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ABSTRACT KEYWORDS

Multisite trials that randomize individuals (e.g., students) within sites (e.g., Minimum detectable effect
schools) or clusters (e.g., teachers/classrooms) within sites (e.g., schools) are size difference (MDESD);
commonly used for program evaluation because they provide opportuni- mogeraForgmL.’ItI'S't:ACCILUTSt?r
ties to learn about treatment effects as well as their heterogeneity across rnizlt%ri?elzzien dit\ZIi?jLSza(l s)
sites and. §ubgroups (defined b.y. moderat.lng varlt?\bles). Despite the .rI.Ch randomized trials (MIRT);
opportunities they present, a critical step in ensuring those opportunities statistical power

is identifying the sample size that provides sufficient power to detect the

desired effects if they exist. Although a strong literature base for conduct-

ing power analyses for the moderator effects in multisite trials already

exists, software for power analysis of moderator effects is not readily avail-

able in an accessible platform. The purpose of this tutorial paper is to pro-

vide practical guidance on implementing power analyses of moderator

effects in multisite individual and cluster randomized trials. We conceptu-

ally motivate, describe, and demonstrate the calculation of statistical power

and minimum detectable effect size difference (MDESD) using highly

accessible software. We conclude by outlining guidelines on power analysis

of moderator effects in multisite individual randomized trials (MIRTs) and

multisite cluster randomized trials (MCRTS).

Introduction

Recently literature has emphasized the critical role of moving beyond designing studies that
answer the “what works” question, or to detect the main/average treatment effect, to designing
studies to answer “for whom and under what conditions a treatment is most effective” or to
detect treatment effect heterogeneity (interaction effects or moderator effects, e.g., US DoE &
NSF, 2013; Weiss et al., 2014). For example, an important line of inquiry in many studies exam-
ines how treatment effects vary by different characteristics of students (e.g., race and pretest),
teachers (e.g., gender and teaching experience), and schools (e.g., urbanity and size). These types
of “for whom, and under what circumstances” questions are fundamental for understanding
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treatment effect variation and the potential for scaling a program to a wide range of schools and
students.

Cluster randomized trials (CRTs) and multisite randomized trials (MRTSs) are among the most
common designs used in education research to probe these types of complementary effects (e.g.,
Spybrook et al., 2016; Spybrook & Raudenbush, 2009). CRTs are defined by random assignment
of the top level of clusters into the treatment or control condition. CRTs include, for example,
two-level designs that randomly assign schools (level 2) (including students or level 1) while
three-level CRTs randomly assign schools (level 3) including the teachers/classrooms (level 2)
within each school and students (level 1) within each teacher within each school. In contrast,
MRTs involve randomly assigning the sublevel of clusters into the treatment and control groups.
MRTs include, for example, multisite individual randomized trials (MIRTs) that randomly assign
individuals (e.g., students) within sites (e.g., schools) and multisite cluster randomized trials
(MCRTs) that randomly assign intermediate clusters (e.g., teachers/classrooms) including the stu-
dents within each teacher/classroom within sites (e.g., schools).

In planning CRTs and MRTSs to detect main or moderator effects, a critical step is identifying
a sample size that provides sufficient power to detect a desired effect if it exists. Power analyses
are now routinely required by grant agencies and form a key basis for the requisite scale of most
experimental studies (e.g., US DoE & NSF, 2013; Kelcey et al., 2019). A strong literature base for
conducting power analyses for moderator effects in CRTs and MRTs has been developed over
recent decades. For example, the statistical methods and software have been developed for power
analysis of moderator effects for binary and continuous moderators at different levels in two- and
three-level CRTs (Dong et al., 2018, 2021b; Spybrook et al., 2016). Regarding MRTs, Raudenbush
and Liu (2000) developed power formulas for the site-level (level-2) binary moderator effect in
MRTs, and Bloom and Spybrook (2017) developed formulas for the minimum detectable effect
size difference (MDESD) for the site-level binary moderator in MRTs and MCRTs. Dong et al.
(2021a, 2023a) further developed a comprehensive statistical framework for power analysis of
moderator effects in two-level MIRTs and three-level MCRTs. In addition, Dong et al. (2023c)
created a Microsoft Excel-based software “PowerUp!-Moderator-MRTs” (https://tinyurl.com/
327tvufc), which is the only software for power analysis of moderator effects in MRTs to our
knowledge.

This framework considers the intersections of three key facets of multilevel moderation that
are common in practice: (a) level of the moderator (e.g., student-, classroom- or school-level), (b)
effects of treatment and/or moderation (i.e., (non)randomly varying slopes (coefficients) for the
treatment variable and/or the treatment-by-moderator interaction term), and (c) moderator scale
(e.g., categorical, continuous). Despite the recent technical developments of analyses across these
facets, guidance detailing the practical use and implementation of these calculations in software
for MIRTs and MCRTs is lacking.

The purpose of this tutorial paper is to provide practical guidance on conducting power analy-
ses of moderator effects in MCRTs and MIRTs across the three facets outlined above. The paper
is organized as follows. First, we outline an illustrative example to be used throughout our paper.
Second, we discuss the design options and introduce the software modules implementing the cal-
culations. Third, we demonstrate the calculation of statistical power and MDESD using the soft-
ware. Fourth, we compare features and considerations of the power and MDESD analyses across
main and moderation effects and summarize our findings. Finally, we conclude by offering sug-
gestions on conducting power analysis of moderator effects in MRTs.

An illustrative example for investigating moderator effects in MRTs

Consider an evaluation of the effects of a teacher professional development program on student
outcomes. Assume teachers within schools are randomly assigned to receive professional


https://tinyurl.com/327tvufc
https://tinyurl.com/327tvufc

THE JOURNAL OF EXPERIMENTAL EDUCATION . 3

Site- School Characteristics/
TLevdl Contextual Factors (urbanity) Level 3 Moderation
I Level 2 Moderation
Cluster- Teacher Characteristics | | Professional Development
Level (gender, teaching experience) (Treatment)
v

poe— Student Characteristics
?lc‘lel U4 1| (gender, race/ethnicity, »(  Student Outcome
} pretest) ¥

Figure 1. A conceptual framework for investigating moderation effects of professional development.
Note: This figure is a reproduction of Figure 1 from Dong et al. (2023a).

development (treatment) or business as usual (control). Under this scenario, we may adopt a
three-level MCRT with students nested within teachers (clusters) and teachers nested within
schools (sites). To facilitate discussion, we use the same figure in Dong et al. (2023a, Figure 1) to
illustrate the simplified conceptual framework for investigating moderation effects of the profes-
sional development on student outcomes in three-level MCRTSs in Figure 1.

