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Abstract

Solar energetic particle (SEP) events and their major subclass, solar proton events (SPEs), can have unfavorable
consequences on numerous aspects of life and technology, making them one of the most harmful effects of solar
activity. Garnering knowledge preceding such events by studying operational data flows is essential for their
forecasting. Considering only solar cycle (SC) 24 in our previous study, we found that it may be sufficient to only
utilize proton and soft X-ray (SXR) parameters for SPE forecasts. Here, we report a catalog recording
>10MeV >10 particle flux unit SPEs with their properties, spanning SCs 22-24, using NOAA’s Geostationary
Operational Environmental Satellite flux data. We report an additional catalog of daily proton and SXR flux
statistics for this period, employing it to test the application of machine learning (ML) on the prediction of SPEs
using a support vector machine (SVM) and extreme gradient boosting (XGBoost). We explore the effects of
training models with data from one and two SCs, evaluating how transferable a model might be across different
time periods. XGBoost proved to be more accurate than SVMs for almost every test considered, while also
outperforming operational SWPC NOAA predictions and a persistence forecast. Interestingly, training done with
SC 24 produces weaker true skill statistic and Heidke skill scores,, even when paired with SC 22 or SC 23,
indicating transferability issues. This work contributes toward validating forecasts using long-spanning data—an
understudied area in SEP research that should be considered to verify the cross cycle robustness of ML-driven
forecasts.

Unified Astronomy Thesaurus concepts: Solar energetic particles (1491); Space weather (2037); Solar cycle (1487)

1. Introduction

Solar energetic particle (SEP) events are enhanced fluxes of
high-energy particles ejected by the Sun. The occurrence rates
of such events are greatest closer to the maxima of ~11 yr solar
cycles (SCs). These events encompass a wide range of energies
from keVs up to multiple GeVs (Anastasiadis et al. 2019),
ejected into the heliosphere. Solar proton events (SPEs), a
subclass of SEPs, are characterized as protons with energies
>10MeV exceeding a threshold of >10 particle flux units
(pfus). Energetic protons can harm satellites, navigation and
communication systems, technological grids, and other equip-
ment. High-energy charged particles in the magnetosphere can
manipulate the output signals of electronic devices. This causes
spacecraft calibration systems to malfunction, and when these
charged particles strike a critical device, the instrument may fail
entirely. Other examples of solar transient activity and its
consequences include high-energy electrons that further
complicate operations as they can penetrate shielding aboard
satellites and spacecraft. They quickly pileup, and eventually
discharge the accumulated energy mirroring a lightning strike
(Bollavaram & Asmatulu 2016). Radio-wave-dependent
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communication systems are also vulnerable to such events.
Extreme ultraviolet (EUV) and X-ray radiation from the Sun
can ionize the Earth’s ionosphere, elevating electron density in
the medium radio waves travel through. This delays transmis-
sion time from satellites to ground-based global positioning
systems, ultimately causing the misalignment of positions by a
few meters. While seemingly insignificant, this poses issues for
aviation, robotics, military, transportation, and other industries’
operations.® SEPs and cosmic rays are similarly capable of
ionizing and altering the ionosphere.

The limited understanding of solar processes leading to the
generation of SPEs motivates research in heliophysics and
astrobiology to advance. By enhancing the radiation levels in
interplanetary space,” SPEs may be responsible for the atrophy
of astronaut health. Onorato et al. (2020) expand on this,
highlighting the risks of astronauts developing cancer,
experiencing central nervous system decrements, and even
exhibiting degenerative tissue effects. More recently, such
concerns have caught the attention of administrations working
with commercial airlines and space tourism. Beck et al. (2005)
conclude that the combined effects of magnetic field dis-
turbances and solar particle fluence due to solar storms can be
responsible for up to ~70% variation in radiation exposure at
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Figure 1. The drastic imbalance in the number of days where SPEs are observed per SC, compared to days they are not observed. Note that SC 22 is dated from 1986
September to 1996 August, SC 23 from 1996 August to 2008 December, and SC 24 from 2008 December to 2019 December.

typical flight altitudes. Collins (2006) also notes higher
exposure to cosmic radiation as the main safety concern during
space tourism between lunar and orbital travel. This would only
be enhanced during the propagation of SEPs. Further, Naito
et al. (2020) conclude that some composite materials (i.e.,
carbon fiber-reinforced plastic and silicon-carbon plastic,
Bollavaram & Asmatulu 2016) show promise in shielding
spacecraft from enhanced radiation. Still, none have been
confirmed to withstand the expected radiative variations during
SPEs. Given the many hazards presented by these events, it is
critical to develop reliable forecasts to provide sufficient time
for astronauts and equipment to be safely relocated. External
SEP detectors coupled with an appropriate predictive algorithm
may be mounted onto spacecraft to act as warning and defense
systems in this effort. Our overarching goal is to investigate the
capabilities of different machine-learning (ML) models with
respect to the prediction of SPEs. We employ our models with
only proton and soft X-ray (SXR) flux data, and assess
performance variations when considering timescales longer
than a single SC during the training phase.

