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An Empirical Evaluation of Using Large Language
Models for Automated Unit Test Generation

Max Schäfer , Sarah Nadi , Member, IEEE, Aryaz Eghbali , and Frank Tip

Abstract—Unit tests play a key role in ensuring the cor-
rectness of software. However, manually creating unit tests is
a laborious task, motivating the need for automation. Large
Language Models (LLMs) have recently been applied to various
aspects of software development, including their suggested use for
automated generation of unit tests, but while requiring additional
training or few-shot learning on examples of existing tests.
This paper presents a large-scale empirical evaluation on the
effectiveness of LLMs for automated unit test generation without
requiring additional training or manual effort. Concretely, we
consider an approach where the LLM is provided with prompts
that include the signature and implementation of a function under
test, along with usage examples extracted from documentation.
Furthermore, if a generated test fails, our approach attempts to
generate a new test that fixes the problem by re-prompting the
model with the failing test and error message. We implement our
approach in TESTPILOT, an adaptive LLM-based test generation
tool for JavaScript that automatically generates unit tests for
the methods in a given project’s API. We evaluate TESTPILOT
using OpenAI’s gpt3.5-turbo LLM on 25 npm packages with
a total of 1,684 API functions. The generated tests achieve a
median statement coverage of 70.2% and branch coverage of
52.8%. In contrast, the state-of-the feedback-directed JavaScript
test generation technique, Nessie, achieves only 51.3% statement
coverage and 25.6% branch coverage. Furthermore, experiments
with excluding parts of the information included in the prompts
show that all components contribute towards the generation of
effective test suites. We also find that 92.8% of TESTPILOT’s
generated tests have ≤ 50% similarity with existing tests (as
measured by normalized edit distance), with none of them being
exact copies. Finally, we run TESTPILOT with two additional
LLMs, OpenAI’s older code-cushman-002 LLM and StarCoder,
an LLM for which the training process is publicly documented.
Overall, we observed similar results with the former (68.2%
median statement coverage), and somewhat worse results with
the latter (54.0% median statement coverage), suggesting that
the effectiveness of the approach is influenced by the size and
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training set of the LLM, but does not fundamentally depend on
the specific model.

Index Terms—Test generation, JavaScript, language
models.

I. INTRODUCTION

UNIT tests check the correctness of individual functions or
other units of source code, and play a key role in modern

software development [1], [2], [3]. However, creating unit tests
by hand is labor-intensive and tedious, causing some developers
to skip writing tests altogether [4].

This fact has inspired extensive research on techniques for
automated test generation including fuzzing [5], [6], feedback-
directed random test generation [7], [8], [9], [10], [11], dynamic
symbolic execution [12], [13], [14], [15], and search-based and
evolutionary techniques [16], [17]. At a high level, most of these
techniques use static or dynamic analysis techniques to explore
control and data flow paths in the program, and then attempt
to generate tests that maximize coverage. While they are often
successful in generating tests that expose faults, these tech-
niques have two major shortcomings. First, the generated tests
are typically less readable and understandable than manually
written tests [18], [19], especially due to the use of unintuitive
variable names [20]. Second, the generated tests often lack as-
sertions [21], or only contain very generic assertions (e.g., that a
dereferenced variable must not be null), or too many spurious
assertions [22]. While such tests can provide inspiration for
manually crafting high-coverage test suites, they do not look
natural and generally cannot be used verbatim.

Given these disadvantages, there has recently been increasing
interest in utilizing machine learning-based code-generation
techniques to produce better unit tests [23], [24], [25], [26],
[27], [28], [29]. Specifically, these research efforts leverage
LLMs that have been trained on large corpora of natural-
language text and source code. We are specifically interested
in generative transformer models that, when given a snippet
of text or source code (referred to as the prompt), will predict
text that is likely to follow it (henceforth referred to as the com-
pletion). It turns out that LLMs are good at producing natural-
looking completions for both natural language and source code,
and to some extent “understand” the semantics of natural lan-
guage and code, based on the statistical relationships on the
likelihood of seeing a particular word in a given context. Some
LLMs such as BERT [30] or GPT-3 [31] are trained purely on
text extracted from books and other public sources, while others
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like OpenAI Codex [32] and AlphaCode [33] are put through
additional training on publicly available source code to make
them better suited for software development tasks [34], [35],
[36], [37], [38], [39], [40], [41], [42], [43].

Given the properties of LLMs, it is reasonable to expect that
they may be able to generate natural-looking tests. Not only are
they likely to produce code that resembles what a human de-
veloper would write (including, for example, sensible variable
names), but LLMs are also likely to produce tests containing as-
sertions, simply because most tests in their training set do. Thus,
by leveraging LLMs, one might hope to simultaneously address
the two shortcomings of traditional test-generation techniques.
On the other hand, one would perhaps not expect LLMs to
produce tests that cover complex edge cases or exercise unusual
function inputs, as these will be rare in the training data, making
LLMs more suitable for generating regression tests than for
bug finding.

There has been some exploratory work on using LLMs for
test generation. For example, Bareiß et al. [25] evaluate the per-
formance of Codex for test generation. They follow a few-shot
learning paradigm where their prompt includes the function to
be tested along with an example of another function and an ac-
companying test to give the model an idea of what a test should
look like. In a limited evaluation on 18 Java methods, they
find that this approach compares favorably to feedback-directed
test generation [8]. Similarly, Tufano et al.’s ATHENATEST [26]
generates tests using a BART transformer model [44] fine-tuned
on a training set of functions and their corresponding tests. They
evaluate on five Java projects, achieving comparable coverage
to EvoSuite [17]. While these are promising early results, these
approaches, as well as others [29], [45], [46], rely on a training
corpus of functions and their corresponding tests, which is
expensive to curate and maintain.

In this paper, we explore the feasibility of automatically
generating unit tests using off-the-shelf LLMs, with no ad-
ditional training and as little pre-processing as possible. Fol-
lowing Reynolds and McDonell [47], we posit that providing
the model with input-output examples or performing additional
training is not necessary and that careful prompt crafting is
sufficient. Specifically, apart from test scaffolding code, our
prompts contain (1) the signature of the function under test;
(2) its documentation comment, if any; (3) usage examples for
the function mined from documentation, if available; (4) its
source code. Finally, we consider an adaptive component to our
technique: each generated test is executed, and if it fails, the
LLM is prompted again with a special prompt including (5)
the failing test and the error message it produced, which often
allows the model to fix the test and make it pass.

To conduct experiments, we have implemented these tech-
niques in a system called TESTPILOT, an LLM-based test gen-
erator for JavaScript. We chose JavaScript as an example of
a popular language for which test generation using traditional
methods is challenging due to the absence of static type infor-
mation and its permissive runtime semantics [11]. We evaluate
our approach on 25 npm packages from various domains hosted
on both GitHub and GitLab, with varying levels of popularity
and amounts of available documentation. These packages have

a total of 1,684 API functions that we attempt to generate tests
for. We investigate the coverage achieved by the generated tests
and their quality in terms of success rate, reasons for failure,
and whether or not they contain assertions that actually exercise
functionality from the target package (non-trivial assertions).
We also empirically evaluate the effect of the various com-
ponents of our prompt-crafting strategy as well as whether
TESTPILOT is generating previously memorized tests from the
LLM’s training data.

Using OpenAI’s current most capable and cost-effective
model gpt3.5-turbo,1 TESTPILOT’s generated tests achieve a
median statement coverage of 70.2%, and branch coverage of
52.8%. We find that a median 61.4% of the generated tests con-
tain non-trivial assertions, and that these non-trivial tests alone
achieve a median 61.6% coverage, indicating that the generated
tests contain meaningful oracles that exercise functionality from
the target package. Upon deeper examination, we find that the
most common reason for the generated tests to fail is exceeding
the two-second timeout we enforce, usually because of a fail-
ure to communicate test completion to the testing framework.
We find that, on average, the adaptive approach is able to fix
15.6% of failing tests. Our empirical evaluation also shows that
all five components included in the prompts are essential for
generating meaningful test suites with high coverage. Excluding
any of these components results in either a higher proportion of
failing tests or in reduced coverage. On the other hand, while
excluding usage examples from prompts reduces effectiveness
of the approach, it does not render it obsolete, suggesting that
the LLM is able to learn from the presence of similar test code
in its training set.

Finally, from experiments conducted with the gpt3.5-turbo
LLM, we note that high coverage is still achieved on packages
whose source code is hosted on GitLab (and thus has not been
part of the LLM’s training data). Moreover, we find that 60.0%
of the tests generated using the gpt3.5-turbo LLM have ≤ 40%
similarity to existing tests and 92.8% have ≤ 50% similarity,
with none of the tests being exact copies. This suggests that
the generated tests are not copied verbatim from the LLM’s
training set.

In principle, the test generation approach under consideration
can be used with any LLM. However, the effectiveness of the
approach is likely to depend on the LLM’s size and training set.
To explore this factor, we further conducted experiments with
two additional LLMs: the previous proprietary code-cushman-
002 [48] model developed by OpenAI and StarCoder [49], an
LLM for which the training process is publicly documented.
We observed qualitatively similar results using code-cushman-
002 (median coverage of 68.2% for statements, 51.2% for
branches), and somewhat worse results using StarCoder (54.0%
and 37.5%).

In summary, this paper makes the following contributions:
• A simple test generation technique where unit tests are

generated by iteratively querying an LLM with a prompt
containing signatures of API functions under test and,
optionally, the bodies, documentation, and usage exam-
ples associated with such functions. The technique also

1https://platform.openai.com/docs/models/gpt-3-5
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Fig. 1. Illustration of the structure of prompts and tests.

features an adaptive component that includes in a prompt
error messages observed when executing previously
generated tests.

• An implementation of this technique for JavaScript in a
tool called TESTPILOT, which is available as open-source
software at https://github.com/githubnext/testpilot.

• An extensive empirical evaluation of TESTPILOT on 25
npm packages, demonstrating its effectiveness in generat-
ing test suites with high coverage. Our evaluation explores
the following aspects:

– Quality of the generated tests in terms of the assertions
they contain, and coverage of tests that include non-
trivial assertions.

– Effect of excluding various prompt components.
– Similarity of generated tests to existing tests.
– Comparison against Nessie [11], a state-of-the-art

feedback-directed random test generation technique
for JavaScript.

– Comparison of the effect of the underlying LLM on
TESTPILOT’s generated tests.

The raw data and analysis for all our experiments can be
found at https://doi.org/10.6084/m9.figshare.23653371.

II. APPROACH

TESTPILOT generates tests using the popular JavaScript test-
ing framework Mocha [50] with its BDD-style syntax in which
tests are implemented as callback functions that are passed
to the it function. Test suites consist of one or more calls
to it that occur in a callback function that is passed to the
describe function. Assertions are checked using the built-in
Node.js assert module.

