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The development of FPGA-based applications using HLS is fraught with performance pitfalls and large design space exploration
times. These issues are exacerbated when the application is complicated and its performance is dependent on the input data set,
as is often the case with graph neural network approaches to machine learning. Here, we introduce HLPerf, an open-source,
simulation-based performance evaluation framework for dataflow architectures that both supports early exploration of the
design space and shortens the performance evaluation cycle. We apply the methodology to GNNHLS, an HLS-based graph
neural network benchmark containing 6 commonly used graph neural network models and 4 datasets with distinct topologies
and scales. The results show that HLPerf achieves over 10 000X average simulation acceleration relative to RTL simulation
and over 400X acceleration relative to state-of-the-art cycle-accurate tools at the cost of 7% mean error rate relative to actual
FPGA implementation performance. This acceleration positions HLPerf as a viable component in the design cycle.
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Reconfigurable computing; « General and reference — Performance.
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1 INTRODUCTION

Graphs are widely adopted to model the relational-structured data in social networks, bioinformatics, etc. Machine
learning (ML) on graphs has experienced a surge of popularity in the past decade, since traditional ML models,
which are designed to process Euclidean data with regular structure, are ineffective at performing prediction tasks
on graphs. Due to their superior representation learning ability, Graph Neural Networks (GNNs) [19, 24, 37, 38, 42]
have achieved impressive utility on graph learning tasks, such as node classification [39], graph classification [44],
link prediction [17], recommendation [12], etc. Given the advent of IoT and edge computing platforms, the
execution of GNNs on edge devices (especially those with constraints on energy usage) has similarly received
recent attention [21, 47, 48].

With the diminishing of Moore’s law [33, 36] and the end of Dennard scaling [4, 14], FPGAs have become an
attractive approach to application-specific acceleration, due to their massive fined-grained parallelism to exploit
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the inherent parallelism of algorithms, better performance per watt than general-purpose computing platforms
(of particular importance for edge computing), flexible reconfigurability for the adoption of various applications,
and data path customization capability.

Due to the conflict between the non-trivial development efforts with conventional HDL design methodology
and rapid emergence of new algorithms to be accelerated, High-Level Synthesis (HLS) tools, such as AMD
Xilinx Vitis and Intel OpenCL HLS, have been developed to automatically translate algorithms expressed in
commonly-used software languages such as C/C++ to hardware implementations, substantially shortening the
development time. Due to their expression at a higher level of abstraction, modern HLS tools and techniques
provide greater opportunities to ease design space exploration and optimization which can be impractical in
HDL designs.

Although HLS bridges the gap between software and hardware development, optimizing HLS codes is substan-
tially distinct from conventional software programming. In fact, due to the FPGAs’ inherent attributes, such as
lack of built-in cache mechanisms, low clock frequency (relative to traditional processor cores), and fine-grained
configurability, the performance difference between a well-optimized version and naive version of the same
kernel can be two or three orders of magnitude [6, 15, 35]. Therefore, to achieve the best performance, HLS
developers need to explore a large optimization space for HLS designs with various optimization pragmas, coding
paradigms, etc.

As the complexity of kernels increases, optimizing (or auto-optimizing) such kernels is difficult via conventional
HLS workflows for several reasons:

(1) Since pure C emulation is only designed for functionality verification, current HLS developers have to use
RTL simulation to understand performance by manually mapping the results of individual signals in the
generated waveform back to the HLS code. However, since all the signal names are auto-generated, they
are not easily comprehensible by users. Besides, RTL simulation usually takes a very long time, making the
tuning effort arduous. Even worse, it is exacerbated by the fact that tuning with a small example data set is
less meaningful for GNN kernels in terms of performance estimation because of the inherent irregularity
of graph datasets and algorithms. In other words, distinct graph topologies can significantly impact the
final performance achieved. Therefore, when it comes to large-scale graphs, RTL simulation is impractical
to be used to optimize GNN kernels with these graphs.

(2) The notion of dataflow architectures which exploit task-level parallelism, where multiple functions are
connected by FIFOs and executed concurrently instead of sequentially, further mystifies the optimization
process because it induces a wider set of design space challenges including: task partitioning, FIFO depth
tuning, and bottleneck identification, which are distinct from conventional computation platforms.

The critical missing piecein the optimization task is the availability of fast, high-quality understanding of the
performance implications of the design choices that are made. Our focus in this work is to address this missing
element, providing the the designer (whether it be a human or an automatic design space exploration tool [32])
with performance predictions both quickly and with sufficient accuracy that they can be used effectively.

Traditional approaches to performance assessment either involve static assessment (i.e., compile-time analysis)
or cycle-accurate simulation. In this work, we propose a different method, effectively between the approaches of
static estimation and cycle-accurate simulation, to investigate the impact of irregularity of data and algorithms
on performance. Due to the existence of other HLS tools for functional verification (e.g., software emulation in
Vitis), our method decouples functional verification from performance estimation, so that the runtime of the
estimation process is independent of the computational details of the FPGA algorithms.

Here, we introduce HLPerf, a performance evaluation methodology that supports the performance variations
inherent in data-dependent algorithms (it is simulation based), but relaxes the notion of cycle accuracy and
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replaces it with “approximate” cycle accuracy. The result is a simulation-based performance estimate that is two
orders-of-magnitude faster than state-of-the-art simulations that perform cycle-accurate functional verification.
The paper makes the following contributions:

e We propose HLPerf, an open-source!, approximately-cycle-accurate performance evaluation method, to
estimate the dynamic performance of GNN HLS kernels with a dataflow architecture. It gives useful
performance guidance with dramatically better simulation speed than both RTL simulation and more
recently developed cycle-accurate simulators.

e We describe an approach to automatically transform the HLS C-based source code describing several GNN
operations into simulation components.

e We propose a set of high-level quantitative expressions in HLPerf to model the performance impact of
various optimization techniques. Decoupling performance estimation from functional verification, HLPerf
is faster and can be used to guide dataflow pipeline designs even prior to the authoring of the constituent
HLS kernels.

e We provide a comprehensive evaluation of HLPerf using 6 different GNN models on 4 graph datasets plus
several additional general-purpose applications, assessing both accuracy of the performance predictions
and performance of the simulator itself. Our evaluation results show that the error rate of HLPerf is
7% on average and it is 13, 500x faster than RTL simulation and over 400X faster than a state-of-the-art
cycle-accurate simulator.

The result is a capability that enables performance tuning of deeply pipelined dataflow architectures with a
dramatically reduced design/evaluation cycle. It does not replace cycle-accurate simulation, as there is some
accuracy sacrificed when relaxing the requirement for cycle accuracy. Rather, it is intended for use early in the
design cycle, when variations in performance due to simple design modifications can impact performance by
large factors.

The manuscript is organized as follows. Section 2 gives background information on HLS workflows and
graph neural network applications as well as a description of related work. Section 3 describes the methodology,
including the design workflow with HLPerf, the event-driven simulation, and the modeling of HLS kernels.
Section 4 gives two options for an application developer’s experience using HLPerf. Section 5 articulates the
evaluation methods, and Section 6 gives quantitative evaluation results. Section 7 provides conclusions and
directions for future work.

2 BACKGROUND AND RELATED WORK
2.1 High-Level Synthesis Workflow

We start with an introduction to the basics of an HLS workflow, which is adopted by most of the mainstream
HLS tools, such as Xilinx Vitis and Intel OpenCL HLS. This is illustrated in Figure 1. In this paper, we use Xilinx
Vitis [2] as the running example, but the underlying principles are the same for many other HLS tools. It contains
the following steps.

(1) HLS C Code: HLS users are first required to build HLS kernels based on target algorithms using high-level
languages (e.g., HLS C) annotated with pragmas that can have substantial impact on the final performance. Among
all the various optimization techniques, #pragma HLS dataflow is frequently first used to build a dataflow
architecture in which all the functions in the dataflow scope are connected by FIFOs to form a pipeline-style
architecture and scheduled to be performed concurrently. In our GNN applications, each function contains one
or more loops. Then they use other pragmas such as Pipeline, Loop Unroll, Loop Merge, Burst Memory
Access, Memory Port Widening, etc., to optimize each function or loop in terms of throughput, iteration, and

Ihttps://github.com/ChenfengZhao/HLPerf
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Fig. 1. Conventional HLS workflow (in black) and our contribution (in red).

memory accesses. In addition, distinct coding paradigms with the same functionality can also influence the final
performance of the HLS kernel.