1.1. The Problem of SPE Prediction

Approaches to building predictive models for SPEs become
arduous given their rare nature and reliance on indirect
measures of volatile SC activity. If using measures like
forecasting accuracy to quantify the success of a predictive
model, the rarity of SPEs permits an algorithm to be able to
miss most, if not all, incoming SPEs while sustaining high
accuracy in prediction scores (as we see in Section 3.3). The
need for balanced data sets and assessment metrics to reflect
accurate scores is emphasized by Martens & Angryk (2017).
Specifically, the class imbalance in our data set shows 11,946
negative cases (days with no SPEs), in vast contrast to only 538
positive cases (days with SPEs). This imbalance overshadows
positive cases by the prevalence of quiet (days with no
observed SPEs) periods, and is the overarching problem
encountered in this work, and the disparity is illustrated in
Figure 1. Variance in the Sun’s global magnetic activity and
consequential changing event frequency brings forward the
question of how transferable an algorithm built using previous
SC data may be when considering future SCs of unknown
activity levels.

1.2. Current and Previous Prediction Efforts and Limitations

In recent years, there has been a plethora of research projects
contributing to the effort of predicting SPEs in an attempt to
mitigate their detrimental effects. In our previous study
(Sadykov et al. 2021) we used SXR wavelength ranges (long
(0.1-0.8 nm) and short (0.05-0.4 nm)), along with >10 MeV
proton flux data observed by the Geostationary Operational
Environmental Satellite (GOES) series. From the various
products obtained by GOES, we retrieve and use SXR flux
data with a 1 minute cadence and >10 MeV proton flux data
with a 5 minute cadence. The data have been made publicly
available by the National Oceanic & Atmospheric Association
(NOAA) National Center for Environmental Information
(NCEI'%). The promising results of utilizing derivatives of
these data products alone motivate us to continue exploring
these parameters in-depth in this work. Sadykov et al. (2021)
also discuss the lack of performance loss when excluding
characteristics of active regions (ARs) and type II, III, and IV
radio bursts when generating predictive algorithms, although
acknowledging the brevity of the considered data set (SC 24
alone). Predictive scores resulting from using proton flux alone
were compared to those with the addition of SXR data, which
proved to enhance prediction accuracy. Therefore, in this work
we study operational proton and SXR flux features in detail,
exploring the potential to develop a reliable SPE-predictive
model using these features.

However, in addition to these parameters, different
approaches to SPE prediction include physics-based and
empirical models that take into account parameters of solar
magnetograms, optical imaging, EUV imaging, coronal mass
ejections from single or multiple vantage points, in situ
energetic proton and electron observations, particle accelera-
tion, and transport, and measurements of solar wind density,
temperature, and magnetic fields (Whitman et al. 2023).
Whitman et al. (2023) also elaborate on current model
validation diagnostics. Most physics-based models (i.e.,
computing SEP acceleration and transport from first principles)
are computationally expensive, limiting their integration into
current workflows to make real-time predictions. Statistics-
based or ML-driven models can capture empirical, yet
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nonlinear dependencies between observational data and SPE
processes given sufficient data presented for training these
models. We supply short-term (data from a single SC) and
long-term (data from two SCs) fluxes during our models’
learning phases, exploring proton, short, and long SXR
variations leading to SPEs. We use data acquired using only
NOAA'’s GOES series for consistency.

Studies comparing results between ML-driven models with
those used as daily operational forecasts by NOAA’s Space
Weather Prediction Center (SWPC) for SPEs may identify
observed parameters preceding SPEs that could improve such
forecasts (Sadykov et al. 2021). To achieve this, we aggregate a
catalog of statistical proton, short, and long SXR flux
parameters (discussed in Section 2.3), which are minimized
by meticulously selecting features most relevant to predicting
these SEP events during unpredictable levels of solar activity.
In parallel, fundamental parameters required by the model may
be poorly characterized without a complete understanding of
the underlying solar mechanisms associated with SEP ejection
and acceleration. SEP modeling has thus been motivated to
explore the physical processes related to SEPs and operational
forecasting needs. These current complex models show
promise in modeling time-dependent distributions of SEP
events. ML approaches are still being investigated to yield a
new class of SEP models to produce fast, reliable forecasts
(Whitman et al. 2023). Our work here presents a different
approach to the problem.

1.3. Scope of Our Work

The presented work assesses ML-driven models for the
prediction of SPEs using data from three previous SCs (22-24).
From this, we build an understanding of the cross cycle
transferability of these pre-established models. Starting with
detecting SPEs from these SCs using GOES series data, event
parameters are stored in the first catalog built in this effort.
Using the continuous flux records we have of these SCs, we
form an additional catalog of daily statistical features of SXR
and >10 MeV proton fluxes, supplying the input data sets for
our learning models.

