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ABSTRACT
We explore the relationship between a machine-learned structural quantity (softness) and excess entropy in simulations of supercooled liq-
uids. Excess entropy is known to scale well the dynamical properties of liquids, but this quasi-universal scaling is known to breakdown in
supercooled and glassy regimes. Using numerical simulations, we test whether a local form of the excess entropy can lead to predictions
similar to those made by softness, such as the strong correlation with particles’ tendency to rearrange. In addition, we explore leveraging
softness to compute excess entropy in the traditional fashion over softness groupings. Our results show that the excess entropy computed
over softness-binned groupings is correlated with activation barriers to rearrangement.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0143603

I. INTRODUCTION
Despite their importance to numerous technologies, the prop-

erties of disordered (amorphous) materials far from equilibrium
continue to elude comprehensive understanding.1–3 Disordered
materials made of particulates can span a wide range of length
scales, and examples include metallic glasses, nanoparticle pack-
ings, colloidal suspensions, foams and emulsions, and granular
materials.4–6 Our knowledge of these materials is primitive com-
pared to our understanding of crystalline solids, where symmetry
and order guide detailed theories.7,8 In disordered systems, the
dynamics are known to be strongly heterogeneous and can vary by
orders of magnitude even for a supercooled liquid at equilibrium.9
For many glass-forming systems, the dynamics exhibit a tempera-
ture dependence where the activation energy grows upon cooling.
Thus, relating the evolution of the material microstructure (at the
constituent level) to the material’s dynamics (and bulk response) is
quite difficult. Much work has been devoted to developing structural
indicators of glassy dynamics in disordered systems, with different
degrees of success.10–13 If one is interested in developing ther-
modynamically consistent coarse-grained and constitutive models,
identifying the relevant structural parameters and their connection
to thermodynamic quantities is a critical step.14,15

In recent years, machine learning (ML) and data science tech-
niques have matured to a point that they are ubiquitous in research
and industry. Past studies have successfully applied ML models to
predict local dynamical properties of glassy systems more accurately
than traditional quantities, such as local potential energy and free
volume, for example.13,16–18 These ML models range in complex-
ity from relatively simple linear support vector machines (SVMs),
which operate on vectors of pre-selected structural features for each
particle, to convolutional and graph models that are able to extract
more intricate spatial correlations within the material and thus lead
to improved prediction accuracy on similar tests.19–22 A notable ML
indicator developed to characterize structural defects and predict
rearrangements in disordered packings is the quantity known as
softness.4,21,23 This quantity was one of the first models developed for
glasses and, though relatively simple in its construction from local
radial distribution functions, is still able to provide good predictive
power.21,22 The success of machine-learned structural indicators has
even motivated the construction of mean-field models that demon-
strate the average softness of system is related to the quadratic term
of the mean-field potential.24

Although softnessmay bemore interpretable compared to other
machine-learning based models, particles of similar softness still
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possess different local structures, complicating its overall physical
meaning. For systems in which particles are dominated by isotropic
interactions, softness can be constructed as a weighted sum of the
radial distribution function, where the weights are determined by
the SVM. While these weights do inform us to a degree that certain
features in the pair correlation function [notably the first and second
peaks of g(r)] are critical to local dynamics, it remains unknown
how the general form of radial weights may be related to a priori
knowledge of the particles and their interactions. On the other
hand, excess entropy, a quantity known to scale with dynamical
properties of simple liquids, can be similarly constructed as a sim-
ple function of local particle coordinates where deviations in the
radial distribution function from that of the ideal gas (a flat dis-
tribution) are penalized.10–12,25,26 Due to the similar construction
of these quantities, it is tempting to consider whether there are
any connections between them. This would lead to an improved
understanding of softness, for example. However, one difficulty in
such a comparison is that softness is defined on a particle basis to
strongly correlate with particle-level dynamics, while excess entropy
is usually defined for an entire configuration and is associated with
system-average dynamics. In this work, we formulate a compari-
son between these quantities (i.e., excess entropy and softness) using
two separate approaches. First, we define a local form of excess
entropy that takes in a Gaussian-smeared, coarse radial distribu-
tion function (similar to softness) and compare the ability of this
measure to correlate with rearrangements relative to softness. Next,
we utilize softness as an intermediary tool so to compute excess
entropy in a more traditional fashion. Essentially, we treat particles
of similar softness as comprising their own ensembles, allowing us to
compute ensemble average quantities (such as excess entropy) over
softness-grouped subsystems. Our results suggest interesting future
directions for combining equilibrium tools with machine-learned
quantities in out-of-equilibrium disordered systems.