In this hypothetical study, we can conceptually describe the study as a multi-school teacher
randomized design with a three-level hierarchy: students as level one (individuals), teachers/class-
rooms as level two (clusters), and schools as level three (sites). In this MCRT, we assign the treat-
ment (teacher professional development) at the teacher level or level two. Likewise, our design
uses schools as sites (or blocks) such that both treatment and control conditions exist within each
school. The random assignment of the treatment conditions to teachers renders treatment status
independent of other teacher and classroom characteristics (dotted arrow in Figure); in non-
experimental designs, teacher/classroom characteristics may be related to the treatment status
(e.g., see Dong et al., 2023b). Similarly, under random assignment, the characteristics of students,
teachers, and schools may be related to the student outcome (black arrows); however, such rela-
tionships will not affect the accuracy of the main effect estimates of the professional development
(or moderation effects) but may affect the precision (e.g., standard error, power) of the effect esti-
mates. Finally, the effects of professional development on student outcome may differ by the
characteristics of students, teachers, and schools (red arrows). Note that it is also common to
complement moderation analyses by probing the mediation effect. For instance, prior literature
has investigated how the effect of the teacher professional development on student achievement is
mediated by teacher knowledge or instruction (Kelcey et al., 2019, 2020); however, in our analysis
here we focus specifically on moderation effects.

In a second hypothetical example, we might consider a study that examines teacher outcomes
(e.g., teacher knowledge or instruction) only. In this setting, we would eliminate the student-level
entirely such that the design reduces to a simpler two-level MIRT (ie., teachers randomly
assigned within schools). In turn, we can investigate moderation effects of the characteristics of
teachers (now the individual-level or level 1) and schools (now the site-level or level 2) on teacher
outcomes (Kelcey et al., 2017).

Design options and software modules

In the illustrative example outlined above, we have various options to investigate moderator
effects in both three-level MCRTs and two-level MIRTs. The two- and three-level hierarchical lin-
ear models for the moderation analysis, using the notation of Raudenbush and Bryk (2002), are
summarized in Table 1. In these models, the outcome variable is Y, and the covariates are X at
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Table 1. Summary of statistical models for the moderation analysis in two-level MIRTs and three-level MCRTs.

Model
number Statistical model
“1R- 2
MRT2-1R-1 L1: Yij _ ﬁOj + B1jTij + ﬂZjTijMEj]) + ﬁngl(_jUJr rij ~ N(O, G\T,M,X)
BaXij + 1y
L2: B = 7Yoo + Ugj Ugj 0 T T T
By = v10 +uyj uj |~Ni o, i T}z
By = 720 + Uy Uz 0 2
ﬁsj = Y30
By = a0
MRT2-1R-2  L1: Yy = By + BTy + BoyXi + 1 rij ~ N0, 0f;. )
L2: By = Yoo + TerMP + ug; . 0\ (Tom T
* Poj = Yoo T YoM oj (Uoj )~N < > oojm  To1m
; ' 2
By =10+ v”M}Z) + uy) usj 0 Thm
ﬁz; = Y20
“IN- 2
MRTZINT L1 vy = By + By Ty + /32szng11) + /33/'/\/’1(71)Jr rij ~ N(0, 07y x)
BaXij + 1
L2: Boj = yoo + Ugj ugj ~ N(0, 75y
B =70
ﬁzj = %20
ﬁsj =730
ﬁ4j = Ya0
MRT2-IN-2 L1t Yy = oy + By Ty + By + 1y 1y~ N(O, 07, 1y )
L2: Boj = 7o0 + “/mM,(z) + U Uo; ~ N(0, 75)
Bij =710+ 711M}2)
ﬁzj = Y20
MRT3-2R-1 L1: Y1jk = Tojk + mjkMgk) ar TCijX,-jk + eijk €ijk ~ N(O’ U%\M,X)
L2: mojk = Book + BowTjk + Boak Wik + roji o\ nl (0 Toorw Tl W
Tk = Prok + BTk + Nk Nk 0) 2
Tk = Paok
L3: Book = Yooo + Yook Uook 0 T(z,ooo Tooo1  Too1o  Tool1
ﬁmk i Yoo + Uoik Ug1k ~N 0 , 73101 70110  To111
gozk - :/ozo u Uqok 0 1010 1:;011
Bie = g + ’
Baok = V200
MRT3-2R2  L1: Vi = moje + mpXik + €k ek ~ N(0,07y)
L2: 7ok = Book + BouTik + ﬁoszjkM(;f)'i‘ Tojk ~ N(O, TéO\TVMVW)
j
2
ﬁ03kM;k) + BoakWik + rojk
Tjk = Brok
L3: Book = Yoo + Yook Uook 0 Tagoo  Toool  Tooo2
o1k = Yo10 T Uotk uoik | ~N| 10|, 8101 To102
Boak = :jozo + Uoak Uoak 0 T0202
03k = Y030
Boak = Yoao
10k = 7100
MRT3-2R-3 L1: Ytjk = TCOjk aF n1ijijk aF e,'jk

L2: moi = Book + BowTjk + BoakWik + roje
Tjk = ﬁwk

L3: Book = Y000 + "/001M/(<3) -+ Uook
Bow = Yoro + “/011M;(<3) + Uok

Boak = Vo2
Biok = Y100

€ijk ~ N(O, G'%‘X)

rojk ~ N(O, 57, )

(

Uook
Uoik

)5

Too01|M

2
To101|m

)

(continued)
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Table 1. Continued.

Model
number Statistical model
IN- 2
MRT3-2N-T 11: vy = mope + 751jkM§j1k) + TokXij + €ijk eijc ~ N(O, 73y )
L2: mo = Book + BorTjk + Boa Wik + roje fojk ~ N(0, o7, )
Tk = Brok + BTk
Tk = ﬁznk
L3: Book = Yooo + Uook ook ~ N(0, Tg00)
Bowe = Voro
Boak = Vo2
Biok = 7100
Bk = 110
Baok = V200
MRT3-2N-2 L1 Yy = mop + ki + €iie ejix ~ N(0, Uﬁx)
L2: 7o = Book + [301;(7—]1( + ﬁoszjij(-;)"' roik ~ N(O, Too\T M, w)
ﬂosz]k + BoakWik + roje
Tjk = ﬁmk
L3: Book = Yooo + Uook Uook ~ N(0, Tg00)
Bowe = Voro
Boak = Vo2o
Bosk = Y030
Boak = Yoao
Brok = 100
MRT3-2N-3 L1 Yy = mop + ki + €iie e ~ N(0, 07,)
L2: mojk = Book + BowTik + Boak Wik + rojk foji ~ N(0, o7, )
Tjk = Brok
2
L3: Book = Yoo + “/omM;((a) + Uook toox ~ N(O, Toooo\M)
3
Bowk = Voro + ?’onM;(( )
Boak = Vo2
Brok = 100

Note. MRT2-1R-1 and MRT2-1R-2 stand for two-level MRTs with a level-1 and a level-2 moderator with random slopes, respect-
ively. MRT2-1N-1 and MRT2-1N-2 stand for two-level MRTs with a level-1 and a level-2 moderator with nonrandomly varying
slopes, respectively. MRT3-2R-1, MRT3-2R-2, and MRT3-2R-3 stand for three-level MRTs where treatment is at level 2 with a
level-1, -2, -3 moderator with random slopes, respectively. MRT3-2N-1, MRT3-2N-2, and MRT3-2N-3 stand for three-level
MCRTs where treatment is at level 2 with a level-1, -2, -3 moderator with nonrandomly varying slopes, respectively.

level 1 and W at level 2. The treatment Var1ab1es are Tj; and Tj for two- and three-level models,
respectively. The variables, M i- and M?, 1nd1cate level 1 and level-2 moderators in two-level
models, respectively; The variables, l(]k, Mjk , and M( indicate level-1, -2, and -3 moderators
in three-level models, respectively.