(2) C Emulation: The HLS kernel file, along with the host file, configuration files, and input dataset are
compiled and executed under software emulation mode. Note that C emulation only focuses on functionality
verification of the HLS kernel. Thus, it doesn’t involve performance estimation.

(3) High-Level Synthesis: In this step, HLS tools convert the HLS Kernel from the high-level C-like description
to an RTL-level hardware description language (e.g., Verilog, VHDL). To achieve this goal, the HLS tool initially
preprocesses the source code of the HLS kernel and conducts transformations based on user-defined pragmas.
Subsequently, operations are scheduled in accordance with the corresponding dependency and optimization
techniques, and then bound to hardware resources. After this process, coarse-grained control flows are typically
implemented as finite-state machines, while fine-grained instruction collections are realized as variants of
pipelines. Following these steps, the HLS tool provides estimated intermediate results of the scheduling such as
the latency and throughput of pipelines. Finally, RTL code is generated. Note that due to the inherent dynamic
characteristics of GNN applications and their significant dependence on input graph datasets, the HLS tool is
incapable of providing conclusive outcomes through static performance estimation.

(4) RTL Simulation: To obtain estimated cycle-accurate performance results of HLS kernels, the generated
RTL code, along with host files, configuration files, and graph datasets, are compiled and executed under hardware
emulation mode for RTL simulation. Due to the inherent irregularity of GNNs and graph datasets, the simulation
needs to include at least a representative subset of the input graphs to be processed. The results are stored in
a waveform file containing cycle-accurate transitions of all the signals in the RTL code. To debug or improve
the performance of the HLS kernels, users are required to trace these RTL signals (often with incomprehensible
names) back to HLS code, modify the HLS code, and repeat the procedure until the performance goals are
satisfied. However, the whole procedure takes a significant amount of time due to the incorporation of extensive
architectural details and the desire to be cycle accurate. Consequently, RTL simulation is usually impractical to
be used for estimating the performance of complicated GNN HLS kernels with large-scale graph datasets.

(5) Hardware Compilation & FPGA Execution: To get the physical layout, the generated RTL code is
converted into a gate-level representation (i.e., netlist) for a specific architecture and then mapped to specific
locations of the target device via the place & route process. A series of back-end strategies on physical imple-
mentations are performed to get a trade-off among design’s performance, area, and power. The finalized circuit
description is encapsulated into a bitstream file, which is then executed on an FPGA, enabling the measurement
of the actual execution times. This step is quite time consuming (e.g., 4.5-12 hours for compilation of GNN HLS
kernels), and even though direct execution is clearly the gold standard for performance understanding, it is the
length of these build times that makes the inclusion of direct execution in the iterative design cycle unattractive.
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Fig. 2. GNN dataflow pipeline.

2.2 Graph Neural Networks

Here, we use GNNHLS [46], a HLS benchmark suite containing 6 well-tuned GNN kernels with multiple optimiza-
tion techniques applied. These kernels with various structures can be classified into two categories: (1) isotropic
GNN s in which every neighbor contributes equally to the update of the target vertex and (2) anisotropic GNNs
in which edges and neighbors contribute unequally to the update due to the adoption of operations such as
attention and gating mechanisms. Note that although these kernels have distinct HLS implementations, all of
them adopt a dataflow architecture (illustrated in Figure 2) in which 7 to 27 functions are connected with FIFOs,
making them suitable targets for HLPerf. Table 1 provides some information about each of the GNN models,
further details (including the implementations) can be found in [46].

Table 1. GNN models.

GNN Model Reference | Stages (S) | Category
Graph Convolutional Network (GCN) [24] 7 isotropic
GraphSage (GS) [20] 14 isotropic
Graph Isomorphism Network (GIN) [42] 11 isotropic
Graph Attention Network (GAT) [37] 27 anisotropic
Mixture Model Networks (MoNet) [29] 11 anisotropic
Gated Graph ConvNet (GatedGCN) [5] 19 anisotropic

The input data of the GNN kernels consists of 2 elements: the input graphs themselves (stored in CSR,
compressed sparse row, format) and the corresponding features (stored in separate matrices).

2.3 Related Work

To address the performance evaluation challenge, several works have been proposed, which can be classified
into 2 main classes: static estimation [8, 11, 13, 28] and cycle-accurate simulation [1, 10, 31]. Static estimation is
performed at compile time so has difficulty with performance that is input dependent, and cycle-accurate simula-
tion substantially accelerates the speed of RTL-level simulation while maintaining quality of the performance
predictions. We will report research happening in each area in turn.

Legup [8] estimates the speedup of the accelerated function in the HLS kernel in the straightforward way
of multiplying the number of iterations recorded by software profiling tools and the single-iteration execution
time extracted from RTL simulation. This method does depend on RTL simulation. Additionally, it assumes the
FPGA algorithms are performed sequentially, so it doesn’t consider a number of HLS optimization techniques,
such as pipelined execution. HLScope+ [11] proposes a method to perform pipelined loop analysis by inserting
hooks to HLS C code and extracting HLS abstraction information. However, it fails to capture the irregularity of
data sets (e.g., graph topologies) and respond to the dynamic properties of irregular algorithms and HLS kernels.
Pyramid [28] uses machine learning techniques to estimate both FPGA area requirements and achievable clock
rates. De Fine Licht et al. [13] propose a static expression for pipelined loop analysis with some optimization
techniques. However, it is also not sufficient for irregular data and algorithms.
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On the other hand, Flash [10] uses scheduling information to build a C cycle-accurate simulation model.
Fastsim [1] translates generated RTL code to an equivalent C++ cycle-accurate model. LightningSim [31] proposes
a LLVM-IR-trace-based method to reconstruct a cycle-accurate model. In spite of the ability of these cycle-accurate
methods to analyze the dynamic behavior of many FPGA algorithms, there are still some drawbacks: (1) These
works are designed to provide both functional correctness verification and performance estimation, increasing
the workload of the evaluation process. (2) Since these methods are related to the construction and execution of
cycle-accurate time models with many low-level details, the simulation speed is limited.

Design space search and custom architectures aimed specifically at GNNs have also received attention re-
cently [18, 21, 26, 27, 43, 45, 47, 48]. HGNAS [47, 48] targets edge devices for execution of GNNs, explicitly
considering reduction in memory requirements as well as execution speed. DeepBurning-GL [26] proposes an au-
tomated framework to convert specific component of GNN models based on DGL to RTL codes using pre-defined
hardware templates. G-CoS [45] works to match GNN structure with the available execution platform(s), and Hao
et al. [21] exploit reinforcement learning as part of the design space search. HyGCN [43] is a custom ASIC design
aimed at graph neural network inference that is evaluated using the TSMC 12 nm CMOS process. EnGN [27]
targets the need to scale up to large graphs by introducing a ring-edge-reduce dataflow to handle graphs with
arbitrary dimensions. AWB-GCN [18] is a custom FPGA design that addresses the variability in graph topology
by auto-tuning the accelerator during the execution of the GNN application itself. While the authors of all of the
above studies evaluate performance on a variety of graphs, none of the design space exploration investigations
incorporated simulation into the performance evaluation that specifically guides the search of the design space,
and only AWB-GCN has explicit mechanisms for adapting to variations in properties of the input graphs. Our
intention is to make simulation sufficiently fast that it can be seriously considered in an automated design space
search context.

GNN models are but one example of applications that execute on graphs. Chen et al. [9] introduce ThunderGP,
a framework for developing general graph applications for deployment on FPGAs. ThunderGP uses a dataflow
architecture for its designs, so a GNN model developed using ThunderGP could likely utilize HLPerf as a
companion performance evaluation tool.

