


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Idea: Transparent Data Transformation

What if we can access any arbitrary data layout using

near-data processing via specialized hardware?

In other words, “what if the optimal data layout is always

physically available?”. This will eliminate the need to keep

multiple layouts and we can perform efficient analytics over

the fresh data without converting between different layouts. If

the underlying specialized hardware accesses only the relevant

data (without accessing unnecessary data and without paying a

tuple reconstruction cost) while maintaining a single layout, it

will blend the benefits of row-stores and column-stores. It will

offer effortless locality, alleviating the need for separate row-

store and column-store query engines, decoupling the physical

data layout from the processing data layout.

Our Vision: Relational Fabric

A lightweight specialized hardware fabric that allows

accessing arbitrary data layouts from memory or storage.

Relational Fabric. We propose Relational Fabric [65], a new

lightweight specialized hardware fabric that accommodates

queries to access arbitrary column groups from memory-

resident base data without requiring any data duplication. The

base data is stored in a row-oriented physical layout (Figure 1),

to allow efficient data ingestion and updates, read-only queries

can quickly access only the relevant column groups (or the en-

tire row, if needed) using the underlying machinery. To do this,

Relational Fabric exposes a carefully designed API, termed

ephemeral columns that enables accessing arbitrary data ge-

ometries (i.e., any subset of data from relational tables) using

simple abstractions. This API creates non-materialized aliases

of column-groups which, from the cache perspective, pushes

arbitrary subsets of columns in dense memory addresses to

the memory hierarchy. This, in turn, supports both efficient

column- and row-oriented accesses while minimizing CPU

cache pollution with unnecessary attributes. Major benefits of

Relational Fabric include:

✓ Low Data Complexity: It allows efficient HTAP process-

ing while maintaining only one layout of the data. There

is no need to propagate changes to multiple data copies or

convert data among different layouts.

✓ Low Software Complexity: It reduces data system soft-

ware complexity by eliminating the requirement to main-

tain different execution engines. Rather, the execution

engine can always assume that only the relevant data will

be accessed via ephemeral columns.

✓ Efficient Hardware Utilization: It provides effortless

locality via shipping only relevant data through the mem-

ory hierarchy, alleviating unnecessary data movement, and

providing better cache and processor utilization.

As a first instance of Relational Fabric, we have developed

Relational Memory [59], [70] that utilizes recent advancements

in programmable logic [71], and pushes projection to the

hardware (§II). The API of Relational Memory is a simple,

lightweight programming abstraction, termed ephemeral vari-

ables, enabling the CPU to access arbitrary data geometries.

Relational Memory exploits the inherent parallelism of mem-

ory cells to efficiently access data in scattered locations, and

uses programmable logic to reorganize and compact it on the

fly before pushing it to the CPUs, thus improving locality.

Simplifying the Data Systems Software Stack. With Rela-

tional Fabric in place, the data system software stack can be

significantly simplified [65]. A data system that makes good

use of the Relational Fabric would have to drastically simplify

its physical design and query optimization components, while

the query evaluation engine would now be able to make

the most of code generation. Other components would also

be significantly affected, especially the transactions manager

that would have to implement a multi-version concurrency

control (MVCC) approach, and the compression algorithms

that should be compatible with scattered data accesses.

In this paper, we present our vision of building Relational

Fabric, along with the challenges and opportunities of in-

novation in data systems and some open research questions

to fully realize this vision. We begin by discussing how

to access arbitrary data geometries and present our initial

work on Relational Memory and ephemeral variables (§II).

The Relational Fabric vision has several opportunities for

simplicity and innovation across the data systems stack (§III):

• Simplify Physical Design: Relational Fabric will grossly

simplify the physical design process. There is no need

for creating (physical) vertical partitions anymore. Further,

indexes will mostly be useful for workloads with point

queries and updates since range queries can be evalu-

ated with column-group accesses very efficiently. Overall,

through the Relational Fabric any layout can be achieved

via on-the-fly data reorganization.

• Simplify Query Optimization: One major challenge in

query optimization is its combinatorial nature, that requires

to search a vast space to find the optimal query plan.

Relational Fabric expands this search space, providing

access to any data layout, however, this essentially removes

any search constraints. Hence, instead of solving a combi-

natorial problem, we can now construct the fastest solution.

• Efficient MVCC: The natural way to implement concur-

rency control using Relational Fabric is MVCC, where

there is one source of truth (the base data in row-oriented

format), and the ephemeral columns access the correct data

using timestamp information associated with MVCC. A big

win for Relational Fabric is that it implements timestamp

comparisons in hardware, leading to a simple and good-

performance implementation of MVCC.

Building the Relational Fabric hardware requires bringing

together software and hardware expertise and benefit from the

tight integration of programming systems and programmable

logic which is increasingly gaining momentum (§IV). Our

preliminary Relational Memory design is implemented in such

a tightly integrated platform. We further outline our vision for

integrating data transformation with the memory controller and

extending the processor’s ISA. The ultimate goal is to be able

to use Relational Fabric without needing deep expertise in

hardware/software co-design.







JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Indexing. Indexes help accelerate access times, ensure unique-

ness, and allow sorting and clustering. In general, row-store

systems employ indexes that are useful for selection queries

and data updates. Column-store systems (and some recent row-

store systems) [47], [49] use column projections as a special

type of index. The strength of Relational Fabric is that it makes

such projections possible without having to materialize them.

This has deep implications on the data systems architecture

because the query engine may access the data at query time

using either the base row-oriented data, an index (if it exists),

or the desired columns projected from Relational Fabric. While

indexes will be mostly beneficial for workloads with point

queries and updates, Relational Fabric allows for efficient

range queries due to the arbitrary column-group accesses.

