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Anderson localization of electromagnetic 
waves in three dimensions

Alexey Yamilov    1  , Sergey E. Skipetrov    2, Tyler W. Hughes3, 
Momchil Minkov3, Zongfu Yu    4   & Hui Cao    5 

Anderson localization is a halt of diffusive wave propagation in disordered 
systems. Despite extensive studies over the past 40 years, Anderson 
localization of light in three dimensions has remained elusive, leading 
to the question of its very existence. Recent advances have enabled 
finite-difference time-domain calculations to be sped up by orders of 
magnitude, allowing us to conduct brute-force numerical simulations 
of light transport in fully disordered three-dimensional systems with 
unprecedented dimension and refractive index difference. We show 
numerically three-dimensional localization of vector electromagnetic waves 
in random aggregates of overlapping metallic spheres, in sharp contrast to 
the absence of localization for dielectric spheres with a refractive index up 
to 10 in air. Our work opens a wide range of avenues in both fundamental 
research related to Anderson localization and potential applications using 
three-dimensional localized light.

Anderson localization (AL)1 is an emergent phenomenon for both 
quantum and classical waves including electron2–4, cold-atom5,6, elec-
tromagnetic (EM)7–11, acoustic12,13, water14, seismic15 and gravity16 waves. 
Unlike in one or two dimensions, AL in three dimensions requires strong 
disorder1,17–19. A mobility edge separating the diffuse transport regime 
from AL can be estimated from the Ioffe–Regel criterion keffℓs ≈ 1, where 
keff is the effective wavenumber in the medium and ℓs is the scattering 
mean free path20. This criterion suggests two avenues to achieving 
localization: reduction of keff or ℓs. For EM waves, the reduction of keff is 
realized by introducing partial order or spatial correlation in the posi-
tion of scatterers7,21. In comparison, reaching localization of light in fully 
random photonic media by increasing the scattering strength (decreas-
ing ℓs) turns out to be much more challenging22,23. Despite successful 
experiments in low-dimensional systems9,10,24, three-dimensional (3D) 
localization remained stubbornly elusive25, which triggered theoreti-
cal26,27 and experimental28 studies of the mechanisms that impede it.

Anderson himself originally proposed “a system composed essen-
tially of random waveguides near cut-off and random resonators, such 
as might be realized by a random packing of metallic balls of the right 
size” as “the ideal system” for localization of EM radiation8. In practice, 

the absorption of metals obscures localization9,29, and the experimental 
focus shifted to dielectric materials with low loss and high refractive 
index29–33. However, even for dielectric systems, experimental artefacts 
due to residual absorption and inelastic scattering mar the data22,23,34–36. 
Numerically, these artefacts can be excluded, but 3D random systems 
of sufficiently large dimension and large refractive index variation 
could not be simulated due to an extraordinarily long computational 
time required37,38.

A recent implementation of the finite-difference time-domain 
(FDTD) algorithm on emerging computing hardware has brought 
orders of magnitude speed-up of numerical calculation39,40. Using 
this highly efficient hardware-optimized version of the FDTD method, 
we solve the Maxwell equations by brute force in three dimensions. 
This enables us to simulate sufficiently large systems and large refrac-
tive index variation to address the following questions: can 3D AL of 
EM waves be achieved in fully random systems of dielectric scatter-
ers? If not, can it occur in any other systems without the aid of spatial 
correlations?