3 METHODOLOGY
3.1 Overall Workflow

As depicted in black in Figure 1, the conventional design flow exhibits a deficiency in effective and practical
methods for estimating the performance of GNN HLS kernels, which is crucial for rapid iterative tuning. To
address this shortcoming, we devise a new workflow, HLPerf, incorporating the new element highlighted in red
in Figure 1. The main idea is to circumvent the need for RTL simulation or FPGA execution each design iteration
and build a high-level “approximately-cycle-accurate" abstraction of the HLS kernel that supports much higher
simulation speed to accelerate the iterative design space exploration of HLS kernels. HLPerf is composed of 3 core
elements: (1) a discrete-event simulation system built upon SimPy to emulate the inherent concurrency of the
dataflow architecture and capture its dynamic execution behavior; (2) quantitative expressions of pragma-driven
patterns to model the performance impact of various optimization techniques, decoupling performance estimation
from functional verification; and (3) a front-end source-to-source compilation step to automatically transform
the HLS C-based source code of diverse GNN applications into corresponding simulation components. These
elements are used to build “approximately-cycle-accurate" models focusing only on the performance estimation of
fundamental loops with distinct optimization techniques. Since HLPerf (1) decouples the performance estimation
from computational intricacies of the algorithm, (2) involves fewer signals to be simulated, and (3) adopts coarser
granularity of runtime simulation rather than cycle-accurate simulation, the performance estimation process and
the resulting iterative tuning procedure are substantially accelerated.
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Fig. 3. The overall workflow of HLPerf.

The overall workflow of HLPerf is shown in Figure 3. It consists of 4 steps: model creation, parameter loading,
HLPerf simulation, and kernel tuning.

©® Model Creation: In addition to the conventional HLS workflow where HLS C code is checked with
functionality via C emulation and converted to RTL code via HLS, in HLPerf we build a front-end converter
to analyze the source code of HLS kernels to extract the key information, such as the code structure, the
topology of dataflow scopes, high-level expression of loops and FIFOs, and HLS optimization techniques. Then
the corresponding approximately-cycle-accurate HLPerf model is automatically generated by the converter.

® Parameter Loading: After the scheduling and binding procedure of HLS and before the start of RTL
generation, the front-end converter also automatically extracts realistic performance parameters (e.g., latency
and initiation interval) from the synthesis log file and uses them to complete the generated HLPerf model. Note
that this step does not rely on the first step, so they can be executed in parallel.

® HLPerf Simulation: After performing the simulation of the HLPerf model with graph datasets, a detailed
result summary report is generated, offering a holistic view of the dataflow architecture’s performance. This
report provides the overall estimated performance of the GNN HLS kernel, and can help users to explore the
impact of distinct graph topologies on the performance of the dataflow architecture and pinpoint performance
bottlenecks.

® Kernel Tuning: With the help of the HLPerf result report, users can tune the HLS C code for one or more
kernels with an alternative strategy, such as code paradigm, FIFO sizes, optimization technique choices, etc.
Even better, if the code modification is not related to the parameters achieved from the scheduling and binding
procedure, users can directly re-run the workflow of HLPerf without performing the HLS step, which can save
additional time.

3.2 Discrete-Event Simulation

In cycle-accurate simulations, such as RTL simulation, activity within the design is modeled at each cycle, whether
or not that activity is relevant to the performance estimation of the design (e.g., it might be relevant for functional
correctness, but not performance). However, many cycles do not have activity that is relevant to the performance
estimation, and can therefore be skipped in a purely performance-oriented simulation.

In contrast to the cycle-based progression described above, HLPerf’s Discrete-Event Simulation (DES) adopts
an event-driven paradigm. The key idea is to generate discrete sequences of coarse-grained events occurring
at specific time intervals. These events represent a change of state in the system and are scheduled with a
time-skipping strategy which advances the simulated time forward directly to the subsequent event’s occurrence,
Therefore, it enables the creation of simplified system models that concentrate on key processes of significant
influence, while avoiding the intricacies of low-level details. By substantially diminishing the complexity and
resource intensity of the simulation, DES is more efficient and time-effective than time-stepped simulation
methodologies.
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In this paper, we build the high-level performance models within HLPerf for a variety of GNN kernels using
SimPy [34], a Python-based generic library for discrete-event simulation. In essence, SimPy operates as an
asynchronous event dispatcher. It generates and schedules events at specified time intervals by storing all the
events in a heap-based event list and ordering them by simulation time, priority, and increasing event ID. In SimPy,
systems are modeled through the creation of process functions. These functions simulate entities whose behaviors
evolve over time. Rather than exploiting multiple threads to replicate the inherent parallelism in processes, SimPy
utilizes Python’s generator functions in each process function. These generators are characterized by Python’s
yield keyword and act as suspend/resume points. This feature allows the temporary suspension of process
functions and subsequent resumption at the point of last suspension. Specifically, when a generator issues a yield
command within a process, the process is paused, and a new event is yielded and inserted into the event list with
the position in a given order. Subsequently, SimPy’s internal functions inspect the scheduled events, extracting
and removing the one with the earliest simulation time. The system’s simulation time, SimTime, is then updated
to the time of that event, and the corresponding process is resumed immediately following the last executed
yield statement. Through this mechanism, the parallelism of process functions can be simulated by alternate
execution of effective co-routines.

In addition, process functions are not standalone entities. SimPy provides shared resource classes to model the
interaction between processes. These resource classes serve as containers with a user-defined capacity, so that
process functions can either write data into the resource instances using the put () method or retrieve data from
it using the get () method. Since both of these methods are Python generator functions with yield statements,
they can return an event that is triggered when the corresponding action is to be executed. Therefore, when the
resource is empty or full, processes are required to wait for the state change of the resource. This system ensures a
controlled and orderly interaction among processes for shared resources. All aspects of the simulation, including
process functions, resources, simulation time, and event scheduling, are managed by SimPy’s Environment class.
Once the Environment.run() method is executed, the simulation is activated.

In order to simulate dataflow architectures in HLPerf we use process functions to represent individual stages.
Given that SimPy offers three types of shared resources, we choose the Store() class to model FIFOs due to its
capability to store Python objects. Figure 4 illustrates an example of employing SimPy for dataflow architectural
simulation. For the sake of simplicity, this example considers only Stagel, Stage2, and a connecting FIFO1 with a
capacity of two. These components are correspondingly modeled as process1, process2, and storel. In this
case, assume process1 has data to dispatch to storel at times £y, t1, 5, and t;, while process2 retrieves data at
t3, ts, t5, and t, with t; < t;;. Upon initiation of the simulation, a process from the “runnable" list is selected
for execution. Assume process1 is chosen and successfully sends data at ¢, and subsequently again at ¢, the
FIFO reaches its full capacity, preventing the transmission at f, and resulting in the suspension of process1.
Subsequently, process?2 is activated, retrieves data at t3, and is then suspended. As FIFO1 is no longer full,
process]1 resumes and succeeds in transmitting data at t;, and is suspended again. Next, process2 then resumes,
successfully retrieves data at t; and ts5, and is suspended. At ts, process2’s attempt to retrieve data fails due
to FIFO1 being empty, prompting process1 to resume and successfully send data at t7, followed by process?2
retrieving data at the same time. Note that while ping-pong buffers are also used in some cases, they are not
utilized in the benchmarks discussed in this paper. As such, they are not elaborated here. However, a ping-pong
buffer can be implemented using two instances of SimPy’s Store and simple switching logic. More details on
constructing performance models in HLPerf based on SimPy are discussed in Section 3.4.