B. Query Optimization and Query Evaluation

When a query is submitted to the system, it is first processed

by the query parser via lexical, syntactic, and semantic anal-

ysis. Then the initial query plan is processed by the query

optimizer to find the best query plan to execute, which is, in

turn, submitted for execution to the query evaluation engine.

Relational Fabric will not affect the query parser, however,

the optimizer and the evaluation engine components will have

a significant impact. Row-oriented query execution models

execute query plans one-row-at-a-time, which offers good

performance for OLTP queries. In contrast, most column-store

systems use vectorized execution that progresses through the

query plan via processing batches of column data [45]. While

Relational Fabric maintains the base data in row format, it

makes columns available to the processor on the fly, and, thus,

it can naturally support efficient vectorized query execution.

A key challenge with query optimization is the combinatorial

process of searching a vast space – the DBMS has to select the

most efficient evaluation plan based on the cost of each plan.

While Relational Fabric seems to increase the search space

by enabling access to arbitrary data layouts, it also allows

every query to always use the best layout, and overall simplify

the problem, by replacing the combinatorial search with the

construction of the query plan that accesses the optimal data

fragments. This opens a whole new avenue of research with

the potential to speed up query processing: (i) generate the

fastest query plan, (ii) revise existing cost models considering

Relational Fabric, and (iii) re-evaluate classical single-column,

multi-column partitioning cost models.

Code Generation. Adaptive systems like Hyper, H2O, Actian

Vector, Hekaton, MemSQL and others [6], [23], [44], [55],

[77] examine the query and decide how data will be accessed

by evaluating alternative access plans. The appropriate code is

generated by considering the buffered available data layouts.

One disadvantage of this approach is the requirement to com-

pile code on the fly which is alleviated by buffering compiled

code fragments. The development of Relational Fabric aids

code generation in two ways. First, Relational Fabric does

not require buffering different layouts since any arbitrary

layout can be accessed on the fly. Second, since data layouts

are not buffered, Relational Fabric can buffer more code

fragments and reuse previously compiled code fragments more

aggressively which allows for better utilization of memory.

The query optimizer can now also consider various factors

like which code fragments are buffered and which indexes

are available. Through the Relational Fabric design we have

the opportunity to develop a novel full-fledged hybrid query

engine. This engine would seamlessly switch between row-at-

a-time and column-at-a-time processing while working on the

same base data. This allows for adaptive query processing,

where the system dynamically chooses the most efficient

processing method based on the characteristics of the query

and the data being processed.

C. Concurrency Control

The transaction manager is responsible for concurrency con-

trol. Relational Fabric can naturally support multi-version

concurrency control (MVCC). While the base data is in row

format, Relational Fabric offers native access to arbitrary data

geometries through ephemeral columns. For example, in our

in-memory implementation of Relational Memory, we use

ephemeral variables to access column groups. We consider

all ephemeral variables (or the respective API) as read-only

columns or column-groups that accelerate analytical queries.

The row-wise base data is marked as read/write and updates

are handled by appending new rows to this base data. For

updates and deletion, Relational Fabric uses two timestamp

fields for every row to support multiple versions. The first

timestamp is set when a row is inserted to mark the beginning

of its validity, while the second timestamp is set upon row

deletion or replacement by a newer version, marking the end

of its validity. Every time the API is accessed, it generates

the column groups that contain the valid rows at the time of

the query. A key advantage of this approach is that the times-

tamp comparison can be implemented in hardware, making

this implementation simple and performant. By offering the

optimal layout and using the timestamps to ship only valid

data, Relational Fabric supports MVCC transactions through

snapshot isolation.

D. Compression

The proposed design stores the base data in a row-oriented

format hence it can benefit only from specific types of com-

pression. General compression algorithms of the LZ family

[92] are frequently used by row stores, however, they are not a

natural fit for Relational Fabric since they require fully decom-

pressing your data before you can access separate columns.

Delta, dictionary, and Huffman encoding for compression

which are popular among state-of-the-art column stores [2],

[3], [93] are easily supported by Relational Fabric. Note that

these schemes can be used for row-wise data, and hence, they

can benefit any groups of columns requested by ephemeral

columns. However, the compression schemes under the run-

length encoding family cannot be used out of the box. Unlike

dictionary and delta encoding, RLE has an expensive decoding

step and relies on data, but it is still quite popular among

column stores. More research is required to find compression

techniques that can benefit both row-oriented and columnar

data and allow for direct operation on compressed data.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

IV. BUILDING RELATIONAL FABRIC

The key feature of Relational Fabric is that a specialized

hardware component transforms data on-the-fly. This section

presents the implementation details of our first in-memory

Relational Fabric instance, termed Relational Memory (RM).

We also discuss extending hardware support to more operators,

pushing the logic further into the memory controller, and

Relational Fabric for storage devices.

A. Implementing Relational Memory

RM is an FPGA-based data transformation engine that sits

between the processor and the memory and converts data

layouts on the fly as shown in Figure 2. Data transformation

in RM is performed in line with the instruction stream via

fine-grained information on the exact byte-wise location of

data items useful for the computation at hand. Our hardware

performs the following four key operations: (1) RM receives

the intended access stride of the query (that maps the physical

addresses of the columns to be accessed) and then issues

parallel main memory requests for the target data, (2) RM

communicates with memory via an AXI bus [12] and as-

sembles multiple entries into a single packed cache line to

be sent to the processor, in the meantime, (3) RM captures

the CPU requests and (4) transfers the reorganized data upon

availability. This abstraction creates non-materialized aliases

of column-groups which pushes arbitrary subsets of columns

to the memory hierarchy. Hence, RM supports both efficient

column- and row-oriented accesses while minimizing CPU

cache pollution with unnecessary attributes.

