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Summary

¢ Epiphytic microbes frequently affect plant phenotype and fitness, but their effects depend
on microbe abundance and community composition. Filtering by plant traits and deterministic
dispersal-mediated processes can affect microbiome assembly, yet their relative contribution
to predictable variation in microbiome is poorly understood.

e We compared the effects of host-plant filtering and dispersal on nectar microbiome pre-
sence, abundance, and composition. We inoculated representative bacteria and yeast into 30
plants across four phenotypically distinct cultivars of Epilobium canum. We compared the
growth of inoculated communities to openly visited flowers from a subset of the same plants.
e There was clear evidence of host selection when we inoculated flowers with synthetic com-
munities. However, plants with the highest microbial densities when inoculated did not have
the highest microbial densities when openly visited. Instead, plants predictably varied in the
presence of bacteria, which was correlated with pollen receipt and floral traits, suggesting a
role for deterministic dispersal.

e These findings suggest that host filtering could drive plant microbiome assembly in tissues
where species pools are large and dispersal is high. However, deterministic differences in
microbial dispersal to hosts may be equally or more important when microbes rely on an ani-

mal vector, dispersal is low, or arrival order is important.

Introduction

Phyllosphere microbes frequently influence plants’ expressed phe-
notype and ecological interactions. Plants benefit when microbes
mitigate the effects of stress, enhance plant growth, or reduce the
growth of antagonists (Stone et al., 2018). Yet, other microbes
are plant pathogens, deplete critical nutrients, or support the
growth of other antagonists (Liu e al, 2020). Given the diverse
and important effects of microbial communities on plant traits
and fitness, understanding the processes driving plant microbial
community assembly is a key goal. A predictive framework of
plant microbiome assembly holds promise for both agricultural
application (Busby ez al, 2017; Toju ez al., 2018) and deepening
our understanding of ecological interactions in natural plant
communities (Fitzpatrick e al., 2020).

Plant microbiome assembly is shaped by selection, dispersal,
drift, and speciation (Dini-Andreote & Raaijmakers, 2018). Sto-
chastic or neutral processes impact communities without regard to
microbial species identity or host traits, do not result in predictable
community trajectories (Vellend ez al., 2014), and generate nonde-
terministic variability in microbiome communities (e.g. in Arabi-
dopsis thaliana Maignien et al., 2014; Vega & Gore, 2017; and D.
melanogaster Zapién-Campos et al., 2020). Alternatively, determi-
nistic community assembly processes are driven by trait variation
among individual plants, lines, or species (Peiffer ez al, 2013;
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Wagner et al., 2016; Leopold & Busby, 2020) that predictably
affect microbial establishment or interactions with other micro-
biome members (Fukami, 2015; Leopold & Busby, 2020; Mueller
et al., 2023). Plant traits may also influence species interactions that
affect microbial dispersal or growth (e.g. with herbivores Hum-
phrey & Whiteman, 2020; other plants Meyer et al., 2022; or the
environment Pusey & Curry, 2004; Gaube ez 4/, 2021). Interspeci-
fic variation among host plants can explain significant variation in
microbiome composition, ranging from 15% (Wagner, 2021) to
41% (Yang et al., 2023) while intraspecific variation also explains c.
40% of variation in microbiome composition in the leaves and
roots of cotton (Wei ez al.,, 2019). Often, microbial dispersal is con-
sidered a solely stochastic process, yet there is growing theoretical
and empirical support that some of its components may be predic-
able (Evans et 4/, 2017) and interact with host selection to result in
deterministic plant microbiome assembly (Martini et 4, 2015;
Dini-Andreote & Raaijmakers, 2018; Rasmussen ez 4/, 2019; Cus-
ter ¢t al., 2022). Because isolating deterministic and stochastic fac-
tors shaping plant microbiome assembly is challenging (but see
Edwards er al, 2018; rev. in Fiwzpatrick er al, 2020) and is often
inferred from surveys, the relative strength of these factors in shap-
ing plant microbiomes is still unclear (Dini-Andreote & Raaij-
makers, 2018; Cordovez et al., 2019).

The floral microbiome specifically has a central, unique, and
typically brief role in shaping plant fitness and ecology. Some
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pathogens use flowers to access plant vasculature, sterilizing flow-
ers, or causing tissue death (e.g. Anther-smuts and Erwinia Elmq-
vist ez al., 1993; Sasu et al., 2010). Alternatively, nonpathogenic
floral microbes are common (Vannette, 2020). In floral nectar,
bacteria or yeasts may affect plant fitness via changes to floral
phenotype that change pollinator visitation (Vannette er al,
2012; Schaeffer et al., 2017; Vannette & Fukami, 2018), shift
pollinators’ on-flower behavior (Herrera et al, 2013; de Vega
et al., 2022), or by competing with or facilitating other beneficial,
commensal, and pathogenic microbes (Crowley-Gall ez al., 2022;
Mueller ez al., 2023). Compared with the microbiomes of leaves
or roots, floral microbiomes are highly variable among flowers on
a plant, among individual plants, and among plant species
(Rebolleda-Gémez et al., 2019; Vannette, 2020). Both host selec-
tion and dispersal have been hypothesized to explain this varia-
tion, but their relatively influence has not been experimentally
compared.

In flowers, host selection is likely an important deterministic
process in floral microbiome assembly because floral micro-
biomes are a phylogenetically and phenotypically restricted subset
of environmental microbes (Herrera et al, 2010; Rebolleda
Goémez & Ashman, 2019; Rebolleda-Gomez et al., 2019). Plants
can vary in their resistance to floral pathogens, for example, apple
cultivars differ in resistance to the florally transmitted pathogen
Erwinia amylovora (Emeriewen et al., 2019). But less is known
about host filtering of commensal or beneficial nectar microbes
and the mechanisms driving it. Floral traits, such as nectar
volume and chemistry, that could affect microbial survival and
growth vary among individuals and species, and are likely to
impact microbiome assembly because flowers are short-lived
communities (Ashman & Schoen, 1994).

