
are cost effective for different climate oscillation patterns prevalent across SSA can provide 
screening analysis to target resources. Additionally, by focusing on techno-economic 
characteristics of least-cost water augmentation rather than location- and technology-specific 
options, theory can guide innovation efforts in water technology and policy. Future work could scale 
our approach to all the climate oscillation patterns across SSA, coupled with more variation in  
hydrological system representation, to identify what classes of water supply approaches are likely 
to benefit a wide range of regions. Future work could also adapt the approach to support planning 
in other sectors affected by climate oscillations such as agriculture and electricity systems.  
 
The benefit of middle-range theory lies in identifying general in solutions; however, the 
generalizability is limited to the specific class of cases that can be represented within the systems 
modeling approach used. For example, we identify a striking relationship between oscillation period 
length and augmentation lifetime, with the lifetimes of peaking capacity approximately equivalent 
to an oscillation half-period without baseload capacity available and an oscillation quarter-period 
with baseload. This relationship is general across storage volumes but only holds when reliability 
is 100%. Further, it is limited by simplifying assumptions made about the hydrology, demand, and 
planning context in our chosen class of cases. Future work can further explore the conditions under 
which our findings hold and increase the direct usefulness to planning. In particular, future work 
can more fully explore a multi-objective analysis, evaluating how least-cost planning strategies 
change when demand management is used and reliability is not constrained to 100%. Addressing  
demand uncertainty is an important area for future work, given that demand uncertainty is often 
greater than supply uncertainty47 and that water demand is likely correlated with climate oscillations 
as well. In many river basins, augmentation decisions are made by multiple institutions, not all of 
which have ready access to infrastructure financing; future work can explore these different panning 
contexts. Finally, the current insights we develop are independent of specific locations, and future 
work can use case studies and leverage ensembles of climate models to validate theoretical 
findings against high fidelity regional analysis. 
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Materials and Methods 
Data and Code 
To analyze the climate oscillation patterns across subbasins in SSA, we obtain annual precipitation 
timeseries (1850-2100) from CMIP6 climate scenario SSP2-4.5 of FIO-ESM-2-048, which was 
chosen as it has been found to simulate observed Nino sea surface temperature patterns and 
precipitation teleconnections in Africa relatively well49. However, climate models have generally 
been demonstrated to poorly capture climate dynamics in SSA50, and developing more reliable 
model projections in the region remains an active area of research. The use of one model is 
sufficient for our focus, which is to identify a range of oscillation patterns that reflect realistic and 
contrasting patterns of climate variability across SSA to use in location-independent theory 
development. We confirm this by comparing our findings to previous literature on oscillations in 
SSA. Assessing a larger number of GCMs would likely provide more robust spatial patterns for 
each oscillation period, which is outside the scope of the present study. We use a model projection 
rather than reanalysis data both to provide the longest possible time series for analyzing 
multidecadal oscillations and for consistent representation of the physical mechanisms underlying 
oscillations, which are likely to be less reliable in reanalysis due to limited data availability in SSA. 
First, we use spatial averaging to convert the precipitation timeseries to subbasin averages. We 
use subbasin definitions from WMO Basins and Sub-Basins (WMOBB) project of the Global Runoff 
Data Centre (GRDC)51, chosen as a scale relevant for water supply planning. Second, we fit and 
remove a trend using local polynomial regression, allowing us to isolate the impact of oscillations 
on water supply. Third, we calculate standardized anomalies, facilitating comparison of power 
spectra across subbasins with different levels of precipitation. Computer code used in this study is 
available at: https://github.com/m-zaniolo/Climate-oscillation-impacts-on-water-supply-
augmentation-planning 
 
Wavelet Analysis 
To identify dominant oscillations patterns of precipitation, we apply wavelet analysis following the 
methods described in52 to each subbasin. Designed for spectral analysis of non-stationary, non-
periodic signals, several studies have applied wavelet analysis to identify climate oscillations in 
precipitation time series e.g.53–55. We use a Morlet wavelet, a common choice in climate analysis 
for its high frequency resolution56, a time step 𝛿𝑡 of 1 year, and vary the scale 𝑠 from 1 to 80 years 
with a decomposition level 𝑑𝑠 of 1/100 to calculate the wavelet power spectrum for each subbasin. 
To compare the relative power, or contribution to overall variance, of oscillations of different 
periods, we divide the periods into: short (s; 4-10 years), medium (m; 10-30 years), and long (l; >30-
60 years). We choose these ranges, first, because they are distinct enough to have meaningfully 
different planning implications and, second, because the data showed elevated variance in these 
regions in many river basins. We did not include periods <4 years because nearly all basins showed 
high variance contributions in the <4 year range, and the wavelet approach could not distinguish 
between typical annual variability and elevated variability from oscillations with <4 year periods. 
We calculate the area under the curve of the global wavelet power spectrum (GWP) across each 
period range, which reflects the fraction of total variance in the time series the period range 
contributes57. Finally, we calculate the statistical significance of the global wavelet power spectrum 
at each scale value by comparing it to the global wavelet power spectrum of white noise52. 