Fig. 1 illustrates the structure of generated tests for a func-
tion f . Here, lines 1–3 are boilerplate code for importing the
testing libraries and the Package under Test (PUT). These are
followed by one or more commented-out lines containing func-
tion metadata included in the prompt, as we explain shortly.
Lines 7–8 begin the definition of a test suite using describe
with a single test defined as a callback function accepting a
parameter done passed to the it function. The test code uses
assert to check its assertions, and finally invokes done()
to signal completion. This is necessary for asynchronous tests
that may take multiple iterations of the JavaScript event loop
to finish. Calling done() more than once results in a runtime
error, while not calling it at all causes the test to fail with a
timeout error.

The basic idea of our approach is to send the initial part of
the above test skeleton up to (but not including) the start of
the actual test code on Line 9 (highlighted above in blue) as
a prompt to the LLM. Since LLMs are trained to complete a
given code fragment, one might therefore expect it to generate
the rest of the test for us. Comments can be included in the
test skeleton to provide additional information about the func-
tion that may be useful to guide the LLM towards generating
better tests.

A. TESTPILOT Architecture

Fig. 2 presents the high-level architecture of TESTPILOT,
which consists of five main components: Given a PUT as input,
the API explorer identifies functions to test; the documentation
miner extracts metadata about them; and the prompt genera-
tor, test validator, and prompt refiner collaborate to construct
prompts for test generation, assemble complete tests from the
LLM’s response, run them to determine whether they pass,
and construct further prompts to generate more tests. We now
discuss each of these components in more detail.

API Explorer: This component analyzes the PUT to de-
termine its API, i.e., the set of functions, methods, constants,
etc. that the package exposes to clients. In JavaScript, it is
very difficult to determine the API statically due to the highly
dynamic nature of the language. Therefore, similar to other
JavaScript test-generation work [10], [11], we pursue an ap-
proach based on dynamic analysis. In particular, we load the
application’s main package and apply introspection to traverse
the resulting object graph and identify properties that are bound
to functions. For each function, we record its access path (that
is, the sequence of properties that must be traversed to reach
it from the main module), its signature (which in the absence
of static type information is simply a list of parameter names),
and its definition (that is, its source code). The output of the API
Explorer is a list of functions described by their access paths,
signatures, and definitions; other API elements are ignored.

Documentation Miner: This component extracts code
snippets and comments from documentation included with the
PUT, and associates them with the API functions they pertain
to. The aim is to collect, for each API function, comments
and examples describing its purpose and intended usage. In
JavaScript code bases, documentation is typically provided in
the form of Markdown (.md) files, in which code snippets
are embedded as fenced code blocks (i.e., blocks surrounded
by triple backticks). We find all such blocks in all Markdown
files in the code base, and associate with each function the
set of all code snippets that textually contain the function’s
name. While this is a simple heuristic, code examples may not
be complete or syntactically correct, so a more sophisticated
approach relying on parsing or static analysis is not likely to
work well. We also associate each API function with the doc
comment (/**...*/) that immediately precedes it, if any.

The remaining three components are the prompt generator,
the test validator, and the prompt refiner, which work together
to generate and validate tests for all API functions identified
by the API Explorer, using the information provided by the
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Fig. 2. Overview of the adaptive test generation technique we use in TESTPILOT.

Documentation Miner. Functions are processed one at a time,
and for each function only one test is generated at a time (as
opposed to generating an entire test suite at once). This is to
enable us to validate each test individually without interference
from other tests.

Prompt Generator: This component constructs the initial
prompt to send to the LLM for generating a test for a given
function f . As mentioned above, we initially have (at most)
four pieces of information about f at our disposal: its signature,
its definition, its doc comment, and its usage snippets extracted
from documentation. While it might seem natural to construct
a prompt containing all of this information, in practice it can
sometimes happen that more complex prompts lead to worse
completions as the LLM gets confused by the additional infor-
mation. Therefore, we follow a different strategy: we start with
a very simple initial prompt that includes no metadata except
the function signature, and then let the prompt refiner extend it
step by step with additional information.

Test Validator: Next, we send the generated prompts to
LLM and wait for completions. We only consume as many
tokens as are needed to form a syntactically valid test. Since
there is no guarantee that the completions suggested by the
model are syntactically valid, the test validator tries to fix sim-
ple syntactic errors such as missing brackets, and then parses
the resulting code to check whether it is syntactically valid.
If not, the test is immediately marked as failed. Otherwise it
is run using the Mocha test runner to determine whether it
passes or fails (either due to an assertion error or some other
runtime error).

Each returned completion can be concatenated with the
prompt to yield a candidate test. However, to allow us to elimi-
nate duplicate tests generated from different prompts, we post-
process the candidate tests as follows: we strip out the comment
containing the function metadata in the prompt and replace the
descriptions in the describe and it calls with the generic
strings test suite’ and ’test case’, respectively.

Prompt Refiner: The Prompt Refiner applies a number of
strategies to generate additional prompts to use for querying the
model. Overall, we employ four prompt refiners as follows:

1) FnBodyIncluder: If p did not contain the definition of f ,
a prompt is created that includes it.

2) DocCommentIncluder: If f has a doc comment but p did
not include it, a prompt with the doc comment is created.

3) SnippetIncluder: If usage snippets for f are available but
p did not include them, a prompt with snippets is created.

4) RetryWithError: If t failed with error message e, a
prompt is constructed that consists of: the text of the
failing test t followed by a comment // the test
above fails with the following error: e,
followed by a comment // fixed test. This strategy
is only applied once per prompt, so it is not attempted if
p itself was already generated by this strategy.

The refined prompt is then used to construct a test in the
same way as the original prompt. All strategies are applied
independently and in all possible combinations, but note that
the first three will only apply at most once and the fourth will
never apply twice in a row, thus ensuring termination.

B. Algorithm Details

We now provide additional detail on the two key steps of our
approach: API exploration and test generation.

API Exploration: Algorithm 1 shows pseudocode that
illustrates how the set of functions that constitute the API for a
package is identified. The algorithm takes a package under test,
pkgName, and produces a list of pairs ⟨a, sig⟩ representing its
API. Here, a is an access path that uniquely represents an API
method, and sig is the signature of a function. Our notion of an
access path takes a somewhat simplified form compared to the
original concept proposed by Mezzetti et al. [51], and consists
of a package name followed by a sequence of property names.

We rely on a dynamic approach to explore the API of a
package pkgName, by creating a small program that imports
the package (line 2), and relying on JavaScript’s introspec-
tive capabilities to determine which properties are present in
the package root object modObj that is created by importing
pkgName and what types these properties have. Exploration of
modObj’s properties is handled by a recursive function explore
that begins at the access path representing the package root and
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Algorithm 1 Pseudo-code for API exploration.
1: function exploreAPI(pkgName)
2: modObj ← object created by importing pkgName
3: seen ← ∅
4: return explore(pkgName,modObj , seen)
5: function explore(accessPath, obj, seen)
6: apis ← ∅
7: if obj ̸∈ seen then
8: seen ← seen ∪ { obj }
9: if obj is a function with signature sig then

10: apis ← apis ∪ { ⟨accessPath, sig⟩ }
11: else if obj is an object then
12: props ← { prop | obj has a property prop }
13: for prop in props do
14: apis ← apis ∪
15: explore(extend(accessPath, prop),obj[prop], seen)
16: else if obj is an array then
17: for each index i in the array do
18: apis ← apis ∪
19: explore(extend(accessPath, prop),obj[i], seen)
20: return apis
21: function extend(accessPath, component)
22: if component is numeric then
23: return accessPath[component ]
24: else
25: return accessPath.component

that traverses this object recursively, calling another auxiliary
function extend to extend the access path as the traversal de-
scends into the object’s structure.

During exploration, if an object is encountered at access path
a whose type is a function with signature sig, then a pair ⟨a, sig⟩
is recorded (line 10). If the type of p is an object, then the objects
referenced by its properties are recursively explored (lines 15–
15), and if the type of p is an array, then p’s properties are
explored recursively as well (lines 17–19).

Test Generation: Algorithm 2 shows pseudo-code for the
test generation step. The algorithm begins by initializing the set
prompts of generated prompts, the set tests of generated passing
tests, and the set seen containing all generated tests to the empty
set and by using Algorithm 1 to obtain the set apis of (access
path, signature) pairs that constitute the package’s API (lines
2–5). Then, on lines 6–7, for each such pair, a base prompt is
constructed and added to prompts, containing only the access
path and signature, using the template illustrated in Fig. 1. Next,
lines 9–27 create additional prompts by adding the function
body, example usage snippets, and documentation comments
extracted from the code to previously generated prompts. Here,
the refine function extends a previously generated prompt by
adding the function body, example snippets, or doc comment.
The order in which each type of information, if included, ap-
pears in prompts is fixed as follows: example snippets, error
message from previously generated test, doc comments, func-
tion body, signature.

The while loop on lines 29–44 describes an iterative process
for generating tests that continues as long as prompts remain
that have not been processed. In each iteration, a prompt is
selected and removed from prompts, and the LLM is queried
for completions (line 31). For each completion that was re-
ceived, a test is constructed by concatenating the prompt and
the completion (line 33) and minor syntactic problems are

fixed such as adding missing ‘}’ characters at the end of
the test (line 34). Moreover, we remove comments from the
test to enable deduplication of tests that only differ in their
comments (line 35).

If the resulting test is syntactically valid and the same test was
not encountered previously, it is executed (line 38). Otherwise,
we do not re-execute it but still link the prompt to the previously
seen test. If the test executed successfully, we add it to tests
(line 40). If it failed (due to an assertion failure, nontermination,
or because of an uncaught exception), and if the test was not
derived from a prompt that was constructed from a previous
failing test (line 42), then we create a new prompt containing
the failed test and the error message and add it to prompts. When
the iterative process concludes, the set tests is returned (line 45).

C. Examples

To make the discussion more concrete, we will now show
two examples of how TESTPILOT generates tests.

As the first example, we consider the npm package
countries-and-timezones.2 API exploration reveals
that this package exports a function getCountrywith a single
parameter id and the project’s README.md file provides a
usage example.

Fig. 3(a) shows a test for this function generated from
the initial highlighted prompt that only includes the func-
tion signature, but no other metadata. This test fails when
execution reaches the assertion on line 8 because the ex-
pression country.name evaluates to ”United States
of America”, which differs from the value ”United
States” expected by the assertion.

Next, we refine this prompt to include the usage snippet as
shown in the highlighted part of Fig. 3(b). This enables the LLM
to generate a test incorporating the information provided in this
snippet, which passes when executed.

We show another example in Fig. 4 from quill-delta,3

a package for representing and manipulating changes to doc-
uments. As before, Fig. 4(a) shows the initial prompt for
quill-delta’s concat method, which concatenates two
change sets, and a test that was generated from this prompt. It
is noteworthy that the LLM was able to generate a syntactically
correct test for quill-delta, where arguments such as

are passed to the constructor even in the absence of any usage
examples. Most likely, this is because quill-delta is a
popular package with more than 1.2 million weekly downloads,
which means that the LLM is likely to have seen examples of
its use in its training set.

Nevertheless, the test in Fig. 4(a) fails because when reaching
the assertion on line 16 delta3.ops.length has the value
5, whereas the assertion expects the value 6. The reason for the

2See https://www.npmjs.com/package/countries-and-timezones.
3See https://github.com/quilljs/delta.