Dispersal is also a central process in floral microbiome assem-
bly. In most floral communities, less than half of flowers con-
tain culturable yeasts or bacteria (Herrera et @/, 2009; Vannette
et al., 2021), which is generally attributed to dispersal limita-
tion. Most nectar-inhabiting microbes depend on zoophilic dis-
persal, and clear vertical transmission of the nectar microbiome
has not been documented (rev. in Vannette er al., 2021; except
for some pathogens; e.g. Alexander, 1989). Floral microbe dis-
persal could be deterministic if plant traits caused predictable
visitation by pollinators or other dispersers. There is some cir-
cumstantial evidence for this: Floral visitor networks predict the
bacterial microbiomes of co-flowering plant species (Zemenick
et al., 2021), and broad pollination guild can predict floral
microbiome (de Vega ez al., 2021). Nevertheless, plant—pollina-
tor interactions are characterized by consistently low pollination
driven by inadequate and partially stochastic pollinator visita-
tion (Knight ez al., 2005; Richards er 4/, 2009), making it likely
that stochasticity may be particularly important in the assembly
of nectar microbiomes compared with other plant tissues.
Furthermore, low dispersal probability can increase the relative
importance of stochastic processes in microbiome assembly
(Evans er al., 2017) especially in short lived ecosystems like
flowers (Zapién-Campos ez al., 2020). Together, the short life-
span of flowers and variation in the probability of pollinator vis-
itation raise the possibility that stochastic dispersal-mediated
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impacts on microbiome assembly might swamp out determinis-
tic portions of dispersal or host selection.

Here, we tested the relative strength of host-plant selection on
microbial growth vs: deterministic dispersal and establishment of
microbes among hosts; and stochastic processes in shaping intras-
pecific variation in the nectar microbiome of Epilobium canum.
We inoculated microbes into flowers, removing any dispersal dif-
ferences among hosts, and monitored their growth to test for
differences in host suitability among individual plants and culti-
vars (Fig. 1; study 1). We then compared standing microbial
communities in openly visited flowers on the same plants to test
for differences in the presence or absence of microbes — a measure
of dispersal and establishment (Fig. 2; study 2). Finally, we com-
pared nonzero microbial densities between inoculated and nat-
ural communities in flowers on the same plants to test whether
plants that are most suitable for yeast and bacterial growth when
inoculated with synthetic communities also have the highest
microbial densities when under natural animal visitation (Fig. 1;
studies 1 and 2 combined).

If host filtering is the primary driver of differences in nectar
microbiome, we have three predictions. First, individuals and/or
cultivars will differ in bacterial or yeast abundance when inocu-
lated (study 1). Second, plants or cultivars will differ in nonzero
(i.e. postdispersal and establishment) microbe abundances in
study 2. Third, plants that were the best hosts in study 1 (i.e. high
yeast or bacterial growth) also will have the highest microbial
densities in study 2 (Fig. 1c). Alternatively, if deterministic dis-
persal and establishment are more important, then individual
plants or cultivars should vary predictably the presence or absence
of microbes in their flowers (Fig. 1b; study 2), but the micro-
biome of open flowers will not reflect the microbiome of inocu-
lated flowers (Fig. 1¢; study 3). Finally, if stochastic processes are
very strong compared with deterministic processes, we should
not detect individual or cultivar differences in study 1 and/or 2
and no correlation between the two studies.

Materials and Methods

Common garden design

All experimental plants were grown in a common garden on the
campus of the University of California, Davis (38°53'71"N,
121°77'28"W) embedded in a matrix of agricultural land to con-
trol for environmental influence on the nectar microbiome, varia-
tion in regional microbial species pools, or differences in
the pollinator landscape. The garden consisted of 15 plots
(7.6 m x 4.6 m), each planted with a community of co-flowering
plants a year before the experiment (see Supporting Information
Table S1 for a full species list by plot). At planting, every bed
contained five individuals of four morphologically distinct culti-
vars of the California endemic Epilobium canum (Greene, Ona-
graceae) including the wild accession E. canum ssp. canum,
(Canum); two horticultural cultivars: E. canum cv Chaparral
Silver (Silver, E. canum) and cv Everett’s Choice (Everett’s); and
the regional ecotype E. canum cv Calistoga (Calistoga). We con-
firmed that cultivars have distinct floral morphology and nectar
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Fig. 1 Hypothesized filtering processes affecting nectar microbiome assembly and predictions for studies 1 (left), 2 (middle), and 3 (right). Microbial species
pools are represented by yellow columns that are filtered by stochastic and deterministic processes including dispersal (upper disk) or plant host (lower
disk). The bottom of each column displays predicted outcomes, where points represent group means and error bars are a measure of within-group varia-
tion. Left panel (a) — study 1: we removed dispersal filters by hand inoculating a synthetic community of a yeast and bacteria (represented by gray open
disks) to isolate host selection differences among groups. If groups differ in host selection on nectar microbiome, we predicted that among group variation
would be higher than within group (i.e. statistically significant differences among groups). Center panel (b) — study 2: we allowed natural animal visitation
to the same plants. The resultant nectar microbe communities are the product of both dispersal (upper disks) and host selection (lower disks) filters. The
probability of flowers having microbes is a measure of dispersal limitation (left plot). Deterministic differences in microbial dispersal would contribute to
among plant variation (gray dotted line), while stochastic variation would increase residual variation (e.g. stochasticity would be higher in the gray vs black
error bars). Significant differences in the mean of the nonzero densities of microbes among groups (right plot) would indicate postdispersal host filtering.
Right panel (c) — study 3: we compared the microbial densities in study 1 to microbial densities in study 2. If the same host-plant quality is consistent
between studies, plants or cultivars that had the highest microbial growth in study 1 should have the highest microbial growth in study 2 (upper plot). Alter-
natively, if differences in (1) dispersal dynamics or (2) in host selection between synthetic vs real communities were strong, we predicted that microbe den-
sity in study 1 would not predict microbe density in study 2 (lower plot).

phenotypes by collecting 172 flowers where we restricted animal ~ any information on genetic variability within or among these
visitation (control flowers from study 1 described below). Epilo-  groups. Fieldwork was conducted from 24 September 2020 to 26
bium culdvars differ in standing nectar volume (P<0.01; October 2020.