II. METHODS
A. Simulation details

Numerical simulations comprise sets of equilibrated super-
cooled states of bidisperse, Lennard-Jones character generated using
HOOMD-blue.27 Configurations are composed of 32 768 particles
in a 3D periodic box, and a Nosé–Hoover thermostat is used to inte-
grate the dynamics with a time step of 10−3 in the NVT ensemble.
We employ a Lennard-Jones potential with a modifiable well-width
parameter Δ to control the level of caging in the system; the standard
Lennard-Jones definition is obtained when Δ = 0.0. The potential is
defined as

Vi j(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4ϵij
⎡⎢⎢⎢⎢⎣
(

σ′i j
r − Δ)

12

− (
σ′i j
r − Δ)

6⎤⎥⎥⎥⎥⎦
, r ≤ 2.5σi j ,

0, r > 2.5σi j ,
(1)

where σ′i j = σi j(1 − Δ/21/6) is defined to keep the minimum at the
same position as Δ varies, r is the pair distance between parti-
cles, ϵij is the interaction energy scale between species i and j, and
σij is the interaction length scale. The parameter Δ is varied from
0.0 to 0.4, and ϵij and σij are set in accordance with a standard
80:20 Kob–Andersen-type mixture (ϵAA = 1.0, ϵAB = 1.5, ϵBB = 0.5,

σAA = 1.0, σAB = 0.8, and σBB = 0.88). The functional forms are
shown in Fig. 1(a) for different choices of Δ. Depending on the value
of Δ used, packing fraction ρ is varied between 1.2 and 1.12 to min-
imize the rapid increase in system pressure p as the well width is
decreased. We explored the (Δ, ρ) pairings [(0.0, 1.2), (0.1, 1.18),
(0.2, 1.16), (0.3, 1.14), and (0.4, 1.12)]. Simulations at Δ = 0.5 were
also produced, but they were found to readily crystallize in the
supercooled regime; they are omitted from the analysis. We find
that by increasing Δ (decreasing the well-width), the fragility is
slightly decreased in line with the work of Bordat et al.28 To ensure
reproducibility, three randomly seeded replicas were generated for
each system. All stated Lennard-Jones units are with respect to the
A-species of the standard Kob–Andersen mixture (i.e., Δ = 0). Con-
figurations are initialized on a cubic lattice with random placements
of particle species and thermalized well into the liquid regime for
each system. The systems are then swept through analyzed temper-
atures into the supercooled regime, waiting at most 20 τα (where
τα is the alpha relaxation time) at the highest temperature in the
supercooled regime and 8 τα for the coldest temperature before con-
tinuing with the temperate quench. We use the self-intermediate
scattering function (F(Q, t) = 1

N∑
N
j=1 ⟨exp [iQ ⋅ (r j(0) − r j(t))]⟩)

to estimate τα by calculating the time required for F(Q, t) to drop
below 1

e . In all systems, we use ∣Q∣ = 7.14, the wavenumber coincid-
ing with the distance to the first peak of g(r). Furthermore, we apply
FIRE minimization as a post-processing step to obtain the inherent
structures at each sampled time for final analysis; this step is not
strictly necessary to obtain the relationships we find, but serves to
remove thermal fluctuations from the analysis.29 In all parts of the
analysis, we explore only the dynamics of A-species particles. We
made substantial use of the freud, signac, and signac-flow Python
packages to perform post-processing analysis and to manage data
and job workflows.30–32

B. Softness
As briefly discussed above, softness (S) is a machine-learned

quantity trained on examples of particles undergoing rearrange-
ment. Here, we closely follow the techniques employed in previous
works to construct S in our thermal system.21,22 We assess whether
or not a particle participated in a rearrangement by examining phop.
phop is defined as

phop(i, t) =
√
⟨(xi − ⟨xi⟩B)2⟩A⟨(xi − ⟨xi⟩A)2⟩B, (2)

where xi is the position of the particle i in simulation, A and B
are time intervals defined as A = [t − tR/2, t] and B = [t, t + tR/2],
and tR is the time window used. A fairly coarse period is used
between frame dumps of 1τA, where τA is the Lennard-Jones time
unit in reference to the A species of the Δ = 0.0 system, and we use
a time window tR = 10τA. To categorize rearrangements, two cut-
offs are defined: pH = 0.05 and pS = 0.2. Particles are deemed soft if
phop > pS and hard if phop < pH . We further restrict our dataset by
only processing the peaks and troughs of phop and asserting that rear-
rangement events are separated by 10τA and non-rearrangements by
80τA. In case any events are too close, the more prominent peak (or
deepest trough) is selected.
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FIG. 1. (a) Pair potentials used in this
work. Marginal variation in the Lennard-
Jones well width, controlled here by
the parameter Δ, leads to significant
dynamical changes. (b) Example snap-
shot of our standard Lennard-Jones
Kob–Andersen mixture at kBT = 0.45,
Δ = 0.0, produced with the fresnel
Python library. (c) The total radial dis-
tribution functions (RDFs) for the five
systems we consider. Higher Δ values
lead to a sharpening of RDF peaks, in
turn leading to more pronounced caging
and slower dynamics at a given tem-
perature. (d) Diffusion coefficients for A
species particles measured in both the
liquid and supercooled regimes.

Structure functions, GK(μ j), are calculated from a Gaussian-
smeared radial distribution function by using the following equa-
tion:

GK(μ j) = ∑
k∈{K}

e
(rk−μ j)

2

2Δμ2 , (3)

where μj is the radial distance of the ith structure function, Δμ is the
variance of the gaussian, the labelK selects for particle species A or B,
and rj is the radial distance to the particle j. μj varies linearly from 0.4
to 3.0 with a step size of Δμ = 0.1.33 With these structure functions,
we proceed to train a linear SVM (using the scikit-learn package34) to
classify our soft and hard particles. The final hyperplanes are insensi-
tive to random seeds relating to the SVM optimization and subset of
data used. The linear SVM works by finding an optimal hyperplane
to separate our classes in the high-dimensional space in which our
structure functions reside. Note that we apply a pre-processing step
to our data that shifts and scales the structure functions such that
within each index pair (K, μj) our data have zero mean and unit
variance. After fitting the data to our model, we can extract the deci-
sion function, which is the signed distance to the hyperplane, and use
this measure as our softness S. We find that the accuracy, measured

as P(R∣S > 0), is between 73% and 80% for the coldest tempera-
tures measured in each system, though this accuracy decreases to
40%–50% at our highest temperatures due to the inherent thermal
stochasticity of the liquid state.