Authorized licensed use limited to: Northeastern University. Downloaded on April 17,2024 at 17:25:11 UTC from IEEE Xplore.  Restrictions apply. 

https://www.npmjs.com/package/countries-and-timezones
https://github.com/quilljs/delta


90 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 1, JANUARY 2024

Algorithm 2 Pseudo-code for test generation.
1: function generateTests(pkgName, LLM)
2: prompts ← ∅
3: tests ← ∅
4: seen ← ∅
5: apis ← exploreAPI(pkgName) ◃ See Algorithm 1
6: for api ∈ apis do
7: prompts ← prompts ∪ { createBasePrompt(api) } ◃ create base prompts containing only the signature, see Figure 1
8:
9: promptsWithFnBody ← ∅ ◃ refine prompts by adding function body

10: for prompt ∈ prompts do
11: body ∈ findFnBody(prompt.api.accessPath, prompt.api.sig)
12: promptsWithFnBody ← promptsWithFnBody ∪ refine(prompt, body)
13: prompts ← prompts ∪ promptsWithFnBody
14:
15: promptsWithExamples ← ∅ ◃ refine prompts in cases where example snippets are available
16: for prompt ∈ prompts do
17: snippets ← findExamples(prompt.api.accessPath, prompt.api.sig)
18: if snippets ̸= ∅ then
19: promptsWithExamples ← promptsWithExamples ∪ refine(prompt, snippets)
20: prompts ← prompts ∪ promptsWithExamples
21:
22: promptsWithDocComments ← ∅ ◃ refine prompts in cases where doc comments are available
23: for prompt ∈ prompts do
24: docComment ← findDocComments(prompt.api.accessPath, prompt.api.sig)
25: if docComment ̸= ∅ then
26: promptsWithDocComments ← promptsWithDocComments ∪ refine(prompt, docComment)
27: prompts ← prompts ∪ promptsWithDocComments
28:
29: while prompts ̸= ∅ do
30: select and remove prompt from prompts
31: completions ← getCompletions(LLM, prompt.text) ◃ request completions from the LLM
32: for completion ∈ completions do
33: test ← concatenate(prompt, completion)
34: test ← fixMinorSyntaxIssues(test) ◃ e.g., add missing close parentheses
35: test ← removeComments(test)
36: if test is syntactically valid and test ̸∈ seen then
37: seen ← seen ∪ { test }
38: result ← executeTest(test) ◃ execute the test
39: if result.status = ok then ◃ add successful test to tests
40: tests ← tests ∪ { test }
41: else ◃ result.status = assertionFailure or result.status = crash or result.status = nonTermination
42: if prompt was not constructed from a previous failed test then ◃ apply error retry refiner
43: prompt′ ← refineFromError(test, result.errorMessage)
44: prompts ← prompts ∪ { prompt′ }
45: return tests

assertion’s failure is the fact that the concat method merges
adjacent elements if they have the same attributes. Therefore,
when execution reaches line 16, the array delta3.ops will
hold the following value:

and therefore delta3.ops.length will have the
value 5.

In response to this failure, the Prompt Refiner will create
the prompt shown in Fig. 4(b) from which a passing test is
generated. In this test, the expected value in the assertion has
been updated to 5, as per the assertion error message.

Note that all these tests look quite natural and similar to
tests that a human developer might write, and they exercise

typical usage scenarios (rather than edge cases) of the functions
under test.

III. RESEARCH QUESTIONS AND EVALUATION SETUP

A. Research Questions

Our evaluation aims to answer the following
research questions.
RQ1 How much statement coverage and branch coverage

do tests generated by TESTPILOT achieve? Ideally, the
generated tests would achieve high coverage to ensure
that most of the API’s functionality is exercised. Given
that our goal is to generate complete unit test suites (as
opposed to bug finding), we measure statement coverage
for passing tests only. We report coverage on both the
package level and function level.

RQ2 How does TESTPILOT’s coverage compare to Nessie
[11]? We compare TESTPILOT’s coverage to the state-
of-the-art JavaScript test generator, Nessie, which uses a
feedback-directed approach.
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Fig. 3. Examples of prompts (highlighted) and the completions provided by the LLM, comprising complete tests. Prompt (a) contains no snippets and the
test generated from it fails. Prompt (b) contains one snippet and the generated test passes.

Fig. 4. Example illustrating how a prompt is refined in response to the failure of a previously generated test. Prompt (a) contains no information except
the method signature, and the test generated from it fails. Prompt (b) adds information about the test failure, and the generated test passes.
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TABLE I
OVERVIEW OF NPM PACKAGES USED FOR EVALUATION, ORDERED BY DESCENDING POPULARITY IN TERMS OF

DOWNLOADS/WK. THE TOP 10 PACKAGES CORRESPOND TO THE NESSIE BENCHMARK, THE NEXT 10 ARE ADDITIONAL
GITHUB-HOSTED PACKAGES WE INCLUDE, WHILE THE LAST 5 ARE GITLAB-HOSTED PACKAGES

Package Domain LOC Existing
Tests

Weekly
Downloads

API functions Total
Examples# # (%) w/ examples # (%) w/ comment

glob file system 314 22 103M 21 2 (9.5%) 0 (0.0%) 4
fs-extra file system 822 417 79M 172 23 (13.4%) 0 (0.0%) 27
graceful-fs file system 208 11 48M 137 1 (0.7%) 0 (0.0%) 1
jsonfile file system 46 43 48M 4 4 (100.0%) 0 (0.0%) 14
bluebird promises 3.1K 238 26M 115 59 (51.3%) 0 (0.0%) 248
q promises 736 214 14M 98 29 (29.6%) 15 (15.3%) 64
rsvp promises 565 171 8.6M 29 11 (37.9%) 16 (55.2%) 15
memfs file system 2.2K 265 13M 376 21 (5.6%) 7 (1.9%) 26
node-dir file system 244 55 6M 6 6 (100.0%) 5 (83.3%) 8
zip-a-folder file system 25 5 95K 3 2 (66.7%) 0 (0.0%) 2

js-sdsl data structures 1.5K 88 9.7M 133 3 (2.3%) 0 (0.0%) 1
quill-delta document changes 395 180 1.6M 36 17 (47.2%) 0 (0.0%) 17
complex.js numbers/arithmetic 393 21 497K 52 7 (13.5%) 52 (100.0%) 5
pull-stream streams 308 31 78K 24 7 (29.2%) 0 (0.0%) 7
countries-and-timezones date & timezones 78 31 115K 7 7 (100.0%) 0 (0.0%) 7
simple-statistics statistics 917 307 103K 89 3 (3.4%) 88 (98.9%) 3
plural text processing 53 14 18K 4 3 (75.0%) 0 (0.0%) 3
dirty key-value store 89 24 9.7K 27 5 (18.5%) 0 (0.0%) 2
geo-point geographical coordinates 76 10 1.1K 19 10 (52.6%) 0 (0.0%) 11
uneval serialization 31 3 417 1 1 (100.0%) 0 (0.0%) 1

image-downloader image handling 32 12 23K 1 1 (100.0%) 0 (0.0%) 3
crawler-url-parser URL parser 100 185 5 3 3 (100.0%) 0 (0.0%) 4
gitlab-js API wrapper 205 14 184 37 4 (10.8%) 2 (5.4%) 7
core access control 136 16 1 20 6 (30.0%) 0 (0.0%) 2
omnitool utility library 1.6K 420 1 270 15 (5.6%) 80 (29.6%) 9

RQ3 How many of TESTPILOT’s generated tests contain non-
trivial assertions? A test with no assertions or with trivial
assertions such as assert.equal(true, true)
may still achieve high coverage. However, such tests do
not provide useful oracles. We examine the generated
tests and measure the prevalence of non-trivial assertions.

RQ4 What are the characteristics of TESTPILOT’s failing
tests? We investigate the reasons behind any failing
generated test.

RQ5 How does each of the different types of information
included in prompts contribute to the effectiveness of
TESTPILOT’s generated tests? To investigate if all the
information included in prompts through the refiners is
necessary to generate effective tests, we disable each
refiner and report how it affects the results.

RQ6 Are TESTPILOT’s generated tests copied from existing
tests? Since gpt3.5-turbo is trained on GitHub code, it
is likely that the LLM has already seen the tests of our
evaluation packages before and may simply be producing
copies of tests it “memorized”. We investigate the simi-
larity between the generated tests and any existing tests
in our evaluation packages.

RQ7 How much does the coverage of TESTPILOT’s generated
tests rely on the underlying LLM? To understand the gen-
eralizability of an LLM-based test generation approach
and the effect of the underlying LLM TESTPILOT relies
on, we compare coverage we obtain using gpt3.5-turbo
with two other LLMs: (1) OpenAI’s code-cushman-002
model [48], one of gpt3.5-turbo’s predecessors which
is part of the Codex suite of LLMs [52] and which
served as the main model behind the first release of
GitHub Copilot [38], and (2) StarCoder [49], a pub-
licly available LLM for which the training process is
fully documented.

B. Evaluation Setup

To answer the above research questions, we use a benchmark
of 25 npm packages. Table I shows the size and number of
downloads (popularity) of each of these packages. The first
10 packages shown in the table are the same GitHub-hosted
packages used for evaluating Nessie [11], a recent feedback-
directed test-generation technique for JavaScript. However, we
notice that these 10 packages primarily focus on popular I/O-
related libraries with a callback-heavy style, so we add 10
new packages from different domains (e.g., document process-
ing and data structures), programming styles (primarily object-
oriented), as well as less popular packages. Since gpt3.5-turbo
(as well as the other LLMs we experiment with in RQ7)
was trained on GitHub repositories, we have to assume that
all our subject packages (and in particular their tests) were
part of the model’s training set. For this reason, we also in-
clude an additional 5 packages whose source code is hosted
on GitLab.4

Table I shows that the 25 packages vary in terms of popu-
larity (downloads/week) and size (LOC), as well as in terms
of the number of API functions they offer and the extent
of the available documentation. The “API functions” columns
show the number of available API functions; the number and
proportion of API functions that have at least one example
code snippet in the documentation (“w/ examples”); and the
number and proportion of API functions that have a docu-
mentation comment (“w/ comment”). We also show the total
number of example snippets available in the documentation of
each package.