Answering these long-standing questions not only addresses the 
fundamental aspects of wave transport and localization across multiple 
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(Fig. 1c). It features a minimum at around λ = 650 nm and the smallest 
value of keffℓs≃≈ 0.9 is reached at f = 38%. We also compute the transport 
mean free path ℓt from the continuous wave (CW) transmittance of an 
optically thick slab with thickness L ≫ ℓt (Supplementary Sect. 1.7). In 
Fig. 1d, keffℓt also exhibits a dip in the same wavelength range as keffℓs, 
but the smallest keffℓt is found at lower f of 18–29%, as the dependent 
scattering sets in at higher f. In search for AL in this wavelength range, 
we numerically simulate the propagation of a narrowband Gaussian 
pulse centred at λ0 = 650 nm with planar wavefront and compute the 
transmittance through the slab T(t) as a function of arrival time t. The 
diffusive propagation time τD approximately corresponds to the arrival 
time of the peak in Fig. 1e. At t ≫ τD, the decay of the transmitted flux is 
exponential over at least 12 orders of magnitude, as expected for purely 
diffusive systems46. The rate of this exponential decay is 1/τD, which is 
directly related46 to the smallest diffusion coefficient within the spec-
tral range of the excitation pulse (Supplementary Sect. 1.8). In Fig. 1f, 
the dependence of this diffusion coefficient D on the dielectric filling 
fraction f exhibits a minimum at f ≈ 30%. Figure 1e (inset) shows that 
the further increase of the slab thickness does not lead to any deviation 
from diffusive transport. Furthermore, the diffusive behaviour persists 
in the numerical simulation with increased spatio-temporal resolution 
(Supplementary Sect. 1). At t ≫ τD, the spatial intensity distribution 
inside the system features a depth profile (averaged over cross-section) 
equal to that of the first eigenmode of the diffusion equation (Fig. 1b). 
We therefore rule out a possibility of AL in uncorrelated ensembles of 
dielectric spheres with n = 3.5.

At microwave frequencies, the refractive index may be even higher 
than n = 3.5. We therefore, perform numerical simulation of a 3D slab of 
dielectric spheres with n = 10. The main results are summarized here, 
and details are presented in Supplementary Sect. 2. A large scatter-
ing cross-section σs(λ) of a single sphere near the first Mie resonance 

disciplines but also opens new avenues in research and applications. 
For example, in topological photonics41, the interplay between disorder 
and topological phenomena may be explored beyond the limit of weak 
disorder in low-dimensional systems42. Also in cavity quantum electro-
dynamics with Anderson-localized modes43, achieving 3D localization 
would avoid the out-of-plane loss inherent to two-dimensional (2D) 
systems and cover the full angular range of propagation directions44. 
In addition to fundamental studies, disorder and scattering has been 
harnessed for various photonic device applications, but mostly with 
diffuse waves45. Anderson-localized modes can be used for 3D energy 
confinement to enhance optical non-linearities and light–matter 
interactions, and to control random lasing as well as targeted energy 
deposition.

We first consider EM wave propagation through a 3D slab of ran-
domly packed lossless dielectric spheres of radius r = 100 nm and 
refractive index n = 3.5 in air. This corresponds to the highest index 
difference achieved experimentally in the optical wavelength range 
with porous GaP around the wavelength of λ = 650 nm in the vicinity 
of the first Mie resonance of an isolated sphere (Supplementary  
Fig. S5). To avoid spatial correlations, the sphere positions are chosen 
completely randomly, leading to spatial overlap where the index is 
capped at the same value of n. We compute the spatial correlation 
function of such structure, which reveals that the correlation vanishes 
beyond the particle diameter (Supplementary Fig. S4). To avoid light 
reflection at the interfaces of the slab, we surround it by a uniform 
medium with a refractive index equal to the effective index of the slab, 
neff = [(1 − f ) + fn2]1/2, for a given dielectric volume filling fraction f 
(Fig. 1a). As described in Supplementary Sect. 1.5, for each wavelength, 
we compute the scattering mean free path ℓs directly from the rate of 
attenuation of co-polarized field with depth. This, together with the 
effective wavenumber keff = neff(2π/λ), gives the Ioffe–Regel parameter 
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Fig. 1 | Absence of non-diffusive transport in random dielectric systems with 
a refractive index of 3.5. a, A 3D slab filled with dielectric spheres at random 
uncorrelated positions (radius r = 100 nm, refractive index n = 3.5) in air. The slab 
cross-section is 10 μm × 10 μm = 100 μm2, and the thickness is L = 3.3 μm. b, The 
3D distribution of light intensity inside the slab (dielectric filling fraction f = 29%, 
L/ℓt = 33) at long delay time after a short pulse of plane wavefront is incident on 
the front surface. The red curve with shading shows the average depth profile.  
c, The spectral dependence of the Ioffe–Regel parameter keffℓs for different 
volume filling fractions of dielectric spheres, showing enhancement of scattering 
around single-sphere Mie resonances. The horizontal dashed line marks the 