C. Excess entropy
Excess entropy, s(2), is classically defined as the difference

in configurational entropy between the ideal gas and the system
of interest.11 It can be calculated by a variety of means, includ-
ing thermodynamic integration.25 Here, we utilize the simplified
and approximate calculation based on the species-dependent radial
distribution function gK(r) as

s(2) = −2π∑
K

ρK ∫ (gK(r) log{gK(r)} − gK(r) + 1)r2dr (4)

in 3D. ρK is the density of species K in the sample and r is the radial
distance. We additionally construct a per-particle version of s(2) in
close analogy to softness. The local excess entropy [labeled s(2)loc ] uti-
lizes the same structure functions as softness, but these inputs are
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rescaled by the appropriate spherical measure to be transformed
back into a coarse, smeared gK(rj),

gK(r j) = (4πρ∗Kr2j)−1GK(r j), (5)

where ρ∗K is an effective local density calculated by integrating the
RDF for each species, here computed with a sphere of radius r = 3.0.
From this RDF, we can apply a simple midpoint integration to
obtain

s(2)loc = −2π∑
K

ρ∗K
jmax

∑
j
[gK(r j) log{gK(r j)}

− gK(r j) + 1]r2jL(r j − η)Δr, (6)

where Δr is the bin width and L(rj − η) is the inverse logistic
function centered at a distance of η away. We applied a gentle opti-
mization pass, finding η = 2.0 to adequately dampen fluctuations at
distances at and beyond the second peak of g(r). A few aspects of the
form we have chosen here substantially improve the performance of
this measure: notably, respecting the bidispersity of the systems and
using the local species density ρ∗K , as opposed to the average system
density.

III. RESULTS
A. Comparison of softness and local excess entropy

Here, we examine simulations of a Lennard-Jones
Kob–Andersen mixture.35 We explore four other variations of
this system with a modified well width parameter Δ, ranging from
0.0 to 0.4, as shown in Fig. 1(a). Although the modifications to the
potential appear subtle, this translates into considerably stronger
caging effects within the system and more brittle response overall as
Δ is increased.36 Figures 1(b) and 1(c) show an example snapshot
of our Δ = 0.0 system at kBT = 0.45 and samples of g(r) at similar
depths into the supercooled regime for each system. The increased
caging behavior is reflected in the increased height of the g(r)
peaks when Δ is increased. Figure 1(d) shows the diffusion coeffi-
cients for these five systems as a function of inverse temperature;

particle diffusivity decreases considerably as Δ is increased for the
same T.

In Fig. 2, we illustrate how the reduced diffusion coefficient,
calculated as D∗A = ρ

1
3
√ m

kTDA, correlates with both the average soft-
ness (S) and excess entropy (s(2)) of the systems. The prefactor of
the reduced diffusion coefficient originates from Enskog theory, i.e.,
the kinetics of a dense hard-particle gas.37 As expected, we observe
monotonic behavior in both quantities, but they differ qualitatively
in both the liquid and supercooled regimes. In the liquid state,
the average S varies little. This is consistent with the understand-
ing that softness is well correlated with the effective energy barrier
of particles, which should be constant in the liquid regime. As the
temperature is decreased below the onset temperature and the aver-
age values of S take on a more substantial temperature dependence
where S decreases with decreasing T, the relationship between D∗A
and softness changes to a nearly exponential relationship, though
the relation is clearly stronger than a simple exponential at the lowest
temperatures considered.While these trends are qualitatively similar
across different systems, it remains difficult to relate them quan-
titatively due to the construction of S. This is because S, obtained
here as a signed distance from an SVM hyperplane where all dimen-
sions have been rescaled to unit variance over the data distribution,
has poorly defined units. In addition, it is a non-trivial issue how
one would rescale and shift these dimensions such that particles
of a given softness correspond to, for example, the same (reduced)
diffusion coefficient from first principles.

For the case of excess entropy in Fig. 2(b), we see expected
behavior where in the liquid state the pair approximation of excess
entropy does a fair job of estimating reduced diffusion coefficients.
However, the trends quantitatively differ once temperatures drop
below onset. Application of the three-body term in the excess
entropy or its estimation using thermodynamic integration would
improve the collapse in the liquid state;11,25 however, we wish to limit
our analysis to predictors that only require a single (or small num-
ber) of configurations. Unfortunately, both quantities, S and s(2), fall
short as universal predictors of bulk dynamics in the supercooled
regime.