4We checked similarly-named repos to ensure that they are not mirrored
on GitHub.
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TABLE II
STATEMENT AND BRANCH COVERAGE FOR TESTPILOT’S PASSING TESTS, GENERATED USING GPT3.5-TURBO. WE ALSO SHOW PASSING TESTS

THAT UNIQUELY COVER A STATEMENT. THE LAST TWO COLUMNS SHOW NESSIE’S STATEMENT AND BRANCH COVERAGE FOR EACH PACKAGE.
NOTE THAT NESSIE GENERATES 1000 TESTS PER PACKAGE AND THE REPORTED COVERAGE IS FOR ALL GENERATED TESTS

Project Loading Coverage TESTPILOT Nessie 1000 Tests

Stmt Cov Branch Cov Total Tests Passing Tests (%) Stmt Cov Branch Cov Uniquely Contr. (%) Stmt Cov Branch Cov

glob 7.0% 0.4% 68 18 (26.5%) 71.3% 66.3% 4 (22.2%) 39.7% 14.8%
fs-extra 16.8% 0.9% 471 277 (58.8%) 58.8% 38.9% 17 (6.1%) 38.0% 24.9%
graceful-fs 28.6% 9.8% 345 177 (51.4%) 49.3% 33.3% 1 (0.6%) 49.8% 34.9%
jsonfile 19.1% 0.0% 13 6 (48.0%) 38.3% 29.4% 0 (0.0%) 91.5% 81.0%
bluebird 23.7% 7.8% 370 204 (55.2%) 68.0% 50.0% 26 (12.5%) 43.8% 24.6%
q 22.4% 9.1% 323 186 (57.6%) 70.4% 53.7% 20 (10.5%) 66.8% 54.4%
rsvp 16.4% 12.6% 109 70 (64.2%) 70.1% 55.3% 6 (7.9%) 52.8% 47.0%
memfs 29.3% 7.2% 1037 471 (45.4%) 81.1% 58.9% 40 (8.5%) 64.6% 36.2%
node-dir 5.9% 0.0% 40 19 (48.1%) 64.3% 50.8% 4 (21.1%) 65.4% 54.3%
zip-a-folder 16.0% 0.0% 11 6 (54.5%) 84.0% 50.0% 0 (0.0%) 88.0% 100.0%

js-sdsl 7.9% 3.7% 409 46 (11.3%) 33.9% 24.3% 18 (39.1%) 8.5% 4.8%
quill-delta 8.1% 1.6% 152 33 (21.7%) 73.0% 64.3% 8 (24.2%) 9.6% 2.5%
complex.js 8.4% 4.6% 209 121 (58.0%) 70.2% 46.5% 10 (8.3%) 8.6% 5.4%
pull-stream 18.1% 0.0% 83 34 (41.0%) 69.1% 52.8% 11 (32.4%) 38.5% 23.8%
countries-and-timezones 4.9% 0.0% 28 13 (46.4%) 93.1% 69.1% 2 (15.4%) 96.0% 80.8%
simple-statistics 2.6% 0.0% 353 250 (70.9%) 87.8% 71.3% 14 (5.4%) 57.8% 66.0%
plural 53.8% 0.0% 13 8 (61.5%) 73.8% 59.1% 1 (12.5%) 59.2% 9.1%
dirty 4.7% 0.0% 70 32 (45.3%) 74.5% 65.4% 2 (6.3%) 4.7% 0.0%
geo-point 12.2% 0.0% 76 50 (65.8%) 87.8% 70.6% 1 (2.0%) 13.3% 0.0%
uneval 9.4% 0.0% 7 2 (28.6%) 68.8% 58.3% 0 (0.0%) – –

image-downloader 24.2% 0.0% 5 4 (80.0%) 63.6% 50.0% 0 (0.0%) 30.3% 22.2%
crawler-url-parser 7.2% 1.3% 14 2 (14.3%) 51.4% 35.0% 2 (100.0%) 73.9% 64.1%
gitlab-js 26.9% 0.6% 141 14 (9.9%) 51.7% 16.5% 7 (46.4%) 55.3% 26.4%
core 16.1% 0.0% 85 13 (15.3%) 78.3% 50.0% 5 (38.5%) 18.9% 0.0%
omnitool 19.2% 0.6% 1033 330 (31.9%) 74.2% 55.2% 90 (27.2%) 56.0% 28.3%

Median 16.1% 0.4% 48.0% 70.2% 52.8% 10.5% 51.3% 25.6%

To answer RQ1–RQ6, we run TESTPILOT using the gpt3.5-
turbo LLM (version gpt-3.5-turbo-0301), sampling five com-
pletions of up to 100 tokens at temperature zero,5 with all other
options at their default values. In RQ7, we use the same settings
for code-cushman-002 and StarCoder, except that the sampling
temperature for the latter is 0.01 since it does not support a
temperature of zero.

Note that LLM-based test generation does not have a test-
generation budget per se since it is not an infinite process.
Instead, we ask the LLM for at most five completions for
every prompt (but the model may return less). We deduplicate
the returned tests to avoid inflating the number of generated
tests. For example, if two prompts return the same test (modulo
comments), we only record this test once but keep track of
which prompt(s) resulted in its generation.

While we set the sampling temperature as low as possible,
there is still some nondeterminism in the received responses.
Accordingly, we run all experiments 10 times. All the per-
package data points reported in Section IV are median values
over these 10 runs, except for integer-typed data such as number
of tests where we use the ceiling of the median value. For RQ6,
without loss of generality, we present the similarity numbers
based on the first run only.

We use Istanbul/nyc [53] to measure statement and branch
coverage and use Mocha’s default time limit of 2s per test.

5Intuitively speaking, the sampling temperature controls the randomness
of the generated completions, with lower temperatures meaning less non-
determinism. Language models encode their input and output using a vocab-
ulary of tokens, with commonly occurring sequences of characters (such as
require, but also contiguous runs of space characters) represented by a
single token.

IV. EVALUATION RESULTS

A. RQ1: TESTPILOT’s Coverage

Table II shows the number of tests TESTPILOT generates for
each package, the number (and proportion) of passing tests, and
the corresponding coverage achieved by the passing tests. The
first two columns of Table II also show the coverage obtained
by simply loading the package (loading coverage). This is the
coverage we get “for free” without having any test suite, which
we provide as a point of reference for interpreting our results.
Overall, 9.9%–80.0% of the tests generated by TESTPILOT are
passing tests, with a median of 48.0% across all packages.
We now discuss the different coverage measurements of these
passing tests.

Statement Coverage: The statement coverage per package
achieved by the passing tests ranges between 33.9% and 93.1%,
with a median of 70.2%. We note that across all packages, the
achieved statement coverage is much higher than the loading
coverage with a difference of 19.1%–88.2% and a median dif-
ference of 53.7%.6

The lowest statement coverage TESTPILOT achieves is on
js-sdsl, at 33.9%. Upon further investigation of this pack-
age, we find that it maintains the documentation examples
that appear on its website as markdown files in a separate
repository.7 Including the extracted example snippets from this
external repository increases the achieved coverage to 43.6%,

6For some of the projects we share with Nessie, our loading coverage
differs from the one reported in their paper. We contacted the authors, who
confirmed that with recent versions of Istanbul/nyc they obtained the same
numbers as we did, except for a very small difference on memfs (29.1% vs
29.3%), which may be due to platform differences.

7https://github.com/js-sdsl/js-sdsl.github.io/tree/main/start
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which suggests the importance of including usage examples in
the prompts. We examine the effect of the information included
in prompts in detail in RQ5 (Section IV-E).

It is worth noting that TESTPILOT’s coverage for the GitLab
projects listed in the bottom 5 rows of Table II ranges from
51.4% to 78.3%. This demonstrates that TESTPILOT is effective
at generating high-coverage unit tests for packages it has not
seen in its training set.

Branch Coverage: We also show the branch coverage
achieved by the passing tests in Table II. We find that the
branch coverage per package is between 16.5% and 71.3%,
with a median of 52.8%. Similar to statement coverage, the
achieved branch coverage is also much higher than the load-
ing coverage with a difference of 15.9%–71.3% and a median
difference of 50.0%.

Since achieving branch coverage is generally harder than
achieving statement coverage, it is expected that the branch
coverage for the generated tests is lower than the statement
coverage. However, we note an interesting case in gitlab-
js where this difference seems more pronounced (51.7% vs.
16.5%). Upon further investigation of its source code and doc-
umentation, we find that gitlab-js offers various configu-
ration options and parameters to specify the GitLab repository
to connect to and use/query (e.g., its url, authentication token,
search parameters to use for a query). The processing of these
options is reflected in the main branching logic in the code.
While TESTPILOT does attempt to generate reasonable tests that
call different endpoints with different options, it sometimes
struggles to find the correct function call to use, resulting in
type errors. In general, a large proportion of the tests TESTPILOT

generates for this package fail, and thus do not contribute to our
coverage numbers. It is also worth noting that properly testing
such a package would require mocking, but we did not observe
any of the generated tests to use mocking. In the future, it would
be interesting to investigate if including mocking libraries in the
prompt, or other mocking related information, may result in the
model using mocking when needed.

Coverage per Function: Fig. 5 shows the distribution of
statement coverage per function for each package. Each box
corresponds to one of our benchmark packages and each data
point in a box represents the statement coverage for a function
in that package. The median statement coverage per function
for each package is shown in red.

Overall, the median statement coverage per function for a
given project ranges from 0.0%–100.0%, with a median of
77.1%. To ensure that TESTPILOT is not generating high cov-
erage tests only for smaller functions, we run a Pearson’s
correlation test between the statement coverage per function
and the corresponding function size (in statements). We find
no statistically significant correlation between coverage and
size, indicating that TESTPILOT is not only doing well for
smaller functions.8

As expected, Fig. 5 shows that for most packages, TESTPILOT

does well for some functions while achieving low coverage
for others. Let us take jsonfile as an example. In Table II,

8Exact correlation coefficients and p-values are provided in our artifact.

Fig. 5. Distribution of statement coverage per function for TESTPILOT’s
generated tests using gpt3.5-turbo.

we saw that its statement coverage at the package level is 38.3%.
From Fig. 5, we see that statement coverage per function ranges
from 0% to 100%, with a median of almost 50%. Diving into
the data, we find that there are two functions that TESTPILOT

cannot cover, because their corresponding generated tests fail
either due to references to non-existent files TESTPILOT includes
in the tests or because they time out. However, the functions that
TESTPILOT is able to cover have statement coverage ranging
from 58%–100%. We can observe similar behavior with other
file system dependent packages, such as graceful-fs or
fs-extra. At the other end of the spectrum, we see zip-
a-folder where TESTPILOT achieves both high statement
coverage at the package level (84%) as well as high statement
coverage at the function level in Fig. 5 where the minimum per
function coverage is 75%.

Uniquely Contributing Tests: To further understand the
diversity of the generated tests, Table II also shows how many
of the tests TESTPILOT generates are uniquely contributing,
meaning that they cover at least one statement that no other
tests cover. A median of 10.5% of the passing tests are of this
kind, with some packages as high as 100.0%. These results
are promising because they show that TESTPILOT can generate
tests that cover edge cases, but there is clearly some redundancy
among the generated tests. Of course, we cannot simply exclude
all 89.5% remaining tests without losing coverage, since some
statements may be covered by multiple tests non-uniquely. Ex-
ploring test suite minimization techniques [54] to reduce the
size of the generated test suite is an interesting avenue for
future work.