3.3 HLPerf Model Converter

The front-end converter takes the source code of the target HLS kernel and the intermediate results of the HLS
scheduling and binding procedure as inputs, and automatically generates HLPerf models as outputs. Figure 5
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Fig. 5. The workflow of the Front-End Converter in HLPerf.

depicts the workflow of the front-end converter. Initially, the converter preprocesses the HLS C source code
of the target GNN kernel by parsering the code using pycparser([3], a generic python library for C language
parsing. Since the source code incorporates 2 specific C++ data types: hls: :vector and hls: : stream, which
are not inherently recognizable by pycparser, these data types are substituted with a placeholder C data type
(e.g., int) during the preprocessing procedure. We note that this substitution does not influence the subsequent
HLPerf model simulation. The irrelevance of vector data to the simulation stems from our approach of decoupling
the simulation from functional correctness, one of the key advantages of HLPerf. Additionally, the stream type’s
relevance is mitigated as the front-end converter can identify FIFOs through the stream pragma (i.e., #pragma
HLS stream), ensuring a seamless simulation process. Meanwhile, the converter also parses the the synthesis log
file (e.g., vitis_hls.log in Vitis) to extract intermediate results of HLS scheduling and binding. For example, in
vitis_hls.log it will report the IT and latency L in the log information Pipelining result : Target II =
1, Final IL = 1, Depth = 75 where final I] is 1 and latency is 75. Besides, the converter also extracts the
pre-defined memory latency (e.g., set by parameter m_axi_latency in Vitis).

After parsing and preprocessing, the source code of the target HLS kernel is converted into an abstract syntex
tree (AST) representation by pycparser. An AST is a tree representation of the syntactic structure of the source
code, in which each node represents the information of a code part such as function, loop, statement, variable,
etc, and each edge represents the relationships among different code parts. The root of the AST is the top-level
kernel function. The front-end converter automatically generates the HLPerf model of the target GNN HLS kernel
following AST traversal.

ACM Trans. Reconfig. Technol. Syst.
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Fig. 6. The diagram of the latency (L), initiation interval (II), and interation number (N) of a pipelined loop.

Algorithm 1 shows the pseudocode for the HLPerf model generation. This method accepts the AST repre-
sentation of the target kernel and intermediate parameters as inputs. The process begins with the instantiation
of a new model for the target High-Level Synthesis (HLS) kernel. Subsequently, the converter identifies and
logs all memory-related arguments from the top-level kernel design by analyzing the #pragma HLS INTERFACE
directive. In our case, these memory ports adhere to the m_axi protocol and are essential for the subsequent
integration of memory latency into the HLPerf model. Notably, among these arguments, node_src, the array
representing source vertex indices, is uniquely tied to real input data as it reflects the irregular topology of the
input graph. The converter then proceeds to locate all dataflow functions; starting from the root. These functions
are identified by the #pragma HLS dataflow directive. Typically, each HLS kernel in our GNN applications
corresponds to a single dataflow function. For each identified dataflow function, a new environment within
the model is established. Given that dataflow functions in our applications consist of two node types, variables
with a stream pragma denoting FIFOs and functions representing stages in the dataflow architecture, they are
processed distinctly. A new FIFO instance for each stream variable is created within a unified model environment.
Moreover, as each function generally encompasses several loops, a new process within the model is created for
each function, with a detailed examination of its arguments to discern FIFOs and memory-related arguments.
Subsequently, a recursive Depth-First Search (DFS) algorithm traverses all for loops within the function. For
each loop, the boundary is first analyzed, with distinct processing based on the boundary’s type (e.g., constant
or variable). The pragmas within the loop are then checked, and the loop body is replaced with pragma-driven
patterns. Finally, the intermediate parameters from HLS are incorporated into the loop. Upon the comprehensive
processing of all dataflow functions, the HLPerf model is automatically generated.

3.4 Pragma-Driven Pattern Modeling

In GNN implementations, the HLS kernels are invariably loops, which can have their performance analyzed
analytically without any need for full cycle accuracy. In HLPerf, we build pragma-driven patterns based on
analytical expressions [13] to model the performance impact of various optimizations on loops in each stage of
the dataflow architecture. A pragma driven pattern consists of 3 parameters: Latency (L) represents the number
of cycles for an input element to propagate from the entry to exit of a pipeline. Initiation interval (II) denotes
the number of cycles required for successive input elements to be ingested. Iteration number (N) of the loop
represents the number of data elements to be processed by the pipeline. Figure 6 shows the relationship of
these 3 parameters in a pipeline loop where L, II, and N are 4, 2, and 5 respectively. The overall execution time
isT = L+ II X (N — 1). In essence, the performance benefit of the prevalent optimization techniques will be
attributed to their impact on these parameters. Thus, applying distinct optimization techniques to the same loop
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Algorithm 1: HLPerf Model Generation Algorithm
input :AST of kernel’s source code
input :Intermediate parameters of HLS
output:Generated HLPerf model
// Create a new model instance
1 model « createModel();
2 Sy, < Find all the top-level memory arguments via #pragma HLS INTERFACE;
3 Sy « Find all the dataflow functions starting from root;
4 foreach dfe S; do
// create a new environment

5 env < model.createEnv(df);
6 foreach node € df.childList do
7 if node.pragma is stream then
// create a new fifo instance
8 model.addFIFO(env, node);

©
o

Ise if node.type is function then
// create a new process instance

10 func <« model.addProcess(env, node, S,);

11 while Recursively DFS traverse all the for loops € func do
12 Analyze the boundary of the loop;

13 Replace loop body with pragma-driven patterns;

14 Load intermediate parameters of HLS;

// Save the generated HLPerf model
15 model.save();

will result in different parameterizations of this quantitative expression. To quantify the parameterization, we
use SimPy’s Environment.timeout() method which is a yield statement to schedule the execution of the
HLPerf model by suspending a process for a given time. Note that for loops without any pragmas, we use the
number of unoptimized operations in the loop body to schedule the process. Here, we use code snippets of the
GCN kernel as examples to illustrate how these optimization techniques affect the kernel performance and the
mapping between HLS kernel and HLPerf models.

Pipeline is one of the essential optimization techniques in the HLS community for effective hardware acceler-
ation. It enables instruction-level concurrent execution to to reduce II and improve the overall throughput. Vitis
provides a pragma, #pragma HLS pipeline, to convert a regular sequential loop to a hardware pipeline whose
execution is illustrated in Figure 6. To figure out how to map HLS C with pipelined loops to the HLPerf model,
we use the aggregation module in the GCN kernel as an example, Listing 1 and Listing 2 show the corresponding
code snippet in HLS C and HLPerf, respectively. There are 3 loops in Listing 1. The first, 1loop1, is a non-perfect
loop with a variable boundary representing the in-degree of each node. After reading the neighbors’ feature
vectors from the input FIFO (i.e., fifoIn) which is implemented as a stream class in Vitis (line 2), these features
are aggregated in loop1.1 to which the pipeline pragma is applied. The equivalent HLPerf model is shown in
Listing 2 (lines 1-3). The input FIFO is realized by the store class of SimPy and the read operation is performed
via the get () method. We note that although FIFO operations are performed, the accessed data is ignored because
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loop1: for(uint64_t e=tmp_begin; e<tmp_end;
et++){
vec vecl = fifoln.read();
loop1.1: for(int i=0; i<2; i++){
#pragma HLS pipeline II=1
//aggregate feature of each neighbor
}
}
loop2: for(int i=0; i<2; i++){
#pragma HLS pipeline II=1
fifoOut << vec_aggl[i] // write the
aggregated result.

Listing 1. Aggregation module in HLS C.

for e in range(deg):

_ = yield fifoln.get()

yield env.timeout(L[QJ+II[@])
for i in range(2):

if i == 0:
yield env.timeout(L[1])
else:

yield env.timeout(II[1])
fifoOut.put(1)

Listing 2. Aggregation module in HLPerf.

we are only focusing on performance estimation. Now that loop1.1 doesn’t contain any FIFO operations, we
can use the expression illustrated in Figure 6 to calculate its overall execution time serving as the delay, which is
simulated via the timeout () method of the SimPy environment.

The remaining loop in Listing 1, loop2, is also a pipelined loop designed to write the result feature vector to
fifoOut. However, since it contains FIFO accesses, we cannot use a single formula to build the HLPerf model.
Because the first input data needs to pass through the pipline before being written to the output FIFO, we establish
a loop with iteration-level delay analysis, shown in Listing 2 (lines 4-9), where the time spent on generating the
first and the rest of output data is L and II, respectively.