For two-level models, parameters y,, and 7, represent the average moderator effects for level-1
and level-2 moderators, respectively; 13, represents the variance of the moderator effect of level-1
moderator across sites for the random slope model (MRT2-1R-1). Tll‘ A Tepresents the treatment
effect variation across sites conditional on the level-2 moderator. For three-level models, parameters
Y1100 Yoz and 7o;; represent the average moderator effects for level-1, -2, and -3 moderators,
respectively; 72,,, and t2,,, represent the variance of the moderator effect of level-1 and -2 modera-
tors across sites for the random slope model (MRT3-2R-1 and MRT3-2R-2), respectively. ‘Eélm‘ M
represents the treatment effect variation across sites conditional on the level-3 moderator.

Table 2 presents the list of design options and software modules in PowerUp!-Moderator-MRTs.

Researchers first need to specify the hierarchic structure or the number of total levels of clus-
tering in their study design (Column 1 in Table 2, e.g., selecting a two-level MIRT or three-level
MCRT). Then researchers need to determine the statistical models for the moderator analysis
(Column 2). The model numbers correspond to those in Table 1 and in Dong et al. (2021a,
Table 1; 2023a, Table 2).

In what follows, we focus on a three-level MCRT using our first example above (Tables 1 and 2);
however, a simpler two-level MIRT (e.g., using the second example above) follows the same
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Table 2. List of design options and software modules.

1 2 3 4 5 6 7 8 9
Number Binary moderator Continuous moderator
of total Slope of
levels of ~ Model  Level of Level of treatment or MDESD Power MDESD Power
clustering number treatment moderator moderation calculation calculation calculation calculation
2 MRT2-1R-1 1 1 Random MRT21R_MDESD MRT21R_Power MRT21Rc_MDESD MRT21Rc_Power
MRT2-1R-2 1 2 Random
MRT2-1N-1 1 1 Nonrandomly MRT21N_MDESD MRT21N_Power MRT21Nc_MDESD MRT21Nc_Power
Varying
MRT2-1N-2 1 2 Nonrandomly
Varying
3 MRT3-2R-1 2 1 Random MRT32R_MDESD MRT32R_Power MRT32Rc_MDESD MRT32Rc_Power
MRT3-2R-2 2 2 Random
MRT3-2R-3 2 3 Random
MRT3-2N-1 2 1 Nonrandomly MRT32N_MDESD MRT32N_Power MRT32Nc_MDESD MRT32Nc_Power
Varying
MRT3-2N-2 2 2 Nonrandomly
Varying
MRT3-2N-3 2 3 Nonrandomly
Varying

conceptual procedures (see Dong et al,, 2021a). Our example analyses draw on several different
specifications. We first consider specifications that examine individual-level moderators (e.g., stu-
dent variables). In this setting, we examine the Model MRT3-2R-1 framework that describes a
three-level MCRT (Table 2, Column 1), with treatment at level 2 (Table 2, Column 3), moderator
at level 1 (Table 2, Column 4), and random slopes for the moderation/interaction term across sites
and the moderator variable across level 2 clusters (Table 2, Column 5). We then consider an
alternative specification that adopts the Model MRT3-2N-1 framework that draws on a three-
level MCRT (Table 2, Column 1), with treatment at level 2 (Table 2, Column 3), moderator at level
1 (Table 2, Column 4), and constant slope for the moderation term across sites and nonrandomly
vary slope for the moderator variable across level 2 clusters (Table 2, Column 5). The primary dif-
ference between these two specifications is the introduction of random effects or variation of effects
across clusters (level 2) and sites (level 3). Model MRT3-2R-1 allows the slope of level-1 moderator
to interact with the treatment status (fixed effect interaction, y,;,) while also varying randomly
across level-2 clusters (r1j%) and level 3 sites (u10x) and allowing the moderation effect to randomly
vary across sites (uq1x). In contrast, Model MRT3-2N-1 allows the slope of level-1 moderator to
vary only by the treatment status and therefore it does not randomly vary across level-2 clusters,
and the moderation effect is constant across sites.

Second, we consider parallel specifications for examining teacher-level moderators using both
the random (MRT3-2R-2) and nonrandom specifications (MRT3-2N-2). Model MRT3-2R-2 refers
to a three-level MCRT (Table 2, Column 1), with treatment at level 2 (Table 2, Column 3), moder-
ator at level 2 (Table 2, Column 4), and random slope for the moderation/interaction term across
sites (Table 2, Column 5). Model MRT3-2N-2 takes up that same design but constrains the slope
for the moderation/interaction term to be fixed across sites. In other words, the difference between
Models MRT3-2R-2 and MRT3-2N-2 is that the treatment effect varies by the level-2 moderator
and the moderation effect randomly varies across sites in MRT3-2R-2 while the treatment effect
varies by the moderator but the moderation effect is constant across sites in MRT3-2N-2.

Third, we consider parallel specifications for examining school-level moderators. Model
MRT3-2R-3 examines the random effect version and describes to a three-level MCRT (Table 2,
Column 1), with treatment at level 2 (Table 2, Column 3), moderator at level 3 (Table 2, Column
4), and random slope for treatment across sites (Table 2, Column 5). In contrast, Model MRT3-
2N-3 constrains those random effects and describes a three-level MCRT, with treatment at level
2, moderator at level 3, and nonrandomly varying slope for treatment across sites. Analogous to
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the previous sections, the difference between Models MRT3-2R-3 and MRT3-2N-3 is that the
treatment effect does not only vary by the level-3 moderator but also randomly varies across sites
in MRT3-2R-2 while the treatment effect only varies by the level-3 moderator and does not ran-
domly vary across sites in MRT3-2N-3.

A priori selection of the scope of the random effect structure (e.g., random versus nonrandom
slopes for the treatment/moderator/moderation) is a difficult issue because it necessarily needs to
balance a number of competing criteria and as a result it has not been clearly resolved for the
purposes of study planning (e.g., Bates et al., 2015). Some research has suggested adopting the
maximal random effects structure allowable by design (e.g., allowing all or most slopes to ran-
domly vary; Barr et al., 2013) because it best aligns with the design and provides is the most con-
servative honors the design and driven by design consideration only. However, competing
research has also widely demonstrated that adopting a complex random effects structure (e.g.,
multiple random slopes) can quickly introduce estimation or convergence issues because complex
structures are rarely empirically supported and often overparameterized or overfitted in practice
(e.g., models are not supported by the data; Matuschek et al., 2017). More practical research has
also developed less theoretical approaches and tools that attempt to balance minimal (e.g., no ran-
dom slopes) versus maximal (e.g., all slopes are allowed to randomly vary) random effect struc-
tures by balancing the tradeoffs between, for example, power, type one error, program theory
and/or empirical evidence from literature (e.g., Phelps et al., 2016; Seedorff et al, 2019). Still
other approaches suggest that if there is no clear theory or prior studies suggesting nonrandomly
varying slope models, it may be prudent to assume these slopes randomly vary because this typic-
ally produces conservative power estimates (Dong et al., 2021a).