Fig. S1), sugar concentration (£<0.01; Fig. S1), corolla width at
widest point (£<0.05; Fig. S1), and corolla length (2<0.00001;

Fig. S1). Additionally, these four cultivars are qualitatively phe- Study 1: Experimental inoculation

notypically distinct, varying in growth form (prostrate to  Inoculation protocol To test for differences among individual
upright), leaf coloration, floral color, etc. While there are notable  plants and cultivars in host filtering, we inoculated bagged flow-
phenotypic differences among these cultivars, we do not have  ers with the yeast Messchnikowia koreensis and bacteria
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Fig. 2 Density of (a) Metschnikowia koreensis and (b) Acinetobacter
pollinis in inoculated Epilobium canum flowers from study 1 in colony
forming units (CFUs ul™"). Small, closed points are the modeled

mean &+ 95% confidence intervals density for each plant (grouped,
color, and shape by cultivar). Large open points are the cultivar-level
modeled mean and 95% confidence intervals. There was significant
variation among individual plants in both M. koreensis and A. pollinis
(log-linear model). Cultivars significantly differed from each other in A.
pollinis densities (log-linear mixed effects model, post hoc significance
indicated by letters). (c) Flower level correlation between M. koreensis
and A. pollinis with modeled relationship (black line) and 95% confi-
dence intervals (gray fill, log—log-linear model). Points color and shape
corresponds to cultivar. All densities shown on log scale (gray dia-
monds, Silver; blue circles, Canum; yellow triangles, Everett's; red
squares, Calistoga).
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Acinetobacter pollinis, both isolated from E. canum in our com-
mon garden. These genera commonly co-occur (Alvarez-Pérez &
Herrera, 2013; Tsuji & Fukami, 2018), are the most common
genera in Epilobium at our site (Morris et al., 2019), and were
qualitatively the most common morphospecies in our open sam-
ples (study 2). These strains were identified using MALDI-TOF
using a custom-built library of Sanger Sequenced microbial acces-
sions (Morris et al., 2019 Bruker UltraFlextreme MALDI-TOF/
TOF). We created freezer suspensions of this artificial microbial
community made up of 5000 cells ="' of each species in 15%
sucrose, 15% glycerol, and 70% sterile ultrapure H,O. Cells were
quantified via hemocytometer. We created a single freezer stock
at the beginning of the experiment, stored it at —80°C, and used
aliquots across all inoculations to ensure that every flower was
inoculated with the identical initial microbial community.

At least 48 h before inoculation, we removed all the male-
phase flowers from a section of a plant and enclosed that section
of the plant in large pollinator exclusion bags (1 and/or 5-gallon
paint filter bags, 200 pm, Cascade tools). Epilobium canum is
protandrous and takes ¢ 2d to proceed from male to female
phase (Morris ez al., 2019), so any male-phase flowers in our bags
opened while visitors were excluded. We bagged flowers from 30
individual plants in study 1. Bags were effective at excluding large
visitors to Epilobium (e.g. hummingbirds and bees), but less so
for smaller animals (e.g. thrips and ants).

On the morning of each inoculation bout, we resuspended free-
zer stock in sterile 15% sucrose at 9 : 1 ratio, giving us an inoculum
with 500 cells pl ™" of each microbe. After thawing, the solution
was vortexed for 30s and stored for a maximum of 2h before
inoculating flowers. A control inoculum contained the same sterile
15% sucrose and glycerol mixture used to create freezer stocks. We
randomly selected 14 male-phase flowers from within a bag on
each plant for inoculation with microbial suspensions or control
solutions (210 flowers of each treatment across the study). Using
sterile 10 pl microcapillary tubes (VWR, Radnor, PA, USA), we
added 4 pl of experimental solution to each flower (2000 cells each
of M. koreensis and A. pollinis) or 4 pl of control solution, and flow-
ers were marked using numbered jeweler’s tags. Unmanipulated
bagged flowers contained on average 13.2 pl of nectar. We inocu-
lated flowers between 9:30 and 11:00 h across 3 d. During inocula-
tion, we excluded any flowers that we observed being visited by
animals while the bag was removed for experimental manipulation.
After inoculation, all bags were replaced on the plants. After 72 h,
we excised inoculated and control flowers (then female phase),
transported flowers to the laboratory in coolers, and extracted nec-
tar in a sterile condition as described below. Most flowers we
inoculated persisted on the plant for 72h (Npwol=172 and
Ninoculated = 173, ¢ 81% of inoculated flowers in each treatment
persisted, did not differ among cultivars Poisson GLM; P=0.51).
To estimate background microbial dispersal and contamination in
bagged flowers, we sampled flowers inoculated with sterile control

solutions (Table S2).