Loop Unroll leverages instruction-level parallelism by executing multiple copies of loop iterations in parallel
to increase throughput at the cost of resource utilization. It is enabled with #pragma HLS unroll. In essence,
this pragma reduces the number of data elements to be processed sequentially. Thus, it improves the kernel
performance by reducing N. The factor option represents the number of generated hardware replications. Here
we use the core loop of the grouped VMM module as an example to illustrate its HLPerf Model. Listing 3 shows
the HLS C code where loop1.1 is unrolled by a factor of 2. The corresponding HLPerf model is shown in Listing 4
where the impact of the unroll pragma is to reduce the iteration number by 2.
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loop1: for(int k=0; k<FT/D; k++){
loop1.1: for(int kd = @; kd < D; kd++){
#pragma HLS pipeline II=1
#pragma HLS unroll factor=2
// computation details of grouped VMM
}
}
Listing 3. Grouped vector-matrix multiplication in HLS C.
yield env.timeout(L + II * (FT/D * D/2 - 1))

Listing 4. Grouped vector-matrix multiplication in HLPerf.

Loop Merge optimizes the finite state machine (FSM) of nested loops to remove the impact of inner loop
latency on the overall throughput. This optimization technique is usually automatically inferred by Vitis. In
essence, its performance benefit is enabling the latency of inner loops to be counted at every iteration of the
outer loops. Let’s still take the grouped VMM module as an example. In Listing 3, loop1 and loop1.1 are merged
automatically by Vitis because this nested loop is a perfect loop. Therefore, in the HLPerf model shown in
Listing 4, L is counted only once. Note that for the loops containing FIFO operations, the HLPerf model can be
built by adding the iteration index of the outer loop into the if condition of the latency.

loopl: for(uint64_t e=tmp_begin; e<tmp_end;
et++){
uint64_t tmp_src = fifoln.read();
loop1.1: for(int i=0; i<2; i++){
#pragma HLS pipeline II=1
fifoOut << ft_in_mat[tmp_srcx2+i];
}
}

Listing 5. Memory read module in HLS C.

Memory Burst Access enables large chunks of data accesses in contiguous address to be executed in burst
mode to improve the overall memory bandwidth. During memory burst accesses, the memory latency (i.e., the
accumulated latency of the DDR controller, AXI interconnect, M-AXI adapter, and kernel design) is paid only
for the first data element and the successive data elements are accessed at every clock cycle. This optimization
technique and associated parameters (e.g., burst length) are automatically inferred by Vitis. From a high-level
perspective, the performance benefit of burst access lies in moving the request latency out of the memory access
loop, which is similar to the principle of Loop Merge.

Taking a memory read module as an example, which enables memory read accesses in burst mode, the HLS
C kernel and HLPerf model are shown in Listing 5 and Listing 6, respectively. In Listing 5, there is a nested
loop. Since it is an edge-wise operation, the indices of the source node need to be read from the input FIFO
fifoln in the order of edges (lines 1-2). Then in loop1. 1 each feature vector is read from memory according to
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for e in range(deg):
_ = yield fifolIn.get()
yield env.timeout(L_mem) # memory latency
for i in range(2):

if i == 0:
yield env.timeout(L)
else:

yield env.timeout(II)
yield fifoOut.put(1)

Listing 6. Memory read module in HLPerf.

the source node index (i.e., ft_in_mat) and written to the output FIFO fifoOut. Because of the emergence of
fifoln read operation (line 2), induced by the inherent irregularity of graph topology, loop1 is a non-perfect
loop. Therefore, the burst mode is only inferred in loop 1.1 and the burst length is the feature size d. Listing 6
shows the equivalent HLPerf model. Since the burst access is constrained in the inner loop (lines 4-9), the impact
of memory latency L_mem is applied prior to the start of the inner loop. Therefore, the timeout statement of

L_mem is placed at line 3, between the outer loop and the inner loop.

loop1: for(uint64_t e=tmp_begin; e<tmp_end;
et++){
#pragma HLS pipeline II=1
uint64_t tmp_src = fifoln.read();
fifoOut << ft_in_mat[tmp_src];
}

Listing 7. Pipelined memory read requests in HLS C.

yield env.timeout(L_mem) # memory latency
for e in range(deg):
_ = yield fifoln.get()

if e == 0:
yield env.timeout (L)
else:

yield env.timeout(II)
yield fifoOut.put(1)

Listing 8. Pipelined memory read requests in HLPerf.

Memory Port Widening increases the memory port width of the kernel to improve the throughput of
memory access logic. Users can enable it by defining the memory port arguments of the top-level function using
the vector data type, so that the kernel can fetch or store the whole vector instead of a single data element
(e.g., float) at a time. Therefore, this optimization technique improves the performance by reducing the number
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of iterations N of the memory access loop, which is similar to the principle of Loop Unroll from a high-level
perspective. Thus, after applying this optimization technique to loop1.1 in Listing 5 by setting the vector length
to d/2, the iteration number is reduced from d to 2.

Furthermore, beyond its impact on N of the memory loop, widening memory ports provides more opportunities
to improve memory access throughput for GNN implementations by enabling pipelined memory requests. For
example, Listing 7 and Listing 8 show the HLS C design and the HLPerf model of the Memory Read Module after
setting the vector length to d. As can be seen, the nested loop is changed to a regular pipelined loop, meaning
that the memory read requests are pipelined. Therefore, in the HLPerf model in Listing 8, we can put the timeout
statement of L_mem (line 1) to the outside of the loop1 (line 2) so that L_mem will not affect the performance of
loop1 at each iteration. Note that given the width of physical pins on FPGA is limited (e.g., 512 bits), it will result
in the increase of IT if the memory port width is higher than the physical boundary. Therefore, there might be a
trade-off to widening the memory ports in some cases.

4 DEVELOPER EXPERIENCE

Here, we describe a number of potential developer experience use cases that are enabled by HLPerf. In the first
use case, as indicated above, HLPerf can be helpful in the tuning process that is ubiquitous in FPGA design
efforts [7, 13, 30]. In designs for which the performance is data dependent (often the case in GNN computations,
which are frequently sensitive to graph topology), the time required to adjust a potentially performance impacting
parameter (e.g., alter a pragma) and understand its performance implications can be quite long in conventional
workflows. HLPerf’s approach of simulating performance exclusively, rather than including functional correctness,
supports a shorter turnaround time, which provides overall benefit to the development process. When the designer
is verifying algorithm correctness, a longer evaluation method is totally appropriate. When all they want to know
is, “Is this approach faster or slower, and by how much?”, re-evaluating functional correctness simply slows down
the process.

In the second use case, HLPerf is usable prior to authoring HLS kernels. Figure 2 illustrates a generic computa-
tional pipeline, in which the contents of each pipeline stage are (as yet) undetermined. In fact, even the number
of stages, S, has not yet been specified.

As the developer makes initial decisions about the number of pipeline stages (which will become HLS kernels)
and the particular functions that will be performed at each pipeline stage, an HLPerf model can be developed that
utilizes estimates of the performance parameters of each stage. These estimates might come from the developer’s
experience (i.e., they have written similar kernels in the past) or measurements of existing kernels (e.g., when
library kernels are being invoked). This model can then be simulated to assess the performance impact of the
data dependencies present in the input graph data set. In this case, it is incumbent on the developer to manually
author the HLPerf models, rather than have them automatically derived from the HLS kernel code, which doesn’t
yet exist.

As an example of this second use case, consider a circumstance where a streaming computation is implemented
across two execution platforms and data flows from the upstream portion to the downstream portion via a
network link. This could be between two stages of a GNN model, or as part of any general-purpose streaming
computation. To minimize the performance impact of the network, the author of the application chooses to
compress the data moving across the network, and to maintain security the data is encrypted as well. The resulting
communications link pipeline is shown in Figure 7.

Estimating the performance of individual stages of this pipeline by referencing the available AMD Xilinx
libraries, one can readily build a HLPerf model of this communications link. We will show the performance
implications of varying compression ratios on this pipeline below in Section 6.5.
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Fig. 7. Streaming data flow pipeline over a network.