Ioffe–Regel criterion keffℓs = 1 for 3D localization. d, The transport mean free 
path ℓt (in units of 1/keff) as a function of wavelength, revealing a saturation by 
dependent scattering at high dielectric filling fractions. The vertical dashed  
lines mark the spectral width (33 nm) of the excitation pulse in b and e.  
e, Transmittance of the 3D slab for a pulsed excitation, showing exponential 
decay in time for all dielectric filling fractions, in agreement with diffusive 
transport. The inset shows persistence of diffusion when L/ℓt is increased from 
33 to 60 for f = 38% (green line). f, The dependence of the minimum diffusion 
coefficient within the pulse bandwidth on the dielectric filling fraction f, 
exhibiting a minimum value of 3.6 m2 s−1 at f ≈ 30%.
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leads to strong dependent scattering even at small filling fractions. We 
find the Ioffe–Regel parameter keffℓs ≳ 1 despite the very large refrac-
tive index difference. This is attributed to dependent scattering that 
becomes appreciable even at relatively low dielectric filling fraction f. 
The numerically calculated T(t) for L/ℓt ≫ 1 does not exhibit any devia-
tion from diffusive transport: at t ≫ τD, the decay of transmittance is still 
exponential over approximately ten orders of magnitude. In addition, 
scaling of CW transmittance with the inverse slab thickness 1/L remains 
linear for all f, as expected for diffusion (Supplementary Sect. 2). We 
therefore conclude that AL does not occur in random ensembles of 
dielectric spheres, thus closing the debate about the possibility of light 
localization in white paint8,23.

Previous studies26,27 suggest that absence of AL for EM waves may 
be due to longitudinal waves that exist in a heterogeneous dielectric 
medium, where the transversality condition ∇⋅E(r) = 0 for the electric 
field E(r) does not follow from Gauss’s law ∇⋅[ϵ(r)E(r)] = 0 because of 
the position dependence of ϵ(r). Here, we propose to suppress the 
contribution of longitudinal waves to optical transport and realize AL 
of EM waves by using perfectly conducting spheres as scatterers. The 
Poynting vector is parallel to the surface of a perfect electric conductor 
(PEC)47, and EM energy flows around a PEC particle without coupling 
to longitudinal surface modes. The volume of PEC spheres is simply 
excluded from the free space and becomes unavailable for light. Thus, 
at high PEC volume fraction, light propagates in a random network of 
irregular air cavities and waveguides formed by the overlapping PEC 
spheres, akin to the original proposal of Anderson8.

Similarly to the dielectric systems above, we simulate a 3D slab 
composed of randomly packed, overlapping PEC spheres of radius 
r = 50 nm in air. Figure 2 shows the results of simulating an optical pulse 
propagating through 10 μm × 10 μm × 3.3 μm slabs of various PEC 
volume fractions f. T(t) displays non-exponential tails at high f = 41% 
or 48% in Fig. 2a. From the decay rate obtained via a sliding-window fit, 
we extract a time-dependent diffusion coefficient D(t) (Fig. 2b), which 
shows a power-law decay with time, as predicted by the self-consistent 
theory of localization48. The non-exponential decay of T(t) and the time 
dependence of D are the signatures of AL13,48. In contrast, at lower PEC 
fractions of f = 8% or 15%, D remains constant in time. Figure 2c reveals 

a transition from time-invariant D to time-dependent D(t) at around 
f = 33%, where D(t) starts deviating from a constant. Using a Fourier 
transform, we compute the spectrally resolved transmittance T(λ). 
Figure 2d,e contrasts the T(λ) of diffusive and localized systems. The 
former features smooth, gradual variations with λ due to broad overlap-
ping resonances, whereas the latter exhibits strong resonant structures 
consistent with the average mode spacing exceeding the linewidth of 
individual modes, in accordance with the Thouless criterion of localiza-
tion, as the spectral narrowing of modes is intimately related to their 
spatial confinement3,9,49. The colour maps in Fig. 2d,e show the spatial 
intensity distributions inside the systems, ⟨I(x, y0, z; λ)⟩x, averaged over 
x at a cross-section y = y0. These two-dimensional maps contrast slow 
variation with z and λ in the diffusive system (Fig. 2d) to the sharp 
features due to spatially confined modes in the localized system  
(Fig. 2e). Furthermore, there exist ‘necklace’ states with multiple spa-
tially separated intensity maxima, originally predicted for electrons 
in metals50.