Quantifying microbial establishment and growth We used
culture-based methods to quantify microbial presence and abun-
dance. We collected nectar using 10 pl microcapillary tubes and
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measured nectar volume to the nearest 0.05 pl. If flowers con-
tained > 2 Wl of recoverable nectar, we destructively measured the
sugar concentration on 1 il of the sample (to the nearest 0.5%
brix) using a handheld refractometer. The remaining nectar was
diluted in 20 pl of sterile ultrapure water and diluted 10x with
phosphate-buffered saline (PBS) and an aliquot plated on yeast
media agar (containing 0.1 mg ml™" chloramphenicol to reduce
bacterial growth), and 100x in PBS plated on fructose-
supplemented tryptic soy agar plates (containing 0.1 mgml ™'
cycloheximide to reduce fungal growth). Plates were incubated at
26°C for 48h and colony-forming units (CFUs) counted.
Roughly 4% of plates generated uncountable colonies where
microbes grew in a continuous mat or did not form discrete small
units. For these, a single researcher classified plates as high, med-
ium, or low coverage. We assigned the upper quartile, median, or
lower quartile CFU counts of all plates of that type (e.g. Tryptic
Soy Agar or Yeast Media Agar) to high medium and low coverage
respectively. Finally, we accounted for dilution to calculate
CFU pl™" for each nectar sample. Comparison between culture-
free shotgun metagenomes and culture libraries suggests that nec-
tar microbes of E. canum are culturable on the media types used
here, and all analyses here are referring only to culturable
microbes (Morris et al., 2019).

Measuring floral traits We assessed Brix of all nectar samples
that contained >2pl using a handheld refractometer. When
measured Brix exceeded 50% sucrose (13 samples), samples were
diluted with 20 pl of DI water and re-measured. We also mea-
sured flower length (from the distal tip of the ovule to the furth-
est distal petal tip) and width (the widest point between petal
tips) of each flower.

Studies 2 and 3: Open flower sampling

To assess microbial presence and abundance when microbial dis-
persal was not controlled, we sampled flowers from seven to eight
individuals of each of the four cultivars used in study 1. For each
plant, 10 female-phase flowers per plant were sampled. Female
flowers were chosen to reflect the age of flowers in study 1. One
individual Everett’s was sampled twice, 8 d apart (seven plants of
this cultivar, one with 20 flowers). We collected flowers and
extracted then plated nectar to estimate microbial presence
and abundance, as described above. We quantified the abundance
of CFUs on TSA plates as bacteria and those on YMA as fungi,
which are supported by previous validation (Morris et al., 2019)
and is a coarse, but conservative, measure of variation in micro-
biomes compared with species-level measures. Floral traits were
also quantified as described above. In addition, we also removed
stigmas of openly visited flowers immediately after removing
flowers from plants in the field and stored them in 70% ethanol
to quantify pollen receipt.

Measuring pollen receipt We assessed whether flowers received
conspecific and heterospecific pollen to infer animal visitation
using stigmas of openly visited flowers (Engel & Irwin, 2003;
Price et al., 2005). Stigmas were collected with cleaned tweezers
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and placed in 70% ethanol in the field. To quantify pollen, stig-
mas were mounted in phenol-free fuchsin gel (Kearns &
Inouye, 1993) and melted at 80°C. To quantify pollen that had
been dislodged from stigmas, the stigma-storage solution was pel-
leted (1.5 min at 16000 g), resuspended in 70% ethanol, and
pollen mounted in fuchsin gel. Total pollen receipt was the sum
of the on-stigma and pollen rinse counts.

Conspecific and heterospecific pollen were quantified visually
under x100—400 magnification as two indicators of pollinator
visitation. Epilobium pollen is morphologically distinct from
the pollen of co-flowering species, allowing determination of
conspecific and heterospecific pollen receipt (Fig. S2). Epilo-
bium flowers bear both male and female reproductive parts and
produce copious amounts of pollen. Flowers display spatial and
temporal herkogamy (separation of anthers and stigma) which
may reduce self-pollination but we could not determine
whether conspecific pollen was self or outcrossed in this study.
Previous work in this species suggests that animal visitation to
E. canum increases conspecific pollen deposition on stigmas
and seed set (Snow, 1986), so we anticipated that conspecific
pollen receipt would be an imperfect, noisy, proxy for animal
visitation. Alternatively, heterospecific pollen on stigmas in this
study is more likely to have been brought by animal visitors.
We did not find any clearly wind-dispersed pollen grains in our
samples (e.g. large Pinus pollen), and the majority of co-
flowering plants are animal pollinated, so we consider hetero-
specific pollen a clearer proxy for animal visitation than conspe-
cific pollen in this system.

Statistical analyses

All statistical analyses were completed in R 4.1.2 (R Core
Team, 2021). Broadly, we used log-linear models (base R) and
log-linear mixed effects models implemented in LME4 (Bates
et al., 2015) to assess differences in microbial density and abun-
dance among plants and cultivars. We included a fixed effect of
date to account for unmeasured time-varying factors. We also
ran separate models testing for differences in microbial abun-
dance among plots. If plot was a significant predictor, we
included it in models testing for effects of interest, and if the
final model included date, we nested plot in date. Additionally,
we ran models with plot as a random intercept for plant-level
models and plants nested within plot as a random intercept for
cultivar-level models. The results for studies one and two were
qualitatively similar, but we report the results of the linear
models for plant-level differences because R is better defined
for these models (Nakagawa & Schielzeth, 2013). When testing
for differences among cultivars, we accounted for repeated mea-
sures on individuals using a random intercept for plant. We
used likelihood ratio tests and F-tests to test for significance in
mixed effects and linear models, respectively. For all plant-level
mean values, we used estimated marginal means to get pre-
dicted values after accounting for significant variation in covari-
ates such as plot or sampling date. Broadly, we began with
fully specified models but dropped nonsignificant terms for
reported statistical values.
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Study 1: Experimental inoculation

To test for host filtering, we built models testing whether indivi-
dual or cultivar predicted microbial growth (model details
Table 1). To quantify the relative effect of plant host on micro-
bial abundance, we calculated partial #* values for models with
individual plants as a predictor. Additionally, to assess whether
some flowers or plants were better hosts for both yeasts and bac-
teria, we tested correlations among their densities at the flower
and plant level. To test whether plant-level nectar sugar concen-
tration predicted microbial growth, we regressed mean Brix from
sterile control flowers (120 of 172 flowers) against mean bacterial
and yeast densities. For all plant-level analyses, we excluded

plants that had <5 flowers sampled (7=15).