B. RQ2 TESTPILOT vs. Nessie

We compare TESTPILOT’s coverage to the state-of-the-art
JavaScript test generator Nessie [11], which uses a traditional
feedback-directed approach.9 For each package, Nessie gener-
ates 1000 tests, for which we measure statement and branch
coverage in the same way as for TESTPILOT. We then repeat
these measurements 10 times and take the median coverage

9Note that Nessie’s implementation has been refactored and improved after
the publication of the original paper, which is why some of the values in
this table differ slightly from the published numbers. Nessie’s first author has
kindly helped us run the improved version (specifically, https://github.com/
emarteca/nessie/tree/86e48f1d038d98dcd2663d6d36a58a70c4666b1b) on all
25 packages. We include the Nessie results in our artifact
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Fig. 6. Example of a test generated by Nessie. Highlighted lines are for debugging purposes only and do not contribute to the testing of the package
under test.

across the 10 runs to follow a similar setup to TESTPILOT’s
evaluation. We use a Wilcoxon paired rank-sum test to deter-
mine if there are statistically significant differences between the
coverage achieved by both tools.

The last two columns of Table II show statement and branch
coverage for Nessie. We note that Nessie could not run on
uneval, because the module’s only export is a function, which
Nessie does not support. For the remaining 24 packages, Nessie
achieved 4.7%–96.0% statement coverage, with a median of
51.3%. In contrast, as shown in Table II, TESTPILOT’s median
statement coverage is much higher at 70.2%. The difference
in branch coverage is even higher, with 52.8% for TESTPILOT

vs 25.6% for Nessie. Both these differences are statistically
significant (p-values 0.002 and 0.027 respectively) with a large
effect size, measured by Cliff’s delta [55], of 0.493 for state-
ment coverage and a medium one (0.431) for branch coverage.10

Note that Nessie always generates 1000 tests per package, while
TESTPILOT usually generates far fewer tests, except on memfs
and omnitool. It is also worth emphasizing that Nessie (and
other test-generation techniques such as LambdaTester [56])
report coverage of all generated tests, regardless of whether they
pass or fail while our reported coverage numbers are for passing
tests only.

We now dive into the results at the package level. For each
package, Table II highlights the higher coverage from the two
techniques in bold. TESTPILOT outperforms Nessie on 17 of the
24 packages (glob, fs-extra, bluebird, q, rsvp, memfs, js-sdsl,
quill-delta, complex.js, pull-stream, simple-statistics, plural,
dirty, geo-point, image-downloader, core, omnitool), increasing
coverage by 3.6%–74.5%, with a median 30.0% increase. For 7
of the remaining packages (graceful-fs, jsonfile, node-dir, zip-a-
folder, countries-and-timezones, crawler-url-parser, gitlab-js),
TESTPILOT achieves lower coverage than Nessie. For these
packages, it reduces coverage by 0.5%–53.2%, with a median

10All effect sizes for all statistical tests are available in our artifact.

3.6% decrease. We also note that Nessie fails to achieve any
branch coverage on 3 projects (dirty, geo-point, core), while
the statement coverage for these projects is non-zero. Upon
further examination, and after consulting the Nessie authors, we
found that Nessie cannot generate tests that instantiate classes,
meaning that statement coverage is barely above loading cov-
erage for packages with a class-based API, while the branch
coverage is zero.

Aside from the difference in coverage achieved by Nessie
and TESTPILOT, tests generated by Nessie tend to look
quite different from the ones generated by TESTPILOT,
which stems from Nessie’s random approach to test
generation. To illustrate this, Fig. 6 shows an example of
a test generated by Nessie that exercises the getCountry
function of countries-and-timezones. As can
be seen in the figure, the test uses long variable names
such as ret_val_manuelmhtr_countries_and_
timezones_1 that hamper readability. Moreover, the test
invokes getCountry on lines 13–17 with an object literal
that binds random values to some randomly named properties,
which does not reflect intended use of the API. Moreover, tests
generated by Nessie do not contain any assertions. By contrast,
tests generated by TESTPILOT for the same package (see Fig.
3) typically use variable names that are similar to those chosen
by programmers, invoke APIs with sensible values, and often
contain assertions.

C. RQ3: Non-Trivial Assertions

We define a non-trivial assertion as an assertion that de-
pends on at least one function from the package under test.
To identify non-trivial assertions, we first use CodeQL [57] to
compute a backwards program slice from each assertion in the
generated tests. We consider assertions whose backwards slice
contains an import of the package under test as non-trivial as-
sertions. We then report generated tests that contain at least one
non-trivial assertion.

Authorized licensed use limited to: Northeastern University. Downloaded on April 17,2024 at 17:25:11 UTC from IEEE Xplore.  Restrictions apply. 



96 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 1, JANUARY 2024

TABLE III
NUMBER (%) OF NON-TRIVIAL TESTPILOT TESTS GENERATED

USING GPT3.5-TURBO AND THE RESULTING STATEMENT COVERAGE
FROM THE PASSING NON-TRIVIAL TESTS

Project Non-trivial
Tests (%)

Passing Non-trivial Tests

Tests (%) Stmt Cov

glob 37 (54.4%) 3 (8.1%) 50.1%
fs-extra 142 (30.1%) 70 (49.5%) 28.0%
graceful-fs 64 (18.4%) 27 (42.5%) 41.5%
jsonfile 4 (32.0%) 0 (0.0%) 0.0%
bluebird 227 (61.4%) 137 (60.4%) 61.6%
q 235 (72.6%) 136 (58.0%) 66.4%
rsvp 68 (62.4%) 48 (70.6%) 67.6%
memfs 758 (73.1%) 356 (47.0%) 77.4%
node-dir 7 (16.5%) 0 (0.0%) 0.0%
zip-a-folder 1 (9.1%) 0 (0.0%) 0.0%

js-sdsl 349 (85.3%) 44 (12.6%) 33.9%
quill-delta 92 (60.5%) 27 (28.8%) 59.7%
complex.js 190 (90.9%) 104 (54.6%) 62.7%
pull-stream 60 (72.3%) 29 (47.5%) 64.7%
countries-and-timezones 22 (78.6%) 7 (31.8%) 73.5%
simple-statistics 189 (53.6%) 115 (60.6%) 46.9%
plural 12 (92.3%) 8 (66.7%) 73.8%
dirty 29 (41.7%) 13 (44.8%) 66.0%
geo-point 60 (78.9%) 34 (56.7%) 64.6%
uneval 4 (57.1%) 2 (50.0%) 68.8%

image-downloader 0 (0.0%) – 0.0%
crawler-url-parser 6 (42.9%) 1 (16.7%) 49.5%
gitlab-js 104 (73.8%) 12 (11.5%) 49.3%
core 64 (74.7%) 12 (18.9%) 75.5%
omnitool 977 (94.6%) 319 (32.6%) 73.8%

Median 61.4% 43.7% 61.6%

Table III shows the number of tests with non-trivial asser-
tions (non-trivial test for short) and their proportion w.r.t all
generated tests from Table II. The table also shows the number
and proportion of these tests that pass, along with the statement
coverage they achieve.

We observe that there is only one package, image-
downloader where TESTPILOT generates only trivial tests.
While the generated tests for image-downloader did in-
clude calls to its API, they were all missing assert statements.
Across the remaining packages, a median of 9.1%–94.6% of
TESTPILOT’s generated tests per package are non-trivial. A me-
dian of 61.4% of the generated tests for a given package are
non-trivial. When compared to all generated tests, we can also
see that only a slightly lower proportion of non-trivial tests pass
(median 48.0% for overall passing tests from Table II vs. 43.7%
for non-trivial passing tests from Table III). Both these results
show that TESTPILOT typically generates tests with assertions
that exercise functionality from the target package.

The coverage achieved by the non-trivial tests also supports
this finding. Specifically, when comparing the statement cover-
age for all the generated tests in Table II to that for non-trivial
tests in Table III, we find that the difference ranges from 0.0%–
84.0%, with a median difference of only 7.5%. This means that
the achieved coverage for most packages mainly comes from
exercising API functionality that is tested by the generated ora-
cles. We note however that there are 4 packages (jsonfile, node-
dir, zip-a-folder, image-downloader) where non-trivial tests
achieve 0% statement coverage, causing the larger differences.
Apart from image-downloader discussed above, the three
remaining packages do not have any passing non-trivial tests.

Fig. 7. Types of errors in the failed tests generated by TESTPILOT, using
gpt3.5-turbo.

Since we calculate coverage for passing tests only, this results
in the 0% statement coverage for the non-trivial tests.

D. RQ4: Characteristics of Failing Tests

Fig. 7 shows the number of failing tests for each package,
along with the breakdown of the reasons behind the failure.
Assertion errors occur when the expected value in an assertion
does not match the actual value from executing the code. File-
system errors include errors such as files or directories not
being found, which we identify by checking for file-system
related error codes [58] in the error stack trace. Correctness
errors include all type errors, syntax errors, reference errors,
incorrect invocations of done, and infinite recursion/call stack
errors. Timeout errors occur when tests exceed the maximum
running time we allow them (2s/test). Finally, we group all other
application-specific errors we observe under Other.

We find that the most common failure reason is timeouts with
a median 22.7% of failing tests, followed by correctness errors
(particularly type errors) with a median of 20.0% of failing tests.
The majority of timeouts are due to missing calls to done,
causing Mocha to keep waiting for the call. We note that on
average, the RetryWithError refiner was able to fix 15.4% of
such timeout errors, with the model often simply adding a call
to done11.

We find that a median 19.2% of failures are assertion er-
rors, indicating that in some cases gpt3.5-turbo is not able
to figure out the correct expected value for the test oracle.
This is especially true when the package under test is not
widely used and none of the information we provide the model
can help it in figuring out the correct values. For example,
in one of the tests for geo-point, TESTPILOT was able to
use coordinates in the provided example snippet to correctly
construct two geographical coordinates as input for the cal-
culateDistance function, which computes the distance

11While the insertion of missing calls to done may seem straightforward
and therefore be amenable to automated repair, it can be surprisingly tricky to
find the correct locations where to insert such calls, and handling this correctly
would require applying static analysis to the generated test. We therefore opted
for an automated approach that relies solely on the LLM but will consider
the use of static analysis to repair generated tests as future work.
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Fig. 8. Effect of disabling prompt refiners in TESTPILOT, using gpt3.5-turbo.
Full considers all refiners while Base includes only the function signature and
Mocha scaffolding.

between the two coordinates. However, TESTPILOT incorrectly
generated 131.4158102876726 as the expected value for the
distance between these two points, while the correct expected
value is 130584.05017990958; this caused the test to fail with
an assertion error. We note that in this specific case, when
TESTPILOT re-prompted the model with the failing test and
error message, it was then able to produce a passing test
with the corrected oracle. On average across the packages, we
find that the RetryWithError refiner was able to fix 11.1% of
assertion errors.

Finally, we note that file-system errors are domain specific.
The generated tests for packages in the file system domain, such
as fs-extra or memfs, have a high proportion of failing tests
due to such errors. This is not surprising given that these tests
may rely on files that may be non-existent or require containing
specific content. Packages in the other domains do not face
this problem.

Overall, we find that re-prompting the model with the error
message of failing tests (regardless of the failure reason) al-
lows TESTPILOT to produce a consequent passing test in 15.6%
of the cases.