Figure 5 shows the high level overview of RM components

and their datapath. RM consists of four modules (Figure 5):

the Trapper, the Monitor-Bypass (MB), the Requestor, and

the Fetch Unit, as well as two Scratch Pad Memories (SPMs)

used as a Metadata Buffer and a Reorganization Buffer. RM

interacts with the Processing Subsystem (PS) of the FPGA

through two primary and one secondary AXI ports. The

configuration port allows the DBMS to specify the location

and geometry (tuple width and count, size and positions of

the requested columns) of the target table at runtime ( 0

in Figure 5). The Trapper works as the interface between

the CPU and RM that intercepts read requests ( 1 ) from

the CPU. It communicates with the Monitor-Bypass ( 2 ) to

check the availability of the requested data ( 3 ). If the data

is already in the reorganization buffer, the Monitor-Bypass

sends it to the Trapper ( 4 ), and then, the CPU receives the

data via RM ( 5 ). If the requested data is not in the buffer,

the Monitor-Bypass informs the Requestor about it ( A ). The

Requestor creates descriptors that identify the location of the

desired columns ( B ) based on the DB geometry. The column-

extracting module inside the Fetch Unit reads the bus lines that

contain useful data, extracts the relevant part ( C ), and sends

the retrieved parts to the Monitor-Bypass ( D ) so that it can be

stored in the reorganization buffer ( E ). Thus, RM transforms

data into the desired layout and minimizes cache pollution.

B. Pushing Other Relational Operators

Relational Memory is the first instance of a new class of data

systems architectures. Implementing projection in hardware

Core

Trapper
Monitor-

Bypass

Fetch-UnitRequestor

M
a
in

 M
e

m
o

ry
 

(D
R

A
M

)

PS PL PS

0

1
2

45

A

B

C

D

Metadata

SPM

Data

SPM
3

E

PL

Core
CoreCore

Fig. 5: Abstract overview of Relational Memory components

and interconnections with the PS-side.

lays the groundwork for pushing other relational operators to

the hardware as well. The Relational Fabric philosophy is that

new hardware designs will be adopted if they are simple and

general. In other words, a very application-specific design is

hard to make its way to mass production. With that in mind,

we propose to further reduce unnecessary data movement

by transparent on-the-fly data transformation using minimal

hardware complexity, by pushing selection and aggregation

in the hardware. Both operations are general enough in the

sense that they are part of other applications (like operating on

matrices and tensors) and have the potential to offer even larger

data movement reduction benefits. Implementing selection in

Relational Fabric will further alleviate the need for indexes al-

together, while aggregation will help both relational and matrix

operations. In this design, the ephemeral variables will contain

only the required data or the aggregation result, which will be

passed through the memory hierarchy ensuring minimal data

movement while maintaining the hardware complexity low.

C. Pushing RM Further: Relational Memory Controller

Following the aforementioned philosophy, we are developing

another instance of Relational Fabric, termed Relational Mem-

ory Controller (RMC), where we place RM further closer to

memory as shown in Figure 6. Integrating RM into a memory

controller (MC) is a game-changer as it will allow for easy

adoption of the RM design with minimal development effort.

Further, pushing RM into the memory controller maximizes

its benefits, since it has low-level access to the physical data

placement on the memory DIMMs.

Memory controllers hide the complexity of interfacing with

DDR memories, however, they cannot fully exploit the capa-

bilities of DDR memory chips since they have no information

about the workload or the application setup. By integrating

RM with the memory controller, we pass just enough semantic

information about the access patterns that makes it possible

to effortlessly offer data locality via exploiting new memory

controller commands. This maximizes the memory throughput

and reduces unnecessary data movement. To achieve this, we

base our implementation on a Red Hat prototype memory

controller that models DDR3 DRAM, and expand it to capture

first the DDR4 and eventually the DDR5 design. RMC lever-

ages unaligned and interleaved accesses to implement part of

the on-the-fly data transformation in the memory controller

while maximizing the parallelism (across memory banks) to

further improve performance. Compared to our first prototype

of Relational Memory, RMC allows the embedded Relational

Memory Engine to see the same memory bandwidth as the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

P
h

y
si

ca
l 

La
y
e

r

D
D

R
 S

D
R

A
M

CalibrationConfiguration

Coordinatoraccelerated path

conventional path

C
P

U

Relational Memory Engine

Trapper
Monitor

Bypass

ColExtRequestor

Relational Memory Controller

Fig. 6: Architecture of RMC. Pushing RM into the memory

controller allows RM to exploit low-level information to

maximize memory bandwidth utilization.

CPU, further improving overall efficiency. This is attributed

to having direct access to the physical memory and the same

clock domain as the memory controller. This is corroborated

by our preliminary results that show data transformation

through RMC happens at close-to-memory throughput.

Integrating RM into the memory controller has a profound

impact. Specifically, it enables rapid research and prototyping

of new ideas regarding MCs, something that is increasingly

needed with the rapid evolution of interconnects, memory, and

reconfigurable hardware.

Extending the ISA as an RMC Interface. An Instruction Set

Architecture (ISA) is the abstraction between hardware and

software. The ISA guarantees that the resulting binary code

correctly executes regardless of the toolchain; thus, it helps

developers to write and debug software more efficiently [74].

Therefore, integrating RM with ISA, such as RISC-V [14],

[86], provides a more valuable interface. The benefits of using

RM via ISA are two folds: (1) it will provide a simple interface

with no need to understand the details of the underlying

hardware and (2) it will simplify the code generation process

during the compile time. Thus, RMC along with an ISA

extension provides a simple API that can further be beneficial

for SQL queries (or other applications benefiting from data

transformation) [73], [87].

D. Implementing Relational Storage

Following our discussion about building Relational Memory,

we propose to develop Relational Fabric in storage devices.

