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Peilin Qiua, and Ning Suie 

aUniversity of North Carolina at Chapel Hill, Chapel Hill, NC, USA; bUniversity of Cincinnati, Cincinnati, OH, 
USA; cWestern Michigan University, Kalamazoo, MI, USA; dFlorida State University, Tallahassee, FL, USA; eNC 
State University, Raleigh, NC, USA 

ABSTRACT 
Multisite trials that randomize individuals (e.g., students) within sites (e.g., 
schools) or clusters (e.g., teachers/classrooms) within sites (e.g., schools) are 
commonly used for program evaluation because they provide opportuni
ties to learn about treatment effects as well as their heterogeneity across 
sites and subgroups (defined by moderating variables). Despite the rich 
opportunities they present, a critical step in ensuring those opportunities 
is identifying the sample size that provides sufficient power to detect the 
desired effects if they exist. Although a strong literature base for conduct
ing power analyses for the moderator effects in multisite trials already 
exists, software for power analysis of moderator effects is not readily avail
able in an accessible platform. The purpose of this tutorial paper is to pro
vide practical guidance on implementing power analyses of moderator 
effects in multisite individual and cluster randomized trials. We conceptu
ally motivate, describe, and demonstrate the calculation of statistical power 
and minimum detectable effect size difference (MDESD) using highly 
accessible software. We conclude by outlining guidelines on power analysis 
of moderator effects in multisite individual randomized trials (MIRTs) and 
multisite cluster randomized trials (MCRTs).

KEYWORDS 
Minimum detectable effect 
size difference (MDESD); 
moderator; multisite cluster 
randomized trials (MCRTs); 
multisite individual 
randomized trials (MIRTs); 
statistical power   

Introduction

Recently literature has emphasized the critical role of moving beyond designing studies that 
answer the “what works” question, or to detect the main/average treatment effect, to designing 
studies to answer “for whom and under what conditions a treatment is most effective” or to 
detect treatment effect heterogeneity (interaction effects or moderator effects, e.g., US DoE & 
NSF, 2013; Weiss et al., 2014). For example, an important line of inquiry in many studies exam
ines how treatment effects vary by different characteristics of students (e.g., race and pretest), 
teachers (e.g., gender and teaching experience), and schools (e.g., urbanity and size). These types 
of “for whom, and under what circumstances” questions are fundamental for understanding 
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treatment effect variation and the potential for scaling a program to a wide range of schools and 
students.

Cluster randomized trials (CRTs) and multisite randomized trials (MRTs) are among the most 
common designs used in education research to probe these types of complementary effects (e.g., 
Spybrook et al., 2016; Spybrook & Raudenbush, 2009). CRTs are defined by random assignment 
of the top level of clusters into the treatment or control condition. CRTs include, for example, 
two-level designs that randomly assign schools (level 2) (including students or level 1) while 
three-level CRTs randomly assign schools (level 3) including the teachers/classrooms (level 2) 
within each school and students (level 1) within each teacher within each school. In contrast, 
MRTs involve randomly assigning the sublevel of clusters into the treatment and control groups. 
MRTs include, for example, multisite individual randomized trials (MIRTs) that randomly assign 
individuals (e.g., students) within sites (e.g., schools) and multisite cluster randomized trials 
(MCRTs) that randomly assign intermediate clusters (e.g., teachers/classrooms) including the stu
dents within each teacher/classroom within sites (e.g., schools).

In planning CRTs and MRTs to detect main or moderator effects, a critical step is identifying 
a sample size that provides sufficient power to detect a desired effect if it exists. Power analyses 
are now routinely required by grant agencies and form a key basis for the requisite scale of most 
experimental studies (e.g., US DoE & NSF, 2013; Kelcey et al., 2019). A strong literature base for 
conducting power analyses for moderator effects in CRTs and MRTs has been developed over 
recent decades. For example, the statistical methods and software have been developed for power 
analysis of moderator effects for binary and continuous moderators at different levels in two- and 
three-level CRTs (Dong et al., 2018, 2021b; Spybrook et al., 2016). Regarding MRTs, Raudenbush 
and Liu (2000) developed power formulas for the site-level (level-2) binary moderator effect in 
MRTs, and Bloom and Spybrook (2017) developed formulas for the minimum detectable effect 
size difference (MDESD) for the site-level binary moderator in MRTs and MCRTs. Dong et al. 
(2021a, 2023a) further developed a comprehensive statistical framework for power analysis of 
moderator effects in two-level MIRTs and three-level MCRTs. In addition, Dong et al. (2023c) 
created a Microsoft Excel-based software “PowerUp!-Moderator-MRTs” (https://tinyurl.com/ 
327tvufc), which is the only software for power analysis of moderator effects in MRTs to our 
knowledge.

This framework considers the intersections of three key facets of multilevel moderation that 
are common in practice: (a) level of the moderator (e.g., student-, classroom- or school-level), (b) 
effects of treatment and/or moderation (i.e., (non)randomly varying slopes (coefficients) for the 
treatment variable and/or the treatment-by-moderator interaction term), and (c) moderator scale 
(e.g., categorical, continuous). Despite the recent technical developments of analyses across these 
facets, guidance detailing the practical use and implementation of these calculations in software 
for MIRTs and MCRTs is lacking.

The purpose of this tutorial paper is to provide practical guidance on conducting power analy
ses of moderator effects in MCRTs and MIRTs across the three facets outlined above. The paper 
is organized as follows. First, we outline an illustrative example to be used throughout our paper. 
Second, we discuss the design options and introduce the software modules implementing the cal
culations. Third, we demonstrate the calculation of statistical power and MDESD using the soft
ware. Fourth, we compare features and considerations of the power and MDESD analyses across 
main and moderation effects and summarize our findings. Finally, we conclude by offering sug
gestions on conducting power analysis of moderator effects in MRTs.

An illustrative example for investigating moderator effects in MRTs

Consider an evaluation of the effects of a teacher professional development program on student 
outcomes. Assume teachers within schools are randomly assigned to receive professional 
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development (treatment) or business as usual (control). Under this scenario, we may adopt a 
three-level MCRT with students nested within teachers (clusters) and teachers nested within 
schools (sites). To facilitate discussion, we use the same figure in Dong et al. (2023a, Figure 1) to 
illustrate the simplified conceptual framework for investigating moderation effects of the profes
sional development on student outcomes in three-level MCRTs in Figure 1.