In addition to determining the statistical models for moderator analysis, researchers need to
determine whether the moderator is a binary or continuous variable. The definitions of effect
sizes for a binary moderator and a continuous moderator are different (Dong et al., 2018, 2021a,
2021b, 2023a). The effect size for a binary moderator is the standardized treatment effect differ-
ence between two moderator subgroups; the effect size for a continuous moderator is the differ-
ence of the standardized regression coefficients for the moderator between the treatment and
control groups, or the standardized treatment effect difference associated with one standard devi-
ation change on the moderator variable.

Regarding power analysis, there are two options: (1) what is the power to detect a particular
moderation effect size, and (2) what is the minimum detectable effect size difference (MDESD)
given power of 0.80. The choice between these options depends on the unknown entity. Option
(1) is most appropriate when the effect size of interest for the moderator effect is pre-determined.
Option (2) is most appropriate when the effect size of interest for the moderator effect is not set.
Columns 6 and 8 in Table 2 are the modules for the MDESD calculations for the binary moder-
ator and continuous moderator, respectively; Columns 7 and 9 are the modules for the power cal-
culations for the binary moderator and continuous moderator, respectively. Note that all levels of
moderators with the same number of total levels of clustering and same type of slopes (random
or nonrandomly varying) are grouped in the same modules. For example, Module MRT32R_
MDESD is for the MDESD calculations for levels-1, 2, and 3 binary moderators in the random
slope models; Module MRT32Nc_power is for the power calculations for levels-1, 2, and 3 con-
tinuous moderators in the nonrandomly varying slope models.

Demonstration
Three-level MCRTs

In this section, we demonstrate power analyses of moderation at all three levels in three-level
MCRTs. Consider a team of researchers designing an MCRT to investigate the moderator effects
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of a professional development program in reducing students’ concentration problems in the illus-
trative example discussed above (Figure 1). They approach the power analyses of moderator
effects from two perspectives: (1) what is the power for a meaningful moderation effect size and
(2) what is the MDESD given power of 0.80. The team can conduct power analysis by following
the steps below.

Step 1. Select the appropriate design and corresponding software module

The team can first click the button “Click to Choose Your Design from the List” on the main
interface of the software. The team then needs to choose the corresponding software modules
(Columns 6-9, Table 2) to calculate the MDESD or power based on the features of their study
design (e.g., random or nonrandomly varying slope, binary or continuous moderator) as dis-
cussed in the design options and software module section above. Suppose the team would like to
conduct power analysis of moderator effect for a binary moderator (either level-1, 2, or 3) with
random slope. The team can choose Module MRT32R-MDESD for calculation of MDESD and
Module MRT32R_Power for calculation of power. Clicking “MRT32R-MDESD” will lead to the
spreadsheet like Figure 2; clicking “MRT32R-Power” will lead to the spreadsheet like Figure 3.

Step 2. Make reasonable assumptions about design parameter values and investigate implica-
tions across a full range of plausible values for sensitivity analysis of power

The parameters in the cells highlighted in yellow need to be input from users, for example, Cells
C3-C20 in Figure 2 and Cells C3-C22 in Figure 3. Once these parameters are specified, the
MDESD and their confidence intervals or power can be automatically calculated. As for all power
analysis, it is critical to make reasonable assumptions about the design parameters. The type I
error rate (o) is usually set as 0.05. The team chooses a two-sided test over a one-tailed test. To
calculate the MDESD, the statistical power is usually set as 0.80. To calculate the statistical power
to detect moderation in MCRTs, the team needs to specify the values of the design parameters:
(1) the desired moderator effect size, (2) the intraclass correlation coefficients (ICCs) at cluster-
and site-level (p, = 13/(13 + % + ¢%) and p; = t%/(} + 15 + 07), where 13, 13, o7 are the level-
3, -2, and -1 variance in the unconditional model), (3) the proportions of variances explained at

A B C D
. |Model MRT3.2R: MDESD Calculator for Three-Level Multisite R ized Trials — T at Level 2 and Binary Moderators at Level- 1, 2, and 3 (Random slope model)
2 A \pti G
3 |Alpha Level (@) 005 Probability of a Type I error
4 Two-tailed or One-tailed Test? 2
5 |Power (1-B) 0.80 Statistical power (1-probability of a Type II error)
6 |Rhos @CCy) 0.03 Proportion of variance among Level 3 units for the control group: =7 /(7 +73 + 1)
7| |Rno, accy 0.12 Proportion of variance among Level 2 units for the control group: 2 =% /(7 +7, +07)
a W 0.03 The standardized effect vasiability of the moderation across blocks (Level 3) for Level-1 moderator: Oy = Th /(3 + T3+ o)
9 W3y 0.03 The standardized effect vagiability of the moderation actoss blocks (Level 3) for Level-2 moderator: W3y = Th02/(T3 + 73 +0f)
0 | @k 0.05 The standardized effect variability of the treatment effect across blocks (Level 3) for L3 moderator: Wl = 18101/ (T3 + 73 +0f)
1 w§ M® 0.03 The standardized effect variability of Level-1 moderator among Level-2 clusters: Wy = Thyr/ (@} + 13 + of)
n [P 0.50 Proportion of Level 2 units randomized to treatment: Jr / (ir + Jo)
13| |Q 0.50 Proportion of Level 1 units in Moderator subgroup: n; / (n; + ng)
u | 0.50 Proportion of Level 2 units in Moderator subgroup: J; / (i + Jo)
5 |Q 0.50 Proportion of Level 3 units in Moderator subgroup: K; / (K; + Ko)
s RS 0.50 Proportion of variance in Level | outcome explained by Level 1 covasiates
17 R, 0.50 Proportion of variance in Level 2 intercept explained by Level 2 covariates, moderator, treatment variable, and interaction.
18 |n (Average Sample Size for Level 1) 20 Mean number of Level 1 units per Level 2 unit (geometric mean ed
19 (Average Sample Size for Level 2) 4 Mean number of Level 2 units per Level 3 unit (geometric mean recommended)
20 [K (Sample Size [# of Level 3 units]) 20 Number of Level 3 units
24 | MDESD(|8,,]) 0252 |Minimum Detectable Effect Size Difference regarding standardized mean difference for Level-1 Moderator
25 |95% Confidence Interval (0.073,0.43) |95% Confidence Interval of MDESD(|5,,])
2 | MDESD(|8,4]) 0.394 [ Minimum Detectable Effect Size Difference regarding ized mean di for Level-2 Mod
30 |95% Confidence Interval W{J 95% Confidence Interval of MDESD(|6: )
3 | MDESD(|65,]) 0.399 | Minimum Detectable Effect Size Difference regarding standardized mean difference for Level-3 Moderator
35| [95% Confidence Interval (0116, 0.682) |95% Confidence Interval of MDESD(|85,|)

