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Anderson localization is a halt of diffusive wave propagation in disordered
systems. Despite extensive studies over the past 40 years, Anderson

localization of light in three dimensions has remained elusive, leading

to the question of its very existence. Recent advances have enabled
finite-difference time-domain calculations to be sped up by orders of
magnitude, allowing us to conduct brute-force numerical simulations
oflight transportin fully disordered three-dimensional systems with
unprecedented dimension and refractive index difference. We show
numerically three-dimensional localization of vector electromagnetic waves
inrandom aggregates of overlapping metallic spheres, in sharp contrast to
the absence of localization for dielectric spheres with arefractive index up
to10inair. Our work opens awide range of avenues in both fundamental
research related to Anderson localization and potential applications using
three-dimensional localized light.

Anderson localization (AL)' is an emergent phenomenon for both
quantum and classical waves including electron®**, cold-atom*°, elec-
tromagnetic (EM)" ™", acoustic'>"®, water", seismic" and gravity'® waves.
Unlikeinoneor two dimensions, AL in three dimensions requires strong
disorder""*, Amobility edge separating the diffuse transport regime
from AL canbe estimated from the loffe-Regel criterion k¢, = 1, where
k.is the effective wavenumber in the medium and ¢ is the scattering
mean free path®°. This criterion suggests two avenues to achieving
localization: reduction of k. or £.. For EM waves, the reduction of k«is
realized by introducing partial order or spatial correlationin the posi-
tion of scatterers’?, In comparison, reaching localization of light in fully
random photonic mediaby increasing the scattering strength (decreas-
ing £,) turns out to be much more challenging®*. Despite successful
experiments in low-dimensional systems®'®*, three-dimensional (3D)
localization remained stubbornly elusive”, which triggered theoreti-
cal®*¥ and experimental® studies of the mechanisms thatimpede it.
Anderson himself originally proposed “a system composed essen-
tially of randomwaveguides near cut-off and random resonators, such
asmightbe realized by arandom packing of metallic balls of the right
size” as “theideal system” for localization of EM radiation®. In practice,

theabsorption of metals obscureslocalization®”’, and the experimental
focus shifted to dielectric materials with low loss and high refractive
index?**, However, even for dielectric systems, experimental artefacts
duetoresidual absorption andinelastic scattering mar the data*>***¢,
Numerically, these artefacts can be excluded, but 3D random systems
of sufficiently large dimension and large refractive index variation
could not be simulated due to an extraordinarily long computational
time required®s,

A recent implementation of the finite-difference time-domain
(FDTD) algorithm on emerging computing hardware has brought
orders of magnitude speed-up of numerical calculation®**°, Using
this highly efficient hardware-optimized version of the FDTD method,
we solve the Maxwell equations by brute force in three dimensions.
This enables us to simulate sufficiently large systems and large refrac-
tive index variation to address the following questions: can 3D AL of
EM waves be achieved in fully random systems of dielectric scatter-
ers?If not, canit occurin any other systems without the aid of spatial
correlations?

Answering these long-standing questions not only addresses the
fundamental aspects of wave transport and localization across multiple
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Fig.1| Absence of non-diffusive transportin random dielectric systems with
arefractiveindex of 3.5. a, A3Dslab filled with dielectric spheres at random
uncorrelated positions (radius r =100 nm, refractive index n = 3.5) in air. The slab
cross-section is 10 pm x 10 pm =100 pm?, and the thicknessis L =3.3 um.b, The
3D distribution of light intensity inside the slab (dielectric filling fraction f=29%,
L/€.=33) atlong delay time after a short pulse of plane wavefrontis incident on
the front surface. The red curve with shading shows the average depth profile.