E. RQ5: Effect of Prompt Refiners

Our results so far include tests generated with all four prompt
refiners discussed in Section II. In this RQ, we investigate the
effect of each of these refiners on the quality of the generated
tests. Specifically, we conduct an ablation study where we dis-
able one refiner at a time. Disabling a refiner means that we
no longer generate prompts that include the information it pro-
vides. For example, disabling DocCommentIncluder means that
none of the prompts we generate would contain documentation
comments. We then compare the percentage of passing tests,
the achieved coverage, as well as the coverage by non-trivial
tests (non-trivial coverage).

Fig. 8 shows our results. The x-axis shows the metrics we
compare across the different configurations shown in the leg-
end. The y-axis shows the values for each metric (all percent-
ages). Each data point in a boxplot represents the results of the
specific metric for a given package, using the corresponding
refiner configuration. The black line in the middle of each box
represents the median value for each metric across all packages.
The full configuration is the configuration we presented so

far (i.e., all refiners enabled). The other configurations show
the results of excluding only one of the refiners. For exam-
ple, the red box plot shows the results when disabling the
SnippetIncluder (i.e., Without Example Snippets). The base
prompt configuration contains only the function signature and
test scaffolding (i.e., disabling all refiners). Note, however, that
only 8 of the packages in our evaluation contain documenta-
tion comments. It does not make sense to compare the effect
of disabling the DocCommentIncluder on packages that do
not contain doc comments in the first place. Therefore, while
the distributions shown in all boxplots represent 25 packages,
the Without Doc Comments configuration contains data for
only 8 packages.

Overall, we can see that the full configuration outperforms
all other configurations, across all three metrics, implying that
all the prompt information we include contributes to generating
more effective tests. We find that there was not a single package
where disabling a refiner led to better results on any metric.
With the exception of 4 packages where disabling one of the re-
finers did not affect the results (SnippetIncluder on crawler-
url-parser and dirty; and RetryWithError on gitlab-
js and zip-a-folder), disabling a refiner always resulted
in lower values in at least one metric.

The contributions of the refiners are especially notable for the
percentage of passing tests where disabling any of the refiners
(e.g., FnBodyIncluder or SnippetIncluder) results in a large
drop in the percentage of passing tests. This suggests that the
refiners are effective in guiding the model towards generating
more passing tests, even if this does not necessarily result in
additional coverage. We find that across all packages, a full
configuration always leads to a higher percentage of passing
tests for a given API, while maintaining high coverage.

To understand if the differences between the distributions
we observe in Fig. 8 are statistically significant, we compare
the results of each pair of configurations for all three metrics
using a Wilcoxon matched pairs signed rank tests. Note that
when comparing against DocCommentIncluder, we compare
distributions for only the 8 packages that contain doc comments.

We find a statistically significant difference between the full
configuration and each configuration that disables any refiner
as well as between the base configuration and each of the other
configurations. Compared to the full configuration, the largest
effect size we observed for disabling a refiner was on pass-
ing tests when either FnBodyIncluder or DocCommentIncluder
were disabled (Cliff’s delta 0.582 and 0.531 respectively).

Apart from differences with the full and base configura-
tion, we find no statistically significant differences between the
pairs of other configurations except for the following cases:
We find that for both passing tests and coverage, there is a
statistically significant difference between the configuration
that disables FnBodyIncluder and that which disables Retry-
WithError (medium and negligible effect sizes, respectively).
For passing tests, we also find a statistically significant differ-
ence between disabling FnBodyIncluder and disabling each of
SnippetIncluder and DocCommentIncluder (small and medium
effect sizes, respectively). However, we note that a sample
size of 8 is too small to draw any valid conclusions for
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Fig. 9. Example of a refinement negatively influencing test generation. Prompt (a) contains no information except the method signature, and the generated
test passes. Prompt (b) adds the body of the method, but the generated test fails.

DocCommentIncluder. It is particularly interesting to see that
there was no statistically significant difference between dis-
abling SnippetIncluder and disabling any of the other refiners.
This suggests that the absence of example snippets does not
necessarily affect the metrics any more than the absence of
any of the information provided by the other refiners. Since
Fig. 8 shows that we still obtain a high median coverage even
when disabling SnippetIncluder, this suggests that the presence
of examples snippets is not essential for generating effective
test suites with high coverage, and that TESTPILOT is applicable
even in cases where no documentation examples are present.

Finally, we note that while the overall results across a given
package show that the refiners always improve, or at least
maintain, coverage and percentage of passing tests, this does
not mean that a refiner always improves the results for an
individual API function. We have observed situations where
adding information such as the function implementation to a
prompt that does not include it confuses the model, resulting
in the generation of a failing test. Fig. 9 shows an example
for the complex.js package: given the base prompt on the
left, gpt3.5-turbo is able to produce a (very simple) passing test
for the valueOf method of the constant ZERO exported by
the package; adding the function body yields the prompt on
the right, which seems to confuse the model, resulting in the
generation of a failing test. Across all packages, 5,367 prompts
were generated by applying one of the refiners, and in only
394 cases (7.3%) the refined prompt was less effective than the
original prompt in the sense that a passing test was generated
from the original prompt, but not from the refined prompt.

F. RQ6: Memorization

Since gpt3.5-turbo was trained on GitHub code, some of
the existing tests included in our benchmarks may have been
part of its training set. This raises the concern that TESTPILOT

may be memorizing existing tests, rather than generating new
ones, limiting its usefulness for packages it was not trained
on. To investigate potential effects of memorization, we mea-
sure the similarity between each generated test and the exist-
ing tests in the benchmarks (number of existing tests shown
in Table I). Recently, Lemieux et al. [27] reported that code

Fig. 10. Cumulative percent of TESTPILOT generated test cases, using
gpt3.5-turbo, with maximum similarity less than the similarity value shown
on the x-axis.

plagiarism or clone detection [59] techniques are not effec-
tive at identifying LLM code memorization. Instead, they find
that measuring similarity through edit distance [60] produces
more meaningful results. They define maximum similarity as
a metric that measures the normalized highest similarity be-
tween a given generated test and all existing tests as follows:
maxtp∈TP

(
1 − dist(t∗,tp)

max(len(t∗),len(tp))

)
, where TP is the set of

existing test functions in a package, t∗ is a given generated
test, and dist is the edit distance between a generated test and
an existing test. We follow the same method for calculating
maximum similarity for each generated test, using the npm
Levenstein package [61] to calculate dist .

Fig. 10 shows the cumulative percentage of generated tests
cases for each project where the maximum similarity is less
than the value on the x-axis. We also show this cumulative
percentage for all generated test cases across all projects. We
find that 6.2% of TESTPILOT’s generated test cases have less
than ≤ 0.3% maximum similarity to an existing test, 60.0%
have ≤ 0.4 similarity, 92.8% have ≤ 0.5, 99.6% have ≤ 0.6
while 100.0% of the generated tests cases have ≤ 0.7. This
means that TESTPILOT never generates exact copies of existing
tests. In contrast, while 90% of Lemieux et al. [27]’s generated
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TABLE IV
A COMPARISON OF STATEMENT COVERAGE OF TESTPILOT’S GENERATED TESTS USING THREE LLMS. FOR EACH PROJECT, WE SHOW THE NUMBER OF

GENERATED TESTS, THE NUMBER (%) OF PASSING TESTS, AND THE STATEMENT COVERAGE ACHIEVED BY THESE PASSING TESTS

Project gpt3.5-turbo code-cushman-002 StarCoder

Tests Passing Stmt Coverage Branch Coverage Tests Passing Stmt Coverage Branch Coverage Tests Passing Stmt Coverage Branch Coverage

glob 68 18 (26.5%) 71.3% 66.3% 76 31 (40.1%) 61.7% 51.0% 45 10 (22.2%) 64.8% 58.4%
fs-extra 471 277 (58.8%) 58.8% 38.9% 394 254 (64.3%) 41.0% 23.3% 443 163 (36.7%) 43.0% 25.5%
graceful-fs 345 177 (51.4%) 49.3% 33.3% 301 135 (44.9%) 47.5% 30.3% 309 100 (32.4%) 44.7% 22.7%
jsonfile 13 6 (48.0%) 38.3% 29.4% 15 8 (53.3%) 46.8% 44.1% 13 7 (53.8%) 59.6% 47.0%
bluebird 370 204 (55.2%) 68.0% 50.0% 400 211 (52.6%) 68.2% 51.3% 395 130 (32.8%) 55.6% 36.0%
q 323 186 (57.6%) 70.4% 53.7% 356 190 (53.4%) 66.9% 51.2% 348 96 (27.4%) 63.0% 48.1%
rsvp 109 70 (64.2%) 70.1% 55.3% 115 77 (66.5%) 73.3% 60.5% 141 45 (31.9%) 66.8% 53.2%
memfs 1037 471 (45.4%) 81.1% 58.9% 1058 505 (47.7%) 78.9% 54.9% 922 268 (29.0%) 71.9% 49.8%
node-dir 40 19 (48.1%) 64.3% 50.8% 22 16 (74.4%) 52.2% 41.1% 51 17 (33.3%) 54.0% 42.7%
zip-a-folder 11 6 (54.5%) 84.0% 50.0% 10 7 (70.0%) 88.0% 62.5% 11 4 (36.4%) 56.0% 37.5%
js-sdsl 409 46 (11.3%) 33.9% 24.3% 274 63 (23.0%) 36.5% 27.3% 235 21 (8.9%) 26.9% 17.9%
quill-delta 152 33 (21.7%) 73.0% 64.3% 187 50 (26.5%) 74.0% 66.6% 135 7 (5.2%) 31.0% 21.1%
complex.js 209 121 (58.0%) 70.2% 46.5% 221 125 (56.3%) 62.7% 46.2% 178 56 (31.5%) 53.5% 34.9%
pull-stream 83 34 (41.0%) 69.1% 52.8% 76 43 (55.9%) 70.8% 54.7% 69 10 (14.5%) 51.6% 32.7%
countries-and-timezones 28 13 (46.4%) 93.1% 69.1% 41 18 (44.4%) 93.1% 74.4% 33 11 (33.8%) 88.2% 64.9%
simple-statistics 353 250 (70.9%) 87.8% 71.3% 350 213 (60.7%) 80.1% 63.9% 352 164 (46.6%) 69.9% 54.5%
plural 13 8 (61.5%) 73.8% 59.1% 17 8 (47.1%) 75.4% 59.1% 13 5 (38.5%) 73.8% 59.1%
dirty 70 32 (45.3%) 74.5% 65.4% 89 42 (47.5%) 81.1% 69.2% 57 23 (40.4%) 72.6% 61.5%
geo-point 76 50 (65.8%) 87.8% 70.6% 87 35 (40.2%) 61.0% 70.6% 62 16 (25.8%) 46.3% 70.6%
uneval 7 2 (28.6%) 68.8% 58.3% 5 0 (0.0%) 0.0% 0.0% 6 0 (0.0%) 0.0% 0.0%
image-downloader 5 4 (80.0%) 63.6% 50.0% 5 2 (40.0%) 75.8% 50.0% 5 2 (40.0%) 63.6% 50.0%
crawler-url-parser 14 2 (14.3%) 51.4% 35.0% 17 2 (11.8%) 49.5% 31.3% 14 1 (7.1%) 48.6% 32.5%
gitlab-js 141 14 (9.9%) 51.7% 16.5% 116 35 (29.7%) 61.8% 31.8% 117 1 (0.9%) 28.4% 0.6%
core 85 13 (15.3%) 78.3% 50.0% 102 21 (20.7%) 72.7% 47.7% 61 5 (8.2%) 16.1% 0.0%
omnitool 1033 330 (31.9%) 74.2% 55.2% 1029 321 (31.1%) 70.1% 54.2% 812 194 (23.9%) 40.0% 18.1%

Median 48.0% 70.2% 52.8% 47.1% 68.2% 51.2% 31.5% 54.0% 37.5%

Fig. 11. Example of a TESTPILOT-generated test case from bluebird
(a), and an existing test case (b) with similarity 0.62.