Our first model, support vector machines (SVMs), has
become a standard classifier in space weather prediction
studies. Recent works by Bobra & Couvidat (2015), Ahmad-
zadeh et al. (2021), Kasapis et al. (2022), Asaly et al. (2021),
Bobra & Ilonidis (2016), and others, employ these classifiers
and acknowledge them being advantageous, robust, and fast
when making predictions. Bobra & Couvidat (2015) also show
that SVMs are successful classifiers when applied to large data
sets. Although developed more recently than SVMs, extreme
gradient boosting (XGBoost; our second model) has already
gained recognition in capturing complex patterns in the data.
Similar to SVMEs, it is well suited for analyzing large data sets
and is currently used in many areas of research (finance,
healthcare, environmental sciences, etc.). Rotti & Martens
(2023), Li et al. (2022), Bailey et al. (2021), and McGuire et al.
(2019) highlight the success of using XGBoost to analyze SEP
events, predict flares, and explore other space weather events.
Within these works, XGBoost often outperforms more complex
models (random forest, logistic regression, etc.) when regard-
ing different model performance metrics.

We begin our work here by constructing SPE flux data
catalogs, one of which is used as the input for our ML models
(discussed in Sections 2.2 and 2.3). To combat the imbalance in
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the positive and negative classes, we use model-inherent class
weight balancing techniques, as well as data generation using
standard (duplication of positive cases), and synthetic over-
sampling. We reduce the number of features considered for
forecasting using Gini importance, Fisher scoring, and
XGBoost, exploring which supplied statistical features are
most important when working toward making predictions.
Finally, we define data from each SC as different training/
testing data sets (discussed in Section 2.5) to use with SVM
and XGBoost algorithms. Predictive capabilities are then
measured using true skill statistics (TSS), Heidke skill scores
(HSS,, developed by Mason & Hoeksema 2010), and recall
metrics. We also apply k-fold cross validation (CV) to optimize
our models with respect to TSS. We also consider the effects of
different training timescales when producing forecasts. Analyz-
ing different parameters associated with SVM and XGBoost
models, we strive to generalize our algorithms while retaining
the highest scores achievable from our data set. Modifications
applied to each model are further discussed in Section 3.

2. GOES Data Preparation and Products
2.1. Querying Flux Data

Our prediction algorithms are built using >>10 MeV proton and
SXR flux data queried from NOAA’s National Center for
Environmental Information (NCEI) through 19862019 to
encompass SCs 22-24. The data are obtained by different GOES
launched by NOAA as a series from GOES-05 to GOES-15
during the period of interest. The main objective of GOES is to
aid forecasting operations by supplying real-time access to X-ray
and proton flux measurements (Aminalragia-Giamini et al. 2021)
from the geostationary orbit (an altitude of ~36,000 km above
Earth’s equator); making this satellite series a clear choice for
several SC-long data collection for our work. In 1974, NOAA
compiled a primary and secondary scheme'' identifying GOES
data to utilize during instances when, at each time, multiple
satellites in the GOES series provided real-time data, assigning
one to be the primary and others as secondary. Rotti et al.
(2022) also do this in an effort to explore integral proton flux
intensity profiles for space weather predictions. Influenced by
these routines, we manually choose a primary instrument for
every month across SCs 22-24. By our definition, a primary
instrument reflects a higher peak proton flux count when two or
more satellites or detectors are simultaneously capturing data.
Other works prioritize GOES data differently, e.g., Aminalra-
gia-Giamini et al. (2021) retain measurements from the highest-
numbered GOES satellite instead.

GOES underwent a change from a mounted Energetic Particle
Sensor (EPS) to an Energetic Proton, Electron, and Alpha
Detector (EPEAD) in 2011 starting with GOES-13. Equipped
with a single detector, the EPS was capable of distinguishing
between SEPs and Galactic cosmic rays, measuring fluxes from
different energy channels. Upgrading this instrument, EPEAD
collects data from two detectors, one surveying east, at 75° W and
the other west, at 135° W (with respect to the prime meridian);
capturing slightly different populations of protons. He &
Rodriguez (2018) further discuss this, concluding that differences
in proton flux measurements between the detectors are due to the
effect of magnetic field variation with geomagnetic longitude.
This highlights that simply taking the average of these detectors’

1 www.ngdc.noaa.gov/stp/satellite/goes/doc/GOES_XRS_readme.pdf
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Figure 2. Timeline of primary GOES instruments and detectors (when applicable) used to streamline SCs 22-24 flux data. Here, G represents “GOES,” succeeding
numbers represent the satellite number of the GOES series, and E or W (when applicable) indicates which of the east or west satellite detectors had detected the higher

proton flux.

1.00 West Detector
(primary)

S 0.751 __ East detector
S (secondary)
)
= 0.501
(%]
=
c ]
= 0.25
x
= 0.00
™
[}
S —0.25
i
o —0.501

—0.75

' o ' o2 ' o2 ' Ad ' Al ' 0D ' 25 ' 19 ' o
.\ 4 4 49 49 4 1,0"1' S\ LA
OIS S U L S O S A I S
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consistently higher fluxes registered by the west detector compared to the east during the same observation period, we record it as the primary instrument/detector for
the month.
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Figure 4. Examples of (left) instrumental effects producing a spike in the data, and (right) how a corrected spike is presented, mirroring a quiet period of the Sun.

fluxes will not accurately represent SEP propagation from the Sun
to the magnetosphere. Therefore, when EPEAD satellite data are
introduced into our data set, both primary instruments and primary
detectors (labeled as east or west) are selected and recorded for
use. The primary instrument selection used for SCs 22-24 is
shown in Figure 2, and an illustration comparing proton
populations captured by the primary versus secondary detectors
is presented in Figure 3, reflecting the minimal—but still distinct
differences in proton fluxes recorded by each detector.