As the development effort shifts to implementation of the HLS kernels themselves, the HLPerf model can
be used to guide the kernel developer as to what should be the performance focus in each individual kernel’s
design. For example, if the HLPerf model indicates a particular stage in the pipeline is likely to be a performance
bottleneck, the focus of the development can be on throughput. Alternatively, if the HLPerf model indicates some
stage is unlikely to impact the overall throughput, the focus of the development can be on area savings. These
types of area-speed tradeoffs occur frequently in FPGA designs, and HLPerf can be helpful in providing guidance
as to which direction the tradeoff should be focused.

In this latter use case, the performance results from HLPerf are, of course, entirely dependent upon the quality
of the individual kernel performance estimates provided by the developer. One possible path for the developer
to pursue next is to prioritize the detailed design of individual HLS kernels that have significant performance
uncertainty. Once authored, those kernels that previously had uncertain performance parameters can now exercise
the HLS C Code to HLPerf Model link in Figure 3 to provide better knowledge of their individual performance to
the HLPerf high-level model.

5 EVALUATION METHODOLOGY

GNN Models: Figure 8 shows the 6 GNN models that are used to evaluate HLPerf. They include GCN [24], one of
the earliest GNN models; GraphSage (GS) [20]; and Graph Isomorphism Network (GIN) [42] as isotropic models.
Also included are Graph Attention Network (GAT) [37]; Mixture Model Networks (MoNet) [29]; and the Gated
Graph ConvNet (GatedGCN) [5] as anisotropic models. We configure the feature dimensions for various GNN
kernels as follows: GCN and GraphSage have the same input and output dimensions at 128. GIN is assigned input
and output dimensions of 64. The input, head, and output dimensions of GAT and MoNet are (128, 8, 16) and (64,
2, 64), respectively. GatedGCN is set with a feature dimension of 32.

Datasets: Table 2 shows the graph datasets used in our evaluation. All these graphs are collected from Open
Graph Benchmark [22], a widely-used graph library for GNNs, and have a wide range of fields and scales. These
graphs represent two classes of graphs with distinct topologies used in the GNN community: MH and MT consist
of multiple small dense graphs, while AX and PT each consist of one single sparse graph. The maximum and
average degree shown in Table 2 indicates their varying distributions ranging from regular-like to powerlaw-like.
As mentioned above, we use GNNHLS [46], a benchmark suite of 6 GNN models, to evaluate HLPerf. HLPerf
models are constructed with PyPy3 and SimPy [34] running on an Intel i7-8850H CPU at 2.6 GHz.

Table 8 lists the set of five general-purpose applications used to assess HLPerf on applications beyond GNN
models. The data sets come from the original authors.

Table 2. Graph datasets [46].

Dataset Node # Edge # | Maximum | Average

Degree | Degree
OGBG-MOLTOX21 (MT) 145459 302190 6 2.1
OGBG-MOLHIV (MH) | 1049163 | 2259376 10 2.2
OGBN-ARXIV (AX) 169343 | 1166243 13155 6.9
OGBN-PROTEINS (PT) 132534 | 79122504 7750 597.0

ACM Trans. Reconfig. Technol. Syst.



HLPerf: Demystifying the Performance of HLS-based Graph Neural Networks with Dataflow Architectures « 17

ErpEE M ER T

(a) GCN
Mk
ErEE IR,

(b) GraghSage

LJ‘> U v e
ErpEEs IR P P

(c) GIN

]
I 2 (o e

I:>I
Sum
I$m LReLU
Softmax
= g g
[ W]
S
(d) GAT

o =T
If‘)mlf‘)-ﬁ}mﬁ‘) E>LJ&>LJ&>

]

(e) MoNet

&) 4
o E>EE>

[csr P
] z?

(f) GatedGCN

Memory Memory . Multi-Headed Unique I

| . Read h Write h DComblne @ Combine DOperation I
VMM Multi—Headed Multi-Headed Element-

.W|th u M VMM with U Mwise Multiplication with U I$ FIFO I

el [}
ReLU !

(g) Legend
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Evaluation methods: To perform evaluation, we use a Xilinx Alveo U280 FPGA card, provided by the Open
Cloud Testbed [25], to execute the HLS kernels. This FPGA card provides 8 GB of HBM2 with 32 memory banks
at 460 GB/s total bandwidth, 32 GB of DDR memory at 38 GB/s, and 3 super logic regions (SLRs) with 1205K
look-up tables (LUTs), 2478K registers, 1816 BRAMs, and 9020 DSPs. We adopt 32-bit floating point as the data
format, and Vitis 2023.1 for hardware emulation, synthesis, and hardware linkage.

6 EVALUATION

As part of the evaluation, we will start by investigating the performance of the simulation execution within
HLPerf. This will be followed by an assessment of the accuracy of the performance predictions, an illustration
of the use of HLPerf for buffer size analysis, a description of HLPerf’s utility in identifying and addressing
performance bottlenecks within the application, and a look into the use of HLPerf on other applications.

6.1 Simulator Performance

We first examine the performance of HLPerf by comparing its simulation elapsed time with RTL simulation and
several previous cycle-accurate simulators. We use Vitis hardware emulation mode to conduct the RTL simulation.
Due to the low speed of RTL simulation, it will take a very long time on even the smallest-scale graph dataset MT
used in this paper. Thus, in order to constrain the RTL simulation elapsed time to within 1 hour, we perform
all the GNN kernels on just the first subgraph of MT with 16 nodes and 34 edges. Table 3 shows the simulation
elapsed time and the speedup of HLPerf over RTL simulation. We observe that the speedup of HLPerf ranges
from 1200X to 35 700X across all the GNN applications, and the average speedup is 13 500.

Table 3. Simulation elapsed time for HLPerf and RTL simulation, and the speedup of HLPerf relative to RTL simulation.

HLPerf (s) | RTL Simulation (s) | Speedup

GCN 0.08 1779 21 600%
GS 0.14 1988 14 500%
GIN 0.10 3538 35700%
GAT 0.21 2771 12900x
MoNet 0.10 3368 34100%
GatedGCN 0.28 352 1200x

Compared with the reported speed of the state-of-the-art cycle-accurate simulator, LightningSim [31], our work
averages over 400X faster (primarily by giving up the requirement to be cycle accurate). In comparison to the
reported performance of Flash [10], HLPerf exhibits an average speedup of just over 8x. Relative to FastSim [1],
our methodology achieves an average speedup of over 300x. Note that although these comparisons might not be
perfectly fair, for example Flash’s C-based implementation is inherently more efficient than HLPerf’s Python
implementation and they are not all simulating the same designs, our work still achieves significant performance
improvement. Note, the above comparisons are performed by examining the performance gain relative to RTL
simulation as reported by the simulators’ authors.

The performance benefit of HLPerf comes from 3 aspects: (1) it decouples the performance estimation from
computational details of the algorithm, which is important for computation-heavy algorihtms like GNNs, (2)
it simplifies the signal list to be simulated with a higher-level abstraction, and (3) HLPerf as a discrete-event
simulator doesn’t simulate every clock cycle. These results indicate that the “approximately-cycle-accurate”
approach of HLPerf can substantially diminish the time required to estimate performance for HLS GNN kernels.

Since increasing the graph scale leads to long simulation times, this superior speedup makes HLPerf quite
suitable for design exploration of GNNs with large-scale graphs. Table 4 shows the elapsed time of HLPerf across
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all 6 GNN kernels and 4 graph datasets. In contrast, Table 5 presents the elapsed time of conventional HLS
workflow procedures including HLS synthesis steps (preprocessing & transformation, scheduling & binding,
and RTL generation) and hardware compilation. The duration of these procedures are independent of the input
graphs. Comparing Table 4 and the first two rows of HLS synthesis from Table 5, we observe that for small-scale
graphs the elapsed time of HLS synthesis is comparable to HLPerf simulation, while for large-scale graphs HLPerf
simulation becomes increasingly dominant. A comparison between Table 4 and hardware compilation time in
Table 5, reveals that the smaller the graph scale, the higher performance benefit of HLPerf to be achieved against
hardware compilation. Even for the largest graph adopted in the benchmark, PT, the performance benefit of
HLPerf over hardware compilation ranges from 4.4x to 122X. In addition, we note that HLPerf is based on the
single-threaded Python library, and therefore its performance could potentially be further improved by utilizing
multiple threads and a more efficient implementation.