Figure 2. An example of MDESD calculation for binary moderators at level-1, -2, and -3 with random effects in three-level MCRT.
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A B c D
1 |Model MRT3-2R: Power Calculator for Three-Level Multisite Randomized Trials — Treatment at Level 2 and Binary Moderators at Level- 1, 2, and 3 (Random slope model)
2| |Assumptions C
3 |Alpha Level (2) 0.05 Probability of a Type I error
4| [Two-tailed or One-tailed Test? 2
5 | |Effect Size Difference for Level-1 Moderator 0.200 Effect Size Difference regarding ized mean difference.
6 | |Effect Size Difference for Level-2 Moderator 0.200 Effect Size Difference regardin ized mean difference.
7 | |Effect Size Difference for Level-3 Moderator 0200 [Effect Size Difference regarding_ standardized mean difference.
s | [Rno; accy) 0.03 Proportion of vasiance among Level 3 units for the control group:
9 Rho, ICCy 0.12 Proportion of variance among Level 2 units for the control group:
0 w;TMm 0.03 The standardized effect vadability of the moderation actoss blocks (Level 3) for Level-1 moderator: Wy = thu /@3 + 1+ of)
1 w;,‘,,,m 0.03 The standardized effect variability of the moderation across blocks (Level 3) for Level-2 moderator: W3y = To202/ (5 + 73 + 0F)
o | @ 005 The standardized effect vasiability of the treatment effect across blocks (Level 3) for L3 moderator: wlr = 110,/(t3 + 73 +0f)
. 0.03 The standardized effect vasiability of Level-1 moderator among Level-2 clusters W2y = Thp /(T + 13+ 0P)
w [P 050 Proportion of Level 2 units randomized to treatment: Jr / (ir + Jo)
5 |Q 050 Propostion of Level 1 units in Moderator subgroup: n; / (n; + ng)
6 |Q 050 Propostion of Level 2 units in Moderator subgroup: J; / (J, + Jo)
17 |Qs 050 Proportion of Level 3 units in Moderator subgroup: K / (K; + Ko)
1 [R? 050 Proportion of variance in Level 1 outcome explained by Level 1 covariates
19| |R? 050 Proportion of variance in Level 2 intercept explained by Level 2 covariates, moderator, treatment vasiable, and interaction.
20 | (Average Sample Size for Level 1) 20 Mean number of Level 1 units per Level 2 unit mean ¢
21 |] (Average Sample Size for Level 2) 4 Mean number of Level 2 units per Level 3 unit ( mean ¢
22 |K (Sample Size [# of Level 3 units]) 20 Number of Level 3 units
22 |Power (1-B) for Level-1 Moderator 0.606 _|Statistical power (1-probability of a Type II exror)
26 |Powet (1-B) for Level-2 Moderator 0297 istical power (1 ility of a Type II exror)
28 |Power (1-p) for Level-3 Moderator 0.229  |Statistical power (1-probability of a Type II erxor)

Figure 3. An example of power calculation for binary moderators at level-1, -2, and -3 with random effects in three-level MCRT.

level-1 and -2 by covariates (R% and R%), (4) the sample size at level-1, -2, and -3 (n, J, and K),
and (5) the proportion of clusters assigned to the treatment group (P).
In addition, for random slope models, they need to consider the standardized effect variability

of the moderation across sites for level-1 moderator (w2 ) = t7,;,/(3 + 73 + 07)), the standar-
dized effect variability of level-1 moderator across level-2 units (w3, = ‘E%HT/ (13415 + 07)),

the standardized effect variability of the moderation across sites for level-2 moderator
(@% 0 = Tooa/ (T3 + 75 + 1)), and the standardized variability of the treatment effect across
sites for level-3 moderator (w%; = t3,,,/(73 + 15 + 02)). See Dong et al. (2023a) for more detailed
explanation about these parameters and Figures 2 and 3 for the example. When a moderator is a
binary variable, they also need to consider the proportion of the moderator subgroup (Q;, Q,, or
Qs), where Q;, Q,, and Q; refer to the proportion of the individuals, clusters, and sites in one
subgroup, respectively.

These design parameters can be drawn from literature or pilot studies. For example, several
studies have reported the ICCs and R? for academic achievement outcome measures (e.g., Hedges
& Hedberg, (2007, 2013) and Kelcey et al., (2016) on mathematics and reading, and Westine
et al., [2013] and Spybrook et al., (2016) on science achievement), outcome measures for teacher
professional development (Kelcey & Phelps, 2013a), social and behavioral outcomes (Dong et al.,
2016), and enrollment, credits earned, and degree completion for community college students
(Somers et al., 2023). Table A in the appendix provides a list of key design parameters for power
analysis of moderator effects in MRTs and resource examples for allocating the parameter esti-
mates. Note that the design parameters may vary by the outcome measures and samples, and this
is not an exhaustive list. Researchers may need to search and justify their design parameters based
on their specific outcome measures, samples, and study designs. In particular, researchers need to
consider the range of values found in the literature and the uncertainty reported for an estimated
parameter value, explore the implications in terms of power and sample size and arrive at a bal-
ance among results produced from ’reasonable’ values, results produced from aberrations from
those reasonable values and practical constraints (e.g., teacher sample sizes within a school are
unlikely to reach 100 in most schools) so that a final selected design is efficient while also pro-
tecting against plausible deviations to the best extent available given practical constraints.

To determine the moderator effect size, researchers often draw on empirical benchmarks
regarding normative expectations of annual gain, policy-relevant performance gaps, and
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moderation effect size results from similar studies (Bloom et al., 2008; Dong et al.,, 2016; Hill
et al., 2008; Phelps et al., 2016). For instance, the effect sizes of disparities on concentration prob-
lems are 0.26 between black and white students, 0.43 between male and female students, and 0.33
between eligible and ineligible free/reduced price lunch students (Dong et al., 2022). The moder-
ator effect size of a teacher classroom management program in reducing concentration problems
is 0.40 favoring special education students over non-special education students (Reinke et al.,
2021). These researchers may consider an effect size difference of 0.20 for their moderation study
because it is equivalent to reducing 47-77% of the racial, gender, and socioeconomic disparities,
and 50% of the reported moderator effect size in a similar intervention study’.

For ICCs, Dong et al. (2016) reported that ICCs of concentration problems are 0.033 and
0.120 at school- and classroom-level, respectively. They adopted ICCs of 0.03 and 0.12 at school-
and classroom-level in this demonstration. Note that these ICCs are smaller than the students’
academic outcome measures. For example, Shen et al. (2023) reported the ICCs of 0.208 and
0.067 at school-level and classroom-level for students’ math achievement. Hence, they also used
ICCs of 0.20 and 0.06 at school-level and classroom-level in this demonstration.

When the pretest is included in the analysis, it can usually explain more than 50% of the vari-
ance for many educational based outcomes (Bloom et al., 2007; Dong et al, 2016; Hedges &
Hedberg, 2007, 2013; Kelcey et al., 2017). As a result, it is often reasonable to assume that R? =
R3 = 0.5. They also adopted a balanced design, the proportion of clusters assigned to the treat-
ment group, p=0.5. For moderators, they assumed the proportions of the moderator subgroups,
Q1 = Q = Q3 =0.5.