It is also important to note changes in GOES directionality
after launch for those interested in recording instruments/
detectors with no data gaps. As specified by Rodriguez'? and
the National Geophysical Data Center, GOES-13-15 all
undergo a yaw flip where the satellite rotates about its axis
pointed toward the center of Earth, flipping detector orienta-
tions. During these flips, EPEAD telemetry channels labeled
east are actually looking westward, and those labeled west are
looking eastward. The inversions in directionality over time are
as follows:

1. GOES-13 (2006-2018): only upright during its opera-
tional period between 2010 May and 2012 September.

2. GOES-14 (2009-2020): upright from its launch date in
2009 and inverted during an SPE in early 2012
September. The satellite has not corrected itself since.'?

3. GOES-15 (2010-2018): experiences a flip twice a year at
every equinox. This maneuver usually lasts under an
hour, during which data are not recorded.

These inversions are considered for each satellite by their
specific guidelines, and orientation labels are corrected for in
the catalogs presented in Sections 2.2 and 2.3. During yaw flips
and periods when proton and SXR flux data were not recorded
(during orientation changes, instrumental corrections, etc.), we
interpolate fluxes from the time before and after the data gap to
attain continuous flux records for the timeline of interest.
Streamlined proton and SXR flux data, our resulting catalogs,
and time-series visuals are fetched onto a Solar Energetic
Particle Prediction Portal'* (SEP?).

12 hitps: / /www.ngdc.noaa.gov /stp /satellite /goes /doc /Note%200n%
20GOES%2013-15%20Y aw%20Flip.pdf

13 Powered off in 2020, this satellite can be called back into service if needed
(https: //www.nesdis.noaa.gov /news/noaa-readies-goes-15-and-goes-14-
orbital-storage).

14 https: //Sun.njit.edu/SEP3 /index.html

2.2. Catalog I: SPE Records

Considering the definition of an SPE as >10 pfu detections
of protons >10 MeV, this is the threshold used throughout the
process of generating our first catalog. NOAA defines the
severity of solar storms using an S-scale'” hierarchy of
progressively damaging solar events spanning from S1 (minor)
to S5 (extreme). An SPE is the baseline for an S1 event (the
weakest-ranking solar storm in this hierarchy), primarily
affecting high-frequency radio propagation in the polar regions.
Higher scales (S2, S3, S4, and S5) are associated with events of
much higher fluences (cumulative pfus detected during an
event) (102, 10%, 10*, and 10°, respectively), incrementally
enhancing both the radiative environment and the damage they
cause.

To build our catalog of SPE statistics, GOES data were
transformed into a logarithmic form, and cleaned for instru-
mental effects prior to recording any event parameters—most
of which present themselves as spikes in the data, an example
of which is shown in the left panel of Figure 4. Specifically, we
identify spikes where there is a heightened flux value, but the
flux right before and after (5 minutes prior and after a spike,
given that GOES proton flux data are provided with a 5 minute
cadence) remains an order of magnitude lower. Given the
drastic difference in fluxes where we see spikes without a
gradual rise and fall, we are confident that they are instrumental
effects, and do not reflect true SEP activity. We correct these by
replacing the heightened flux value with the averaged data prior
to and immediately after the spike is observed, as can be seen in
the right panel of Figure 4. This allows for a more accurate
reflection of the Sun’s quiet period, while preventing the
recording of an SPE when the artificially amplified flux value
crosses the >10 pfu threshold. Further, given that the threshold
can be repeatedly crossed during an event (as can be seen in the
left panel of Figure 5), these oscillations are handled by
checking if the time between an ongoing event’s end and the
start of the next is within 30 minutes of each other. Given that
oscillations less than half an hour apart are presented in rapid
succession and recorded as multiple events over a short period
of time, they are instead stitched together as one event in the
catalog. These rapid oscillations may represent true proton
counts, or, and most likely, are instrumental side effects when
detecting fluxes. Opposing these situations, a more prevalent

15 .
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Figure 5. Example of (left) oscillations around the 10 pfu threshold during an event, and (right) an unambiguous representation of an SPE, as they are recorded in our

catalog.