Python tests have ≤ 0.4 similarity, 2% of their test cases are
exact copies. That said, given the differences between testing
frameworks in Python and JavaScript (e.g., Mocha requires
more boilerplate code than pytest), similarity numbers cannot
be directly compared between the two languages.

To further illustrate the resulting similarity numbers, Fig. 11
shows an example of a test case from bluebird with 0.62
similarity to an existing test case. While the edit distance here
is low, resulting in the high similarity, we can see that the
tests have semantic differences. For example, the generated test
simply checks that the thrown exception is a type error, while
the existing test checks for certain values in the trace. Thus, the
7.2% of test cases we generate with > 0.5 similarity do not pose
a concern that TESTPILOT is generating memorized test cases.
Finally, we would expect the generated tests for GitLab-hosted
projects to have a lower similarity to existing tests since, as far
as we know, the training set for OpenAI’s models only includes
projects from GitHub, so the model is less likely to have seen
the existing tests during training. Our results do indeed show

that three out of the five projects have a maximum similarity of
≤ 0.4, with the remaining two having maximum similarity of
0.5. This gives us confidence that the similarity metric we use
provides meaningful results.

G. RQ7: Effect of Different LLMs

Table IV shows the number of generated tests, percent of
generated tests that pass, as well as statement and branch
coverage of TESTPILOT’s generated tests when using three
different LLMs. While the individual coverage per package
varies, we can see that the coverage of tests generated by
the code-cushman-002 model is comparable to those gener-
ated by gpt3.5-turbo, with the latter having a slightly higher
median statement and branch coverage across the packages.
A Wilcoxon matched-pairs signed-rank test shows no statis-
tically significant differences between gpt3.5-turbo and code-
cushman-002 for either type of coverage. On the other hand, we
do find a statistically significant difference between StarCoder
and each of the OpenAI models (p-value < 0.05) for both types
of coverage. As shown in Table IV, StarCoder achieves lower
median statement (54.0%) and branch coverage (37.5%) than
both other models. Cliff’s delta [55] shows a large and medium
effect size for statement and branch coverage, respectively,
between gpt3.5-turbo and StarCoder and a medium and small
effect size for statement and branch coverage, respectively be-
tween code-cushman-002 and StarCoder.

However, we note that StarCoder’s median statement cov-
erage and branch coverage are both higher than Nessie (state-
ment: 54.0% vs. 51.3% and branch: 37.5% vs 25.6%). While
this higher coverage was not statistically significant, the results
show that even LLMs trained with potentially smaller datasets
and/or a different training process than OpenAI’s models are on
par (or even sometimes higher) than state-of-the-art traditional
test-generation techniques, such as Nessie [11]. Furthermore, in
RQ2, we showed that using gpt3.5-turbo with TESTPILOT re-
sulted in higher coverage test suites, with statistically significant
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differences to Nessie. Overall, these results emphasize the
promise of LLM-based test generation techniques in generating
high coverage test suites.

Finally, we note that the median time for TESTPILOT to gen-
erate tests for a given function using gpt3.5-turbo is 15s, and
the median time to generate a complete test suite for a given
package is 6m 55s.12 The bulk of this time is spent querying
the model, so the choice of LLM makes a big difference. For
example, the median time for TESTPILOT to generate tests for a
given function using StarCoder and code-cushman-002 is 24s
and 11s, respectively, and 10m 48s and 4m 53s, respectively, for
a complete test suite. All these performance numbers suggest
that it is feasible to use TESTPILOT either in an online setting
(e.g., in an IDE) to generate tests for individual functions, or in
an offline setting (e.g., during code review) to generate complete
test suites for an API.

V. THREATS TO VALIDITY

Internal Validity: The extraction of example snippets from
documentation relies on textually matching a function’s name.
Given two functions with the same name but different access
paths, we cannot disambiguate which function is being used in
the example snippet. Accordingly, we match this snippet to both
functions. While this may lead to inaccuracies, there is unfor-
tunately no precise alternative for this matching. Any heuristics
may cause us to miss snippets altogether, which may be worse
since example snippets help with increasing the percentage of
passing tests as shown in Fig. 8. The overall high coverage and
percentage of passing tests suggest that our matching technique
is not a limiting factor in practice.

Construct Validity: We use the concept of non-trivial
assertions as a proxy for oracle quality in the generated tests.
When determining non-trivial assertions, we search for any
usage of the package under test in the backwards slice of the as-
sertion. Such usage may be different from the intended function
under test. However, given the dynamic nature of JavaScript,
precisely determining the usage of a given function, as extracted
by the API explorer, and its occurrence in the backwards slice
is difficult. While our approach does not allow us to precisely
determine non-trivial coverage for a given function, this does
not affect the non-trivial coverage we report for each package’s
complete API. Note that when calculating non-trivial coverage,
we measure the full coverage of tests that contain at least one
non-trivial assertion. There may be other calls in those non-
trivial tests that contribute to coverage but do not contribute to
the assertion. Measuring assertion/checked coverage as defined
by Schuler and Zeller [62] is a possible alternative, but this is
practically difficult to implement precisely for JavaScript.

Our definition of non-trivial assertions is simple, setting a
low bar for non-triviality. Any assertion classified as trivial by
our criterion is, indeed, not meaningful, but the converse is
not necessarily true. Accordingly, our measure of non-trivial
coverage is a lower bound on the true non-trivial coverage.

12These timings were measured on a standard GitHub Actions Linux VM
with a 2-core CPU, 7GB of RAM, and 14GB of SSD disk space.

While the examples we show in the paper suggest that
TESTPILOT’s generated tests use variable names that are similar
to those chosen by programmers, we do not formally assess the
readability of these tests. In the future, it would be interesting to
conduct user studies to assess the readability of tests generated
by different techniques.

External Validity: Despite our evaluation scale signifi-
cantly exceeding evaluations of previous test generation ap-
proaches [11], [25], our results are still based on 25 npm pack-
ages and may not generalize to other JavaScript code bases.
In particular, TESTPILOT’s performance may not generalize to
proprietary code that was never seen in the LLM’s training set.
We try to mitigate this effect in several ways: (1) we evaluate on
less popular packages that are likely to have had less impact on
the model’s training, (2) we evaluate on 5 GitLab repositories
that have not been included in the models’ training, and (3)
we measure the similarity of the generated tests to the existing
tests. Our results show that TESTPILOT performs well for both
popular and unpopular packages and that 92.8% of the test cases
have ≤ 50% similarity with existing tests, with no exact copies.
Overall, this reassures us that TESTPILOT is not producing
“memorized” code.

Finally, we note that while our technique is conceptually
language-agnostic, our current implementation of TESTPILOT

targets JavaScript, and thus we cannot generalize our results to
other languages.

VI. RELATED WORK

TESTPILOT provides an alternative to (and potentially com-
plements) traditional techniques for automated test generation,
including feedback-directed random test generation [7], [8], [9],
[10], [11], search-based and evolutionary techniques [16], [17],
[63], [64], and dynamic symbolic execution [12], [13], [14],
[15]. This section reviews neural techniques for test generation,
and previous test generation techniques for JavaScript.

A. Neural Techniques

Neural techniques are rapidly being adopted for solving var-
ious Software Engineering problems, with promising results
in several domains including code completion [34], [35], [36],
[37], [38], program repair [39], [40], [41], and bug-finding [42],
[43]. Pradel and Chandra [65] survey the current state of the art
in this emerging research area. We are aware of several recent
research efforts in which LLMs are used for test generation [23],
[24], [25], [26], [27], [28], [29]. There are two main differences
between our work and these efforts: (i) the goal and types of
tests generated and (ii) the need for some form of fine-tuning
or additional data. We discuss the details below.

Differing Goals: TICODER [24] and CODET [23] use
Codex to generate implementations and test cases from problem
descriptions expressed in natural language. TICODER relies on
a test-driven user-intent formalization (TDUIF) loop in which
the user and model interact to generate both an implemen-
tation matching the user’s intent and a set of test cases to
validate its correctness. CODET, on the other hand, generates
both a set of candidate implementations and some test cases
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based on the same prompt, runs the generated tests on the
candidate implementations, and chooses the best solution based
on the test results. Unlike TESTPILOT, neither of these efforts
solves the problem of automatically generating unit tests for
existing code.

Given the characteristics of LLMs in generating natural
looking code, there have been several efforts exploring the
use of LLMs to help [27] or complement [28] traditional test
generation techniques. Most recently, Lemieux et al. [27] ex-
plore using tests generated by Codex as a way to unblock the
search process of test generation using search-based techniques
[64], which often fails when the initial randomly generated
test has meaningless input that cannot be mutated effectively.
Their results show that, on most of their target 27 Python
projects, their proposed technique, CODAMOSA, outperforms
the baseline search-based technique, Pynguin’s implementation
of MOSA [64], as well as using only Codex. However, their
Codex prompt includes only the function implementation and
an instruction to generate tests. Since their main goal is to
explore whether a test generated by Codex can improve the
search process, they do not systematically explore the effect
of different prompt components. In fact, they conjecture that
further prompt engineering might improve results, motivating
the need for our work which systematically explores different
prompt components. Additionally, their generated tests are in
the MOSA format [64], which the authors acknowledge could
lose readability, and do not contain assertions. Most of our tests
contain assertions, and we further study the quality of assertions
we generate as well as reasons for test failures.

Similarly, given that it is often difficult for traditional test
generation techniques to generate (useful) assertions [21], [22],
ATLAS [28] uses LLMs to generate an assert statement for a
given (assertion-less) Java test. They position their technique
as a complement to traditional techniques [8], [17]. With the
same goal, Mastrapaolo et al. [29], [45] and Tufano et al. [46]
perform follow up work using transfer learning, while Yu et al.
[66] use information retrieval techniques to further improve the
assert statements generated by Atlas. TOGA [67] uses similar
techniques but additionally incorporates an exceptional oracle
classifier to decide if a given method requires an assertion to
test exceptional behavior. It then bases the generation of the
assertion on a pre-defined oracle taxonomy created by manually
analyzing existing Java tests and using a neural-based ranking
mechanism to rank candidates with oracles higher. In contrast
with these efforts, our goal is to generate a complete test method
without giving the model any content of the test method (aside
from boilerplate code required by Mocha), which means that
the model needs to generate both any test setup code (e.g., ini-
tializing objects and populating them) as well as the assertion.
While TOGA can be integrated with EvoSuite [16] to create
an end-to-end test-generation tool, recent work [68] points out
several shortcomings of the evaluation methods, casting doubt
on the validity of the reported results.