Near-storage computation is more challenging than near-

memory computation because traditionally storage devices

are incapable of performing logic. However, recent modern

storage devices like SmartSSD [66] and OpenSSD [16] have

processing power that can be exploited to achieve this. We

call this approach of pushing computation to storage Rela-

tional Storage (RS). RS can be directly implemented in a

specialized storage device (i.e., in OpenSSD or SmartSSD)

or a programmable logic (i.e., FPGAs), similar to our Rela-

tional Memory approach. When implementing projection in

the custom hardware, a read-only analytical query will have

access to only a read-only version of the optimal layout.

In other words, pages will be marked as read/write during

loading as row-store, while only the columnar pages will be

shipped marking as read-only. Writes/updates will access the

base data in row-format, and the existing read-only versions

will be marked as invalid (similar to an out-of-place data

structure) for the corresponding data. Further, we plan to

experiment with a flipped design where the base data is stored

in columnar format on storage, allowing for the most efficient

compression algorithms like RLE. The processing capabilities

of smart SSDs coupled with new custom logic that can be

designed in FPGAs that are embedded within the storage

device will perform decompression when needed, and tuple

reconstruction, removing this burden from the software stack

of the database system [19]. This design has great potential

since it enables better compression techniques while offloading

decompression and tuple reconstruction to the storage. Further

research is required to reveal its challenges and opportunities.

Overall, Relational Storage can significantly reduce end-to-

end latency by massively reducing data movement. In contrast

to RM, it is possible to push operators like selection and aggre-

gation by utilizing the processing power of in-storage custom

logic. Exploiting the internal parallelism of the storage device

[63], [64] can enhance performance. Furthermore, the software

stack will be redesigned to take advantage of near-storage

computation for better query processing and optimization in

contemporary storage devices.

E. Practicality & Feasibility of Relational Fabric

With the tapering of Moore’s Law, hardware specializa-

tion is gaining popularity over the past decade [38], [83].

FPGAs, once limited to specific applications, are now ubiq-

uitous across various domains. Our first Relational Memory

prototype is developed on a PS-PL platform, however, with

reprogrammable and custom hardware being tightly integrated

with CPUs increasingly more often, Relational Memory can be

deployed to standard servers. For example, Enzian is a research

computer built by the Systems Group at ETH Zurich with a

big server-class CPU closely coupled to a large FPGA [21].

Further, manufacturers, such as Intel and AMD, are investing

substantially in FPGA technology (e.g., with the acquisitions

of Altera and Xilinx, respectively), thus driving the momentum

towards systems with tightly integrated CPUs and FPGAs [7],

[39], [80]. Moreover, recent work on reprogrammable memory

controllers [17], [75] further fuels our vision for integrating

data reorganization within the memory controller, as discussed

in Section IV-C. Finally, the emergence of Smart SSDs and

PIM (Processing-in-memory) also adds reprogrammable logic

closer to data [16], thus being able to offload processing tasks,

like compression [19].

Overall, the current hardware trends (widespread adoption

of reprogrammable hardware, slowdown in Moore’s Law, and

dark silicon) show great promise for Relational Fabric to

improve memory utilization and performance.

V. EXPERIMENTAL RESULTS ON RELATIONAL MEMORY

We now present selected experimental results of RM show-

ing that it outperforms direct row-wise and direct columnar

accesses by offering the optimal layout to any query [70].

Target Platform. The full-stack prototype of RM is imple-

mented on a Xilinx Zynq UltraScale+ MPSoC platform [89]

which consists of heterogeneous Systems-on-Chip (SoC)

where a traditional processing system (PS) is tightly associated

with a programmable logic (PL), i.e., an FPGA. The PS







JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

ware by its objectives. The first line of specialized hardware is

to accelerate particular DBMS operators such as selection [82],

aggregation [22], compression [67], decompression [29], data

partitioning [42], sort [91], group by [4], and join [35], [90].

Secondly, we classify attempts to offload the SQL query

itself or the subset of queries [60], [61], [78], [88]. Due

to the inflexible nature of hardware, these approaches’ main

limitation lies in supporting ad-hoc queries. A third class

is query accelerators accessing non-local memory aiming to

reduce data movement [5], [9], [46], [68], [79].

Contrary to the aforementioned related work or the

Processing-In-Memory (PIM) approach [51], [76], the Rela-

tional Fabric paradigm does not aim to implement complex

logic near memory/storage, nor to change the physical mem-

ory/storage hardware (e.g., memory or flash cells). Rather,

Relational Fabric sits between the query execution engine and

the data, and offers a light-weight layer that performs on-

the-fly transparent data transformation into the optimal layout

for the query in question without materializing it. Our first

Relational Fabric instance, RM, sits between the CPU and

memory and transparently transforms data into the optimal

layout that does not exist in main memory. Therefore, any

ad hoc queries can be accelerated with no data duplication.

Furthermore, RM does not require any modification of the

memory hierarchy unlike PIM and is fully implemented on

commercially available platforms [8], [28], [56], [89].

To develop Relational Fabric for storage devices, we

capitalize on recent advancements in computational SSDs

(OpenSSD [16], SmartSSD [66]). These SSDs have processing

power in the flash controller that allows programmability

which can be utilized to enable highly efficient SSD execu-

tion [26]. There have been several works on performing near-

data processing in SSDs [25], [34], [41], [85] leveraging their

computational capability which can also aid the development

of Relational Fabric in modern storage devices.

VII. DISCUSSION & FUTURE WORK

A. Relational Fabric on Disaggregated Storage

With the network interfaces being upgraded to 50Gbps

or 100Gbps in many (private or public) cloud deployments

and many applications being storage space limited [27], it

is increasingly common to leverage disaggregated storage. In

this context, Relational Fabric can offer ideal data movement

over the network, ensuring that despite not having the optimal

layout on storage, only the desired columns are shipped

from the storage node to the compute node. This can be

implemented using the computational capabilities of SSDs

that are attached to the storage node as discussed in Section

IV-D or through a software approach that is implemented in

the storage node. Depending on the specific setup (network

interface speed, local storage throughput, data geometry), the

Relational Fabric approach can deliver superior performance

along with better device and network utilization, all while

using hardware capabilities that are widely available. It is

worth experimenting with both the hardware-based and the

software-based solutions to uncover the tradeoffs between the

two approaches, which is left for future work.