Study 2: Open flower sampling

To detect deterministic differences in dispersal and host filtering
in open flowers, we used two-stage hurdle models using micro-
bial presence and abundance as response variables (c. 45% of

Table 1 Model results for study 1 assessing the effects of plant individual,
date, plot, and cultivar on density of inoculated bacteria Acinetobacter
pollinis and yeast Metschnikowia koreensis in the nectar of Epilobium
canum.

Fixed Mixed

Response effects effects AAIC P

Individual plants

Log (Acinetobacter pollinis  Individual na —2.63 0.017
density +1) Date na —1.26 043

Log (Metschnikowia Individual na —1.89 0.047
koreensis density +1) Date na 0.09 0.19

Log (Acinetobacter pollinis  Individual na —5.68 0.033
total +1) Date na -0.98 0.36

Log (Metschnikowia Individual na —4.35 0.081
koreensis total + 1) Date na ~130 0.45

Cultivar

Log (Acinetobacter pollinis ~ Cultivar ~ 1|Plant —4.05 0.0085
density +1) Date 1|Plant 578 0.22

Log (Metschnikowia Cultivar 1|Plant 3.17 0.027
koreensis density +1) Date 1|Plant 2.99 0.023

Log (Acinetobacter pollinis ~ Cultivar ~ 1|Plant —3.98 0.024
total +1) Date 1|Plant 159 0511

Log (Metschnikowia Cultivar  1|Plant —6.76 0.0052
koreensis total + 1) Date 1|Plant 334 025

Plot

Log (Acinetobacter pollinis ~ Plot 1|Plant 1.23 0.22
density + 1)

Log (Metschnikowia Plot 1|Plant —12.52  0.00038

koreensis density +1)
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open flowers did not contain microbes). We first tested whether
plants or cultivars differed in the probability of containing bac-
teria or fungi (binomial GLMM). Because 95% of inoculated
flowers contained microbes in study 1, we assume that Acineto-
bacter spp. and Metschnikowia spp. can establish in nectar, so
variation in microbial presence is likely due to the presence or
absence of dispersal. However, because microbial absence could
be due to a lack of either dispersal or establishment, we refer to
microbial presence as realized dispersal (defined in Custer
et al., 2022). We then tested whether plants or cultivars differed
in nonzero fungal and bacterial densities using a log-linear
GIMM (model details in Table 2). We calculated separate 7
values for each stage of the hurdle model, for fungi and bacteria
separately to test the relative strength of deterministic dispersal
and host selection at the plant level. To determine whether
plants and cultivars differed in pollen receipt, we built similar
two-stage hurdle models.

If pollinators are the main source of microbes, the presence of
pollen and microbes should be correlated. We tested for correla-
tions between microbial and pollen presence at the floral level
using chi-squared tests comparing the presence of conspecific,
heterospecific, or any pollen deposition with the presence of

Table 2 Models results for study 2 assessing the effects of plant individual,
date, plot, and cultivar on the presence and abundance of bacteria and
yeast in the nectar of open flowers of Epilobium canum.

Fixed Mixed
Response effects effects AAIC P
Individual plants
Proportion of flowers Individual na —59.47 1.3E-12
containing bacteria
Binomial error Date na —1.45 0.063
Proportion of flowers Individual na —9.99 0.000049
containing yeasts
Binomial error Date na —-096 0.33
Log (bacteria density + 1) Individual na —11.25 0.00038
Date na 192 0.8
Log (yeast density + 1) Individual na —20.62 0.00015
Date na —16.90 0.00020
Cultivar
Proportion of flowers Cultivar  1|Plant —8.71 0.0021
containing bacteria
Binomial error Date 1|Plant —4.14 0.017
Proportion of flowers Cultivar  1|Plant —8.37 0.00240
containing yeasts
Binomial error Date 1|Plant —-1.60 0.055
Log (bacteria density + 1) Cultivar 1|Plant 1.09 0.17
Date 1|Plant 0.82 0.16
Log (yeast density +1) Cultivar 1|Plant 512 0.83
Date 1|Plant —0.53 0.089
Plot
Proportion of flowers Plot 1|Plant 7.63 0.50
containing bacteria
Proportion of flowers Plot 1|Plant 7.35 0.47
containing yeasts
Log (bacteria density + 1) Plot 1|Plant 731 0.46
Log (yeast density +1) Plot 1|Plant 1.99 0.10

Bold lines indicate significant fixed effects, AAIC (Akaike information criterion)
are single term deletions for fixed effects accounting for other covariates as
described in the Materials and Methods section. na, not applicable.
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Bold lines indicate significant fixed effects, AAIC (Akaike information criterion)
are single term deletions for fixed effects accounting for other covariates as
described in the Materials and Methods section. na, not applicable.
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culturable yeasts, bacteria, or any microbes (nine comparisons)
and corrected for multiple comparisons using a false discovery
rate. We used the presence or absence of both pollen and
microbes because many factors can impact the magnitude of pol-
len transferred (e.g. nectar volume; Thomson, 1986), and the
total abundance of microbes (e.g. time since dispersal; Vann-
ette, 2020). At the plant level, we regressed the model-estimated
proportion of flowers that received conspecific or heterospecific
pollen on a plant against the mean number of flowers containing
yeasts or bacteria.

To test whether plant traits impacted pollinator visitation, we
used beta regressions to examine the relationship between plant
mean nectar sugar concentration (Brix) or volume, flower width,
or flower length and the probability of con- or heterospecific pol-
len receipt (Grun ez al., 2012). We built separate models for each
plant trait. Furthermore, we tested whether mean plant traits
impacted microbial dispersal by building similar beta regressions
predicting the proportion of flowers on a plant that contained
fungi or bacteria.