¢, The spectral dependence of the loffe-Regel parameter k¢ for different
volume filling fractions of dielectric spheres, showing enhancement of scattering
around single-sphere Mie resonances. The horizontal dashed line marks the
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loffe-Regel criterion k., = 1for 3D localization. d, The transport mean free
path ¢, (in units of 1/k.) as a function of wavelength, revealing a saturation by
dependent scattering at high dielectric filling fractions. The vertical dashed
lines mark the spectral width (33 nm) of the excitation pulseinbande.

e, Transmittance of the 3D slab for a pulsed excitation, showing exponential
decay in time for all dielectric filling fractions, in agreement with diffusive
transport. The inset shows persistence of diffusion when L/¢,is increased from
33to 60 for f=38% (green line). f, The dependence of the minimum diffusion
coefficient within the pulse bandwidth on the dielectricfilling fractionf,
exhibitingaminimum value of 3.6 m*s™atf~30%.

disciplines but also opens new avenues in research and applications.
Forexample, intopological photonics*, theinterplay between disorder
and topological phenomena may be explored beyond the limit of weak
disorder inlow-dimensional systems*. Also in cavity quantum electro-
dynamics with Anderson-localized modes*, achieving 3D localization
would avoid the out-of-plane loss inherent to two-dimensional (2D)
systems and cover the full angular range of propagation directions**.
In addition to fundamental studies, disorder and scattering has been
harnessed for various photonic device applications, but mostly with
diffuse waves*. Anderson-localized modes can be used for 3D energy
confinement to enhance optical non-linearities and light-matter
interactions, and to control random lasing as well as targeted energy
deposition.

We first consider EM wave propagation through a 3D slab of ran-
domly packed lossless dielectric spheres of radius r=100 nm and
refractive index n=3.5in air. This corresponds to the highest index
difference achieved experimentally in the optical wavelength range
with porous GaP around the wavelength of 1= 650 nm in the vicinity
of the first Mie resonance of an isolated sphere (Supplementary
Fig.S5). To avoid spatial correlations, the sphere positions are chosen
completely randomly, leading to spatial overlap where the index is
capped at the same value of n. We compute the spatial correlation
function of such structure, whichreveals that the correlation vanishes
beyond the particle diameter (Supplementary Fig. S4). To avoid light
reflection at the interfaces of the slab, we surround it by a uniform
mediumwitharefractive index equal to the effective index of the slab,
Nee = [(1—f) +fn2]1 2, for a given dielectric volume filling fraction f
(Fig.1a). Asdescribed inSupplementary Sect. 1.5, for each wavelength,
we compute the scattering mean free path ¢, directly from the rate of
attenuation of co-polarized field with depth. This, together with the
effective wavenumber k. = n.(21/A), gives the loffe-Regel parameter

(Fig. 1c). It features a minimum at around A = 650 nm and the smallest
value of kZ,~= 0.9 isreached at f= 38%. We also compute the transport
mean free path £, from the continuous wave (CW) transmittance of an
optically thick slab with thickness L > ¢, (Supplementary Sect.1.7). In
Fig. 1d, k.«£, also exhibits a dip in the same wavelength range as k.f,,
but the smallest k¢, is found at lower fof 18-29%, as the dependent
scattering setsin at higher f. Insearch for AL in this wavelength range,
we numerically simulate the propagation of a narrowband Gaussian
pulse centred at A, = 650 nm with planar wavefront and compute the
transmittance through the slab 7(¢) as a function of arrival time t. The
diffusive propagation time r, approximately corresponds to the arrival
time of the peakin Fig. le. At t > 1, the decay of the transmitted flux is
exponential over atleast 12 orders of magnitude, as expected for purely
diffusive systems*®. The rate of this exponential decay is 1/, whichiis
directly related*® to the smallest diffusion coefficient within the spec-
tral range of the excitation pulse (Supplementary Sect. 1.8). In Fig. 1f,
the dependence of this diffusion coefficient D on the dielectric filling
fraction fexhibits a minimum at f= 30%. Figure 1e (inset) shows that
the furtherincrease of the slab thickness does notlead to any deviation
fromdiffusive transport. Furthermore, the diffusive behaviour persists
inthe numerical simulation with increased spatio-temporal resolution
(Supplementary Sect. 1). At ¢ > 1;,, the spatial intensity distribution
insidethe system featuresadepth profile (averaged over cross-section)
equaltothatofthefirst eigenmode of the diffusion equation (Fig. 1b).
We therefore rule out a possibility of AL in uncorrelated ensembles of
dielectric spheres withn=3.5.