Averaged SPE Statistics SC 22 SC 23 SC 24
Duration (~hh:mm) 11:19 = 25:22 10:31 £ 23:50 10:47 £ 22:16
Peak Flux (~pfu) 432 £3147 544 £3245 156 &+ 729
Fluence (~10* pfu) 3+ 19 7 + 42 3413
Days with Observed Events 182 243 113
Days with SPE > 24 hours 42 i 32
Previous day’s flux >10 pfu o 10 4

Figure 6. SPE statistics considering proton flux data. We summarize (and include the standard deviation when applicable), the average duration, peak flux, and fluence
per event for each SC, among other characteristics. We can see here how much weaker SC 24 activity was compared to SCs 22 and 23.

example of an SPE usually has a more gradual rise and/or fall.
The end product of this part of data processing is shown in the
right panel of Figure 5, reflecting clear start and end dates of an
SPE, barring any undesirable flux representations. At this point,
our data set is cleaned and we continue with the remainder of
the project.

In summary, this catalog includes:

1. date and times for the start of an event, an event’s peak
flux detection, end of an event

2. peak event fluxes detected in energy channels: 1, 5, 10,
30, 50, 60, and 100 MeV

3. fluence (calculated as the integral of detected fluxes) of
SPEs in energy channels: 1, 5, 10, 30, 50, 60, and
100 MeV.

Examples of data products derived from this catalog are shown
in Figure 6.

2.3. Catalog II: Daily Flux Feature Statistics

The second catalog produced during this project supplies the
input data for our ML-driven forecasting models. This consists
of numerous features of daily flux data acquired by GOES in
both the proton and SXR channels. Before model training
begins, it is common practice to convert input data feature
vectors into a standardized range. An SVM’s optimal hyper-
plane—the boundary between distinct classes—is influenced

by the scale of input features, requiring data to be scaled prior
to model training. The same is needed for XGBoost models,
which are sensitive to the scale of features when trained using
gradient-based methods.'® Correspondingly, we apply loga-
rithmic scaling and minima-maxima normalization to our
training sets and scale this transformation to the corresponding
test sets. This is primarily done to allow models to differentiate
between various patterns and structures in the data without
being influenced by each parameter’s intrinsic physical units
and dynamic ranges (Ahmadzadeh et al. 2021). Namely, the
flux features generated in this catalog are (for each proton, SXR
short wavelength, and SXR long-wavelength channels; features
correspond to the current day’s flux measurements unless
otherwise stated):

1. Added for time-series records only, and not used in the
forecast itself: instrumental data, dates of observation,
GOES satellite used (with a primary detector when
appropriate)

2. Daily aggregated flux data and statistics: mean, median,
minimum, maximum, standard deviation, skewness,
kurtosis, and the last measured flux of the previous day.

16 https: //forecastegy.com/posts/does-xgboost-need-feature-scaling-or-
normalization#: ~ :text=If%20you%?20are %20using %20XGBoost%20with%
20linear%?20models%20as%20base,can%20lead %20to%20better %
20performance


https://forecastegy.com/posts/does-xgboost-need-feature-scaling-or-normalization#:~:text=If%20you%20are%20using%20XGBoost%20with%20linear%20models%20as%20base,can%20lead%20to%20better%20performance
https://forecastegy.com/posts/does-xgboost-need-feature-scaling-or-normalization#:~:text=If%20you%20are%20using%20XGBoost%20with%20linear%20models%20as%20base,can%20lead%20to%20better%20performance
https://forecastegy.com/posts/does-xgboost-need-feature-scaling-or-normalization#:~:text=If%20you%20are%20using%20XGBoost%20with%20linear%20models%20as%20base,can%20lead%20to%20better%20performance
https://forecastegy.com/posts/does-xgboost-need-feature-scaling-or-normalization#:~:text=If%20you%20are%20using%20XGBoost%20with%20linear%20models%20as%20base,can%20lead%20to%20better%20performance
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In our previous work (Sadykov et al. 2021), we applied a 2 hr
latency period between the time GOES data are released
(22:00 UTC daily) and the next day (00:00 UTC). We handled
this by applying a 2 hr offset for each day’s records, i.e., we
+2hr to every time stamp, so that each day effectively ends
when new GOES data are released. The new data supplies flux
records for only the next day. In doing this, any predictions we
make for the following day are technically done at 22:00 UTC.
We did this to allow 1:1 comparisons between our forecasts
and those made by the SWPC NOAA (they also make daily
SPE predictions at 22:00 UTC, although using different
features as input for probability-based predictions, Bain et al.
2021). We apply this offset and consider previous SWPC
prediction probabilities as a baseline to assess our ML-driven
model performance in Section 4.1.

2.4. Flux Feature Importance and Selection

As discussed in Bobra & Couvidat (2015) and Sadykov et al.
(2021), including all available features in an ML model does
not necessarily lead to an increase in predictive scores, and may
even result in a notable decrease. In the presence of multiple
irrelevant or redundant features, learning methods tend to
overfit contributions and become less interpretable or produce
entirely inadequate results. A common way to resolve this
problem is by implementing feature selection, which works to
reduce supplied data dimensionality by only selecting a subset
of the input features (which in our case, is the catalog discussed
in Section 2.3). We determine each flux feature’s importance
by using Gini importance, Fisher scoring, and XGBoost (uses
an inherent feature importance scheme) to rank each feature’s
contributions toward reliable forecasts, retaining those scoring
the highest. This also works to reduce associated computational
costs and removes irrelevant features for problems with multi-
dimensional data (Gu et al. 2012).