Study 3: Does variation in inoculated microbial
communities predict microbial density in open flowers?

To test whether plants that had the highest microbial densities
after inoculation (study 1) also had the highest microbial densi-
ties when openly visited (study 2), we constructed two linear
models comparing mean microbial densities in inoculated and
open flowers at the plant level. We used z-transformed and cen-
tered modeled densities ¢. 0 to account for differences in total
microbial densities in studies 1 and 2. Twenty-one plants were
represented in both the inoculated and open flower data sets, and
we only included flowers that contained microbes when estimat-
ing density for flowers in study 2.

Results

Study 1: Do plants or cultivars predictably differ in
microbial growth (independent of dispersal)?

We observed host selection by plant individual and cultivar when
we controlled dispersal. There was a 30-fold range among plants
in the mean density of the yeast M. koreensis (Figs 2a, 3; Table 1)
and a 13-fold difference in the A. pollinis densities among plants
(Figs 2b, 3; Table 1). Plant individual explained about a quarter
of the variation in M. koreensis (#=0.23) and A pollinis
(#=0.25) densities. The results were qualitatively similar for
total microbial cells per flower (Table 1). Cultivars also differed
in M. koreensis and A. pollinis growth (Fig. 2a; Table 1), but pair-
wise differences among cultivars were not strong (all post hoc
pairwise comparisons P> 0.05). Plots differed from each other in
the density of M. koreensis but not A. pollinis (Table 1).

We also examined whether bacterial or fungal growth covaried.
Indeed, yeast and bacteria densities were positively correlated in
individual flowers (log—log-linear mixed effects model, cultivar
effect x> =11.03, P<0.001; correlation 3> =42.47, P<0.0001).
At the plant level, M. koreensis and A. pollinis growth were

© 2023 The Authors
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Fig. 3 Variance explained by individual Epilobium canum plant identity in
microbial abundance in study 1 (upper right), abundance in study 2 (lower
right), and microbial presence (lower left). Lower portion of the bars (gray
area) represents variation explained by individual plant identity, upper
portion of the bars (blue area) represents residual variation or variation
explained by covariates (e.g. plot or date) in the final models indicated in
Tables 1 and 2.

positively but not significantly correlated (Fig. S2; log—log-linear
model, P=0.069), suggesting mechanisms occurring more
strongly at the local flower scale.

There were significant differences among individual plants in
their nectar sugar concentrations (Brix) in sterile control flowers
(linear model, F=4.11, P<0.001; Fig. 4a). However, plant-level
mean sugar concentration did not predict M. koreensis or A. polli-
nis densities at the plant level (log-linear models, M. koreensis
t=0.57, F=0.32, P=0.58; Fig. 4c; A. pollinis r=—1.06,
F=1.12, P=0.28; Fig. 4b).

Nearly all inoculated flowers had microbial growth; 94.8%
contained fungi (mean=363 CFU ul™") and 94.7% contained
bacteria (mean=1727 CEU ul™'; Table S2). Control flowers
had low microbial incidence suggesting inoculation was the main
source of microbes; 10.0% of control flowers contained fungi
(mean 29 CFU pl™") and 25.9% contained bacteria (mean
712 CFU pl™"), which we suspect may have been due to thrips
visitation (Vannette ez al., 2021).

Study 2: Do openly visited flowers predictably differ in
microbial presence or growth?

In open flowers, plant individuals and cultivars differed in the
presence of yeasts and bacteria, suggesting that deterministic dif-
ferences in realized dispersal are important under natural condi-
tions (individual level yeast /* =0.18; bacteria, 7 = 0.31; Fig. 5a,
b; Table 2; individual level yeast #*=0.18; bacteria, #*=0.31;
Fig. 5a,b; Table 2). In addition, individual plants, but not
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Fig. 4 (a) Nectar concentration (Brix) in control flowers varied among
Epilobium canum plants (small points, linear model) and cultivars (open
points, linear mixed effects model). Error bars represent 95% confidence
intervals estimated from linear mixed effects model accounting for
repeated measures on plants. There was no correlation between modeled
mean Acinetobacter pollinis (b) or Metschnikowia koreensis (c) densities
and modeled mean nectar concentrations at the plant level (gray
diamonds, Silver; blue circles, Canum; yellow triangles, Everett's; red
squares, Calistoga).

cultivars, differed in microbial abundance, suggesting postdisper-
sal host filtering (Fig. 5b,c; Table 2). Plant individual also
explained a substantial portion of variation in microbial abun-
dance (* = 0.36 bacteria, #* =0.42 yeast; Fig. 3).

Plant individuals and cultivars differed significantly in pollen
receipt (Table S3). If pollinators are the main source of pollen
and microbes, pollen and microbial presence should be corre-
lated. Indeed, plants with greater bacterial incidence in flowers
were also more likely to receive heterospecific pollen (Table 3),
suggesting shared pollinator movement of heterospecific pollen
and bacteria. However, this correlation did not hold for conspeci-
fic pollen, as we suspect significant self-pollen deposition via
wind and physical movement. By contrast, the plant-level mean
amount of pollen receipt (conspecific or heterospecific) did not
predict the proportion of flowers that contained yeasts (Table 3).
At the flower level, individual flowers that received at least one
conspecific pollen grain were more likely to contain bacteria, or
any microbe at all (although all FDR > 0.05; Table 3).

Nectar and physical traits were associated with microbial inci-
dence at the plant level. Plants with long and wide flowers were
much more likely to contain yeasts (beta-reg, z=5.00, P<0.001
and z=5.72, P<0.001), while plants with higher nectar volumes
were more likely to contain bacteria (beta-reg, z=2.07,
P=0.038). Plants with longer flowers were more likely to receive
conspecific pollen (beta-reg, z=5.00, P=0.01; Table S4), but
neither nectar concentration, volume, nor flower width was asso-
ciated with pollen presence.