Atmicrowave frequencies, the refractiveindex may be even higher
thann =3.5. We therefore, perform numerical simulation of a3D slab of
dielectric spheres with n =10. The main results are summarized here,
and details are presented in Supplementary Sect. 2. A large scatter-
ing cross-section o,(A) of a single sphere near the first Mie resonance
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Fig.2| AL of lightin 3D disordered PEC. a, The transmittance 7(t) of an optical
pulse througha3Dslab (10 um x 10 um x 3.3 pm) of randomly packed PEC
spheres with radius r = 50 nm and volume filling fraction ffrom 8% to 48%. b, The
time-resolved diffusion coefficient D(¢) extracted from the decay rate of T(¢) ina,
decreasing with time as 1/t at high f. ¢, The short-time D (dots) and the interval of

variation of D with time (bars) at different fvalues. d,e, The CW transmittance
spectrum 7(A) in diffusive (d, f=15%, blue line) and localized (e, f= 48%, red line)
PECslabs. Colour map: The depth profile of the average intensity (/(x,yo, z; 1)),
inside the slab at different wavelengths, highlighting the localized and
necklace-like states for f=48%.

leads tostrong dependent scattering even at small filling fractions. We
find the loffe-Regel parameter k., = 1 despite the very large refrac-
tive index difference. This is attributed to dependent scattering that
becomesappreciable evenat relatively low dielectric filling fractionf.
The numerically calculated 7(t) for L/¢, > 1does not exhibit any devia-
tion from diffusive transport: at ¢ > 1, the decay of transmittanceis still
exponential over approximately ten orders of magnitude. In addition,
scaling of CW transmittance with the inverse slab thickness 1/L remains
linear for allf, as expected for diffusion (Supplementary Sect. 2). We
therefore conclude that AL does not occur in random ensembles of
dielectric spheres, thus closing the debate about the possibility of light
localization in white paint®*.

Previous studies®** suggest that absence of AL for EM waves may
be due to longitudinal waves that exist in a heterogeneous dielectric
medium, where the transversality condition V-E(r) = O for the electric
field E(r) does not follow from Gauss’s law V-[e(r)E(r)] = O because of
the position dependence of e(r). Here, we propose to suppress the
contribution of longitudinal waves to optical transport and realize AL
of EM waves by using perfectly conducting spheres as scatterers. The
Poynting vector is parallel to the surface of a perfect electric conductor
(PEC)", and EM energy flows around a PEC particle without coupling
to longitudinal surface modes. The volume of PEC spheres is simply
excluded fromthe free space and becomes unavailable for light. Thus,
at high PEC volume fraction, light propagates in arandom network of
irregular air cavities and waveguides formed by the overlapping PEC
spheres, akin to the original proposal of Anderson®.

Similarly to the dielectric systems above, we simulate a 3D slab
composed of randomly packed, overlapping PEC spheres of radius
r=50 nminair. Figure 2 shows the results of simulating an optical pulse
propagating through 10 pm x 10 pm x 3.3 pm slabs of various PEC
volume fractions f. T(¢) displays non-exponential tails at high f=41%
or48%inFig.2a.Fromthe decay rate obtained viaasliding-window fit,
we extract atime-dependent diffusion coefficient D(¢) (Fig. 2b), which
shows a power-law decay with time, as predicted by the self-consistent
theory oflocalization*s. The non-exponential decay of 7(t) and the time
dependence of D are the signatures of AL"”*%. In contrast, at lower PEC
fractions of f=8% or15%, D remains constantin time. Figure 2c reveals

a transition from time-invariant D to time-dependent D(t) at around
f=33%, where D(t) starts deviating from a constant. Using a Fourier
transform, we compute the spectrally resolved transmittance 7(A).
Figure 2d,e contrasts the T(1) of diffusive and localized systems. The
former features smooth, gradual variations withA due tobroad overlap-
pingresonances, whereas the latter exhibits strong resonant structures
consistent with the average mode spacing exceeding the linewidth of
individual modes, in accordance with the Thouless criterion of localiza-
tion, as the spectral narrowing of modes is intimately related to their
spatial confinement***’. The colour maps in Fig. 2d,e show the spatial
intensity distributionsinside the systems, (/(x, yo, z; A)),, averaged over
X ata cross-sectiony =Yy,. These two-dimensional maps contrast slow
variation with zand A in the diffusive system (Fig. 2d) to the sharp
features due to spatially confined modes in the localized system
(Fig. 2e). Furthermore, there exist ‘necklace’ states with multiple spa-
tially separated intensity maxima, originally predicted for electrons
in metals™®.