In order, Gini importance is computed using a random forest
structure providing relative rankings of input features indicat-
ing how often specific features are selected for node splitting
(deciding how to divide data into separate classes). In doing so,
Gini importance quantifies different input features’ contribu-
tions toward the improvement or decline of model performance
(Menze et al. 2009). Aiming to reduce feature dimensionality
like Gini importance, Fisher scoring is one of the most popular
supervised univariate feature selection methods and is
explained in detail by Gu et al. (2012). Concisely, Fisher
scoring measures the intra-class variance between features in
both positive and negative classes, identifying those that stand
out from neighboring features (i.e., those defining the
separation between the two classes). Lastly, the XGBoost
algorithm has a built-in feature importance function. Given that
XGBoost is decision tree-based and forms an ensemble of
numerous submodels (further explained in Section 3.1.2), it
determines feature importance in a slightly more complicated
way compared to Gini and Fisher ranking. Recording how
often a feature is used to split a node in the decision trees of the
ensemble, the algorithm quantifies each feature’s average
contribution to the decision-making process. Summing up these
quantities across all trees in the ensemble, XGBoost returns the
order of each feature’s contribution toward accurate
predictions.

Comparing feature ranks across all methods, we retain only
nine out of our original 24 features to develop our prediction
models. The ranking of the parameters was completed
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separately for every SC, yet resulting in the same list of five
top-ranking features (though not in the same order). Figure 7
highlights the substantial decline in scores between the leading
feature—the previous day’s last measured proton flux,
compared to the last feature we retain for testing—long SXR
flux standard deviation. The remaining features’ importance
scores become increasingly lower, and we do not consider them
from this point on. While only the top five features were the
same across the three methods, we selected four additional
features by comparing scores appearing in at least two ranking
methods (after the initial five matches), until scores dropped
below 0.02. We deemed features below this insignificant
toward the predictions of SPEs. Figure 7 presents these features
and their rankings. Listed in descending order of their averaged
ranking scores, the retained features are the previous day’s last
measured proton flux (measured at 22:00 UTC), proton flux
maximum, proton flux standard deviation, short SXR flux
mean, proton flux skewness, previous day’s last measured long
SXR flux, proton flux median, previous day’s last measured
short SXR flux, and long SXR flux standard deviation. It is
clear from these retained features that the proton flux value
from the previous day dominates in importance compared to
the rest of the features in all feature selection measures. This is
intuitive given that a rise of SEP intensity on the previous day
can easily be used as a predictor that SEPs may cross (or
continue crossing, if an SPE is in progress) the 10 pfu threshold
the next day. Still, this may not always be the case as shown in
the left panel of Figure 5 where an event may begin abruptly
without any indication of rising proton intensity in the days
leading up to it.

With five of the nine finalized features relating to proton flux
(three of which are ranked as the first, second, and third most
important), and two relating to each of the short and long SXR
irradiance channels, we can confidently say that proton flux
features are most important toward SPE prediction when using
our data set. This upholds our conclusions from Sadykov et al.
(2021) that using SXR features in addition to proton fluxes
improves performance scores, but that higher scores depend
largely on proton flux data.

2.5. Devising Training and Testing Data Sets by SC

For the application of ML models, data sets are divided into
training and testing sets. We do so by splitting our data into the
different SCs of interest, i.e., SC 22: 1986-1996, SC 23:
1996-2008, and SC 24: 2008-2019. During the training phase,
models examine provided data from specific time intervals to
learn patterns from and generate predictions for a different time
interval (Bishop 2006). Part of the supplied data set is kept
blind to the training data, forming the test set. After a model is
initialized and parameterized, it is applied to the test set to
generate predictions. These predictions are compared to the
true target values to estimate how well a model may generalize
to unforeseen data. For example, if considering training done
using SC 23 data, model performance scores are generated
based on how accurately the model is able to reproduce the
observed events of the specified prediction (testing) window of
either SC 22 or 24. All combinations of training and testing sets
are used, allowing every SC to serve as the training and testing
set at least once (e.g., training done on SC 22 and testing done
using SC 23 data, training done on SC 22 and testing done
using SC 24 data, and so on).
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Figure 7. A representation of the top nine ranked features according to Gini importance, Fisher scoring, and XGBoost’s built-in feature selection methods. Feature-
ranking order being similar for all SCs of interest, scores are averaged across all cycles and are shown here. Given that the different methods scale on different ranges,
we apply a minima-maxima normalization here only for visibility, and present these normalized ranking scores in the legend. Notably, the lowest ranked of these

features (long SXR flux standard deviation) is barely visible in each chart.