Following previous analyses of softness,21,22 an Arrhenius-like
relationship can be found as a function of temperature within the
supercooled regime when tracking particles at constant S across

FIG. 2. Reduced diffusion coefficients of
the A species as a function of both the
average softness (a) and excess entropy

(b). D∗A = ρ
1
3

√
m
kT

DA. The behavior

of these systems as softness varies,
while qualitatively quite similar, fails to
agree quantitatively. The results regard-
ing excess entropy, though, depend on
the regime. In the liquid state, the excess
entropy yields good agreement in the
reduced diffusion coefficient across sys-
tems, though this breaks down consider-
ably below the crossover temperature.
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FIG. 3. Probability of rearrangement
against inverse temperature across the
systems analyzed. Each system is sep-
arated into five equally spaced bins of
softness, and at each temperature point,
we utilize a cutoff in phop to measure the
occurrences of local rearrangements. In
(a) and (c), softness is used to group
particles with similar dynamics, leading
to Arrhenius behavior within each strata.
In (b) and (d), we perform the same
analysis, but instead using the local
excess entropy as our structural proxy
for dynamics. Both quantities are able
to reproduce Arrhenius behavior within
the strata, though softness is more effec-
tive in capturing the range of dynamical
behavior within the system. The bin-
center values of the highest, middle, and
lowest bins are marked in the color bar
of each subplot.

temperature. In Figs. 3(a) and 3 (c), we show this stratification for
the probability of rearrangement in two of our systems binned by
softness. In each system, we take the 5th and 95th percentile bounds
of softness and then use five equally spaced bins to aggregate our
populations. Furthermore, these Arrhenius fits can be interpreted
as relating to the exponential of a free energy barrier of the form
PR(S) = exp(Σ(S) − ΔE(S)/T), where Σ is the activation entropy,
ΔE is the activation energy, and T is the simulation temperature.
When viewed this way, effective energetic and entropic barriers can
be extracted from the fits, providing a connection between glassy
local structures and the characteristic energy barriers governing the
system’s dynamics.

While these results regarding softness are promising, one may
wonder if the qualities that we find surprising here (the Arrhenius-
like behavior and separation of relaxation rates) are hard to find
using other measures of local packing. To explore this issue, we
perform a similar analysis using our locally-defined excess entropy,
as shown in Figs. 3(b) and 3(d). Although the quantity s(2)loc is not
designed specifically to identify rearrangements, one still finds that
the local excess entropy exhibits properties similar to those of S.
For example, one still obtains good Arrhenius fits to the strata with
s(2)loc , though the separation of these strata is not as large as with S.
Depending on the system, we observe at most an order of magni-
tude spread in the probability of rearrangement when looking at the
coldest temperature sample when applying excess entropy. Softness,

on the other hand, is capable of extracting an additional order of
magnitude or more in this spread.

Next, we directly assess whether excess entropy and softness
are correlated with each other. We do so by calculating the Pear-

son correlation coefficient ρS,s(2)loc =
cov(S,s(2)loc )

σSσ
s(2)
loc

between S and s(2)loc as a

function of the parameter Δ. Across our systems, we find a moderate
correlation, as shown in the inset of Fig. 4(a). We find an increase in
the correlation between softness and excess entropy as Δ increases,
which appears to plateau at ≈0.5 [Fig. 4(a), inset]. We believe that
this is because the tighter well width is increasing the importance of
structural entropy on dynamics, though this effect is limited. Soft-
ness, in being trained on rearrangement events, is correlated with the
free energy barriers to rearrangement and thus captures a combina-
tion of both entropic and energetic effects. The lack of energetics in
the excess entropy is one possible reason for its poorer performance
(in predicting rearrangements) relative to softness.

In addition to predicting local dynamics, analyzing dynam-
ics through softness has also been shown to predict the onset
temperature of glassy dynamics, where the dynamics first become
super-Arrhenius.21,38 Here, we replicate the analysis performed by
Schoenholz et al.21 to measure the onset temperature from struc-
tural heterogeneity, but instead use the local excess entropy. In
Fig. 4(b), we show the crossover temperatures estimated from the
Arrhenius fits of softness and local excess entropy; the crossover
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FIG. 4. (a) 2D histogram of softness and local excess entropy at a particle level for the Δ = 0.0 system at kBT = 0.47. (inset) Pearson correlation as a function of Δ. We find
a moderate correlation across the systems, which upon closer examination improves with increasing Δ, likely due to the sharpening of the underlying RDF that enters the
calculation. (b) Cross-over temperatures estimated from the Arrhenius fits in the supercooled regime using softness and excess entropy. An IQR outlier rejection method is
applied to remove poor estimations that occur due to nearly co-linear Arrhenius fits. Values outside twice the 10–90 percentile range (centered on the median) are excluded
as likely outliers. Good agreement is found between the estimates using the two quantities.

FIG. 5. (a) A–A and A–B radial distribution functions of inherent structures of the Δ = 0.0, kBT = 0.49 system when particles are grouped by softness. Lower-softness inherent
structures tend to exhibit enhanced densities of particles at peaks in the RDF and suppression of those within the troughs. (b) Excess entropy computed through inherent
structure RDFs of particle groupings with a given softness as a function of the midpoint of the softness bin. The resulting relationship is not quite linear, but monotonically
increasing. In Fig. S2 of the supplementary material, we present extended data for s(2) computed from instantaneous trajectories throughout the supercooled regime.