Regarding the design parameters in the random slope models, very few empirical studies
reported the values of the effect heterogeneity across sites. Weiss et al. (2017) studied 51 outcome
measures in 16 two-level MIRTs and reported that the standard deviation of the treatment effect
size across sites (schools) (equivalent to w, = /71,/(t3, + 02) in the two-level MIRTs) ranged
from 0 to 0.35 with 37% ranging from [0, 0.05], 33% ranging from [0.05, 0.15], and 29% ranging
from [0.15, 0.35]. Similarly, Olsen et al. (2017) studied 17 outcome measures in 6 two-level
MIRTs and reported that the standard deviation of the treatment effect size across sites (schools)
ranged from 0.07 to 0.31 with a mean of 0.20 and a median 0.22. Furthermore, Dong et al.
(2022) reported that the standardized effect heterogeneity values for the individual-level modera-
tors across sites (schools) (similar definition as ,, but with the moderator as the focal predictor)
on social and behavioral outcomes range from 0.07 to 0.24 for race (White vs. Black), 0.08 to
0.24 for gender, and 0.10 to 0.24 for the free/reduced price lunch status.

Although these results cannot be directly applied to the three-level MCRT in this example
because of the different designs, the researchers adopted the heterogeneity parameter values that
range from moderate to large, as reported above: the standardized variability of the treatment effect
across sites for level-3 moderator (w%;) of 0.05 and 0.10 (i.e., w;; = 0.22 and 0.32), respectively,
and the standardized effect variability of level-1 moderator across level-2 units (w;Mm) of 0.03 and

, = 0.17 and 0.22). They did not identify studies reporting the standar-
2

0.05, respectively (ie., ,,

dized effect variability of the moderation across sites for level-1 moderator (w7 ) or the standar-

3TM"
dized effect variability of the moderation across sites for level-2 moderator (ngM@)). They adopted
ngMm = w;TMm = 0.03 and 0.05, respectively. These adopted heterogeneity parameter values were

at the medium to high end of the empirical distributions, leading to conservative power estimates.
Furthermore, the team assumes that the sample came from typical schools, with each teacher/class-
room having 20 students (n=20) and each school having 4 teachers/classrooms (J=4).
Additionally, they explore two options for the number of schools: K=20 and 40, respectively. Once
these design parameters are input into the corresponding software module, the MDESD or power
can be automatically calculated. For example, Figures 2 and 3 provide the MDESD and power cal-
culation for binary moderators at level-1, -2, and -3 with random effects in three-level MCRTs.
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Step 3. Report the results with sufficient details to replicate the analyses

The team can report the power analysis results based on the choice of study design and param-
eter assumptions. The research team needs to provide sufficient details for others to replicate
their power analysis. The team also needs to justify the choice of their design parameter values.
When there is no consensus on some design parameter values, or such values are not available,
prudent practice involves conducting sensitivity analyses for power using different combinations
of design parameter values that probe the plausible range of values. Table 3 provides an illustra-
tion of how research teams can summarize the MDESD and statistical power of three-level
MCRTs under different assumption combinations. In addition, research teams may copy and
paste some spreadsheets for power analysis as examples such as Figures 2 and 3 if there is room
in their power analysis write-up. Figures S1-S6 in the supplemental materials illustrate the calcu-
lation of the MDESD and power for more examples. An example write-up of power calculation
of a level-1 binary moderator effect in three-level MCRTs is provided in Appendix B.

Two-level MIRTs

The power analysis of moderation in two-level MIRTs is similar but relatively simpler than in three-
level MCRTs. Consider the illustrative example introduced earlier regarding the effects of a profes-
sional development program on teacher outcomes in a two-level MIRT with teachers nested within
schools (e.g., Kelcey & Phelps, 2013b). We can conduct power analysis of the moderator effects of
teacher- and school-level characteristics on teacher outcomes in the two-level MIRTs. By following
the same steps as in three-level MCRTs, the statistical power or MDESD can be calculated.

Step 1. Select the appropriate design and corresponding software module

The team can choose the corresponding software modules (Columns 6-9, Table 2) to calculate
the MDESD or power based on the features of their study design (e.g., random or nonrandomly
varying slope, binary or continuous moderator). Suppose the team would like to conduct power
analysis of moderator effect for a binary moderator (either level-1 or -2) with random slope. The
team can choose Module MRT21R_MDESD for calculation of MDESD and Module MRT21R_
Power for calculation of power. For instance, clicking “MRT21R_Power” will lead to the spread-
sheet like Figure 4.

Step 2. Make reasonable assumptions about design parameter values and investigate implica-
tions across a full range of plausible values for sensitivity analysis of power

Using a type I error rate (o) of 0.05, the team chooses a two-sided test over a one-tailed test. To
calculate MDESD, the statistical power is usually set as 0.80. To calculate the statistical power to
detect moderation in MCRTs, the team needs to specify the values of the design parameters: (1)
the desired moderator effect size (e.g., 0.20), (2) the intraclass correlation coefficient (ICC)
(p =13,/ (t}, + 0*), where 7, and o® are the level-2 and —1 variance in the unconditional
model), (3) the proportions of variance explained at level-1 covariates (R%), (4) the sample size at
level-1 and -2 (n and J), and (5) the proportion of individuals assigned to the treatment
group (P).

Furthermore, for random slope models, the team need to consider the standardized effect vari-
ability of the moderation across sites for level-1 moderator (w?, = 13,/(15, + 0°), where 3, is
the variance of the random slope for the interaction term) and the standardized variability of the
treatment effect across sites for level-2 moderator (w? = t3,/(t3, + o), where 13, is the variance
of the random slope for the treatment variable). See Dong et al. (2021a) for more detailed explan-
ation about these design parameters, Table 1 for the statistical models, and Figure 4 for example.
When a moderator is a binary variable, the team also need to consider the proportion of the
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A B c D
1 |Model MRT2-1R: Power Calculator for Two-Level Multisite R ized Trials — T: at Level 1 and Binary Moderators at Level- 1 and 2 (Random slope model)
2 Assumptions Comments
3 |Alpha Level () 0.05 Probability of a Type I error
4 ‘Two-tailed or One-tailed Test? 2
5 | |Effect Size Difference for Level-1 Moderator 0.200 Effect Size Difference regarding standardized mean difference.
6 |Effect Size Difference for Level-2 Moderator 0.200 Effect Size Difference regarding standardized mean difference.
7 |Rno aco) 0.20 Proportion of variance among sites: # = 70/ (tdo +0?)
s | @k 0.05 The standardized effect vasiability of the level-1 moderation across sites: w3, = 2,/(t3 + %)
5 w? 0.05 The standardized effect variability of the treatment effect actoss sites: W =1h/(1h + %)
w0 [P 0.50 Proportion of Level 1 units randomized to treatment: ng / (ng + nc)
1 |Q 0.50 Proportion of Level 1 units in Moderator subgroup: n; / (n; + ng)
1 |Q 0.50 Proportion of Level 2 units in Moderator subgroup: J / (1 + Jo)
13 |R? 0.50 Proportion of variance in Level 1 outcome explained by Level 1 covariates, moderator, treatment variable, and interaction.
14 |n (Average Sample Size for Level 1) 10 Mean number of Level 1 units per Level 2 unit (geometric mean recommended)
15 (Average Sample Size for Level 2) 160 'Toal number of Level 2 units (sites)
17 |Power (1-B) for Level-1 Moderator 0.857 Statistical power (1-probability of 2 Type II error)
19 |Power (1-B) for Level-2 Moderator 10.803 |Statistical power (1-probability of a Type II exror)

Figure 4. An example of power calculation for binary moderators at level-1 and -2 with random effects in two-level MIRTs.

moderator subgroup (Q; or Q,), where Q; and Q, refer to the proportion of the individuals and
sites in one subgroup, respectively.