Insight into the mechanism behind AL in the random ensemble of 
PEC spheres can be gained from the wavelength dependence of the 
Ioffe–Regel parameter kℓs (Supplementary Sects. 1.5 and 3). We com-
pute it using a procedure similar to that applied in dielectrics. Even at 
the volume fraction of f = 8%, ℓs is well below the prediction of the 
independent scattering approximation (ISA), owing to scattering reso-
nances formed by two or more neighbouring PEC spheres (Supplemen-
tary Fig. S10). As shown in Fig. 3a, ℓs becomes essentially independent 
of wavelength in the range of size parameter kr of PEC spheres. Conse-
quently, the Ioffe–Regel parameter acquires 1/λ dependence (Fig. 3b). 
It drops below the value of unity within the excitation pulse bandwidth 
λ ≈ 650 ± 45 nm for f between 25% and 33%, in agreement with Fig. 2. We 
further conduct a finite-size scaling study, after computing the depend-
ence of the CW transmittance T on the slab thickness L (Supplementary 
Sect. 1.9). Figure 3c shows the logarithmic derivative d log(T)/d log(L) 
as a function of kℓs. In the diffusive regime, Ohm’s law T ∝ 1/L is expected, 
leading to a scaling power of −1, as indeed confirmed for kℓs > 1. Around 
kℓs ≈ 1, we see a departure from 1/L scaling of transmittance. The scaling 
theory of localization predicts a single-parameter scaling of the dimen-
sionless conductance g = TN (refs. 51,52.). By estimating the number 
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Fig. 2 | AL of light in 3D disordered PEC. a, The transmittance T(t) of an optical 
pulse through a 3D slab (10 μm × 10 μm × 3.3 μm) of randomly packed PEC 
spheres with radius r = 50 nm and volume filling fraction f from 8% to 48%. b, The 
time-resolved diffusion coefficient D(t) extracted from the decay rate of T(t) in a, 
decreasing with time as 1/t at high f. c, The short-time D (dots) and the interval of 

variation of D with time (bars) at different f values. d,e, The CW transmittance 
spectrum T(λ) in diffusive (d, f = 15%, blue line) and localized (e, f = 48%, red line) 
PEC slabs. Colour map: The depth profile of the average intensity ⟨I(x, y0, z; λ)⟩x  
inside the slab at different wavelengths, highlighting the localized and 
necklace-like states for f = 48%.
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of transverse modes as N = 2π(L/λ)2(1 − f)2/3 for L × L area of the slab, we 
compute g and β(g) ≡ d log(g)/d log(L). Figure 3d shows good agree-
ment between the numerical data and the model function 
β(g) = 2 − (1 + g) log(1 + g−1) (ref. 52). In diffusive regime g > 1, β(g) → 1. 
Meanwhile, in the localized regime g < 1, β(g) ∝ log(g). The latter is a 
manifestation of the negative exponential scaling of g with L in the 
regime of AL.

To obtain the ultimate confirmation of AL of light in PEC com-
posites, we simulate the dynamics of the transverse spreading of a 
tightly focused pulse—a measurement that has been widely adopted 
in localization experiments13,33,53. A pulse centred at λ = 650 nm with 
a bandwidth of 90 nm is focused to a small spot of area approxi-
mately 0.5 μm2 at the front surface of a wide 3D slab of dimensions 
33 μm × 33 μm × 3.3 μm (Fig. 4a). We compute the transverse extent 
of the intensity distribution I(x, y, z = L; t) at the back surface of the 
slab. For a diffusive PEC slab with f = 15%, we detect a rapid transverse 
spreading of light with time in Fig. 4b, which approaches the lateral 
boundary of the slab within approximately 2 ps. In sharp contrast, in 
the localized system in Fig. 4c (f = 48%), the transmitted intensity profile 
remains transversely confined even after 20 ps. This time corresponds 
to a free space propagation of 6 mm, which is approximately 2,000 
times longer than the actual thickness of the slab. Figure 4d quantifies 
this time evolution with the output beam diameter d(t) = 2[PR(t)/π]1/2, 
where PR(t) = [∫∫I(x, y, L; t)dx dy]2/∫∫I(x, y, L; t)2dx dy is the intensity 
participation ratio. For a diffusive slab, d(t) ∝ t1/2, while in the local-
ized regime, d(t) saturates at a value on the order of the slab thick-
ness L. Such an arrest of the transverse spreading in the localized PEC 
systems persists with increased spatio-temporal resolution of the 
numerical simulation (Supplementary Sect. 1.3). Further evidence of 
AL includes non-linear decaying depth profile and strong non-Gaussian 