In this hypothetical study, we can conceptually describe the study as a multi-school teacher 
randomized design with a three-level hierarchy: students as level one (individuals), teachers/class
rooms as level two (clusters), and schools as level three (sites). In this MCRT, we assign the treat
ment (teacher professional development) at the teacher level or level two. Likewise, our design 
uses schools as sites (or blocks) such that both treatment and control conditions exist within each 
school. The random assignment of the treatment conditions to teachers renders treatment status 
independent of other teacher and classroom characteristics (dotted arrow in Figure); in non- 
experimental designs, teacher/classroom characteristics may be related to the treatment status 
(e.g., see Dong et al., 2023b). Similarly, under random assignment, the characteristics of students, 
teachers, and schools may be related to the student outcome (black arrows); however, such rela
tionships will not affect the accuracy of the main effect estimates of the professional development 
(or moderation effects) but may affect the precision (e.g., standard error, power) of the effect esti
mates. Finally, the effects of professional development on student outcome may differ by the 
characteristics of students, teachers, and schools (red arrows). Note that it is also common to 
complement moderation analyses by probing the mediation effect. For instance, prior literature 
has investigated how the effect of the teacher professional development on student achievement is 
mediated by teacher knowledge or instruction (Kelcey et al., 2019, 2020); however, in our analysis 
here we focus specifically on moderation effects.

In a second hypothetical example, we might consider a study that examines teacher outcomes 
(e.g., teacher knowledge or instruction) only. In this setting, we would eliminate the student-level 
entirely such that the design reduces to a simpler two-level MIRT (i.e., teachers randomly 
assigned within schools). In turn, we can investigate moderation effects of the characteristics of 
teachers (now the individual-level or level 1) and schools (now the site-level or level 2) on teacher 
outcomes (Kelcey et al., 2017).

Design options and software modules

In the illustrative example outlined above, we have various options to investigate moderator 
effects in both three-level MCRTs and two-level MIRTs. The two- and three-level hierarchical lin
ear models for the moderation analysis, using the notation of Raudenbush and Bryk (2002), are 
summarized in Table 1. In these models, the outcome variable is Y , and the covariates are X at 

Figure 1. A conceptual framework for investigating moderation effects of professional development. 
Note: This figure is a reproduction of Figure 1 from Dong et al. (2023a).
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Table 1. Summary of statistical models for the moderation analysis in two-level MIRTs and three-level MCRTs.

Model  
number Statistical model

MRT2-1R-1 L1: Yij ¼ b0j þ b1j Tij þ b2jTijM
ð1Þ
ij þ b3jM

ð1Þ
ij þ

b4jXij þ rij 

rij � Nð0, r2
jT , M, X Þ

L2: b0j ¼ c00 þ u0j 

b1j ¼ c10 þ u1j 

b2j ¼ c20 þ u2j 

b3j ¼ c30 

b4j ¼ c40

u0j

u1j

u2j
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5

MRT2-1R-2 L1: Yij ¼ b0j þ b1j Tij þ b2jXij þ rij rij � Nð0, r2
jT , M, X Þ

L2: b0j ¼ c00 þ c01M 2ð Þ

j þ u0j 

b1j ¼ c10 þ c11M 2ð Þ

j þ u1j 

b2j ¼ c20

u0j

u1j

� �

�N
0
0

� �

,
s2

00jM s01jM

s2
11jM

 !" #

MRT2-1N-1 L1: Yij ¼ b0j þ b1j Tij þ b2jTijM
ð1Þ

ij þ b3jM
ð1Þ

ij þ

b4jXij þ rij 

rij � Nð0, r2
jT , M, X Þ

L2: b0j ¼ c00 þ u0j 

b1j ¼ c10 

b2j ¼ c20 

b3j ¼ c30 

b4j ¼ c40

u0j � Nð0, s2
00Þ

MRT2-1N-2 L1: Yij ¼ b0j þ b1j Tij þ b2jXij þ rij rij � Nð0, r2
jT , M, X Þ

L2: b0j ¼ c00 þ c01M 2ð Þ

j þ u0j 

b1j ¼ c10 þ c11M 2ð Þ

j 

b2j ¼ c20

u0j � Nð0, s2
00Þ

MRT3-2R-1 L1: Yijk ¼ p0jk þ p1jkMð1Þ

ijk þ p2jkXijk þ eijk eijk � Nð0, r2
1jM, X Þ

L2: p0jk ¼ b00k þ b01k Tjk þ b02k Wjk þ r0jk 
p1jk ¼ b10k þ b11k Tjk þ r1jk 
p2jk ¼ b20k

r0jk
r1jk

� �

� N
0
0

� �

,
s2

00jT , W s01jT , W

s2
11jT

 !" #

L3: b00k ¼ c000 þ u00k 
b01k ¼ c010 þ u01k 
b02k ¼ c020 
b10k ¼ c100 þ u10k 
b11k ¼ c110 þ u11k 
b20k ¼ c200

u00k

u01k

u10k
u11k

0
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0
0
0
0

0

B
B
@

1

C
C
A,

s2
0000 s0001 s0010 s0011

s2
0101 s0110 s0111

s2
1010 s1011

s2
1111

0

B
B
@

1

C
C
A

2

6
6
4

3

7
7
5

MRT3-2R-2 L1: Yijk ¼ p0jk þ p1jkXijk þ eijk, eijk � Nð0, r2
1jX Þ

L2: p0jk ¼ b00k þ b01k Tjk þ b02k TjkMð2Þ

jk þ

b03k Mð2Þ

jk þ b04k Wjk þ r0jk 

p1jk ¼ b10k

r0jk � Nð0, s2
00jT , M, W )

L3: b00k ¼ c000 þ u00k 
b01k ¼ c010 þ u01k 
b02k ¼ c020 þ u02k 
b03k ¼ c030 
b04k ¼ c040 
b10k ¼ c100

u00k

u01k

u02k

0

@

1

A � N
0
0
0
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@

1
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5

MRT3-2R-3 L1: Yijk ¼ p0jk þ p1jkXijk þ eijk eijk � Nð0, r2
1jX Þ

L2: p0jk ¼ b00k þ b01k Tjk þ b02k Wjk þ r0jk 
p1jk ¼ b10k

r0jk � Nð0, s2
00jT , W )

L3: b00k ¼ c000 þ c001M 3ð Þ

k þ u00k 

b01k ¼ c010 þ c011M 3ð Þ

k þ u01k 

b02k ¼ c020 
b10k ¼ c100

u00k
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0
0
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,
s2

0000jM s0001jM
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 !" #

(continued)
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level 1 and W at level 2. The treatment variables are Tij and Tjk for two- and three-level models, 
respectively. The variables, Mð1Þ

ij and Mð2Þ

j , indicate level-1 and level-2 moderators in two-level 
models, respectively; The variables, Mð1Þ

ijk , Mð2Þ

jk , and Mð3Þ

k indicate level-1, -2, and -3 moderators 
in three-level models, respectively.