temperatures obtained through the two quantities agree relatively
well. This is interesting to note since the traditional methods of
extracting a crossover temperature require numerousmeasurements
of long time dynamical quantities, such as the diffusivity, viscos-
ity, or alpha relaxation time. The distinct advantage that we hold
by using excess entropy is that it requires no pre-training on
data. Thus, local excess entropy appears to be a good and use-
ful structural quantity to determine when the supercooled regime
has been entered. We believe that estimating the cross-over tem-
perature from s(2)loc is possible because the structure captured by
excess entropy is correlated with short-time dynamical hetero-
geneities in this regime, though we note that other analyses of

excess entropy have been able to extract the onset temperature as
well.39

One important observation here is that the Arrhenius trend
found by softness may not be as unique as previous studies suggest.
Instead, the observance of the Arrhenius trend in the supercooled
regime may simply hinge on the quantity being at most weakly
correlated with rearrangement probability. This also raises con-
cerns about how to validate the performance of softness, in general.
Within thermal simulations, we have the freedom to use techniques
such as the isoconfigurational ensemble and score our structural
quantities by their correlation with propensity or other dynamical
quantities averaged over the ensemble.19,40 However, in athermal
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sheared systems, where the rearrangement dynamics are binary in
nature, it is difficult to frame softness’ effectiveness as a correlation
to average per-particle dynamics.

To summarize this section, we find that softness and local
excess entropy, although moderately correlated, possess clear dif-
ferences in their performance that affect their application as local
indicators of rearrangement. Softness is clearly more suited to
this task, but the moderate correlation suggests that there may
be an underlying correspondence between these quantities. It
remains that in cases where it is difficult or impossible to com-
pute softness, the local excess entropy may make a fair proxy
of dynamical behavior and as a means to estimate the crossover
temperature.

B. Building ensembles with softness
Past studies have explored the connection between heteroge-

neous dynamics of supercooled liquids and thermodynamics by
partitioning the system by a measure of the dynamics. For example,
in the work of Krekelberg et al.,41 the mean-squared displace-
ment of particles was used to assemble groupings with similar
dynamics, and the pair-wise excess entropy was then computed
over these groupings. The excess entropy was found to be strongly
correlated with the local dynamics, while the average number of
neighbors did not correlate. While the mean-squared displace-
ment is a natural choice to perform a grouping like this, other
approaches can be considered. In particular, groupings of particles
that together display Arrhenius dynamics, and thus well-defined

FIG. 6. (a) Entropic and (b) energetic barriers as a function of excess entropy computed from inherent structures. We select similar temperatures relative to onset in each
system, though the softness-grouped excess entropies of the inherent structure quenched states are insensitive to temperature. We find that a rescaling by the free energy
barrier at onset is sufficient to bring the data into qualitative agreement. In (c) and (d), we show the same barriers, but instead compute the excess entropy from the
instantaneous trajectories. Displayed by the color coding are three temperature ratios below onset. The excess entropy computed this way depends on the temperature, but
we find similar quantitative agreement in the data when observing the same temperate relative to onset. In Fig. S3 of the supplementary material, we show the extended
data for all temperature ranges below onset.
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temperature-independent barriers, may be quantitatively related to
thermodynamic quantities computed from the average structure of
these groupings.

In order gain a deeper insight into the connection between
thermodynamics and structure in glassy systems, we propose lever-
aging the predictive power of machine-learned indicators, such
as softness, to partition our systems into sub-groupings that pos-
sess similar structure and dynamics. Once these groupings are
made, we posit that it is appropriate to compute thermodynamic
quantities, such as the excess entropy, in the traditional way by
averaging over configurations, and that the results of these com-
putations are qualitatively relatable to the actual dynamics. In this
way, we propose thinking about the supercooled liquid not as pos-
sessing a homogeneous entropy, but as a number of distinct liquid
states characterized by a spatially varying entropy, similar to the
idea of “entropic droplets” from the random first-order transition
theory.42

After grouping particles by softness, it is straightforward to
construct the radial distribution functions for each group. One com-
mon step in analyzing systems using softness is to examine the
structure using the inherent structure, which we follow here to
remove thermal noise from the positions. When calculating excess
entropy on particles grouped by softness, we consider both the
inherent structure configurations and the thermal configurations,
the latter of which makes a more rigorous connection to the pair-
wise excess entropy of the liquid. In Fig. 5(a), we show examples
of the A–A and A–B radial distribution functions (RDFs) com-
puted from inherent structures. Particles of lower softness possess
expected features, with neighbors more highly concentrated at peaks
and deficient at troughs. These RDFs are used to compute s(2) as one
would for the RDFs of an equilibrated liquid. From this computa-
tion, we then have a relation between softness (taken as themidpoint
of the softness bin) and excess entropy, as shown in Fig. 5(b).
Using the excess entropy at a given softness from Fig. 5(b) and the
energy/entropy barriers extracted from Figs. 3(a) and 3(c), we can
look for a relationship between the excess entropy and the barriers
impeding rearrangements.

In order to compare activation barriers across systems, it is
necessary to rescale the barriers by some energy scale related to
the activated dynamics. This is because the definition of rearrange-
ment depends on the phop threshold, which is known to affect
the softness-dependent barriers and change across our systems
due to the changing well-width of the potential. A natural energy
scale to choose is the free energy barrier at onset. In Fig. 6, we
show the rescaled entropic and energetic barriers to rearrange-
ment with respect to the excess entropy computed from inherent
structures and instantaneous thermal trajectories. We find that
excess entropy obtained through both methods leads to qualitative
agreement in the rescaled barriers. With the instantaneous tra-
jectories, agreement appears when observing similar temperatures
relative to onset. Agreement here suggests that there is a relation-
ship between the liquid excess entropy of softness groupings and
the rearrangement barriers that is unaffected by the modifications
in potential employed here. It would be interesting in future work
to characterize the structure of transition states during glassy rear-
rangements, as it may provide an insight into the origin of this
relationship.