B. Generalized Data Transformation

Moving further than relational data, we plan to build a

generalized Data Transformation Unit (DTU) capable of en-

hancing the locality of spatiotemporal data in arbitrarily high-

dimensional objects, with tensors being a prime example. This

will allow ML-based applications to enhance their data access

locality and, ultimately, their efficiency. To achieve this, we are

developing a resource-efficient data transformation algebra that

can handle complex, multi-dimensional access patterns. The

DTU we are currently building uses the requested address

to identify and retrieve an N -dimensional memory object,

extracting details about the access pattern. It then accesses

the desired (potentially scattered) data points within the tensor

and consolidates them into a restructured cache line, ready for

delivery to CPUs in response to the cache-line refill request.

During writes, the DTU starts from an altered cache line

aiming to distribute the (again, potentially scattered) updates

to their positions in the base data. With more high-throughput

cache coherent interfaces between CPUs and FPGA being

available, integrating DTUs is now efficient and feasible as a

practical solution. Recent findings [69] indicate a 30% higher

data rate compared to the original PLIM [71] approach by

leveraging cache coherence ports for cache line refills.

VIII. OPEN QUESTIONS

In addition to the opportunities for simplicity and innovation

discussed in this paper, the Relational Fabric vision has several

open research challenges that require further investigation.

Q1. Is data transformation (projection) enough? Relational

Fabric is a layer that offers transparent and efficient projection

that leads to the benefits we discussed above. Further, data

transformation has great potential for other data-intensive

applications over multi-dimensional data (matrix/tensor slicing

and vectorized operations on matrix/tensor slices). In addition,

there have been several recent efforts to implement more

complex logic near or within memory. We purposefully avoid

this path because it increases the hardware complexity and

specialization, making it less general and, thus, to our un-

derstanding, less appealing for real-life use and deployment.

However, it remains an open question whether more logic

can be implemented between the memory and the processor.

Overall, our thesis is that any added logic should benefit many

different applications to be ultimately viable.

Q2. How does Relational Fabric interact with compression?

While delta and dictionary compression schemes can be used

as a starting point, we also believe it is worth investigating new

compression schemes that can be applied to row-oriented data

and allow for on-the-fly vertical partitioning and potentially

allow for operating on compressed data.

Q3. Can you have Relational Fabric both on storage and in

memory? The vision we outline assumes that the Relational

Fabric is implemented either in memory on storage, depending

on the use-case. However, a scheme that uses Relational Fabric

in both storage and memory may also be interesting. Consider

that the two fabrics may play different roles. For example, the

storage one can convert from compressed columns to rows

in memory, and the in-memory one can allow the processor



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

to access arbitrary column groups. We believe that more

investigation in this direction is warranted.

IX. CONCLUSION

In this paper, we present our vision of Relational Fabric, a new

lightweight specialized hardware fabric that offers effortless

locality by accessing arbitrary data layouts from row-oriented

base data without any data duplication. Relational Fabric will

simplify data and software complexity, and it will enable

efficient hardware utilization and true HTAP processing. We

outline the principles, goals, and impact of Relational Fab-

ric, and as a proof-of-concept, we present its first instance,

Relational Memory that uses reprogrammable hardware to

implement logic between the memory and the processor. Re-

lational Memory on-the-fly converts rows to arbitrary column

groups, alleviating the need to vertically partition data. We

also outline the necessary steps toward building Relational

Fabric in memory, discuss its opportunities for innovation in

data systems architecture in physical design, query processing,

and concurrency control, and some open questions that require

further research. We further discuss building Relational Fabric

in computational SSDs by developing Relational Storage.

Developing Relational Fabric in memory and storage has the

potential to be a paradigm shift where different specialized

hardware components (in memory and storage) can syner-

gistically turn data processing more efficient, scalable, and

resource-efficient for data-intensive applications.

ACKNOWLEDGMENT

We thank the reviewers for their constructive feedback and

Teona Bagashvili for her assistance in rerunning some experi-

ments. This work is funded by a RedHat Research Incubation

Award, a RedHat Research Award, a Cisco gift, and partially

supported by the National Science Foundation (NSF) under

grant number IIS-2144547, CCF-2008799 and CNS-2238476.

The opinions expressed in this publication are those of the

authors and not necessarily reflective of NSF views. Denis

Hoornaert was supported by the Chair for Cyber-Physical

Systems in Production Engineering at TUM and the Alexander

von Humboldt Foundation.

REFERENCES

[1] D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column-oriented
Database Systems,” PVLDB, vol. 2, no. 2, pp. 1664–1665, 2009.

[2] D. J. Abadi, P. A. Boncz, S. Harizopoulos, S. Idreos, and S. Madden,
“The Design and Implementation of Modern Column-Oriented Database
Systems,” Found. Trends Databases, vol. 5, no. 3, pp. 197–280, 2013.

[3] D. J. Abadi, S. Madden, and M. Ferreira, “Integrating Compression and
Execution in Column-oriented Database Systems,” SIGMOD, 2006.

[4] I. Absalyamov, P. Budhkar, S. Windh, R. J. Halstead, W. A. Najjar, and
V. J. Tsotras, “FPGA-accelerated group-by aggregation using synchro-
nizing caches,” DAMON, 2016.

[5] M. K. Aguilera, K. Keeton, S. Novakovic, and S. Singhal, “Designing
Far Memory Data Structures: Think Outside the Box,” HotOS, 2019.

[6] I. Alagiannis, S. Idreos, and A. Ailamaki, “H2O: A Hands-free Adaptive
Store,” SIGMOD, 2014.