Insightinto the mechanismbehind AL inthe random ensemble of
PEC spheres can be gained from the wavelength dependence of the
loffe-Regel parameter k¢, (Supplementary Sects. 1.5 and 3). We com-
puteitusingaprocedure similar to that applied in dielectrics. Even at
the volume fraction of f= 8%, ¢, is well below the prediction of the
independent scattering approximation (ISA), owing to scattering reso-
nances formed by two or more neighbouring PEC spheres (Supplemen-
tary Fig.S10). AsshowninFig. 3a, ,becomes essentially independent
of wavelengthin the range of size parameter kr of PEC spheres. Conse-
quently, the loffe-Regel parameter acquires 1/1 dependence (Fig. 3b).
Itdrops below the value of unity within the excitation pulse bandwidth
A= 650 +45nmfor fbetween 25% and 33%, in agreement with Fig. 2. We
further conduct afinite-size scaling study, after computing the depend-
ence of the CW transmittance Tontheslab thickness L (Supplementary
Sect.1.9). Figure 3c shows the logarithmic derivative d log(7)/d log(L)
asafunction of kf,. Inthe diffusive regime, Ohm’s law T 1/L isexpected,
leadingto ascaling power of -1, asindeed confirmed for k¢, > 1. Around
ké,~=1,weseeadeparture from1/L scaling of transmittance. The scaling
theory of localization predicts a single-parameter scaling of the dimen-
sionless conductance g= TN (refs. 51,52.). By estimating the number
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Fig.3| The transition from diffusion to ALin 3D disordered PEC. a, The
scattering mean free path €, for PEC volume filling fraction ffrom 8% to 48%. ¢, is
nearly flat (dashed lines) over a broad spectral range. b, The spectral dependence
ofthe loffe-Regel parameter ké,, exhibiting 1/A dependence (dashed lines). ¢, The
scaling of the CW transmittance T with the slab thickness L versus the loffe-Regel
parameter k¢, revealing a diffusion-localization transition at k¢, = 1. The dashed
black line denotes diffusive scaling T L™, The dashed red line marks k¢, =1. The
k€, <1regimeis highlighted asashaded areainband c.d, The single-parameter
scaling of the dimensionless conductance g for the diffusion-localization
transition (solid black line), in agreement with numerical data for six PEC filling
fractions. Blue and red dashed lines denote diffusive and localized scalings g < L
and g « exp(—L/¢), respectively, where £is the localization length.

of transverse modes as N = 21t(L/A)*(1 - f)**for L x L areaof the slab, we
compute gand B(g) = dlog(g)/d log(L). Figure 3d shows good agree-
ment between the numerical data and the model function
B&) =2 — (1+g)log(l + g V)ref.52). Indiffusiveregimeg>1,5(g) > 1.
Meanwhile, in the localized regime g <1, B(g) « log(g). The latter is a
manifestation of the negative exponential scaling of g with L in the
regime of AL.

To obtain the ultimate confirmation of AL of light in PEC com-
posites, we simulate the dynamics of the transverse spreading of a
tightly focused pulse—a measurement that has been widely adopted
in localization experiments™>***, A pulse centred at 1= 650 nm with
a bandwidth of 90 nm is focused to a small spot of area approxi-
mately 0.5 pm? at the front surface of a wide 3D slab of dimensions
33 pm x 33 um x 3.3 um (Fig. 4a). We compute the transverse extent
of the intensity distribution /(x, y, z=L; t) at the back surface of the
slab. For a diffusive PEC slab with f=15%, we detect arapid transverse
spreading of light with time in Fig. 4b, which approaches the lateral
boundary of the slab within approximately 2 ps. In sharp contrast, in
thelocalized systemin Fig. 4c (f=48%), the transmitted intensity profile
remains transversely confined even after 20 ps. Thistime corresponds
to a free space propagation of 6 mm, which is approximately 2,000
times longer than the actual thickness of the slab. Figure 4d quantifies
this time evolution with the output beam diameter d(t) = 2[PR(¢)/m]?,
where PR(¢) = [[[1(x,y, L; t)dx dyl?/[JI(x, y, L; t)*dx dy is the intensity
participation ratio. For a diffusive slab, d(t) « /2, while in the local-
ized regime, d(¢) saturates at a value on the order of the slab thick-
nessL.Such anarrest of the transverse spreading in the localized PEC
systems persists with increased spatio-temporal resolution of the
numerical simulation (Supplementary Sect. 1.3). Further evidence of
ALincludes non-linear decaying depth profile and strong non-Gaussian
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Fig. 4| Arrest of transverse spreading of transmitted beamin 3D localized
PECsystems. a, Schematic of transverse spreading of a tightly focused pulse
propagating through a diffusive slab of cross-section 33 pm x 33 pm and
thickness L =3.3 pm. b, The 2D intensity distribution at the output surface
(normalized to the maximum, see colour bar) for different delay times, showing
the lateral expansion of the beamin the diffusive slab with PEC filling fraction of
f=15%.c¢, The absence of transverse spreading for f=48%, owing to AL.d, The
lateral diameter of the transmitted beam d(t) increases as \/2 (blueline) inthe
diffusive slab (blue dots) but saturates to a constant value (red line) in the
localized slab (red dots). e, The same as d but for aslab (L = 6 cm) of aluminium
spheres (r=0.28 cm, f=35% and 60%) with a realistic conductivity value of
0,=3.8x10* Q™ m™at amicrowave frequency of approximately 20 GHz.