Identifying Representative Subbasins 
We analyze the effects of five representative climate oscillation patterns: short only (s), short and 
medium (sm), medium only (m), short and long (sl), and long only (l), defined by having statistically 
significantly pronounced variance contributed by the corresponding period range relative to white 
noise. We develop these, first, by selecting three subbasins with s, sm, and sl oscillation patterns 
using spectral peaks in the GWP. For example, we consider a subbasin with two statistically 
significant spectral peaks, one 4-8 years in period and the 10-16 years in period, to represent a sm 
climate oscillation pattern. To facilitate the stochastic precipitation generation, we also select 
subbasins with clear, well-defined significant spectral peaks. Using these criteria, the subbasins we 
selected are shown in SI Figure S6 with plots of the GWP and locations. To develop the m and l 
climates, we remove the short oscillation component from the m and l climates respectively.  
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Stochastic Precipitation Generator 
For the three selected subbasins, we apply stochastic weather generation methods to develop an 
ensemble of plausible precipitation timeseries with similar climate oscillations patterns. We use the 
wavelet-based block k-Nearest Neighbors (kNN) algorithm58. Wavelet component signals are 
reconstructed for each statistically significant period range using the wavelet transform, following52 . 
This allows to decompose the original time series 𝑃𝑡 into up to C =3 components 𝑆𝑐,𝑡  with a 
frequency band in s, m, and/or l ranges. The frequency band is chosen to reflect the statistically 
significant spectral peaks from the GWP. Each component comprises an oscillation signal that 
explains a significant proportion of total variability. The decomposition also includes a residual 
series 𝜀𝑡, with the full decomposition as follows: 𝑃𝑡 = ∑ 𝑆𝑐,𝑡  𝐶

𝑐 = 1 + 𝜀𝑡 . Unlike the traditional block 
kNN, we apply bootstrap resampling separately to each wavelet component signal 𝑆𝑐,𝑡. We use 
parameter values of number of neighbors k=20 and block size B = 10, which were manually 
calibrated to produce time series with visually realistic synthetic component signals and apply 
smoothing spline regression to the joins between the blocks. We produce one hundred 100-year 
time series for each climate oscillation pattern. SI Figure S7 presents a sample of synthetic time 
series. Finally, we use a novel validation approach to confirm the synthetic precipitation time series 
have similar wavelet spectra to the historical time series they were based on: we compare the 
fraction of variance contributed by short, medium, and long period ranges to that of the historical 
time series. Validation results are shown in SI Figure S8. The output of the generator yields 
synthetic precipitation time series that maintain similar oscillation patterns to the original time series 
but captures stochastic variability in both the specified climate oscillation signal and other 
frequencies. This output is used to force the simulation model for the optimization, detailed below. 
 
Water Resource Simulation Model 
We use a lumped, conceptual water resource system model with a monthly time scale to explore 
the effect of climate oscillations on oscillation water supply infrastructure planning. The model was 
originally developed for the Mwache River, a surface water system with one major reservoir and 
optional supply augmentation which together supply agricultural and urban demand. Water supply 
augmentation capacity is installed in incremental units per month, where demand totals 90 units 
per year. Mean annual precipitation and runoff are 846 mm and 113 MCM/year respectively. We 
rescale the standardized anomalies of the synthetic precipitation time series using the mean and 
variance of precipitation in Mwache, and we disaggregate to monthly values using the historical 
monthly seasonality of precipitation. The rainfall-runoff process is modeled using CLIRUN II59,60.  
Because the rainfall-runoff process is dominated by surface water with approximately annual 
residence times and our climate oscillation analysis focuses on interannual variability, our analysis 
is insensitive to the specific rainfall-runoff processes and seasonality in Mwache, making it 
generalizable to other subbasins dominated by fast surface water processes. Additionally, we make 
the analysis insensitive to the specific precipitation and runoff characteristics in Mwache by 
representing all precipitation, runoff, and demand quantities in relative, rather than absolute terms. 
We assume that demand is 7% greater than mean annual runoff. Demand is fixed and not 
considered as an uncertainty in the model. The simulation model computes two objectives: 𝐽𝐶𝑜𝑠𝑡,  
the sum of installation costs and annual operating costs of water supply augmentation, and 𝐽𝐷𝑒𝑓𝑖𝑐𝑖𝑡 
the squared volume of water supply deficit over 100-years.  