For two-level models, parameters c20 and c11 represent the average moderator effects for level-1 
and level-2 moderators, respectively; s2

22 represents the variance of the moderator effect of level-1 
moderator across sites for the random slope model (MRT2-1R-1). s2

11jM represents the treatment 
effect variation across sites conditional on the level-2 moderator. For three-level models, parameters 
c110, c020, and c011 represent the average moderator effects for level-1, -2, and -3 moderators, 
respectively; s2

1111 and s2
0202 represent the variance of the moderator effect of level-1 and -2 modera

tors across sites for the random slope model (MRT3-2R-1 and MRT3-2R-2), respectively. s2
0101jM 

represents the treatment effect variation across sites conditional on the level-3 moderator.
Table 2 presents the list of design options and software modules in PowerUp!-Moderator-MRTs.
Researchers first need to specify the hierarchic structure or the number of total levels of clus

tering in their study design (Column 1 in Table 2, e.g., selecting a two-level MIRT or three-level 
MCRT). Then researchers need to determine the statistical models for the moderator analysis 
(Column 2). The model numbers correspond to those in Table 1 and in Dong et al. (2021a, 
Table 1; 2023a, Table 2).

In what follows, we focus on a three-level MCRT using our first example above (Tables 1 and 2); 
however, a simpler two-level MIRT (e.g., using the second example above) follows the same 

Table 1. Continued.

Model  
number Statistical model

MRT3-2N-1 L1: Yijk ¼ p0jk þ p1jkMð1Þ

ijk þ p2jkXijk þ eijk eijk � Nð0, r2
1jM, X Þ

L2: p0jk ¼ b00k þ b01k Tjk þ b02k Wjk þ r0jk 
p1jk ¼ b10k þ b11k Tjk 
p2jk ¼ b20k

r0jk � Nð0, s2
00jT , W Þ

L3: b00k ¼ c000 þ u00k 
b01k ¼ c010 
b02k ¼ c020 
b10k ¼ c100 
b11k ¼ c110 
b20k ¼ c200

u00k � Nð0, s2
0000Þ

MRT3-2N-2 L1: Yijk ¼ p0jk þ p1jkXijk þ eijk eijk � Nð0, r2
1jX Þ

L2: p0jk ¼ b00k þ b01k Tjk þ b02k TjkMð2Þ

jk þ

b03k Mð2Þ

jk þ b04k Wjk þ r0jk 

p1jk ¼ b10k

r0jk � Nð0, s2
00jT , M, W )

L3: b00k ¼ c000 þ u00k 
b01k ¼ c010 
b02k ¼ c020 
b03k ¼ c030 
b04k ¼ c040 
b10k ¼ c100

u00k � Nð0, s2
0000Þ

MRT3-2N-3 L1: Yijk ¼ p0jk þ p1jkXijk þ eijk eijk � Nð0, r2
1jX Þ

L2: p0jk ¼ b00k þ b01k Tjk þ b02k Wjk þ r0jk 
p1jk ¼ b10k

r0jk � Nð0, s2
00jT , W )

L3: b00k ¼ c000 þ c001M 3ð Þ

k þ u00k 

b01k ¼ c010 þ c011M 3ð Þ

k 
b02k ¼ c020 
b10k ¼ c100

u00k � Nð0, s2
0000jMÞ

Note. MRT2-1R-1 and MRT2-1R-2 stand for two-level MRTs with a level-1 and a level-2 moderator with random slopes, respect
ively. MRT2-1N-1 and MRT2-1N-2 stand for two-level MRTs with a level-1 and a level-2 moderator with nonrandomly varying 
slopes, respectively. MRT3-2R-1, MRT3-2R-2, and MRT3-2R-3 stand for three-level MRTs where treatment is at level 2 with a 
level-1, -2, -3 moderator with random slopes, respectively. MRT3-2N-1, MRT3-2N-2, and MRT3-2N-3 stand for three-level 
MCRTs where treatment is at level 2 with a level-1, -2, -3 moderator with nonrandomly varying slopes, respectively.
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conceptual procedures (see Dong et al., 2021a). Our example analyses draw on several different 
specifications. We first consider specifications that examine individual-level moderators (e.g., stu
dent variables). In this setting, we examine the Model MRT3-2R-1 framework that describes a 
three-level MCRT (Table 2, Column 1), with treatment at level 2 (Table 2, Column 3), moderator 
at level 1 (Table 2, Column 4), and random slopes for the moderation/interaction term across sites 
and the moderator variable across level 2 clusters (Table 2, Column 5). We then consider an 
alternative specification that adopts the Model MRT3-2N-1 framework that draws on a three- 
level MCRT (Table 2, Column 1), with treatment at level 2 (Table 2, Column 3), moderator at level 
1 (Table 2, Column 4), and constant slope for the moderation term across sites and nonrandomly 
vary slope for the moderator variable across level 2 clusters (Table 2, Column 5). The primary dif
ference between these two specifications is the introduction of random effects or variation of effects 
across clusters (level 2) and sites (level 3). Model MRT3-2R-1 allows the slope of level-1 moderator 
to interact with the treatment status (fixed effect interaction, c110) while also varying randomly 
across level-2 clusters (r1jk) and level 3 sites (u10k) and allowing the moderation effect to randomly 
vary across sites (u11k). In contrast, Model MRT3-2N-1 allows the slope of level-1 moderator to 
vary only by the treatment status and therefore it does not randomly vary across level-2 clusters, 
and the moderation effect is constant across sites.

Second, we consider parallel specifications for examining teacher-level moderators using both 
the random (MRT3-2R-2) and nonrandom specifications (MRT3-2N-2). Model MRT3-2R-2 refers 
to a three-level MCRT (Table 2, Column 1), with treatment at level 2 (Table 2, Column 3), moder
ator at level 2 (Table 2, Column 4), and random slope for the moderation/interaction term across 
sites (Table 2, Column 5). Model MRT3-2N-2 takes up that same design but constrains the slope 
for the moderation/interaction term to be fixed across sites. In other words, the difference between 
Models MRT3-2R-2 and MRT3-2N-2 is that the treatment effect varies by the level-2 moderator 
and the moderation effect randomly varies across sites in MRT3-2R-2 while the treatment effect 
varies by the moderator but the moderation effect is constant across sites in MRT3-2N-2.

Third, we consider parallel specifications for examining school-level moderators. Model 
MRT3-2R-3 examines the random effect version and describes to a three-level MCRT (Table 2, 
Column 1), with treatment at level 2 (Table 2, Column 3), moderator at level 3 (Table 2, Column 
4), and random slope for treatment across sites (Table 2, Column 5). In contrast, Model MRT3- 
2N-3 constrains those random effects and describes a three-level MCRT, with treatment at level 
2, moderator at level 3, and nonrandomly varying slope for treatment across sites. Analogous to 

Table 2. List of design options and software modules.