The design parameters should be drawn from literature or pilot studies. For example, the ICCs
and R? values may be found from studies listed in Table A. The researchers adopted ICC of 0.20
and R? = 0.5 (e.g., Kelcey & Phelps, 2013a). They also adopted a balanced design, the proportion
of individuals assigned to the treatment group, p=0.5. For moderators, they assumed the propor-
tions of the moderator subgroups, Q; = Q, =0.5. For the standardized variability of the treat-
ment effect across sites for level-2 moderator, they chose wf = 0.05 (or w, = 0.22) based on
Weiss et al. (2017) and Olsen et al. (2017) to get a conservative estimate of power. They did not
identify studies directly reporting the standardized effect variability of the moderation across sites
for level-1 moderator (w?,). However, neighboring literature suggested a value on the order of
w?, = 0.05 (Phelps et al., 2016). Furthermore, the team assumes that the sample sizes for teachers
within each school are n=10, and for schools, J=160. Once these design parameters are input
into the corresponding software module, the MDESD or power can be automatically calculated.
For example, Figure 4 provides the power calculation for binary moderators at level-1 and -2
with random effects in two-level MIRTs.

Step 3. Report the results with sufficient details to replicate the analyses

The same aforementioned principles for reporting power analysis results apply here. The team
needs to provide sufficient details (e.g., the study design and parameter assumptions) for others
to replicate their power analysis. The team also needs to justify the choice of their design parame-
ters. Researchers may copy and paste the spreadsheets for power analysis in their power analysis
writing, for example, reporting power calculation for binary moderator at level-1 and -2 with ran-
dom slopes (Figure 4).

As noted earlier, there may not be consensus on some design parameter values, or the design
parameter values are not available. Again, a sensitivity analysis using different combinations of
design parameter values that consider plausible ranges of the parameter values may be useful. For
example, they may choose a smaller ICC = 0.15 and larger o, =w,,, = 0.32 to get a more conser-
vative power and MDESD estimate.

Summary of findings

To further illustrate how design parameter values affect the statistical power in three-level
MCRTs, we plotted the statistical power as functions of site sample size (K) for binary
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Figure 5. Power vs. site sample size for the analysis of main effects and binary moderator effects in three-level MCRTs.
Note. Under the assumptions: n=20, /=4, P=0.5, R% = R% = 0.5 Q; = Q, = Q; = 0.5, effect size (standardized mean differ-
ence) for main effects = 0.2, effect size difference for binary moderator effects = 0.2, and a two-sided test with «=0.05.

p3=0.03, p,=0.12, w2 =}, = @l o = 003 and wj; = 0.05 for random slope designs in Figure 5a. p;=0.03,
p2=0.12, @2 o = W) = @) o = 005 and wj; = 0.10 for random slope designs in Figure 5b. p;=0.20, p,=0.06,
@l = Oy = @3 o) = 003, and wj; = 0.05 for random slope designs in Figure 5¢. p;=0.20, p,=0.06, @ o = @)
= @l @ = 005, and wi; = 0.10 for random slope designs in Figure 5d.

moderators with four combinations of different ICCs and effect heterogeneity in Figures 5a-5d,
which are analogous to the power curve for the two-level MIRTs (Figure 1 in Dong et al., 2021a).
We use the same assumptions as in Table 3.

In addition, the power of main treatment effect in three-level MCRTs was calculated using
PowerUp! (Dong & Maynard, 2013) and plotted for comparison. The resulting power curves are
for the moderation analyses with a binary level-1 moderator with nonrandomly varying effect
(black short dotted line), a binary level-2 or level-3 moderator with nonrandomly varying effect
(red solid line), a binary level-1 moderator random effect (black long dotted line), a binary level-
2 moderator random effect (green dotted line), a binary level-3 moderator random effect (blue
dotted line), and the main treatment effect (black solid line).

We summarize the findings from Table 3 and Figure 5. First, as for all power analysis the
power increases (MDESD decreases) with the sample sizes (K, ], and #). Similar as moderation in
the two-level MRTs (Dong et al., 2021a), the sample sizes at different levels are not equally
important. For random slope models, the high-level sample size (e.g., sites or clusters) is more
important than low-level sample size (individuals). However, for nonrandomly varying slope
models, the power (and MDESD) is the same for both level-2 and level-3 moderators. In these
cases, the sample sizes at level-2 and level-3 are equally important and they are more important
than the level-1 sample size. When considering a level-1 moderator, the importance of sample
sizes at levels 1, 2, and 3 becomes equal.
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Second, the proportion of the sample allocated to the treatment group (P) and to the moder-
ator subgroup (Q;, Q,, Q3;) are related to the power and MDESD. The power (MDESD)
increases (decreases) when P and Qs are closer to 0.5 and it achieves the maximum (minimum)
value when it is a balanced design (P = Q; = Q; = Q3 = 0.5).

Third, the power (MDESD) increases (decreases) when the site-level ICC increases. This is
because the sites explain more level-3 variance, reduce the residual variance at level-1, and hence
reduce the standard error of the moderated treatment effect estimates. The power (MDESD)
increases (decreases) when the level-2 ICC increases for the analysis of a level-1 moderator, how-
ever, the power (MDESD) often decreases (increases) when the level-2 ICC increases for the ana-
lysis of level-2 and —3 moderators.

Fourth, the power increases with the proportion of level-1 variance explained by the covariates
(R?). The power also increases with the proportion of variance of level-2 intercept explained (R3)
for the analysis of level-2 and —3 moderators, however, the power for level-1 moderator analysis
is not related to R3.

Fifth, the power (MDESD) is smaller (larger) for a random slope model than a nonrandomly
varying slope model for the same moderator. The differences on the power and MDESD between
the two models (random slope and nonrandomly varying slope models) decreases when the effect
heterogeneity decreases. In addition, the power (MDESD) is bigger (smaller) for a lower-level
moderator than a higher-level moderator except for the Level-2 and —3 moderators in the non-
randomly varying slope models which have same power (MDESD).

Sixth, the MDESD as defined by the standardized mean difference for the binary moderator
when Q; = Q; = Q; = 0.5 is always twice the value of the MDESD defined by the standardized
coefficient for the continuous moderator with a nonrandomly varying effect.

Finally, the power of a nonrandomly varying slope model for level-1 moderator is always
larger than the main effect analysis. The power of a random slope model for level-1 moderator is
close to the main effect analysis.

Conclusion

In this tutorial, we demonstrated and discussed power analyses for moderator effects in three-
level MCRTs and two-level MIRTs using the software. To effectively utilize this tool, it is crucial
to follow three steps: (1) select the suitable design and corresponding software modules, (2) make
reasonable assumptions about design parameters and explore the implications across the full
range of parameter values, and (3) present the results with sufficient details.