Techno-Economic Parameters 
To develop theory on the relationship between climate oscillations and water infrastructure techno-
economics, we model new capacity using an abstracted representation of technologies with 
adjustable techno-economic parameters, rather than specific technologies themselves. We model 
water supply augmentation as a technology which provides constant, precipitation-independent 
capacity. This could represent a range of specific technologies, including water reuse, production, 
imported supply, groundwater banking, or demand management such as crop fallowing. Water 
supply augmentation is characterized by the parameters in Table 1; each parameter is either pre-
specified (S) and varied using sensitivity analysis or optimized (O) by solving the optimization 
problem described in the next section. Table S1 in the SI details all baseline assumptions as well 
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as the sensitivity analysis performed on techno-economic parameters. We model total 
undiscounted costs so that insights about the utilization of dynamic, small-scale augmentation 
strategies can be clearly attributed to hedging against supply uncertainty and not to discounting 
incentives to delay capital costs. We do not model cash flow limitations, which is aligned with focus 
of our class of cases being limited to systems with ample access to infrastructure financing.  
 
 

Lifetime Capex/Opex ratio Capacity 
Continuous O: 0-

100 years 
S: 4 in baseline scenario; sensitivity 

between ¼ and 40 
Integer O: 0-6 units of 

annual demand  
Table 1. Representation of water supply augmentation techno-economics 
 
Optimization  
We formulate our analysis as a multi-objective stochastic dynamic control problem representing 
the decision policy π of a planner to augment water supply while minimizing water supply deficit 
𝐽𝑑𝑒𝑓𝑖𝑐𝑡and water augmentation costs 𝐽𝐶𝑜𝑠𝑡 . We assume that the planner knows the current phase 
of the underlying climate oscillation signal and how the climate oscillation signal has changed in 
the past 6 months. The future phase of the oscillation cycle is related to the recent evolution of the 
oscillation; therefore, including recent evolution of the oscillation gives the planner partial 
information about the future. However, the planner does not have explicit foresight into future 
oscillations or future precipitation; thus, precipitation is an unknown, stochastic forcing in the 
optimization model represented by the synthetic precipitation time series. This reflects current 
climate science, in which, for example, the current state of the ENSO cycle is well known and used 
to make predictions about future phase changes. We also assumed that demand is fixed and known 
by the planner focusing the scope of our analysis on supply-side rather than demand-side 
uncertainty. 
 
The control problem is formulated as follows. The current state of the system 𝑥𝑡 is a vector 
comprising indicator variables 𝑥𝑡= {𝑆𝑡, 𝐼𝑡, 𝑂𝑡

𝑖, 𝐷𝑡
𝑖}. 𝑆𝑡 is the reservoir storage volume in time 𝑡 and 𝐼𝑡 

is the capacity of installed water augmentation in time 𝑡. 𝑂𝑡
𝑖 is the amplitude of oscillation signal 

component 𝑖 in time 𝑡 where 𝑖 ∈ {𝑠, 𝑚, 𝑙}. 𝐷𝑡
𝑖 is the difference between the signal at times 𝑡 and 𝑡 − 6 

months for the relevant climate signal(s) for the basin. Including these signal components as 
indicator variables reflects that the planner knows the current oscillation phase, and how it 
compares to the phase 6 months ago. The state transition equation is 𝑥𝑡+1 = 𝑓(𝑥𝑡 , 𝜀𝑡 , 𝜋)  where 𝜀𝑡 
is the disturbance forcing from the synthetic precipitation time series in time 𝑡, 𝜋 is the planning 
policy,  and 𝑓 is the system dynamics of the water resource simulation model. The planning policy 
𝜋 links the state of the system with the planning decisions 𝑢𝑡 which specify the decision to augment 
capacity: 𝑢𝑡 = 𝜋(𝑥𝑡). We search for the optimal control policy using direct policy search, which 
specifies 𝜋 within a class of functions 𝜋 = 𝜋(𝜃) and searches for its optimal parameter set 𝜃∗. We 
select a single layer gaussian radial basis function as the functional class given their flexibility39. 
We search for 𝜃∗using a heuristic simulation-optimization approach in which a genetic algorithm 
identifies a set of policies approaching the Pareto frontier. All the results presented in the main text 
have 100% reliability i.e. the part of the Pareto frontier where 𝐽𝑑𝑒𝑓𝑖𝑐𝑡 = 0. This is equivalent to a 
single-objective formulation to minimize 𝐽𝐶𝑜𝑠𝑡 subject to a 100% reliability constraint. Figure S5 and 
S6 in the SI illustrates the tradeoffs between 𝐽𝐶𝑜𝑠𝑡 and 𝐽𝑑𝑒𝑓𝑖𝑐𝑡 in the multi-objective formulation. 
However, the main results, and therefore general relationships identified, apply to the 100% 
reliability case only.  
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