1 2 3 4 5 6 7 8 9
Number  
of total  
levels of  
clustering

Model  
number

Level of  
treatment

Level of  
moderator

Slope of  
treatment or  
moderation

Binary moderator Continuous moderator

MDESD  
calculation

Power  
calculation

MDESD  
calculation

Power  
calculation

2 MRT2-1R-1 1 1 Random MRT21R_MDESD MRT21R_Power MRT21Rc_MDESD MRT21Rc_Power
MRT2-1R-2 1 2 Random
MRT2-1N-1 1 1 Nonrandomly  

Varying
MRT21N_MDESD MRT21N_Power MRT21Nc_MDESD MRT21Nc_Power

MRT2-1N-2 1 2 Nonrandomly  
Varying

3 MRT3-2R-1 2 1 Random MRT32R_MDESD MRT32R_Power MRT32Rc_MDESD MRT32Rc_Power
MRT3-2R-2 2 2 Random
MRT3-2R-3 2 3 Random
MRT3-2N-1 2 1 Nonrandomly  

Varying
MRT32N_MDESD MRT32N_Power MRT32Nc_MDESD MRT32Nc_Power

MRT3-2N-2 2 2 Nonrandomly  
Varying

MRT3-2N-3 2 3 Nonrandomly  
Varying
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the previous sections, the difference between Models MRT3-2R-3 and MRT3-2N-3 is that the 
treatment effect does not only vary by the level-3 moderator but also randomly varies across sites 
in MRT3-2R-2 while the treatment effect only varies by the level-3 moderator and does not ran
domly vary across sites in MRT3-2N-3.

A priori selection of the scope of the random effect structure (e.g., random versus nonrandom 
slopes for the treatment/moderator/moderation) is a difficult issue because it necessarily needs to 
balance a number of competing criteria and as a result it has not been clearly resolved for the 
purposes of study planning (e.g., Bates et al., 2015). Some research has suggested adopting the 
maximal random effects structure allowable by design (e.g., allowing all or most slopes to ran
domly vary; Barr et al., 2013) because it best aligns with the design and provides is the most con
servative honors the design and driven by design consideration only. However, competing 
research has also widely demonstrated that adopting a complex random effects structure (e.g., 
multiple random slopes) can quickly introduce estimation or convergence issues because complex 
structures are rarely empirically supported and often overparameterized or overfitted in practice 
(e.g., models are not supported by the data; Matuschek et al., 2017). More practical research has 
also developed less theoretical approaches and tools that attempt to balance minimal (e.g., no ran
dom slopes) versus maximal (e.g., all slopes are allowed to randomly vary) random effect struc
tures by balancing the tradeoffs between, for example, power, type one error, program theory 
and/or empirical evidence from literature (e.g., Phelps et al., 2016; Seedorff et al., 2019). Still 
other approaches suggest that if there is no clear theory or prior studies suggesting nonrandomly 
varying slope models, it may be prudent to assume these slopes randomly vary because this typic
ally produces conservative power estimates (Dong et al., 2021a).

In addition to determining the statistical models for moderator analysis, researchers need to 
determine whether the moderator is a binary or continuous variable. The definitions of effect 
sizes for a binary moderator and a continuous moderator are different (Dong et al., 2018, 2021a, 
2021b, 2023a). The effect size for a binary moderator is the standardized treatment effect differ
ence between two moderator subgroups; the effect size for a continuous moderator is the differ
ence of the standardized regression coefficients for the moderator between the treatment and 
control groups, or the standardized treatment effect difference associated with one standard devi
ation change on the moderator variable.

Regarding power analysis, there are two options: (1) what is the power to detect a particular 
moderation effect size, and (2) what is the minimum detectable effect size difference (MDESD) 
given power of 0.80. The choice between these options depends on the unknown entity. Option 
(1) is most appropriate when the effect size of interest for the moderator effect is pre-determined. 
Option (2) is most appropriate when the effect size of interest for the moderator effect is not set. 
Columns 6 and 8 in Table 2 are the modules for the MDESD calculations for the binary moder
ator and continuous moderator, respectively; Columns 7 and 9 are the modules for the power cal
culations for the binary moderator and continuous moderator, respectively. Note that all levels of 
moderators with the same number of total levels of clustering and same type of slopes (random 
or nonrandomly varying) are grouped in the same modules. For example, Module MRT32R_ 
MDESD is for the MDESD calculations for levels-1, 2, and 3 binary moderators in the random 
slope models; Module MRT32Nc_power is for the power calculations for levels-1, 2, and 3 con
tinuous moderators in the nonrandomly varying slope models.

Demonstration

Three-level MCRTs

In this section, we demonstrate power analyses of moderation at all three levels in three-level 
MCRTs. Consider a team of researchers designing an MCRT to investigate the moderator effects 
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of a professional development program in reducing students’ concentration problems in the illus
trative example discussed above (Figure 1). They approach the power analyses of moderator 
effects from two perspectives: (1) what is the power for a meaningful moderation effect size and 
(2) what is the MDESD given power of 0.80. The team can conduct power analysis by following 
the steps below.

Step 1. Select the appropriate design and corresponding software module
The team can first click the button “Click to Choose Your Design from the List” on the main 
interface of the software. The team then needs to choose the corresponding software modules 
(Columns 6–9, Table 2) to calculate the MDESD or power based on the features of their study 
design (e.g., random or nonrandomly varying slope, binary or continuous moderator) as dis
cussed in the design options and software module section above. Suppose the team would like to 
conduct power analysis of moderator effect for a binary moderator (either level-1, 2, or 3) with 
random slope. The team can choose Module MRT32R-MDESD for calculation of MDESD and 
Module MRT32R_Power for calculation of power. Clicking “MRT32R-MDESD” will lead to the 
spreadsheet like Figure 2; clicking “MRT32R-Power” will lead to the spreadsheet like Figure 3.

Step 2. Make reasonable assumptions about design parameter values and investigate implica
tions across a full range of plausible values for sensitivity analysis of power
The parameters in the cells highlighted in yellow need to be input from users, for example, Cells 
C3-C20 in Figure 2 and Cells C3-C22 in Figure 3. Once these parameters are specified, the 
MDESD and their confidence intervals or power can be automatically calculated. As for all power 
analysis, it is critical to make reasonable assumptions about the design parameters. The type I 
error rate (a) is usually set as 0.05. The team chooses a two-sided test over a one-tailed test. To 
calculate the MDESD, the statistical power is usually set as 0.80. To calculate the statistical power 
to detect moderation in MCRTs, the team needs to specify the values of the design parameters: 
(1) the desired moderator effect size, (2) the intraclass correlation coefficients (ICCs) at cluster- 
and site-level (q2 ¼ s2

2=ðs2
3 þ s2

2 þ r2
1Þ and q3 ¼ s2

3=ðs2
3 þ s2

2 þ r2
1Þ, where s2

3, s2
2, r2

1 are the level- 
3, -2, and -1 variance in the unconditional model), (3) the proportions of variances explained at 

Figure 2. An example of MDESD calculation for binary moderators at level-1, -2, and -3 with random effects in three-level MCRT.
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level-1 and -2 by covariates (R2
1 and R2

2), (4) the sample size at level-1, -2, and -3 (n, J, and K), 
and (5) the proportion of clusters assigned to the treatment group (P).