Table 4. HLPerf simulation elapsed time of all the GNN kernels on 4 graph datasets.

MT (s) | MH (s) | AX (s) | PT (s)
GCN 13 83 18 359
GS 31 230 42 364
GIN 24 158 36 298
GAT 68 542 158 6097
MoNet 19 128 31 699
GatedGCN 71 426 285 4808

Table 5. Elapsed time of conventional HLS workflow procedures, including HLS synthesis steps and hardware compilation.

Conventional HLS Workflow Procedures GCN | GraphSage | GIN | GAT | Monet | GatedGCN
(s) (s) () () (s) ()
Preprocessing & Transformation 47 85 26 111 29 19
HLS Synthesis | Scheduling & Binding 58 95 51 146 55 59
RTL Generation 77 168 83 251 94 139
Hardware Compilation 23602 44325 16397 | 27098 | 18826 25922

6.2 Application Performance Prediction Accuracy

We next quantitatively examine the accuracy of HLPerf by comparing the simulated execution time with the
experimental execution time measured on the FPGA platform. For these experiments, and all those that follow,
we are using the entire graph for performance evaluation, both in the HLPerf simulation and in the FPGA
platform execution. We use measured execution time instead of RTL simulation for two reasons: first, it is the
gold standard for understanding performance; and second, RTL simulation is prohibitively time-consuming and
thus impractical for complex GNN HLS kernels with real-world graph datasets. We use error rate, defined as
the percentage of the simulation result deviating from experimental measurement, to represent the accuracy
of HLPerf. Figure 9 shows the normalized execution time predicted by HLPerf for all the 6 GNN kernels on 4
graph datasets relative to FPGA measurements, and Table 6 shows the absolute numbers for execution times and
corresponding error rates. To enhance the clarity of comparison, in Table 6 we use the same clock frequency as
on-board measurements. From the table, we observe that the error rate of HLPerf ranges from 3.3% to 14.7%, and
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Fig. 9. Normalized HLPerf predicted execution time relative to measurements on physical FPGA. The closer to 1 the better.

is 7% on average. This level of imprecision is quite acceptable when assessing design alternatives that regularly
exceed factors of 2 and more.

The observed inaccuracy in HLPerf’s performance predictions can be be attributed to several factors. First,
as HLPerf operates at a higher level of abstraction, it does not consider some low-level architecture details. For
example, it cannot account for the impact of implementation strategies on onboard execution performance since
it operates prior to hardware compilation. HLPerf relies on the estimated parameters (e.g., L and II) derived from
the HLS report. These parameters are subject to further optimizations during the back-end compilation phase,
which can affect the accuracy of HLPerf simulation. Furthermore, HLS synthesis does not provide all the detailed
information needed for accurate HLPerf predictions. In scenarios with unoptimized loops where latency is not
explicitly reported by HLS, operation count is used as a substitute for latency. Similarly, a default memory latency
is applied in the absence of precise measurements, which are not available until actual execution on the FPGA
board. Based on detailed examination of a small subset of the experimental runs, the reliance on latency and
iteration interval estimates are the primary error contributor for compute-intensive kernels and the memory
latency estimate is the primary error contributor for memory-intensive kernels.

Although the simulated and experimental results are not exactly the same, the timing results of HLPerf track
the FPGA execution time closely across graphs with various topologies and GNN kernels with distinct structures,
indicating that HLPerf is able to recognize the inherent irregularity of the graph datasets and the algorithm.

Table 6. Execution time of FPGA measurements (HLS), predicted execution time from HLPerf, and corresponding error rate
relative to FPGA measurements.

MT MH AX PT
HLS | HLPerf | Error | HLS | HLPerf | Error | HLS | HLPerf | Error | HLS | HLPerf | Error
(s) (s) Rate | (s) (s) Rate | (s) (s) Rate (s) (s) Rate
GCN 0.10 0.10 3.6% | 0.74 0.71 3.3% | 0.39 0.36 5.5% | 25.72 | 24.44 4.9%
GraphSage | 0.16 0.14 9.3% | 1.17 1.06 9.3% | 0.62 0.56 9.6% | 40.24 | 36.42 9.5%
GIN 0.08 0.08 5.0% | 0.63 0.59 7.1% | 0.33 0.31 6.3% | 22.04 | 20.65 6.3%
GAT 0.23 0.22 4.2% | 1.65 1.59 3.9% | 0.74 0.66 9.9% | 31.10 | 28.86 7.2%
MoNet 0.08 0.07 6.8% | 0.55 0.51 6.4% | 0.09 0.08 11.5% | 1.37 1.17 14.7%
GatedGCN | 0.10 0.09 7.6% | 0.72 0.67 7.5% | 0.39 0.34 10.9% | 25.40 | 23.04 9.3%

Turning our attention to the impact of graph topology on the accuracy of HLPerf, we find that HLPerf achieves
lower error on regular-like graphs than powerlaw-like graphs. According to Table 6, the average error rate of
GNN applications on MT, MH, AX, and PT are 5.8%, 5.9%, 8.6%, 8.1%, respectively. We believe this to be because
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Fig. 10. FIFO size sensitivity.

irregular graphs (i.e., PT and AX) with higher edge-to-node ratio and variation of degree distribution brings
increased uncertainty to the performance predictions. In contrast, regular graphs contain less irregularity. Thus,
the performance predictions have lower uncertainty.

Note that there is always a trade-off between simulation speed and accuracy. Therefore, although HLPerf is less
accurate than full cycle-accurate simulators (e.g., LightningSim reports a 0.1% error rate on average compared with
RTL simulation on an example dataset, while Flash and FastSim report 0% error rate relative to RTL simulation on
their respective benchmarks), HLPerf matches the “approximately-cycle-accurate” goal in which the simulation
speed can be dramatically improved at the cost of a small accuracy loss. We contend that when design choices
can have as dramatic a performance impact as three orders of magnitude (e.g., see [6, 15, 30, 35]), this is a tradeoff
well worth considering.

6.3 FIFO Size Sensitivity

One of the clear benefits of a simulation-based performance modeling approach is that one can effectively
observe more than just aggregate performance. Here, we will illustrate the use of HLPerf to assess whether
or not inter-stage buffers (i.e., FIFOs) have been allocated enough storage so as to not become a performance
bottleneck themselves. In order to investigate the effectiveness of HLPerf for tuning FIFO size, we build a micro-
benchmark based on a common property across all the GNN applications. We do this, instead of directly using
GNN applications, because the applications’ dataflow architecture contains sufficiently many stages and FIFOs as
to make it challenging to illustrate the technique.