Study 3: Comparing between study 1 and study 2: Does
microbial growth in inoculated flowers predict microbial
abundance in open flowers?

Microbial densities in inoculated and openly visited flowers on the
same plant were not correlated. Plant-level mean M. koreensis and
A. pollinis growth did not predict nonzero densities of yeasts or bac-
teria sampled from open flowers (linear model, yeasts, t=—1.15,
P=0.27; bacteria, t= —0.86, P=0.40; Fig. 6), suggesting different
processes driving microbial abundance between studies.

Discussion

We detected signatures of both deterministic plant selection and
realized dispersal in community assembly of the nectar
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Silver

Table 3 Chi-squared tests of correlation between the presence of pollen
and the presence of microbes at the individual flower level in Epilobium
canum, and linear models at the plant level of probability of pollen receipt
vs probability of microbe presence.

Pollen type Microbe type T-value P

Plant level

Conspecific presence Bacteria present 0.3 0.74
Conspecific presence Yeast present 0.76 0.38
Heterospecific presence Bacteria present 2.82 0.0037
Heterospecific presence Yeast present —0.95 0.28
Pollen type Microbe type P Adjusted P
Flower level

Conspecific presence Microbes present 0.0076 0.069
Conspecific presence Bacteria present 0.039 0.17

Conspecific presence Yeast present 0.11 0.35
Heterospecific presence Microbes present 0.44 0.54
Heterospecific presence Bacteria present 0.48 0.41
Heterospecific presence Yeast present 0.2 0.54

Bold text indicates significant effects after correction for false discovery
rate (P<0.05).

microbiome of Epilobium canum. Multiple lines of evidence sug-
gest that predictable differences in realized dispersal (dispersal
and establishment) had an equal or stronger effect than differ-
ences in postestablishment microbial growth under realistic

© 2023 The Authors
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Canum Everetts Calistoga

Silver Canum  Everetts Calistoga

Cultivar Cultivar

pollinator visitation. First, variation among cultivars in microbial
presence (and inferred realized dispersal limitation) oversha-
dowed variation in host selection among cultivars (Fig. 5).
Furthermore, the plants that had the highest microbial growth
when inoculated did not have the highest microbial densities
when openly visited, suggesting that other factors, including dis-
persal and establishment are the primary factors affecting differ-
ences in the presence and abundance of Epilobium nectar
microbiomes among cultivars (Figs 5, 6).

Host filtering of plant microbiomes is well documented in
many plant tissues (e.g. in leaves Balint ez 4/, 2013; and roots
Xiong et al., 2021; rev. in Fitzpatrick et al, 2020) and was also
evident in this experiment. In study 1, plant individual explained
nearly 25% of variation in microbial abundance, despite previous
evidence that host filtering of floral microbiomes may be less
detectable than in other tissues (Wei & Ashman, 2018). While
we found a signature of host selection, the specific plant traits
driving these differences are not clear. Plant-level nectar sugar
concentrations (Brix) in uninoculated flowers did not predict
microbial growth among plants for either microbe (Fig. 4a,b).
Yet, nectar is a complex mixture of mono- and disaccharides, free
amino acids, secondary compounds, and proteins (Nicolson &
Thornburg, 2007). Many of these can affect microbial growth
(Schmite et al., 2018; Mueller ez al., 2023) and vary predictably
among plants (e.g. nectar secretion rate; Mitchell, 2004); sugar
concentration and composition (Herrera & Pozo, 2010;
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Parachnowitsch ez 4/, 2019); amino acid concentration (Rynie-
wicz et al., 2020); and the presence of secondary compounds,
reactive oxygen species, or antimicrobial peptides (Adler, 2000;
Carter & Thornburg, 2004; Palmer-Young er 4/, 2019; Chris-
tensen et al., 2021; Schmitt ez al., 2021). Future work should bet-
ter link plant-level differences in nectar chemistry or other floral
traits to nectar microbiome assembly and functional outcomes
for plants, microbes, and pollinators.

Although we were unable to identify specific traits driving var-
iation in microbial growth, yeasts and bacteria responded simi-
larly among flowers when co-inoculated (Fig. 2¢), suggesting
shared microbial responses to variation in floral conditions or
traits. We did not detect a signature of competition; instead, yeast
and bacterial growth were positively correlated within individual
flowers. Similar patterns of covariation have been previously
detected, but are not universal (Tsuji & Fukami, 2018; Alvarez-
Pérez et al., 2019). A few hypotheses may explain this pattern.
First, individual flowers on a plant may vary in quality, due to
variation in light, temperature, nectar traits, or possibly even epi-
genetic mosaicism affecting floral traits (Herrera er al, 2021).
Second, positive correlations in natural flowers may be due to co-
dispersal. However, the pattern reported here was in flowers
where we controlled for dispersal via inoculation. Finally, we
hypothesize that these correlations could be caused by microbial
facilitation within a flower via the release of limiting nutrients
(Christensen ez al., 2021) or the detoxification of shared environ-
ments as has been demonstrated between Metschnikowia and
other bacteria (Mueller ez al., 2023).

In addition to host filtering, multiple lines of evidence suggest
that deterministic differences in dispersal may be one of the main
drivers of microbiome assembly in this system. First, differences
among cultivars and individuals in microbial presence were non-
random, and individual explained nearly as much variation in
incidence as abundance. Individual differences accounted for 19—
31% of the variation in microbial presence or absence, which is
similar to variation explained by plant individual identity in
microbial abundance in this study and in other plant tissues
(<15% in other tissues; Wagner, 2021). Between 38% and 73%
of open flowers on a plant contained bacteria and 17-50% con-
tained fungi despite near universal establishment in study 1 (.
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openly visited flowers

Canum: blue circles, Everett's: yellow
triangles, Calistoga: red squares).