fluctuations of intensity inside the system (Supplementary Sect. 4.2).
We also confirm our results by repeating calculations for 3D slabs of
PEC spheres with larger radius r =100 nm, obtaining similar scaling
behaviour (Supplementary Sect. 4.2) asin Fig.3c,d.

The striking difference between light propagation in dense ran-
dom ensembles of dielectric and PEC spheres cannot be accounted
for by the loffe-Regel parameter as both reach k., = 1 for similar
values of the size parameter kr (Figs. 1c and 3b). AL in 3D PEC com-
posites with uncorrelated disorder reveals alocalization mechanism
that is unique to metal. In contrast to a dielectric system where light
propagates everywhere (both inside and outside the scatterers), the
propagation is restricted to the voids between scatterers in the PEC
system. This makes AL inevitable when the wavelength becomes larger
than the typical width of free-space channels between voids and light
can hardly ‘squeeze’ through the latter to propagate from one void
to another. This qualitative picture correctly predicts the increase of
the critical volume fraction ffor localization with the scatterer size r
(Supplementary Sect. 3).

Finally, we test AL inreal-metal aggregates. In the microwave spec-
tralregion, the skin depth of crystalline metals such as silver, aluminium
and copper is several orders of magnitude shorter than the wavelength
A and the scatterer size rin the regime of kr = 1. Since the microwave
barely penetrates into the metallic scatterers, our simulation results
are almost identical to those for PEC. To account for the imperfec-
tions due to polycrystallinity, surface defects, oxide layers, etc., we
lower the metal conductivity to match the experimentally measured
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absorption rate in aggregates of aluminium spheres®. Simulations
unambiguously show the arrest of transverse spreading of a focused
pulse (Fig. 4e), revealing AL in 3D random aggregates of aluminium
spheres. Additional evidence of AL is presented in Supplementary
Sect. 4. Moreover, even at optical frequencies, where realistic metals
deviate notably from PEC, the arrest of transverse spreading persists
in 3D silver nanocomposites (Supplementary Sect. 5). Possible light
localization in 3D nanoporous metals will have a profound impact
on their applications in photo-catalysis, optical sensing, and energy
conversion and storage.

Insummary, our large-scale microscopic simulations of EM wave
propagationin3D uncorrelated randomensembles of particles show no
signs of AL for dielectric particles with refractiveindices n = 3.5-10. This
explains multiple failed attempts of experimental observation of AL of
lightin 3D dielectric systems over the last three decades™***' . At the
same time, we report the first numerical evidence of EM wave localiza-
tion in random ensembles of metallic particles over a broad spectral
range. Localization is confirmed by eight criteria: the loffe-Regel
criterion, the Thouless criterion, non-exponential decay of transmit-
tance under pulsed excitation, vanishing of the diffusion coefficient,
existence of spatially localized states, scaling of conductance, arrest of
thetransverse spreading of anarrow beamand enhanced non-Gaussian
fluctuations of intensity. Our study calls for renewed experimental
efforts to be directed at low-loss metallic random systems?®. In Sup-
plementary Sect. 5.1, we propose a realistic microwave experiment
that avoids experimental pitfalls and provides a tell-tale sign of AL.

Online content
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