C. Discussion
Our first set of results suggests that quantities such as the

local excess entropy are able to recover many of the notable fea-
tures attributed to softness, e.g., Arrhenius trends in the supercooled
regime and an ability to infer the onset temperature for supercooled
dynamics. While the overall performance (in terms of predicting
particle rearrangements) of excess entropy is not as discriminating
as softness, it does well for a quantity that has not been aggressively
optimized. Adding enthalpic contributions (even indirectly) could
elevate the local excess entropy to an estimate of the free energy
barrier for rearrangements. A more intricate exploration of the tran-
sition states may help to reveal these connections between the local
inherent structures and the barriers to rearrangement. Particularly,
if one considers ensembles of transition states with the same energy
barrier height, what average behavior emerges for the per-particle
energies with distance? Is it possible that we could intuit this from a
combination of U(r) and its derivatives?

Furthermore, our analysis using softness-grouped ensembles
exposes a simple connection between excess entropy and the rear-
rangement barriers within supercooled liquids. Even though the
supercooled state is fraught with many complications due to its
rich behavior and metastable nature, there appears to be an opti-
mal partitioning of particles that allows us to make connections
to equilibrium thermodynamics. Unfortunately, however, effectively
obtaining these groups at the moment requires either dynami-
cal sampling techniques, such as isoconfigurational ensembles, or
machine-learned quantities that pose superior correlations with
rearrangement dynamics. Quantities derived from low-frequency
modes may also be good candidates for this type of aggregation.17
The framework presented here is a possible path for framing ther-
modynamics in supercooled liquids, and it may help us to better
understand the physical principles responsible for the emergence of
glassy behavior at the onset temperature.

SUPPLEMENTARY MATERIAL

See the supplementary material for extended data on the figures
above.

ACKNOWLEDGMENTS
This work was funded by the University of Pennsylvania’s

MRSEC NSF-DMR-1720530.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Ian R. Graham: Conceptualization (equal); Data curation (equal);
Formal analysis (equal); Investigation (equal); Software (equal);

J. Chem. Phys. 158, 204504 (2023); doi: 10.1063/5.0143603 158, 204504-8

Published under an exclusive license by AIP Publishing

 19 M
arch 2024 16:01:42

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Validation (equal); Visualization (equal); Writing – original draft
(equal); Writing – review & editing (equal). Paulo E. Arratia: Con-
ceptualization (equal); Funding acquisition (equal); Investigation
(equal); Supervision (equal); Writing – review & editing (equal).
Robert A. Riggleman: Conceptualization (equal); Funding acqui-
sition (equal); Investigation (equal); Supervision (equal); Writing –
review & editing (equal).

DATA AVAILABILITY
The data that support the findings of this study are available

from the corresponding author upon reasonable request.

REFERENCES
1L. Berthier and G. Biroli, “Theoretical perspective on the glass transition and
amorphous materials,” Rev. Mod. Phys. 83(2), 587–645 (2011).
2P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, “Glass
and jamming transitions: From exact results to finite-dimensional descriptions,”
Annu. Rev. Condens. Matter Phys. 8(1), 265–288 (2017).
3F. H. Stillinger and P. G. Debenedetti, “Glass transition thermodynamics and
kinetics,” Annu. Rev. Condens. Matter Phys. 4(1), 263–285 (2013).
4E. D. Cubuk, R. J. S. Ivancic, S. S. Schoenholz, D. J. Strickland, A. Basu,
Z. S. Davidson, J. Fontaine, J. L. Hor, Y.-R. Huang, Y. Jiang, N. C. Keim,
K. D. Koshigan, J. A. Lefever, T. Liu, X.-G. Ma, D. J. Magagnosc, E. Morrow,
C. P. Ortiz, J. M. Rieser, A. Shavit, T. Still, Y. Xu, Y. Zhang, K. N. Nordstrom,
P. E. Arratia, R. W. Carpick, D. J. Durian, Z. Fakhraai, D. J. Jerolmack, D. Lee,
L. Ju, R. Riggleman, K. T. Turner, A. G. Yodh, D. S. Gianola, and A. J. Liu,
“Structure-property relationships from universal signatures of plasticity in
disordered solids,” Science 358(6366), 1033–1037 (2017).
5D. J. Jerolmack and K. E. Daniels, “Viewing earth’s surface as a soft-matter
landscape,” Nat. Rev. Phys. 1, 716–730 (2019).
6M. van Hecke, “Jamming of soft particles: Geometry, mechanics, scaling and
isostaticity,” J. Phys.: Condens. Matter 22(3), 033101 (2009).
7A. J. Liu and S. R. Nagel, “The jamming transition and the marginally jammed
solid,” Annu. Rev. Condens. Matter Phys. 1(1), 347–369 (2010).
8S. Torquato, “Perspective: Basic understanding of condensed phases of matter via
packing models,” J. Chem. Phys. 149(2), 020901 (2018).
9S. Sastry, P. G. Debenedetti, and F. H. Stillinger, “Signatures of distinct dynami-
cal regimes in the energy landscape of a glass-forming liquid,” Nature 393(6685),
554–557 (1998).
10R. T. Bonnecaze, F. Khabaz, L. Mohan, and M. Cloitre, “Excess entropy scaling
for soft particle glasses,” J. Rheol. 64(2), 423–431 (2020).
11J. C. Dyre, “Perspective: Excess-entropy scaling,” J. Chem. Phys. 149(21),
210901 (2018).
12K. Lawrence Galloway, X. Ma, N. C. Keim, D. J. Jerolmack, A. G. Yodh, and
P. E. Arratia, “Scaling of relaxation and excess entropy in plastically deformed
amorphous solids,” Proc. Natl. Acad. Sci. U. S. A. 117(22), 11887–11893 (2020).
13D. Richard, M. Ozawa, S. Patinet, E. Stanifer, B. Shang, S. A. Ridout, B. Xu, G.
Zhang, P. K. Morse, J.-L. Barrat, L. Berthier, M. L. Falk, P. Guan, A. J. Liu, K.
Martens, S. Sastry, D. Vandembroucq, E. Lerner, and M. L. Manning, “Predicting
plasticity in disordered solids from structural indicators,” Phys. Rev. Mater. 4(11),
113609 (2020).
14H. C. Öttinger, “Systematic coarse graining: ‘Four lessons and a caveat’ from
nonequilibrium statistical mechanics,” MRS Bull. 32(11), 936–940 (2007).
15H. C. Öttinger, H. C. Öttinger, and H. C. Öttinger, Beyond Equi-
librium Thermodynamics (John Wiley and Sons, Inc., New York, 2005),
ISBN: 978-0-471-72791-0, URL http://ebookcentral.proquest.com/lib/upenn-
ebooks/detail.action?docID=228475.
16R. A. Riggleman, J. F. Douglas, and J. J. de Pablo, “Tuning polymer melt fragility
with antiplasticizer additives,” J. Chem. Phys. 126(23), 234903 (2007).