In addition, for random slope models, they need to consider the standardized effect variability 
of the moderation across sites for level-1 moderator (x2

3TMð1Þ ¼ s2
1111=ðs2

3 þ s2
2 þ r2

1Þ), the standar
dized effect variability of level-1 moderator across level-2 units (x2

2Mð1Þ ¼ s2
11jT=ðs2

3 þ s2
2 þ r2

1Þ), 
the standardized effect variability of the moderation across sites for level-2 moderator 
(x2

3TMð2Þ ¼ s2
0202=ðs2

3 þ s2
2 þ r2

1Þ), and the standardized variability of the treatment effect across 
sites for level-3 moderator (x2

3T ¼ s2
0101=ðs2

3 þ s2
2 þ r2

1Þ). See Dong et al. (2023a) for more detailed 
explanation about these parameters and Figures 2 and 3 for the example. When a moderator is a 
binary variable, they also need to consider the proportion of the moderator subgroup (Q1, Q2, or 
Q3), where Q1, Q2, and Q3 refer to the proportion of the individuals, clusters, and sites in one 
subgroup, respectively.

These design parameters can be drawn from literature or pilot studies. For example, several 
studies have reported the ICCs and R2 for academic achievement outcome measures (e.g., Hedges 
& Hedberg, (2007, 2013) and Kelcey et al., (2016) on mathematics and reading, and Westine 
et al., [2013] and Spybrook et al., (2016) on science achievement), outcome measures for teacher 
professional development (Kelcey & Phelps, 2013a), social and behavioral outcomes (Dong et al., 
2016), and enrollment, credits earned, and degree completion for community college students 
(Somers et al., 2023). Table A in the appendix provides a list of key design parameters for power 
analysis of moderator effects in MRTs and resource examples for allocating the parameter esti
mates. Note that the design parameters may vary by the outcome measures and samples, and this 
is not an exhaustive list. Researchers may need to search and justify their design parameters based 
on their specific outcome measures, samples, and study designs. In particular, researchers need to 
consider the range of values found in the literature and the uncertainty reported for an estimated 
parameter value, explore the implications in terms of power and sample size and arrive at a bal
ance among results produced from ’reasonable’ values, results produced from aberrations from 
those reasonable values and practical constraints (e.g., teacher sample sizes within a school are 
unlikely to reach 100 in most schools) so that a final selected design is efficient while also pro
tecting against plausible deviations to the best extent available given practical constraints.

To determine the moderator effect size, researchers often draw on empirical benchmarks 
regarding normative expectations of annual gain, policy-relevant performance gaps, and 

Figure 3. An example of power calculation for binary moderators at level-1, -2, and -3 with random effects in three-level MCRT.
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moderation effect size results from similar studies (Bloom et al., 2008; Dong et al., 2016; Hill 
et al., 2008; Phelps et al., 2016). For instance, the effect sizes of disparities on concentration prob
lems are 0.26 between black and white students, 0.43 between male and female students, and 0.33 
between eligible and ineligible free/reduced price lunch students (Dong et al., 2022). The moder
ator effect size of a teacher classroom management program in reducing concentration problems 
is 0.40 favoring special education students over non-special education students (Reinke et al., 
2021). These researchers may consider an effect size difference of 0.20 for their moderation study 
because it is equivalent to reducing 47–77% of the racial, gender, and socioeconomic disparities, 
and 50% of the reported moderator effect size in a similar intervention study1.

For ICCs, Dong et al. (2016) reported that ICCs of concentration problems are 0.033 and 
0.120 at school- and classroom-level, respectively. They adopted ICCs of 0.03 and 0.12 at school- 
and classroom-level in this demonstration. Note that these ICCs are smaller than the students’ 
academic outcome measures. For example, Shen et al. (2023) reported the ICCs of 0.208 and 
0.067 at school-level and classroom-level for students’ math achievement. Hence, they also used 
ICCs of 0.20 and 0.06 at school-level and classroom-level in this demonstration.

When the pretest is included in the analysis, it can usually explain more than 50% of the vari
ance for many educational based outcomes (Bloom et al., 2007; Dong et al., 2016; Hedges & 
Hedberg, 2007, 2013; Kelcey et al., 2017). As a result, it is often reasonable to assume that R2

1 ¼

R2
2 ¼ 0.5. They also adopted a balanced design, the proportion of clusters assigned to the treat

ment group, p ¼ 0.5. For moderators, they assumed the proportions of the moderator subgroups, 
Q1 ¼ Q2 ¼ Q3 ¼0.5.

Regarding the design parameters in the random slope models, very few empirical studies 
reported the values of the effect heterogeneity across sites. Weiss et al. (2017) studied 51 outcome 
measures in 16 two-level MIRTs and reported that the standard deviation of the treatment effect 
size across sites (schools) (equivalent to xt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

11=ðs2
00 þ r2Þ

p
in the two-level MIRTs) ranged 

from 0 to 0.35 with 37% ranging from [0, 0.05], 33% ranging from [0.05, 0.15], and 29% ranging 
from [0.15, 0.35]. Similarly, Olsen et al. (2017) studied 17 outcome measures in 6 two-level 
MIRTs and reported that the standard deviation of the treatment effect size across sites (schools) 
ranged from 0.07 to 0.31 with a mean of 0.20 and a median 0.22. Furthermore, Dong et al. 
(2022) reported that the standardized effect heterogeneity values for the individual-level modera
tors across sites (schools) (similar definition as xt , but with the moderator as the focal predictor) 
on social and behavioral outcomes range from 0.07 to 0.24 for race (White vs. Black), 0.08 to 
0.24 for gender, and 0.10 to 0.24 for the free/reduced price lunch status.