Additionally, we stacked training data sets to explore if
longer training time intervals allow more precise predictions
(i.e., training SCs 23 and 24 together to test with SC 22 data,
SCs 22 and 24 to test with SC 23 data, and finally, SCs 22 and
23 to test with SC 24 data). Once these different data sets are
defined, we use a minima-maxima normalization with respect
to only the training set and scale this transformation to the test
set. It is important to directly normalize only the training set,
otherwise, the model will be exposed to some of the test set’s
information and possibly learn from it, giving the model the
advantage of having prior knowledge of its target output that it
should not—and realistically will not have when applied
elsewhere. Once the normalization is appropriately done, we
employ SVM and XGBoost algorithms, discussed in
Sections 3.1.1 and 3.1.2. Because our primary goal is not to
parameterize a specific algorithm with minute detail, we use
grid searches to modify a few model parameters relating only to
optimizing classification. We then test the effects of over-
sampling our positive classes using standard oversampling
(positive-class duplication), synthetic minority oversampling
technique (SMOTE), and adaptive synthetic (ADASYN)
oversampling, discussed in Section 3.2. Model performance
in both cases of single-cycle and double-cycle training using
SVMs and XGBoost are discussed in Section 4.1.

It is important to note that the data are prepared equally
between models to generalize results as much as possible.
Concisely, data preparation and model evaluation follow the
order: splitting our data set into three segments (each SC of
interest) to use as training and testing sets, down-selecting
input data to nine flux features contributing most to reliable
predictions, normalizing only the training set and scaling this
transformation to the testing set, using model-inherent class-
balancing parameters or different oversampling methods,
performing grid searches to establish optimal parameters to
apply to our models, and finally, evaluating model performance
considering evaluation metrics discussed in Section 3.3: TSS,
Heidke Skill Scores,, and recall.

3. ML Applications to SPE Forecasting
3.1. Learning Methods Considered

Selecting the appropriate model is vital when we consider
resolving real-world challenges. Toward our effort of predict-
ing SPEs, we compare the performance of supervised
classification using an SVM, and a decision tree—based gradient
boosting ensemble algorithm, XGBoost.



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 270:15 (18pp), 2024 January

3.1.1. SVMs

Introduced in 1963, SVMs are supervised classifiers with
roots in the theory of statistical learning with the ability to learn
from nonlinear decision surfaces with the application of
different kernels. Data are assigned to their respective classes
depending on where they lie with respect to the hyperplane—
features relevant and irrelevant toward the forecasting of SPEs
(Bishop 2006). Black-box machines like SVMs aim to generate
optimal hyperplanes with dimensions mirroring that of the
number of features set as input data, determining feature space
(the n-dimensions where input variables live) dimensionality
(Bishop 2006). The arguments we apply to the SVM, supplied
by the scikit-learn'’ library include a radial basis
function (RBF) kernel, regularization parameter C, a kernel
coefficient 7 = scale, and balanced class weights.

For SVMs, a kernel refers to a method allowing the
application of classifiers to nonlinear problems by mapping
nonlinear data to higher-dimensional space, where data become
more easily separable (either linearly, radially, or polynomially,
depending on user input). Different kernels available to use
with SVMs allow better data transformations depending on the
input data set. A hyperplane is then built calculating the dot
product between the transformed features. Linear kernels
may be considered first given their low computation needs,
allowing quick training and testing capabilities. Oftentimes,
other kernels perform better, but it is simply important to note
that this is not always the case. Over all kernels available, the
RBF kernel proved to be the better choice when evaluated
under parameter optimization techniques discussed in
Section 3.2, and is the only kernel employed and discussed
from this point on.

We apply a grid search to the regularization parameter C,
which allows an SVM to build a hyperplane with both the
largest minimum margin, and one separating as many instances
as possible. The C parameter decides how to prioritize
enhancing the latter. Given that the regularization parameter
affects different testing data sets differently, there is no absolute
of whether larger or smaller values lead to more appealing
results. The v = scale argument is the RBF kernel coefficient
declaring how far the influence of a single training data point
reaches. Automation by Buitinck et al. (2013) of scaling this
parameter to the data alleviates the need to process it manually.
Small ~ values consider data points farther (the minority class)
from where most clump together (the majority class) when
defining the separation line. The automated scaling searches
between higher and smaller values to achieve the best possible
fit for the provided data set, working as almost a proxy to
bridge the gap of our imbalance.

Lastly, we alter the assigned class weights, where the default
value is None (all classes are assigned equal importance, i.e.,
weight = 1). As described in Bishop (2006), a loss function is a
method of evaluating how well an algorithm models its
supplied featured data set, i.e., an optimal algorithm minimizes
its loss function. The balanced class weight parameter
directly modifies an algorithm’s loss function by varying
penalties assigned to classes with different weights. Using this
biases the model to favor predictions of the minority class by
assigning larger weights to them.'® To the same effect, we
apply different oversampling techniques to an SVM, inflating

7 hitps: //scikit-learn.org /stable/modules / generated /sklearn.svm.SVC.html
18 https: //www.tensorflow.org/
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positive-instance relevance in the training data set, discussed in
Section 3.2.