17H. Tong andN. Xu, “Order parameter for structural heterogeneity in disordered
solids,” Phys. Rev. E 90(1), 010401 (2014).
18A. Widmer-Cooper and P. Harrowell, “Free volume cannot explain the spatial
heterogeneity of Debye–Waller factors in a glass-forming binary alloy,” J. Non-
Cryst. Solids 352(42–49), 5098–5102 (2006).
19V. Bapst, T. Keck, A. Grabska-Barwińska, C. Donner, E. D. Cubuk, S. S. Schoen-
holz, A. Obika, A.W. R. Nelson, T. Back, D. Hassabis, and P. Kohli, “Unveiling the
predictive power of static structure in glassy systems,” Nat. Phys. 16(4), 448–454
(2020).
20Z. Fan and E. Ma, “Predicting orientation-dependent plastic susceptibility from
static structure in amorphous solids via deep learning,” Nat. Commun. 12(1), 1506
(2021).
21S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxiras, and A. J. Liu, “A
structural approach to relaxation in glassy liquids,” Nat. Phys. 12(5), 469–471
(2016).
22S. S. Schoenholz, E. D. Cubuk, E. Kaxiras, and A. J. Liu, “Relationship between
local structure and relaxation in out-of-equilibrium glassy systems,” Proc. Natl.
Acad. Sci. U. S. A. 114(2), 263–267 (2017).
23E. D. Cubuk, S. S. Schoenholz, E. Kaxiras, and A. J. Liu, “Structural properties
of defects in glassy liquids,” J. Phys. Chem. B 120(26), 6139–6146 (2016).
24M. K. Nandi and S. M. Bhattacharyya, “Microscopic theory of softness in
supercooled liquids,” Phys. Rev. Lett. 126(20), 208001 (2021).
25I. H. Bell, J. C. Dyre, and T. S. Ingebrigtsen, “Excess-entropy scaling in
supercooled binary mixtures,” Nat. Commun. 11(1), 4300 (2020).
26X. Ma, J. Liu, Y. Zhang, P. Habdas, and A. G. Yodh, “Excess entropy and
long-time diffusion in colloidal fluids with short-range interparticle attraction,”
J. Chem. Phys. 150(14), 144907 (2019).
27J. A. Anderson, J. Glaser, and S. C. Glotzer, “HOOMD-blue: A Python pack-
age for high-performance molecular dynamics and hard particle Monte Carlo
simulations,” Comput. Mater. Sci. 173, 109363 (2020).
28P. Bordat, F. Affouard, M. Descamps, and K. L. Ngai, “Does the interaction
potential determine both the fragility of a liquid and the vibrational properties
of its glassy state?,” Phys. Rev. Lett. 93(10), 105502 (2004).
29E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch, “Structural
relaxation made simple,” Phys. Rev. Lett. 97(17), 170201 (2006).
30C. S. Adorf, P. M. Dodd, V. Ramasubramani, and S. C. Glotzer, “Simple data
and workflowmanagement with the signac framework,” Comput. Mater. Sci. 146,
220–229 (2018).
31V. Ramasubramani, C. Adorf, D. Paul, D. Bradley, and S. Glotzer, “signac:
A Python framework for data and workflow management,” in Proceedings
of the 17th Python in Science Conference (2018), pp. 152–159; available at
https://conference.scipy.org/proceedings/scipy2018/vyas_ramasubramani.html.
32V. Ramasubramani, B. D. Dice, E. S. Harper, M. P. Spellings, J. A. Anderson, and
S. C. G. freud, “A software suite for high throughput analysis of particle simulation
data,” Comput. Phys. Commun. 254, 107275 (2020).
33J. Behler and M. Parrinello, “Generalized neural-network representation of
high-dimensional potential-energy surfaces,” Phys. Rev. Lett. 98(14), 146401
(2007).
34F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, T. Bertrand, O. Grisel, M.
Blondel, P. Peter, R. Weiss, D. Vincent, J. Vanderplas, A. Passos, and D. Cour-
napeau, Scikit-learn: Machine Learning in Python, MACHINE LEARNING IN
PYTHON, p. 6.
35K.Walter and H. C. Andersen, “Scaling behavior in the β-relaxation regime of a
supercooled Lennard–Jones mixture,” Phys. Rev. Lett. 73(10), 1376–1379 (1994).
36E. Y. Lin and R. A. Riggleman, “Distinguishing failure modes in oligomeric
polymer nanopillars,” Soft Matter 15(32), 6589–6595 (2019).
37M. Dzugutov, “A universal scaling law for atomic diffusion in condensed
matter,” Nature 381(6578), 137–139 (1996).
38A. S. Keys, L. O. Hedges, P. Juan Garrahan, S. C. Glotzer, and D. Chandler,
“Excitations are localized and relaxation is hierarchical in glass-forming liquids,”
Phys. Rev. X 1(2), 021013 (2011).