This micro-benchmark is a dataflow architecture with 2 functions and 1 FIFO. The first function represents an
edge-wise aggregation operation and the latter one is a node-wise update operation. These two functions are
connected by a FIFO. We use a synthetic graph to make the FIFO alternatively full and empty, reproducing the
FIFO size issue. Figure 10 shows the cycle counts of RTL simulation and HLPerf running on the micro-benchmark
with the FIFO size ranging from 2 entries to 15 entries. We observe that HLPerf’s performance predictions are
sensitive to the FIFO size in a manner that is quite close to the more detailed simulation available at the RTL level.
In addition, optimized FIFO sizes achieved from RTL simulation and HLPerf are 8 and 11, respectively. Although
these optimized FIFO sizes are not the same because of the accuracy loss of HLPerf, it requires less iterations for
users or heuristic tuning algorithms to find the optimized FIFO size if starting from HLPerf. Note that HLPerf, as
a high-level software simulator designed for performance prediction, does not encompass functional verification.
Consequently, it may not identify certain potential deadlock issues related to functional correctness.
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6.4 Identifying Performance Bottlenecks

HLPerf can not only estimate overall application performance but can also identify the bottleneck kernel of a
dataflow pipeline. By comparing the simulation results of each function without stalls and the simulation results
of the whole dataflow architecture, the bottleneck can be identified. Here we take GCN as an example. After
performing HLPerf on GCN and 4 graph datasets, we find that the bottleneck of the GCN kernel on regular-like
graphs, MT and MH, is the node-wise update operation implemented as a vector-matrix multiplication. On the
other hand, on powerlaw-like graphs such as AX and PT, the bottleneck function is the edge-wise memory read
module. After replacing this latter kernel with the pipelined memory read request enabled, as illustrated in
Listing 7, the GCN Kkernel is accelerated by 2.6X and 5.3x on AX and PT, respectively. And the cycle counts of
GCN doesn’t change on MT and MH (the execution time changes because of distinct clock frequency inferred by
the HLS tool). Table 7 shows the execution time, error rate, and simulation time of HLPerf for the modified GCN
kernel. From the table, we observe that the error rate ranges from 1.9% to 6.9% and the average error rate is 2.8%,
which matches the accuracy of HLPerf on other GNN applications. Hence we conclude that HLPerf can be used
to tune the GCN HLS kernel for better performance.

Table 7. Execution time, error rate, and simulation time of HLPerf for the GCN Kernel with pipelined memory requests.

Execution Time (s) HLPerf Performance
Graphs | HLS HLPerf Error Rate | Simulation Time (s)
MT 0.09 0.09 2.3% 10
MH 0.68 0.67 1.9% 68
AX 0.11 0.11 6.9% 17
PT 3.82 3.74 2.1% 179

6.5 General-Purpose Application Evaluation

While the main motivation for the development of HLPerf is understanding the performance of GNNs, the
techniques used are not limited exclusively to GNNs. In general, the set of applications to which HLPerf is
applicable is constrained to dataflow architectures for which the developer has (or can learn) information about
the performance of the constituent dataflow stages. In effect, if the performance estimates (e.g., latency and
initiation interval) that come out of the high-level synthesis compilation process are accurate, HLPerf can be
used to understand end-to-end performance.

In order to evaluate the ability of HLPerf to be used on other HLS kernels, beyond GNN models, we adopt
5 general-purpose benchmarks with dataflow architectures used in previous work [31]. Distinct from GNN
applications, which are complicated irregular workloads with large-scale graph input datasets, these benchmarks
have small enough input datasets that an RTL simulation with the full dataset is reasonable. Therefore, we use
the results of RTL simulation as the baseline for comparison purposes.

Table 8 (left) presents both the predicted application execution time by HLPerf and RTL simulation, along with
the accuracy of HLPerf relative to RTL simulation. From the table, we observe that the error rate ranges from
0.01% to 9.5% with an average of 2.0%, which is consistent with the results in Section 6.2.

Table 8 (right) details the simulation elapsed time of RTL simulation and HLPerf, and speedup of both HLPerf
and LightingSim [31] relative to RTL simulation. From the table, we find that HLPerf speedup over RTL simulation
ranges from 188X to 14 062X and it is 112X on average faster than LightingSim. Among the benchmarks, Vector
Accumulator and Cascade Adder exhibit lower speedup through HLPerf relative to the other general-purpose
benchmarks. This discrepancy is attributed to these kernels having a higher number of scheduling events,
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Table 8. Predicted execution time and simulation elapsed time of RTL simulation and HLPerf, and corresponding error rate
relative to RTL simulation for 5 general-purpose applications. The performance speedup of HLPerf and LightingSim are
relative to RTL simulation.

Predicted Results (cycles) Simulation Elapsed Time (s)

RTL | HLPerf | Error | RTL | HLPerf | HLPerf | LightingSim

Sim Rate Sim Speedup | Speedup [31]
Vector Accumulator [40] 4642 4239 8.7% 37.18 | 0.1981 188% 15.2%
Cascade Adder [41] 9212 8333 9.5% 41.04 | 0.2292 179X 7.3%X
Parallel Merge Sort [23] 73 68 6.8% 38.63 | 0.0027 14 062X 30.7X
Block Matrix Multiplication [23] | 226 216 4.4% 21.28 | 0.0032 6590 14.3%
Multi-Stage FFT [23] 7208 7209 0.01% 87.83 | 0.0139 6338% 29.7X

triggered by Python generator functions, leading to extended duration of interleaving suspension and resumption
of process functions as discussed in Section 3.2. In addition, the speedup of HLPerf over RTL simulation for these
two small benchmarks is lower than that observed for the GNN HLS kernels. This is because the performance
of RTL simulation is closely related to the computational details of the HLS kernels, while HLPerf’s efficiency
depends on the quantity of processes and events, rather than the computational intricacies within the dataflow
architecture. Hence, HLS kernels of varying computational complexity might yield similar performance under
HLPerf models.

Returning to the network communications link example of Section 4, prior to deployment of the individual
kernels, we have estimates of their performance because they are available as library elements. Similarly, we can
estimate the performance of a network link from the literature (e.g., see [16]). What we may not know, however,
early in the design, is the impact of the compression stage on the overall performance. How does the compression
ratio achieved in the compress kernel influence the performance of the overall pipeline?

Since HLPerf does not perform functional simulation, and is therefore not actually executing the compression
algorithm as part of the simulation process, this is clearly an example of what is being traded off to achieve faster
simulation speeds. What we can do, however, is to sweep the compression ratio over a range of credible values
and explore the performance implications for each value.

Figure 11 shows the results of simulating the pipeline of Figure 7, varying the compression ratio between 1 : 1
and 8 : 1. What we see is that the effective data rate (referenced at the input) increases as the compression ratio
increases, up to a point of no additional benefit.

Here, while HLPerf cannot tell us the actual compression ratio, it does give the designer information about the
performance implications of different compression ratios.

7 CONCLUSIONS AND FUTURE WORK

This paper has introduced HLPerf, an open-source, simulation-based performance evaluation methodology for
dataflow architectures that is over 13 500% faster than RTL simulation and 400X faster than state-of-the-art
cycle-accurate tools, on average, at the cost of 7% average error rate relative to FPGA measurements. This
speed increase is attributable to three decisions inherent in HLPerf: (1) it does not try to be cycle-accurate,
instead being satisfied with being “approximately” cycle-accurate, (2) it simplifies the signal list to be simulated
with high-level abstractions, and (3) it does not try to verify functional correctness, focusing exclusively on
performance prediction.

Because it is simulation-based, HLPerf can reflect the performance variations of computations that are de-
pendent on input data sets. As such, it is well suited to evaluating the performance of graph neural network
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Fig. 11. Streaming data pipeline with compression.

computations, which can be heavily influenced by graph topology. In the empirical evaluation, we showed that
distinct HLS kernels in the dataflow architecture can be performance bottlenecks for regular-like graphs versus
powerlaw-like graphs.

While the fast performance predictions supported by HLPerf are useful for optimizing the design of individual
HLS kernels (e.g., choosing specific pragmas, etc.), HLPerf can also be an effective design tool prior to authoring
any of the HLS code itself. By using performance estimates of individual kernels, HLPerf can analyze the
performance of the dataflow pipeline as a whole, focusing the attention of the developer on potential bottleneck
kernels earlier in the design cycle.

Future work will focus on assessing how well the techniques exploited by HLPerf can generalize to a wider set
of other problems, outside the scope of GNNs, that have performance that is dependent on the input data set.
This will require expansion of the model conversion (translating HLS C code to SimPy simulation models) and
the pragma-driven pattern modeling (which is limited to the pragmas typically used in loop optimizations that
are prevalent in GNN models). One approach is to rely initially on manually authored HLPerf models, as we did
in Section 6.5, which would enable us to assess the techniques without yet implementing the source-to-source
compiler required to author HLPerf models automatically.

With current design space exploration yielding performance variability over multiple orders of magnitude, a
fast approach to performance estimation is an important tool. HLPerf seeks to do precisely that task.
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