Although these results cannot be directly applied to the three-level MCRT in this example 
because of the different designs, the researchers adopted the heterogeneity parameter values that 
range from moderate to large, as reported above: the standardized variability of the treatment effect 
across sites for level-3 moderator (x2

3T) of 0.05 and 0.10 (i.e., x3T ¼ 0.22 and 0.32), respectively, 
and the standardized effect variability of level-1 moderator across level-2 units (x2

2Mð1Þ ) of 0.03 and 
0.05, respectively (i.e., x2Mð1Þ ¼ 0.17 and 0.22). They did not identify studies reporting the standar
dized effect variability of the moderation across sites for level-1 moderator (x2

3TMð1Þ ) or the standar
dized effect variability of the moderation across sites for level-2 moderator (x2

3TMð2Þ ). They adopted 
x2

3TMð1Þ ¼ x2
3TMð2Þ ¼ 0.03 and 0.05, respectively. These adopted heterogeneity parameter values were 

at the medium to high end of the empirical distributions, leading to conservative power estimates. 
Furthermore, the team assumes that the sample came from typical schools, with each teacher/class
room having 20 students (n ¼ 20) and each school having 4 teachers/classrooms (J ¼ 4). 
Additionally, they explore two options for the number of schools: K ¼ 20 and 40, respectively. Once 
these design parameters are input into the corresponding software module, the MDESD or power 
can be automatically calculated. For example, Figures 2 and 3 provide the MDESD and power cal
culation for binary moderators at level-1, -2, and -3 with random effects in three-level MCRTs.
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Step 3. Report the results with sufficient details to replicate the analyses
The team can report the power analysis results based on the choice of study design and param
eter assumptions. The research team needs to provide sufficient details for others to replicate 
their power analysis. The team also needs to justify the choice of their design parameter values. 
When there is no consensus on some design parameter values, or such values are not available, 
prudent practice involves conducting sensitivity analyses for power using different combinations 
of design parameter values that probe the plausible range of values. Table 3 provides an illustra
tion of how research teams can summarize the MDESD and statistical power of three-level 
MCRTs under different assumption combinations. In addition, research teams may copy and 
paste some spreadsheets for power analysis as examples such as Figures 2 and 3 if there is room 
in their power analysis write-up. Figures S1–S6 in the supplemental materials illustrate the calcu
lation of the MDESD and power for more examples. An example write-up of power calculation 
of a level-1 binary moderator effect in three-level MCRTs is provided in Appendix B.

Two-level MIRTs

The power analysis of moderation in two-level MIRTs is similar but relatively simpler than in three- 
level MCRTs. Consider the illustrative example introduced earlier regarding the effects of a profes
sional development program on teacher outcomes in a two-level MIRT with teachers nested within 
schools (e.g., Kelcey & Phelps, 2013b). We can conduct power analysis of the moderator effects of 
teacher- and school-level characteristics on teacher outcomes in the two-level MIRTs. By following 
the same steps as in three-level MCRTs, the statistical power or MDESD can be calculated.

Step 1. Select the appropriate design and corresponding software module
The team can choose the corresponding software modules (Columns 6–9, Table 2) to calculate 
the MDESD or power based on the features of their study design (e.g., random or nonrandomly 
varying slope, binary or continuous moderator). Suppose the team would like to conduct power 
analysis of moderator effect for a binary moderator (either level-1 or -2) with random slope. The 
team can choose Module MRT21R_MDESD for calculation of MDESD and Module MRT21R_ 
Power for calculation of power. For instance, clicking “MRT21R_Power” will lead to the spread
sheet like Figure 4.

Step 2. Make reasonable assumptions about design parameter values and investigate implica
tions across a full range of plausible values for sensitivity analysis of power
Using a type I error rate (a) of 0.05, the team chooses a two-sided test over a one-tailed test. To 
calculate MDESD, the statistical power is usually set as 0.80. To calculate the statistical power to 
detect moderation in MCRTs, the team needs to specify the values of the design parameters: (1) 
the desired moderator effect size (e.g., 0.20), (2) the intraclass correlation coefficient (ICC) 
(q ¼ s2

00=ðs2
00 þ r2Þ, where s2

00 and r2 are the level-2 and −1 variance in the unconditional 
model), (3) the proportions of variance explained at level-1 covariates (R2

1), (4) the sample size at 
level-1 and -2 (n and J), and (5) the proportion of individuals assigned to the treatment 
group (P).

Furthermore, for random slope models, the team need to consider the standardized effect vari
ability of the moderation across sites for level-1 moderator (x2

tm ¼ s2
22=ðs2

00 þ r2Þ, where s2
22 is 

the variance of the random slope for the interaction term) and the standardized variability of the 
treatment effect across sites for level-2 moderator (x2

t ¼ s2
11=ðs2

00 þ r2Þ, where s2
11 is the variance 

of the random slope for the treatment variable). See Dong et al. (2021a) for more detailed explan
ation about these design parameters, Table 1 for the statistical models, and Figure 4 for example. 
When a moderator is a binary variable, the team also need to consider the proportion of the 
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moderator subgroup (Q1 or Q2), where Q1 and Q2 refer to the proportion of the individuals and 
sites in one subgroup, respectively.

The design parameters should be drawn from literature or pilot studies. For example, the ICCs 
and R2 values may be found from studies listed in Table A. The researchers adopted ICC of 0.20 
and R2

1 ¼ 0.5 (e.g., Kelcey & Phelps, 2013a). They also adopted a balanced design, the proportion 
of individuals assigned to the treatment group, p ¼ 0.5. For moderators, they assumed the propor
tions of the moderator subgroups, Q1 ¼ Q2 ¼0.5. For the standardized variability of the treat
ment effect across sites for level-2 moderator, they chose x2

t ¼ 0.05 (or xt ¼ 0.22) based on 
Weiss et al. (2017) and Olsen et al. (2017) to get a conservative estimate of power. They did not 
identify studies directly reporting the standardized effect variability of the moderation across sites 
for level-1 moderator (x2

tm). However, neighboring literature suggested a value on the order of 
x2

tm ¼ 0.05 (Phelps et al., 2016). Furthermore, the team assumes that the sample sizes for teachers 
within each school are n ¼ 10, and for schools, J ¼ 160. Once these design parameters are input 
into the corresponding software module, the MDESD or power can be automatically calculated. 
For example, Figure 4 provides the power calculation for binary moderators at level-1 and -2 
with random effects in two-level MIRTs.

Step 3. Report the results with sufficient details to replicate the analyses
The same aforementioned principles for reporting power analysis results apply here. The team 
needs to provide sufficient details (e.g., the study design and parameter assumptions) for others 
to replicate their power analysis. The team also needs to justify the choice of their design parame
ters. Researchers may copy and paste the spreadsheets for power analysis in their power analysis 
writing, for example, reporting power calculation for binary moderator at level-1 and -2 with ran
dom slopes (Figure 4).

As noted earlier, there may not be consensus on some design parameter values, or the design 
parameter values are not available. Again, a sensitivity analysis using different combinations of 
design parameter values that consider plausible ranges of the parameter values may be useful. For 
example, they may choose a smaller ICC ¼ 0.15 and larger xt ¼xtm ¼ 0.32 to get a more conser
vative power and MDESD estimate.