J. Chem. Phys. 158, 204504 (2023); doi: 10.1063/5.0143603 158, 204504-9

Published under an exclusive license by AIP Publishing

 19 M
arch 2024 16:01:42

https://scitation.org/journal/jcp
https://doi.org/10.1103/revmodphys.83.587
https://doi.org/10.1146/annurev-conmatphys-031016-025334
https://doi.org/10.1146/annurev-conmatphys-030212-184329
https://doi.org/10.1126/science.aai8830
https://doi.org/10.1038/s42254-019-0111-x
https://doi.org/10.1088/0953-8984/22/3/033101
https://doi.org/10.1146/annurev-conmatphys-070909-104045
https://doi.org/10.1063/1.5036657
https://doi.org/10.1038/31189
https://doi.org/10.1122/1.5133852
https://doi.org/10.1063/1.5055064
https://doi.org/10.1073/pnas.2000698117
https://doi.org/10.1103/physrevmaterials.4.113609
https://doi.org/10.1557/mrs2007.191
http://ebookcentral.proquest.com/lib/upenn-ebooks/detail.action?docID=228475
http://ebookcentral.proquest.com/lib/upenn-ebooks/detail.action?docID=228475
https://doi.org/10.1063/1.2742382
https://doi.org/10.1103/PhysRevE.90.010401
https://doi.org/10.1016/j.jnoncrysol.2006.01.136
https://doi.org/10.1016/j.jnoncrysol.2006.01.136
https://doi.org/10.1038/s41567-020-0842-8
https://doi.org/10.1038/s41467-021-21806-z
https://doi.org/10.1038/nphys3644
https://doi.org/10.1073/pnas.1610204114
https://doi.org/10.1073/pnas.1610204114
https://doi.org/10.1021/acs.jpcb.6b02144
https://doi.org/10.1103/PhysRevLett.126.208001
https://doi.org/10.1038/s41467-020-17948-1
https://doi.org/10.1063/1.5091564
https://doi.org/10.1016/j.commatsci.2019.109363
https://doi.org/10.1103/physrevlett.93.105502
https://doi.org/10.1103/physrevlett.97.170201
https://doi.org/10.1016/j.commatsci.2018.01.035
https://conference.scipy.org/proceedings/scipy2018/vyas_ramasubramani.html
https://doi.org/10.1016/j.cpc.2020.107275
https://doi.org/10.1103/physrevlett.98.146401
https://doi.org/10.1103/PhysRevLett.73.1376
https://doi.org/10.1039/c9sm00699k
https://doi.org/10.1038/381137a0
https://doi.org/10.1103/physrevx.1.029901


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

39A. Banerjee, M. K. Nandi, S. Sastry, and S. M. Bhattacharyya, “Determination of
onset temperature from the entropy for fragile to strong liquids,” J. Chem. Phys.
147(2), 024504 (2017).
40A. Widmer-Cooper and P. Harrowell, “Predicting the long-time dynamic het-
erogeneity in a supercooled liquid on the basis of short-time heterogeneities,”
Phys. Rev. Lett. 96(18), 185701 (2006).

41W. P. Krekelberg, V. Ganesan, and T. M. Truskett, “Structural signatures of
mobility on intermediate time scales in a supercooled fluid,” J. Chem. Phys.
132(18), 184503 (2010).
42T. R. Kirkpatrick and P. G. Wolynes, “Stable and metastable states in
mean-field Potts and structural glasses,” Phys. Rev. B 36(16), 8552–8564
(1987).

J. Chem. Phys. 158, 204504 (2023); doi: 10.1063/5.0143603 158, 204504-10

Published under an exclusive license by AIP Publishing

 19 M
arch 2024 16:01:42

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.4991848
https://doi.org/10.1103/PhysRevLett.96.185701
https://doi.org/10.1063/1.3414349
https://doi.org/10.1103/physrevb.36.8552