[7] P. Alcorn, “AMD to Fuse FPGA AI Engines Onto EPYC Processors,”
2022. [Online]. Available: https://www.tomshardware.com/news/
amd-to-fuse-fpga-ai-engines-onto-epyc-processors-arrives-in-2023

[8] G. Alonso, T. Roscoe, D. Cock, M. Ewaida, K. Kara, D. Korolija,
D. Sidler, and Z. Wang, “Tackling Hardware/Software co-design from a
database perspective,” CIDR, 2020.

[9] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera,
A. Panda, S. Ratnasamy, and S. Shenker, “Can far memory improve job
throughput?” EuroSys, 2020.

[10] R. Appuswamy, M. Karpathiotakis, D. Porobic, and A. Ailamaki, “The
Case For Heterogeneous HTAP,” CIDR, 2017.

[11] ARM, “Arm Cortex-A53 MPCore Processor Technical Reference
Manual,” Tech. Rep., 2018. [Online]. Available: https://developer.arm.
com/documentation/ddi0500/j

[12] ——, “AMBA AXI and ACE Protocol Specification,” https://static.docs.
arm.com/ihi0022/g/IHI0022G amba axi protocol spec.pdf, 2019.

[13] J. Arulraj, A. Pavlo, and P. Menon, “Bridging the Archipelago between
Row-Stores and Column-Stores for Hybrid Workloads,” SIGMOD, 2016.

[14] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for risc-v,” EECS Department, University of California, Berkeley,

Tech. Rep. UCB/EECS-2014-146, 2014.
[15] R. Barber, G. M. Lohman, V. Raman, R. Sidle, S. Lightstone, and

B. Schiefer, “In-Memory BLU Acceleration in IBM’s DB2 and dashDB:
Optimized for Modern Workloads and Hardware Architectures,” ICDE,
2015.

[16] M. Bjørling, J. González, and P. Bonnet, “LightNVM: The Linux open-
channel SSD subsystem,” FAST, 2019.

[17] M. N. Bojnordi and E. Ipek, “PARDIS: A programmable memory
controller for the DDRx interfacing standards,” ISCA 2012, 2012.

[18] F. Chen, B. Hou, and R. Lee, “Internal Parallelism of Flash Memory-
Based Solid-State Drives,” TOS, vol. 12, no. 3, pp. 13:1–13:39, 2016.

[19] X. Chen, N. Zheng, S. Xu, Y. Qiao, Y. Liu, J. Li, and T. Zhang,
“KallaxDB: A Table-less Hash-based Key-Value Store on Storage Hard-
ware with Built-in Transparent Compression,” DAMON, 2021.

[20] Cisco, “Cisco Global Cloud Index: Forecast and Methodology,
2016–2021,” White Paper, 2018.

[21] D. Cock, A. Ramdas, D. Schwyn, M. Giardino, A. Turowski, Z. He,
N. Hossle, D. Korolija, M. Licciardello, K. Martsenko, R. Achermann,
G. Alonso, and T. Roscoe, “Enzian: an open, general, CPU/FPGA
platform for systems software research,” ASPLOS, 2022.

[22] C. Dennl, D. Ziener, and J. Teich, “Acceleration of SQL Restrictions and
Aggregations through FPGA-Based Dynamic Partial Reconfiguration,”
FCCM, 2013.

[23] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stoneci-
pher, N. Verma, and M. Zwilling, “Hekaton: SQL server’s memory-
optimized OLTP engine,” SIGMOD, 2013.

[24] J. Dittrich and A. Jindal, “Towards a One Size Fits All Database
Architecture,” CIDR, 2011.

[25] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt, “Query
processing on smart SSDs: opportunities and challenges,” SIGMOD,
2013.

[26] J. Do, S. Sengupta, and S. Swanson, “Programmable solid-state storage
in future cloud datacenters,” CACM, vol. 62, no. 6, pp. 54–62, 2019.

[27] S. Dong, S. S. P., S. Pan, A. Ananthabhotla, D. Ekambaram, A. Sharma,
S. Dayal, N. V. Parikh, Y. Jin, A. Kim, S. Patil, J. Zhuang, S. Dunster,
A. Mahajan, A. Chelluri, C. Datye, L. V. Santana, N. Garg, and
O. Gawde, “Disaggregating RocksDB: A Production Experience,” Proc.

ACM Manag. Data, vol. 1, no. 2, pp. 192:1—-192:24, 2023.
[28] ETHZ, “Enzian Systems,” http://enzian.systems/, 2021.
[29] J. Fang, J. Chen, J. Lee, Z. Al-Ars, and H. P. Hofstee, “A Fine-Grained

Parallel Snappy Decompressor for FPGAs Using a Relaxed Execution
Model,” FCCM, 2019.

[30] J. Fang, Y. T. B. Mulder, J. Hidders, J. Lee, and H. P. Hofstee, “In-
memory database acceleration on FPGAs: a survey,” VLDBJ, vol. 29,
no. 1, pp. 33–59, 2020.

[31] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and
J. Dees, “The SAP HANA Database – An Architecture Overview,” IEEE

DEBULL, vol. 35, no. 1, pp. 28–33, 2012.
[32] Gartner, “Gartner Says 8.4 Billion Connected “Things” Will Be in Use

in 2017, Up 31 Percent From 2016,” https://tinyurl.com/Gartner2020,
2017.

[33] Google, “Cloud TPU,” https://cloud.google.com/tpu/, 2017.
[34] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang,

M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang, “Biscuit: A
Framework for Near-Data Processing of Big Data Workloads,” ISCA,
2016.

[35] R. J. Halstead, I. Absalyamov, W. A. Najjar, and V. J. Tsotras, “FPGA-
based Multithreading for In-Memory Hash Joins,” CIDR, 2015.

[36] J. Hamilton, “Tensor Processing Unit,”
https://perspectives.mvdirona.com/2017/04/tensor-processing-unit/.