Summary of findings

To further illustrate how design parameter values affect the statistical power in three-level 
MCRTs, we plotted the statistical power as functions of site sample size (K) for binary 

Figure 4. An example of power calculation for binary moderators at level-1 and -2 with random effects in two-level MIRTs.
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moderators with four combinations of different ICCs and effect heterogeneity in Figures 5a–5d, 
which are analogous to the power curve for the two-level MIRTs (Figure 1 in Dong et al., 2021a). 
We use the same assumptions as in Table 3.

In addition, the power of main treatment effect in three-level MCRTs was calculated using 
PowerUp! (Dong & Maynard, 2013) and plotted for comparison. The resulting power curves are 
for the moderation analyses with a binary level-1 moderator with nonrandomly varying effect 
(black short dotted line), a binary level-2 or level-3 moderator with nonrandomly varying effect 
(red solid line), a binary level-1 moderator random effect (black long dotted line), a binary level- 
2 moderator random effect (green dotted line), a binary level-3 moderator random effect (blue 
dotted line), and the main treatment effect (black solid line).

We summarize the findings from Table 3 and Figure 5. First, as for all power analysis the 
power increases (MDESD decreases) with the sample sizes (K, J, and n). Similar as moderation in 
the two-level MRTs (Dong et al., 2021a), the sample sizes at different levels are not equally 
important. For random slope models, the high-level sample size (e.g., sites or clusters) is more 
important than low-level sample size (individuals). However, for nonrandomly varying slope 
models, the power (and MDESD) is the same for both level-2 and level-3 moderators. In these 
cases, the sample sizes at level-2 and level-3 are equally important and they are more important 
than the level-1 sample size. When considering a level-1 moderator, the importance of sample 
sizes at levels 1, 2, and 3 becomes equal.

Figure 5. Power vs. site sample size for the analysis of main effects and binary moderator effects in three-level MCRTs. 
Note. Under the assumptions: n ¼ 20, J ¼ 4, P ¼ 0.5, R2

1 ¼ R2
2 ¼ 0.5, Q1 ¼ Q2 ¼ Q3 ¼ 0.5, effect size (standardized mean differ

ence) for main effects ¼ 0.2, effect size difference for binary moderator effects ¼ 0.2, and a two-sided test with a ¼ 0.05. 
q3¼0.03, q2¼0.12, x2

3TMð1Þ ¼ x2
2Mð1Þ ¼ x2

3TMð2Þ ¼ 0.03, and x2
3T ¼ 0.05 for random slope designs in Figure 5a. q3¼0.03, 

q2¼0.12, x2
3TMð1Þ ¼ x2

2Mð1Þ ¼ x2
3TMð2Þ ¼ 0.05, and x2

3T ¼ 0.10 for random slope designs in Figure 5b. q3¼0.20, q2¼0.06, 
x2

3TMð1Þ ¼ x2
2Mð1Þ ¼ x2

3TMð2Þ ¼ 0.03, and x2
3T ¼ 0.05 for random slope designs in Figure 5c. q3¼0.20, q2¼0.06, x2

3TMð1Þ ¼ x2
2Mð1Þ

¼ x2
3TMð2Þ ¼ 0.05, and x2

3T ¼ 0.10 for random slope designs in Figure 5d.
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Second, the proportion of the sample allocated to the treatment group (P) and to the moder
ator subgroup (Q1, Q2, Q3) are related to the power and MDESD. The power (MDESD) 
increases (decreases) when P and Qs are closer to 0.5 and it achieves the maximum (minimum) 
value when it is a balanced design (P ¼ Q1 ¼ Q2 ¼ Q3 ¼ 0.5).

Third, the power (MDESD) increases (decreases) when the site-level ICC increases. This is 
because the sites explain more level-3 variance, reduce the residual variance at level-1, and hence 
reduce the standard error of the moderated treatment effect estimates. The power (MDESD) 
increases (decreases) when the level-2 ICC increases for the analysis of a level-1 moderator, how
ever, the power (MDESD) often decreases (increases) when the level-2 ICC increases for the ana
lysis of level-2 and −3 moderators.

Fourth, the power increases with the proportion of level-1 variance explained by the covariates 
(R2

1). The power also increases with the proportion of variance of level-2 intercept explained (R2
2) 

for the analysis of level-2 and −3 moderators, however, the power for level-1 moderator analysis 
is not related to R2

2:

Fifth, the power (MDESD) is smaller (larger) for a random slope model than a nonrandomly 
varying slope model for the same moderator. The differences on the power and MDESD between 
the two models (random slope and nonrandomly varying slope models) decreases when the effect 
heterogeneity decreases. In addition, the power (MDESD) is bigger (smaller) for a lower-level 
moderator than a higher-level moderator except for the Level-2 and −3 moderators in the non
randomly varying slope models which have same power (MDESD).

Sixth, the MDESD as defined by the standardized mean difference for the binary moderator 
when Q1 ¼ Q2 ¼ Q3 ¼ 0.5 is always twice the value of the MDESD defined by the standardized 
coefficient for the continuous moderator with a nonrandomly varying effect.

Finally, the power of a nonrandomly varying slope model for level-1 moderator is always 
larger than the main effect analysis. The power of a random slope model for level-1 moderator is 
close to the main effect analysis.

Conclusion

In this tutorial, we demonstrated and discussed power analyses for moderator effects in three- 
level MCRTs and two-level MIRTs using the software. To effectively utilize this tool, it is crucial 
to follow three steps: (1) select the suitable design and corresponding software modules, (2) make 
reasonable assumptions about design parameters and explore the implications across the full 
range of parameter values, and (3) present the results with sufficient details.

It is important to note that there is inherent uncertainty (variance) in the parameter estimates 
found in the literature, the target population might differ from the population for which the 
design parameters were estimated in previous studies, and the design parameter estimates might 
not be always available. In such cases, researchers can sometimes rely on design parameter results 
from pilot studies or results from comparable outcomes and designs. However, we recommend 
conducting sensitivity analyses of the power by carefully considering estimates under a plausible 
range of design parameter values. This underscores the need for more research on design parame
ters, particularly focusing on the heterogeneous effects of the moderator variable, treatment, and 
moderation.