It is important to note that there is inherent uncertainty (variance) in the parameter estimates
found in the literature, the target population might differ from the population for which the
design parameters were estimated in previous studies, and the design parameter estimates might
not be always available. In such cases, researchers can sometimes rely on design parameter results
from pilot studies or results from comparable outcomes and designs. However, we recommend
conducting sensitivity analyses of the power by carefully considering estimates under a plausible
range of design parameter values. This underscores the need for more research on design parame-
ters, particularly focusing on the heterogeneous effects of the moderator variable, treatment, and
moderation.

Note

1. These percentages are calculated by dividing the target moderator effect size (0.20) by the disparity or
reported moderator effect size in a similar intervention, for example, 0.20/0.26 =77%, 0.20/0.43 =47%,
0.20/0.33 = 61%, and 0.20/0.40 = 50%.
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Appendix A: Table A
Design parameter resources.
3-level MCRTs
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Parameter Comments Resources
03 Intraclass correlation coefficient at level 3: Social & Behavior:
Proportion of variance among Level 3 units: Dong et al. (2016); Jacob et al. (2010)
p3 =15/(5 + 13+ 07). Math:
Wijekumar et al. (2009); Westine et al. (2013); McCoach
et al. (2014); Shen et al. (2023); Zhu et al. (2012);
Hedges and Hedberg (2013)
Reading:
Drummond et al. (2011); Wijekumar et al. (2014);
Westine et al. (2013); Shen et al. (2023); Zhu et al.
(2012)
Science:
Westine et al. (2013); Spybrook et al. (2016); Zhu et al.
(2012)
07 Intraclass correlation coefficient at level 2: Social & Behavior:
Proportion of variance among Level 2 units: Dong et al. (2016); Jacob et al. (2010)
pr=1/(3+ % +a?). Math:
Wijekumar et al. (2009); Westine et al. (2013); McCoach
et al. (2014); Shen et al. (2023); Zhu et al. (2012);
Hedges and Hedberg (2013)
Reading:
Drummond et al. (2011); Wijekumar et al. (2014);
Westine et al. (2013); Shen et al. (2023); Zhu et al.
(2012)
Science:
Westine et al. (2013); Spybrook et al. (2016); Zhu et al.
(2012)
R: Proportion of variance in Level 2 intercept Social & Behavior:
explained by Level 2 covariates Dong et al. (2016); Jacob et al. (2010)
Math:
Wijekumar et al. (2009); Westine et al. (2013); McCoach
et al. (2014); Shen et al. (2023); Zhu et al. (2012);
Hedges and Hedberg (2013)
Reading:
Drummond et al. (2011); Wijekumar et al. (2014);
Westine et al. (2013); Shen et al. (2023); Zhu et al.
(2012)
Science:
Westine et al. (2013); Spybrook et al. (2016); Zhu et al.
(2012)
R? Proportion of variance in Level 1 outcome Social & Behavior:
explained by Level 1 covariates Dong et al. (2016); Jacob et al. (2010)
Math:
Wijekumar et al. (2009); Westine et al. (2013); McCoach
et al. (2014); Shen et al. (2023); Zhu et al. (2012);
Hedges and Hedberg (2013)
Reading:
Drummond et al. (2011); Wijekumar et al. (2014);
Westine et al. (2013); Shen et al. (2023); Zhu et al.
(2012)
Science:
Westine et al. (2013); Spybrook et al. (2016); Zhu et al.
(2012)
iy The standardized effect variability of the treatment  Math:
effect across blocks (Level 3) for L3 moderator: Wijekumar et al. (2009)
0 = T /(1 + T+ 03). Reading:

Drummond et al. (2011); Wijekumar et al. (2014)
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2-level MRTs

Parameter Comments Resources
o Intraclass correlation coefficient: Social & Behavior:

Proportion of variance among Level 2 units: Dong et al. (2016)

p =150/ (o + ). Math:

Westine et al. (2013); Hedges and Hedberg (2007);
Bloom et al. (2007); Zhu et al. (2012)

Reading:
Drummond et al. (2011); Westine et al. (2013); Hedges
and Hedberg (2007); Bloom et al. (2007); Zhu et al.
(2012)

Science:
Spybrook et al. (2016); Zhu et al. (2012)
Teacher outcomes:
Kelcey and Phelps (2013a); Kelcey and Phelps (2013b)

R? Proportion of variance in Level 1 outcome Social & Behavior:
explained by Level 1 covariates Dong et al. (2016)
Math:

Westine et al. (2013); Hedges and Hedberg (2007);
Bloom et al. (2007); Zhu et al. (2012)

Reading:
Drummond et al. (2011); Westine et al. (2013); Hedges
and Hedberg (2007); Bloom et al. (2007); Zhu et al.
(2012)

Science:
Spybrook et al. (2016); Zhu et al. (2012)
Teacher outcomes:
Kelcey and Phelps (2013a); Kelcey and Phelps (2013b)

Appendix B: An example of write-up of power calculation of a level-1 binary
moderator effect in three-level MCRTs

In this three-level MCRT designed to investigate a binary level-1 moderator effect in reducing
concentration problems among 5 graders, we made the following assumptions: (1) Our desired
moderation effect size is 0.20, equivalent to reducing 47-77% of the racial, gender, and socioeco-
nomic disparities (Dong et al., 2022), and 50% of the reported moderator effect size in a similar
intervention study (Reinke et al.,, 2021). (2) The intra-class correlations at the school- and class-
room-level are 0.03 and 0.12, respectively (Dong et al., 2016) and 0.20 and 0.06, respectively
(Shen et al., 2023). (3) The proportions of variance explained by the pretest at level 1 is 50%
(Dong et al., 2016). (4) It is a balanced design, with the proportion of classrooms assigned to the
treatment group being p=0.5, and the proportion of the moderator subgroup being Q; = 0.5.
(5). To be conservative, we use a random slope model. We did not identify any studies reporting
the heterogeneity parameter values for the treatment or moderator variable in three-level MCRT.
Hence, we adopted the heterogeneity parameter values at the medium to high end of the empir-
ical distributions reported in the literature for two-level MIRTs (Dong et al., 2022; Olsen et al.,
2017; Weiss et al., 2017) as approximation. The standardized effect variability of level-1 moder-
ator across level-2 units (w%Mm) are 0.03 and 0.05, respectively. The standardized effect variability
of the moderation across sites for level-1 moderator (ngMU)) are 0.03 and 0.05, respectively. (6)
The sample came from typical schools, with each classroom having 20 students (n =20) and each
school having 4 classrooms (J=4) at grade 5. Additionally, we explore two options for the num-
ber of schools: K=20 and 40, respectively. (7) The type I error rate (o) is set as 0.05, and we
choose a two-sided test. According to the spreadsheet in PowerUp!-Moderator-MRTs (Dong
et al., 2023a), the statistical power from the combinations of parameters assumed above ranges
from 0.51 to 0.64 for K=20 and from 0.82 to 0.92 for K=40.
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