[37] M. Hassan, “Reduced latency DRAM for multi-core safety-critical real-
time systems,” Real-Time Systems, vol. 56, no. 2, pp. 171–206, 2020.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

[38] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” CACM, vol. 62, no. 2, pp. 48–60, 2019.

[39] Intel, “Intel Completes Acquisition of Altera,” 2015. [Online].
Available: https://www.intc.com/news-events/press-releases/detail/302/
intel-completes-acquisition-of-altera

[40] Z. István, “The Glass Half Full: Using Programmable Hardware Accel-
erators in Analytics,” IEEE DEBULL, vol. 42, no. 1, pp. 49–60, 2019.

[41] Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S. Swanson, “KAML: A
Flexible, High-Performance Key-Value SSD,” 2017 IEEE International

Symposium on High Performance Computer Architecture, HPCA 2017,

Austin, TX, USA, February 4-8, 2017, 2017.
[42] K. Kara, J. Giceva, and G. Alonso, “FPGA-based Data Partitioning,”

SIGMOD, 2017.
[43] M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki, “Adaptive

Query Processing on RAW Data,” PVLDB, vol. 7, no. 12, pp. 1119–
1130, 2014.

[44] A. Kemper and T. Neumann, “HyPer: A Hybrid OLTP & OLAP Main
Memory Database System Based on Virtual Memory Snapshots,” ICDE,
2011.

[45] T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and P. A.
Boncz, “Everything You Always Wanted to Know About Compiled and
Vectorized Queries But Were Afraid to Ask,” PVLDB, vol. 11, no. 13,
pp. 2209–2222, 2018.

[46] D. Korolija, D. Koutsoukos, K. Keeton, K. Taranov, D. S. Milojicic, and
G. Alonso, “Farview: Disaggregated Memory with Operator Off-loading
for Database Engines,” CIDR, 2022.

[47] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, M. Gleeson,
S. Hase, A. Holloway, J. Kamp, T.-H. Lee, J. Loaiza, N. Macnaughton,
V. Marwah, N. Mukherjee, A. Mullick, S. Muthulingam, V. Raja,
M. Roth, E. Soylemez, and M. Zait, “Oracle Database In-Memory: A
Dual Format In-Memory Database,” ICDE, 2015.

[48] T. Lahiri, M.-A. Neimat, and S. Folkman, “Oracle TimesTen: An In-
Memory Database for Enterprise Applications,” IEEE DEBULL, vol. 36,
no. 2, pp. 6–13, 2013.

[49] A. Lamb, M. Fuller, and R. Varadarajan, “The Vertica Analytic Database:
C-Store 7 Years Later,” PVLDB, vol. 5, no. 12, pp. 1790–1801, 2012.

[50] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, “Improving memory
bank-level parallelism in the presence of prefetching,” MICRO, 2009.

[51] G. Loh, N. Jayasena, M. Oskin, M. Nutter, D. Roberts, M. Meswani,
D. P. Zhang, and M. Ignatowski, “A Processing in Memory Taxonomy
and a Case for Studying Fixed-function PIM,” WoNDP, 2013.

[52] D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso, “BatchDB:
Efficient Isolated Execution of Hybrid OLTP+OLAP Workloads for
Interactive Applications,” SIGMOD, 2017.

[53] R. Mancuso, S. Roozkhosh, D. Hoornaert, J. H. Mun, T. I. Papon, and
M. Athanassoulis, “Software-Shaped Platforms,” Proceedings of Cyber-

Physical Systems and Internet of Things Week 2023, CPS-IoT Week 2023

Workshops, San Antonio, TX, USA, May 9-12, 2023, 2023.
[54] N. May, A. Böhm, and W. Lehner, “SAP HANA - The Evolution of

an In-Memory DBMS from Pure OLAP Processing Towards Mixed
Workloads,” BTW, 2017.

[55] P. Menon, A. Pavlo, and T. C. Mowry, “Relaxed Operator Fusion for In-
Memory Databases: Making Compilation, Vectorization, and Prefetching
Work Together At Last,” PVLDB, vol. 11, no. 1, pp. 1–13, 2017.

[56] Microsemi — Microchip Technology Inc., “PolarFire SoC -
Lowest Power, Multi-Core RISC-V SoC FPGA,” July 2020.
[Online]. Available: https://www.microsemi.com/product-directory/
soc-fpgas/5498-polarfire-soc-fpga

[57] Microsoft, “Project Catapult,” https://www.microsoft.com/en-

us/research/project/project-catapult/, 2017.
[58] C. Mohan, “Hybrid Transaction and Analytics Processing (HTAP): State

of the Art,” BIRTE, 2016.
[59] J. H. Mun, K. Karatsenidis, T. I. Papon, S. Roozkhosh, D. Hoornaert,

U. Drepper, A. Sanaullah, R. Mancuso, and M. Athanassoulis, “On-
the-fly Data Transformation in Action,” PVLDB, vol. 16, no. 12, pp.
3950–3953, 2023.

[60] M. Najafi, M. Sadoghi, and H.-A. Jacobsen, “Flexible Query Processor
on FPGAs,” PVLDB, vol. 6, no. 12, pp. 1310–1313, 2013.

[61] Oracle, “DAX,” https://blogs.oracle.com/linux/post/oracle-data-

analytics-accelerator-dax-for-sparc, 2021.
[62] F. Özcan, Y. Tian, and P. Tözün, “Hybrid Transactional/Analytical

Processing: A Survey,” SIGMOD, 2017.
[63] T. I. Papon and M. Athanassoulis, “A Parametric I/O Model for Modern

Storage Devices,” DAMON, 2021.
[64] ——, “The Need for a New I/O Model,” CIDR, 2021.