Note

1. These percentages are calculated by dividing the target moderator effect size (0.20) by the disparity or 
reported moderator effect size in a similar intervention, for example, 0.20/0.26 ¼ 77%, 0.20/0.43 ¼ 47%, 
0.20/0.33 ¼ 61%, and 0.20/0.40 ¼ 50%.
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Appendix A: Table A
Design parameter resources.
3-level MCRTs

Parameter Comments Resources

q3 Intraclass correlation coefficient at level 3:  
Proportion of variance among Level 3 units:  
q3 ¼ s2

3=ðs2
3 þ s2

2 þ r2
1Þ:

Social & Behavior: 
Dong et al. (2016); Jacob et al. (2010) 

Math: 
Wijekumar et al. (2009); Westine et al. (2013); McCoach 
et al. (2014); Shen et al. (2023); Zhu et al. (2012); 
Hedges and Hedberg (2013) 

Reading: 
Drummond et al. (2011); Wijekumar et al. (2014); 
Westine et al. (2013); Shen et al. (2023); Zhu et al. 
(2012) 

Science: 
Westine et al. (2013); Spybrook et al. (2016); Zhu et al. 
(2012)

q2 Intraclass correlation coefficient at level 2:  
Proportion of variance among Level 2 units:  
q2 ¼ s2

2=ðs2
3 þ s2

2 þ r2
1Þ:

Social & Behavior: 
Dong et al. (2016); Jacob et al. (2010) 

Math: 
Wijekumar et al. (2009); Westine et al. (2013); McCoach 
et al. (2014); Shen et al. (2023); Zhu et al. (2012); 
Hedges and Hedberg (2013) 

Reading: 
Drummond et al. (2011); Wijekumar et al. (2014); 
Westine et al. (2013); Shen et al. (2023); Zhu et al. 
(2012) 

Science: 
Westine et al. (2013); Spybrook et al. (2016); Zhu et al. 
(2012)

R2
2 Proportion of variance in Level 2 intercept  

explained by Level 2 covariates
Social & Behavior: 

Dong et al. (2016); Jacob et al. (2010) 
Math: 

Wijekumar et al. (2009); Westine et al. (2013); McCoach 
et al. (2014); Shen et al. (2023); Zhu et al. (2012); 
Hedges and Hedberg (2013) 

Reading: 
Drummond et al. (2011); Wijekumar et al. (2014); 
Westine et al. (2013); Shen et al. (2023); Zhu et al. 
(2012) 

Science: 
Westine et al. (2013); Spybrook et al. (2016); Zhu et al. 
(2012)

R2
1 Proportion of variance in Level 1 outcome  

explained by Level 1 covariates
Social & Behavior: 

Dong et al. (2016); Jacob et al. (2010) 
Math: 

Wijekumar et al. (2009); Westine et al. (2013); McCoach 
et al. (2014); Shen et al. (2023); Zhu et al. (2012); 
Hedges and Hedberg (2013) 

Reading: 
Drummond et al. (2011); Wijekumar et al. (2014); 
Westine et al. (2013); Shen et al. (2023); Zhu et al. 
(2012) 

Science: 
Westine et al. (2013); Spybrook et al. (2016); Zhu et al. 
(2012)

x2
3T The standardized effect variability of the treatment  

effect across blocks (Level 3) for L3 moderator: 
x2

3T ¼ s2
0101=ðs2

3 þ s2
2 þ r2

1Þ:

Math: 
Wijekumar et al. (2009) 

Reading: 
Drummond et al. (2011); Wijekumar et al. (2014)
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2-level MRTs

Appendix B: An example of write-up of power calculation of a level-1 binary 
moderator effect in three-level MCRTs

In this three-level MCRT designed to investigate a binary level-1 moderator effect in reducing 
concentration problems among 5th graders, we made the following assumptions: (1) Our desired 
moderation effect size is 0.20, equivalent to reducing 47-77% of the racial, gender, and socioeco
nomic disparities (Dong et al., 2022), and 50% of the reported moderator effect size in a similar 
intervention study (Reinke et al., 2021). (2) The intra-class correlations at the school- and class
room-level are 0.03 and 0.12, respectively (Dong et al., 2016) and 0.20 and 0.06, respectively 
(Shen et al., 2023). (3) The proportions of variance explained by the pretest at level 1 is 50% 
(Dong et al., 2016). (4) It is a balanced design, with the proportion of classrooms assigned to the 
treatment group being p ¼ 0.5, and the proportion of the moderator subgroup being Q1 ¼ 0.5. 
(5). To be conservative, we use a random slope model. We did not identify any studies reporting 
the heterogeneity parameter values for the treatment or moderator variable in three-level MCRT. 
Hence, we adopted the heterogeneity parameter values at the medium to high end of the empir
ical distributions reported in the literature for two-level MIRTs (Dong et al., 2022; Olsen et al., 
2017; Weiss et al., 2017) as approximation. The standardized effect variability of level-1 moder
ator across level-2 units (x2

2Mð1Þ ) are 0.03 and 0.05, respectively. The standardized effect variability 
of the moderation across sites for level-1 moderator (x2

3TMð1Þ ) are 0.03 and 0.05, respectively. (6) 
The sample came from typical schools, with each classroom having 20 students (n ¼ 20) and each 
school having 4 classrooms (J ¼ 4) at grade 5. Additionally, we explore two options for the num
ber of schools: K ¼ 20 and 40, respectively. (7) The type I error rate (a) is set as 0.05, and we 
choose a two-sided test. According to the spreadsheet in PowerUp!-Moderator-MRTs (Dong 
et al., 2023a), the statistical power from the combinations of parameters assumed above ranges 
from 0.51 to 0.64 for K ¼ 20 and from 0.82 to 0.92 for K ¼ 40.

Parameter Comments Resources

q Intraclass correlation coefficient: 
Proportion of variance among Level 2 units:  
q ¼ s2

00=ðs2
00 þ r2Þ:

Social & Behavior: 
Dong et al. (2016) 

Math: 
Westine et al. (2013); Hedges and Hedberg (2007); 
Bloom et al. (2007); Zhu et al. (2012) 

Reading: 
Drummond et al. (2011); Westine et al. (2013); Hedges 
and Hedberg (2007); Bloom et al. (2007); Zhu et al. 
(2012) 

Science: 
Spybrook et al. (2016); Zhu et al. (2012) 
Teacher outcomes: 
Kelcey and Phelps (2013a); Kelcey and Phelps (2013b)

R2
1 Proportion of variance in Level 1 outcome  

explained by Level 1 covariates
Social & Behavior: 

Dong et al. (2016) 
Math: 

Westine et al. (2013); Hedges and Hedberg (2007); 
Bloom et al. (2007); Zhu et al. (2012) 

Reading: 
Drummond et al. (2011); Westine et al. (2013); Hedges 
and Hedberg (2007); Bloom et al. (2007); Zhu et al. 
(2012) 

Science: 
Spybrook et al. (2016); Zhu et al. (2012) 
Teacher outcomes: 
Kelcey and Phelps (2013a); Kelcey and Phelps (2013b)
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