95%; Fig. 4). The incidence rates observed here reflect previous
work in the Mediterranean (yeasts 32-44%; Herrera
et al., 2009), and California Coast Range (Yeasts 20%, Bacteria
49%; Vannette et al., 2021) surprisingly closely. This study adds
to those by demonstrating that intraspecific differences in micro-
bial incidence are predictable and can be as high or higher than
differences among co-flowering plant species. Because the micro-
bial propagule density used in the current experiment may over-
estimate establishment (Hausmann ez 4/, 2017), work that
compares establishment across inoculation densities would
further separate the effects of dispersal in the strict sense from rea-
lized dispersal. Nevertheless, supporting the importance of dis-
persal, cultivars that differed in microbial abundance when we
inoculated flowers showed no measurable differences in microbial
abundance when openly visited but did show strong predictable
differences in microbial presence. This is consistent with the
hypothesis that dispersal is a major driver of differences in micro-
bial community assembly at the cultivar level, overwhelming dif-
ferences in microbial growth we detected in study 1.

The second line of evidence for a primary role of dispersal is
that after removing open flowers with no dispersal or establish-
ment, plants that had the highest growth in study 1 did not have
the highest nonzero densities of microbes in study 2 (Fig. 6). This
could be due to several factors. One possibility is that microbial
communities in open flowers are more diverse than the inocu-
lated communities. Previous work supports the overwhelming
dominance of the two microbial genera inoculated in this study
in many flowering systems world-wide (e.g. Alvarez-Pérez &
Herrera, 2013; Tsuji & Fukami, 2018; Chappell ez al.,, 2022).
However, this line of evidence is contingent on the assumption
that Metchnikowia and Acinetobacter are representative of other
members of natural communities (Morris ez 2/, 2019) and some
habitats may host more diverse nectar microbial communities
(e.g. Canto et al., 2017; de Vega et al., 2021). Another possibility
is that in our open flowers, the timing and frequency of microbe
inoculation likely varied. Variability in dispersal time could
impact microbe—microbe interactions such as competition, facili-
tation, and priority effects (Fukami, 2015; Alvarez-Pérez
et al., 2019), which may have been more pronounced in study 2.
In our open flowers, we are unable to know how long microbial
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communities had been growing in flowers, adding substantial
noise to any abundance measures in study 2. With these caveats,
if host suitability for microbial growth broadly had a very strong
impact on microbial density, we predicted that densities in stu-
dies 1 and 2 would be correlated, but they were not.

A third line of evidence for the importance of dispersal is the
correlation between heterospecific pollen receipt and bacterial
presence. Although some traits predict both pollen and microbial
presence (Table 3), evidence for pollinators as microbial disper-
sers was not as universal as we predicted. We did not find rela-
tionships between conspecific pollen receipt and bacteria or any
pollen receipt variables and yeasts. We hypothesize that temporal
lags between microbial dispersal and growth to detectable levels,
visitation by animals that move microbes but do not pollinate, or
substantial self-pollination in Epilobium might partially explain
the lack of correlations between conspecific pollen receipt and
microbe presence, especially at the floral level. Previous work has
documented different dispersal dynamics between yeasts and bac-
teria (Vannette ¢t al., 2021). This result does not exclude the pos-
sibility that microbes co-disperse to flowers but possibly suggests
reliance on different dispersal vectors among yeasts and bacteria,
differential establishment, or possibly competitive exclusion
under realistic dispersal. Previous work supports the hypothesis
that animals vary in their vectoring of microbial taxa, and this
may underlie such patterns (de Vega et al, 2021; Vannette
et al., 2021; Zemenick et al., 2021).

The finding that 25% of variation in microbial incidence was
explained by host identity in this system, suggests that heritability
of the ‘microbial phenotype’ may be low and might limit the
impact of microbes on floral trait evolution. Furthermore, separat-
ing microbial-influenced selection on floral traits from other factors
will require careful experiments. Detecting whether differences in
nectar microbiome are the cause or effect of variation in pollinator
visitation, given that these two variables are inconsistently corre-
lated, will be difficult. However, the correlation between microbial
dispersal and pollination shown here suggests a novel hypothesis:
Plant species that require few animal visits for adequate pollination
(e.g. plants with high Pollen : Ovule ratios or high pollen deposi-
tion), may be less impacted by microbial changes to floral pheno-
types. For floral microbes to shape plant trait evolution, we posit
that: microbial dispersal would have to be consistently high; and
flowers would have to be long-lived, needing multiple visits by pol-
linators for adequate pollination. Alternatively, microbial coloniza-
tion would have to be extremely costly/beneficial (as is the case
with pathogenic microbes where the eco-evolutionary dynamic
may be different; Alexander, 1989; Elmqvist ez af, 1993).

Taken together, our results suggest that floral microbiome
assembly is contingent on interactions between differences in
host-plant quality and deterministic dispersal limitation. In some
cases, deterministic dispersal can be as strong as host selection in
driving variation in microbiome. Because floral microbes are dis-
persed primarily by animals who make predictable decisions
based on plant traits, nectar microbiomes may be unique from
other plant tissues because host traits not only act on growth rates
but also on dispersal probabilities. However, we suggest that the
role of deterministic dispersal processes may be an
© 2023 The Authors
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underrecognized driver across other plant tissues. Recent evi-
dence from phyllosphere microbes suggests that possible dispersal
from co-occurring plants is an important factor in driving leaf
microbiome assembly (Meyer ez al., 2022), and co-dispersal of
seeds and rhizosphere fungi may be predictable (Correia
et al., 2019). Furthermore, new work suggests that at large bio-
geographic scales, plant-associated bacteria and fungi can be
dispersal-limited (Zhang ez al, 2021), suggesting that the
dynamics we characterize here may be more broadly applicable.
Our work adds experimental evidence that deterministic dispersal
can overwhelm host selection in some cases and rival it in others,
so we suggest that future empirical studies of plant microbiome
assembly should consider this possibility.
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