Differing Input/Training: Bareiß et al. [25] evaluate the
performance of Codex on three code-generation tasks, includ-
ing test generation. Like us, they rely on embedding contextual
information into the prompt to guide the LLM, though the

specific data they embed is different: while TESTPILOT only
includes the signature, definition, documentation, and usage
examples in the prompt, Bareiß et al. pursue a few-shot learning
approach where, in addition to the definition of a function under
test, they include an example of a different function from the
same code base and its associated test to give the model a hint
as to what it is expected to do, as well as a list of related helper
function signatures that could be useful for test generation. For
a limited list of 18 Java methods, they show that this approach
yields slightly better coverage than Randoop [8], [9], a popular
technique for feedback-directed random test generation. This
is a promising result, but finding suitable example tests to
use in few-shot learning can be difficult, especially since their
evaluation shows that good coverage crucially depends on the
examples being closely related to the function under test.

Tufano et al. [26] present AthenaTest, an approach for auto-
mated test generation based on a BART transformer model [44].
For a given test case, they rely on heuristics to identify the “fo-
cal” class and method under test. These mapped test cases are
then used to fine-tune the model for the task of producing unit
tests by representing this task as a translation task that maps a
focal method (along with the focal class, constructors, and other
public methods and fields in that class) to a test case. In experi-
ments on 5 projects from Defects4J [69], AthenaTest generated
158K test cases, achieving similar test coverage as EvoSuite
[16], a popular search-based test generation tool, and covering
43% of all focal methods. A significant difference between their
work and ours is that their approach requires training the model
on a large set of test cases whereas TESTPILOT uses an off-
the-shelf LLM. In fact, in addition to the goal differences with
ATLAS [28] and Mastrapaolo et al.’s [29], [45] work above,
both these efforts also require a data set of test methods (with
assertions) and their corresponding focal methods, whether to
use in the main training [28] or in fine tuning during transfer
learning [29], [45], [46].

Unfortunately, the above differences in goals or in the re-
quired data for model training make it meaningless or impos-
sible to do a direct experimental comparison with TESTPILOT.
Additionally, none of these efforts support JavaScript or provide
JavaScript data sets that can be used for comparison. In fact,
one of our main motivations for exploring prompt engineer-
ing for an off-the-shelf LLM is to avoid the need to collect
test examples for few-shot learning [25] or test method/focal
method pairs required for training [28] or additional fine tuning
[29], [45], [46].

Other Techniques: Stallenberg et al. [70] present a test
generation technique for JavaScript based on unsupervised type
inference consisting of three phases. First, a static analysis is
performed to deduce relationships between program elements
such as variables and expressions. Then, a probabilistic type
inference is applied to these relationships to construct a model.
Finally, they show how search-based techniques can take advan-
tage of the information contained in such models by proposing
two strategies for consulting these models in the main loop of
DynaMOSA [64].

Recently, El Haji [71] presented an empirical study that ex-
plores the effectiveness of GitHub Copilot at generating tests.
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In this study, tests are selected from existing test suites as-
sociated with 7 open-source Python projects. After removing
the body of each test function, Copilot is asked to complete
the implementation so that the resulting test can be executed
and compared against the original test. Two variations of this
approach are explored, viz., “with context” where the other tests
in the suite are preserved and “without context” where other
tests are removed. El Haji also explores the impact of (man-
ually) adding comments that include descriptions of intended
behavior and usage examples. The results from the study show
that 45.28% of generated test are passing in the “with context”
scenario (the rest are failing, syntactically invalid, or empty)
vs only 7.55% passing generated tests in the “without context”
scenario, and that the addition of usage examples and comments
is generally helpful. There are several significant differences
between our approach and El Haji’s work: we explore a fully
automated technique without any manual steps, we report on a
significantly more extensive empirical evaluation, we present an
adaptive technique in which prompts are refined in response to
the execution behavior of previously executed tests, we target a
different programming language (JavaScript instead of Python),
and TestPilot interacts directly with an LLM rather than relying
on Copilot, an LLM-based programming assistant.

B. Test Generation Techniques for JavaScript

TESTPILOT’s mechanism for refining prompts based on ex-
ecution feedback was inspired by the mechanism employed
by feedback-directed random test generation techniques [7],
[8], [9], [10], [11], where new tests are generated by extend-
ing previously generated passing tests. As reported in Section
IV-B, TESTPILOT achieves significantly higher statement cov-
erage and branch coverage than Nessie [11], which represents
the state-of-the-art in feedback-directed random test generation
for JavaScript.

Several previous projects have considered test generation for
JavaScript (see [72] for a survey). Saxena et al. [73] present
Kudzu, a tool that aims to find injection vulnerabilities in client-
side JavaScript applications by exploring an application’s input
space. They differentiate an application’s input space into an
event space, which concerns the order in which event handlers
execute (e.g., as a result of buttons being clicked), and a value
space which concerns the choice of values passed to functions
or entered into text fields. Kudzu uses dynamic symbolic ex-
ecution to explore the value space systematically, but it relies
on a random exploration strategy to explore the event space.
Artemis [74] is a framework for automated test generation that
iteratively generates tests for client-side JavaScript applications
consisting of sequences of events, using a heuristics-based strat-
egy that considers the locations read and written by each event
handler to focus on the generation of tests involving event
handlers that interact with each other. Li et al. [75] extends
Artemis with dynamic symbolic execution to improve its ability
to explore the value space, and Tanida et al. [76] further improve
on this work by augmenting generated test inputs with user-
supplied invariants. Fard et al. [77] present ConFix, a tool
that uses a combination of dynamic analysis and symbolic

execution to automatically generate instances of the Document
Object Model (DOM) that can serve as test fixtures in unit
tests for client-side JavaScript code. Marchetto and Tonella
[78] present a search-based test generation technique that con-
structs tests consisting of sequences of events that relies on the
automatic extraction of a finite state machine that represents
that application’s state. None of these tools generate tests that
contain assertions.

Several test generation tools for JavaScript are capable of
generating tests containing assertions. JSART [79] is a tool
that generates regression tests that contain assertions reflecting
likely invariants that are generated using a variation of the
Daikon dynamic invariant generator [80]. Since Daikon gen-
erates assertions that are likely to hold, an additional step is
needed in which invalid assertions are removed from the gener-
ated tests. Mirshokraie et al. [81], [82] present an approach in
which tests are generated for client-side JavaScript applications
consisting of sequences of events. Then, in an additional step,
function-level unit tests are derived by instrumenting program
execution to monitor the state of parameters, global variables,
and the DOM upon entry and exit to functions to obtain values
with which functions are to be invoked. Assertions are added
automatically to the generated tests by: (i) mutating the DOM
and the code of the application under test, (ii) executing gen-
erated tests to determine how application state is impacted by
mutations, and (iii) adding assertions to the tests that reflect the
behavior prior to the mutation. Testilizer [83] is a test generation
tool that aims to enhance an existing human-written test suite.
To this end, Testilizer instruments code to observe how existing
tests access the DOM, and executes them to obtain a State-
Flow Graph in which the nodes reflect dynamic DOM states
and edges reflect the event-driven transitions between these
states. Alternative paths are explored by exploring previously
unexplored events in each state. Testilizer adds assertions to the
generated tests that are either copied verbatim from existing
tests, by adapting the structure of an existing assertion to a
newly explored state, or by inferring a similar assertion using
machine learning techniques.

These techniques share the limitation that they require the
entire application under the test to be executable, limiting their
applicability. Moreover, several of the techniques discussed
above require re-execution of tests (to infer assertions using
mutation testing [81], [82], or to filter out assertions that are
invalid [79]), which adds to their cost. By contrast, TESTPILOT

only requires the functions of API functions under test to be
available and executable, and it executes each test that it gen-
erates only once.

VII. CONCLUSION AND FUTURE WORK

We have presented TESTPILOT, an approach for adaptive unit-
test generation using a large language model. Unlike previ-
ous work in this area, TESTPILOT requires neither fine tuning
nor a parallel corpus of functions and tests. Instead, we em-
bed contextual information about the function under test into
the prompt, specifically its signature, its attached documenta-
tion comment (if any), any usage examples from the project
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documentation, and the source code of the function. Further-
more, if a generated test fails, we adaptively create a new
prompt embedding this test and the failure message to guide
the model towards fixing the problematic test. We have im-
plemented our approach for JavaScript on top of off-the-shelf
LLMs, and shown that it achieves state-of-the art statement
coverage on 25 npm packages. Further evaluation shows that
the majority of the generated tests contain non-trivial assertions,
and that all parts of the information included in the prompt
contributes to the quality of the generated tests. Experiments
with three LLMs (gpt3.5-turbo, code-cushman-002, and Star-
Coder) demonstrate that LLM-based test generation already
outperforms state-of-the-art previous test generation methods
such as Nessie on key metrics. We conjecture that the use of
more advanced LLMs will further improve results, though we
are reluctant to speculate by how much.

In future work, we plan to further investigate the quality
of the tests generated by TESTPILOT. While in this paper we
have focused on passing tests and excluded failing tests from
consideration entirely, we have seen examples of failing tests
that are “almost right” and might be interesting to a developer
as a starting point for further refinement. However, doing this
depends on having a good strategy for telling apart useful failing
tests from useless ones. Our experiments have demonstrated
that timeout errors, assertion errors, and correctness errors are
key factors that cause tests to fail. In future work, we plan to
apply static and dynamic program analysis to failing tests in
order to determine why timeout errors and assertion errors occur
and how failing tests could be modified to make them pass.

Further research is needed to determine what factors prevent
the generation of non-trivial assertions. Anecdotally, we have
observed that the availability of usage examples is generally
helpful. We envision that the number of useful assertions could
be improved by obtaining usage examples in other ways, e.g.,
by interacting with a user, or by extracting usage examples from
clients of the application under test.

Another fruitful area of experimentation could be varying the
sampling temperature of the LLM. In this work, we always sam-
ple at temperature zero, which has the advantage of providing
stable results, but also means that the model is less likely to
offer lower-probability completions that might result in more
interesting tests.

Another area of future work is the development of hy-
brid techniques that combine existing feedback-directed test
generation techniques with an LLM-based technique such as
TESTPILOT. For example, one could use an LLM-based tech-
nique to generate an initial set of tests and use the tests that
it generates as a starting point for extension by a feedback-
directed technique such as Nessie, thus enabling it to uncover
edges cases that would be difficult to uncover using only ran-
dom values.

In principle, our approach can be adapted to any pro-
gramming language. Practically speaking, this would involve
adapting prompts to use the syntax of the language un-
der consideration, and to use a testing framework for that
language. In addition, the mining of documentation and
usage examples would need to be adapted to match the

documentation format used for that language. The LLMs that
we used did not language-specific training and could be used
to generate tests for other languages, though the effectiveness
of the approach will depend on the amount of code written
in that language that was included in the LLM’s training set.
One specific question that would be interesting to explore is
how well an approach like TESTPILOT would perform on a
statically-typed language.
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