fluctuations of intensity inside the system (Supplementary Sect. 4.2). 
We also confirm our results by repeating calculations for 3D slabs of 
PEC spheres with larger radius r = 100 nm, obtaining similar scaling 
behaviour (Supplementary Sect. 4.2) as in Fig. 3c,d.

The striking difference between light propagation in dense ran-
dom ensembles of dielectric and PEC spheres cannot be accounted 
for by the Ioffe–Regel parameter as both reach keffℓs ≈ 1 for similar 
values of the size parameter kr (Figs. 1c and 3b). AL in 3D PEC com-
posites with uncorrelated disorder reveals a localization mechanism 
that is unique to metal. In contrast to a dielectric system where light 
propagates everywhere (both inside and outside the scatterers), the 
propagation is restricted to the voids between scatterers in the PEC 
system. This makes AL inevitable when the wavelength becomes larger 
than the typical width of free-space channels between voids and light 
can hardly ‘squeeze’ through the latter to propagate from one void 
to another. This qualitative picture correctly predicts the increase of 
the critical volume fraction f for localization with the scatterer size r 
(Supplementary Sect. 3).

Finally, we test AL in real-metal aggregates. In the microwave spec-
tral region, the skin depth of crystalline metals such as silver, aluminium 
and copper is several orders of magnitude shorter than the wavelength 
λ and the scatterer size r in the regime of kr ≈ 1. Since the microwave 
barely penetrates into the metallic scatterers, our simulation results 
are almost identical to those for PEC. To account for the imperfec-
tions due to polycrystallinity, surface defects, oxide layers, etc., we 
lower the metal conductivity to match the experimentally measured 
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absorption rate in aggregates of aluminium spheres29. Simulations 
unambiguously show the arrest of transverse spreading of a focused 
pulse (Fig. 4e), revealing AL in 3D random aggregates of aluminium 
spheres. Additional evidence of AL is presented in Supplementary 
Sect. 4. Moreover, even at optical frequencies, where realistic metals 
deviate notably from PEC, the arrest of transverse spreading persists 
in 3D silver nanocomposites (Supplementary Sect. 5). Possible light 
localization in 3D nanoporous metals will have a profound impact 
on their applications in photo-catalysis, optical sensing, and energy 
conversion and storage.

In summary, our large-scale microscopic simulations of EM wave 
propagation in 3D uncorrelated random ensembles of particles show no 
signs of AL for dielectric particles with refractive indices n = 3.5–10. This 
explains multiple failed attempts of experimental observation of AL of 
light in 3D dielectric systems over the last three decades22,23,31–33. At the 
same time, we report the first numerical evidence of EM wave localiza-
tion in random ensembles of metallic particles over a broad spectral 
range. Localization is confirmed by eight criteria: the Ioffe–Regel 
criterion, the Thouless criterion, non-exponential decay of transmit-
tance under pulsed excitation, vanishing of the diffusion coefficient, 
existence of spatially localized states, scaling of conductance, arrest of 
the transverse spreading of a narrow beam and enhanced non-Gaussian 
fluctuations of intensity. Our study calls for renewed experimental 
efforts to be directed at low-loss metallic random systems29. In Sup-
plementary Sect. 5.1, we propose a realistic microwave experiment 
that avoids experimental pitfalls and provides a tell-tale sign of AL.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41567-023-02091-7.
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