[65] T. I. Papon, J. H. Mun, S. Roozkhosh, D. Hoornaert, A. Sanaullah,
U. Drepper, R. Mancuso, and M. Athanassoulis, “Relational Fabric:
Transparent Data Transformation,” ICDE, 2023.

[66] K. Park, Y.-S. Kee, J. M. Patel, J. Do, C. Park, and D. J. DeWitt, “Query
Processing on Smart SSDs,” IEEE DEBULL, vol. 37, no. 2, pp. 19–26,
2014.

[67] W. Qiao, J. Du, Z. Fang, M. Lo, M.-C. F. Chang, and J. Cong, “High-
Throughput Lossless Compression on Tightly Coupled CPU-FPGA
Platforms,” FCCM, 2018.

[68] A. Redshift, “Aqua (advanced query accelerator) for amazon redshift,”
2021. [Online]. Available: https://aws.amazon.com/redshift/features/
aqua/

[69] S. Roozkhosh, D. Hoornaert, and R. Mancuso, “CAESAR: Coherence-
Aided Elective and Seamless Alternative Routing via on-chip FPGA,”
in Proceedings of the 43rd IEEE Real-Time Systems Symposium (RTSS),
Houston, TX, USA, 2022.

[70] S. Roozkhosh, D. Hoornaert, J. H. Mun, T. I. Papon, A. Sanaullah,
U. Drepper, R. Mancuso, and M. Athanassoulis, “Relational Memory:
Native In-Memory Accesses on Rows and Columns,” EDBT, 2023.

[71] S. Roozkhosh and R. Mancuso, “The Potential of Programmable Logic
in the Middle: Cache Bleaching,” RTAS, 2020.

[72] M. Sadoghi, S. Bhattacherjee, B. Bhattacharjee, and M. Canim, “L-
Store: A Real-time OLTP and OLAP System,” EDBT, 2018.

[73] B. Salami, G. A. Malazgirt, O. Arcas-Abella, A. Yurdakul, and
N. Sönmez, “AxleDB: A novel programmable query processing platform
on FPGA,” Microprocessors and Microsystems, vol. 51, pp. 142–164,
2017.

[74] A. Sanaullah, “Risc-v for fpgas: benefits and opportunities,” Red Hat

Research Quarterly, no. May, 2022.
[75] B. C. Schwedock, P. Yoovidhya, J. Seibert, and N. Beckmann, “täkō: a

polymorphic cache hierarchy for general-purpose optimization of data
movement,” ISCA, 2022.

[76] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Gather-scatter DRAM: in-DRAM address
translation to improve the spatial locality of non-unit strided accesses,”
MICRO, 2015.

[77] N. Shamgunov, “The MemSQL In-Memory Database System,” IMDM,
2014.

[78] D. Sidler, M. Owaida, Z. István, K. Kara, and G. Alonso, “doppioDB:
A hardware accelerated database,” FPL, 2017.

[79] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. Alonso, “StRoM:
smart remote memory,” EuroSys, 2020.

[80] A. D. C. Solution, “Xilinx Deep Learning Solution on AMD
EPYC™ Processors,” 2019. [Online]. Available: https://www.amd.
com/content/dam/amd/en/documents/epyc-business-docs/white-papers/
xilinx-deep-learning-solution-on-amd-epyc-processors.pdf

[81] M. Stonebraker and U. Cetintemel, “”One Size Fits All”: An Idea Whose
Time Has Come and Gone,” ICDE, 2005.

[82] X. Sun, C. J. Xue, J. Yu, T.-W. Kuo, and X. Liu, “Accelerating data
filtering for database using FPGA,” Journal of Systems Architecture, vol.
114, p. 101908, 2021.

[83] N. C. Thompson and S. Spanuth, “The decline of computers as a general
purpose technology,” CACM, vol. 64, no. 3, pp. 64–72, 2021.

[84] TPC, “TPC-H benchmark,” http://www.tpc.org/tpch/, 2021.
[85] J. Wang, D. Park, Y. Papakonstantinou, and S. Swanson, “SSD In-

Storage Computing for Search Engines,” IEEE TC, p. 1, 2016.
[86] A. S. Waterman, Design of the RISC-V instruction set architecture.

University of California, Berkeley, 2016.
[87] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100: the

architecture and design of a database processing unit,” ASPLOS, 2014.
[88] ——, “The Q100 Database Processing Unit,” IEEE Micro, vol. 35, no. 3,

pp. 34–46, 2015.
[89] Xilinx, Inc., “Zynq UltraScale+ MPSoC - All Programmable

Heterogeneous MPSoC,” August 2016. [Online]. Available: https://www.
xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

[90] M. Xue, Q. Xing, C. Feng, F. Yu, and Z.-G. Ma, “FPGA-Accelerated
Hash Join Operation for Relational Databases,” IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 67-II, no. 10, pp. 1919–
1923, 2020.

[91] C. Zhang, R. Chen, and V. K. Prasanna, “High Throughput Large Scale
Sorting on a CPU-FPGA Heterogeneous Platform,” IPDPS Workshops,
2016.

[92] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data
Compression,” TIT, vol. 23, no. 3, pp. 337–343, 1977.

[93] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz, “Super-Scalar RAM-
CPU Cache Compression,” ICDE, 2006.


	Introduction
	Accessing Arbitrary Data Geometries
	Relational Fabric
	Relational Memory

	Implications on Data Systems Architecture
	Physical Design
	Query Optimization and Query Evaluation
	Concurrency Control
	Compression

	Building Relational Fabric
	Implementing Relational Memory
	Pushing Other Relational Operators
	Pushing RM Further: Relational Memory Controller
	Implementing Relational Storage
	Practicality & Feasibility of Relational Fabric

	Experimental Results on Relational Memory
	Related Work
	Discussion & Future Work
	Relational Fabric on Disaggregated Storage
	Generalized Data Transformation

	Open Questions
	Conclusion
	References