3.1.2. Extreme Gradient Boosting: XGBoost

More recently, also exploring SEP prediction and consider-
ing TSS and HSS, as metrics to evaluate model performance,
O’Keefe et al. (2023) show how ensembles lead to better and
more robust (in terms of experiment-to-experiment variations)
predictions. With increasing advances focusing on deep-
learning techniques, Shwartz-Ziv & Armon (2021) found the
open-source gradient boosting algorithm XGBoost developed
in 2016 by Chen & Guestrin (2016) to be more effective for
predictions compared to multiple more complicated deep-
learning models. Therefore, in addition to an SVM, we test the
performance of XGBoost when building SPE forecasts using
our data set. The algorithm represents a boosting ensemble
classifier and uses a gradient descent framework, generating
new models from the output of preliminary models. As an
iterative decision tree-based learning algorithm, one ends up
with an ensemble of submodels working to optimize each new
learner. This process terminates once the optimal model (as the
loss function is minimized as far as possible) is reached.
Building this ensemble allows accounting for multiple model-
ing results, leading to more stable and generalized results. We
implement this method, again using the scikit-learn library,
with the wrapper class XGBClassifier. Reiterating that our
primary goal is not to parameterize a specific algorithm with
minute detail, we specify only two default parameters:
booster: gbtree and scale positive weights.
Respectively, the gbtree specification indicates using tree-
based models to incrementally build an ensemble. Other
options include building an ensemble while dropping a
submodel per iteration, or using linear functions instead. Lastly
and similar to the SVM’s balanced class weight, XGBoost
has an intrinsic parameter to scale positive weights,
balancing each data class instead of leaving them widely
imbalanced. With the original imbalances ~% <1
for each SC of interest, scale positive weights work to
alter weights applied to each data class and point to bring this
closer to 1.

3.2. Considering Oversampling Techniques and Grid Search
Optimization

In lieu of our original imbalance (Figure 1), oversampling
calls for synthetically repeated observations of the minority
class (days with SPEs), until its frequency in the data set is
comparable to that of the majority class (days without SPEs).
Doing this brings equal representation of both classes, as well
as an artificially extended data set. Following the classical
definition of oversampling, we use standard techniques to
inflate the positive cases of days with SPEs observed on the
multiplicity of reaching an imbalance ratio % ~
While this seems analogous to the balanced and scale
positive weight parameters inherent to SVM and XGBoost
classifiers, oversampling alters the training data directly instead
of adjusting class weights, providing different results due to
their intrinsic methodologies. Doing this allows us to evaluate
how SVM and XGBoost models perform when considering a
data set with two classes of approximately the same weights
instead of one drastically imbalanced (original imbalance ratios
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Figure 8. Differences between the number of data points after oversampling using standard (positive-class duplication), SMOTE, and ADASYN are shown here.
Albeit on the order of tens, it is worth noting that the different methods intrinsically handle data differently.

follow: 7-ofpositveinstances 1 53 () 058 and 0.032 for SCs

# of negative instances

22, 23, and 24 respectively).

The recent work of Stumpo et al. (2021) utilizes SMOTE to
account for the maximum-likelihood estimation (MLE) for SPE
prediction. They include SXR, radio fluence, and flare helio-
longitudes as input features to take into account particle
propagation from the Sun. Paired with a synthetically over-
sampled data set, they found improved probabilities of
detection compared to basic MLE and weighted MLE, with
predictive scores increasing from 0.76 and 0.75 (respectively)
to 0.80. Because of this, we explore how this technique may
enhance our models. SMOTE works via linear interpolation,
replicating minority instances between pre-existing positive
data points to increase their presence in the data set. SMOTE
uses an intrinsic k-nearest neighbor method (where we define
k = 5) to select points for interpolation. Another oversampling
technique we use, ADASYN, works similarly to SMOTE,
except it focuses on generating data points in regions where the
class imbalance is most prominent, giving more importance to
positive instances harder to reach in feature space and learn
from, reducing the risk of overfitting. ADASYN uses the k-
nearest neighbor method on each data point so that each
minority class’s data points are associated with different
neighborhoods. This allows for a more complicated data set
to be generated, making the learning phase more complex (and
realistic). Both SMOTE and ADASYN oversampling ensue
until the ratio # of positive instances

~

. of negative instances - .
As a final imbalance handling technique, we test the effects

of standard oversampling on predictive models. Here, we
simply duplicate the positive cases in our target training set as
many times as needed until these cases appear just as frequently
as the negative cases in our input catalog. In doing so, the
training set is inflated to have as many positive cases as
negative cases, but we apply none of the intricacies associated
with SMOTE and ADASYN. The (small) differences in the
number of positive cases after oversampling using these
techniques are shown in Figure 8. Applying each technique
to the input for an SVM and XGBoost algorithm, the
synthesized data replaces the original training set, and the
models continue working toward making predictions.

Our final modification to each model is using a parameter
optimization technique to alter the most basic classification
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parameters of our models. Grid search is a process capable of
automatically parsing through a specified range of numbers or
strings appropriate for model arguments to find optimal values
for evaluation (and we use the module provided by Buitinck
et al. 2013). This pinpoints parameter values leading to the
most accurate predictions. The grid search was performed when
initializing the prediction models during the training phase,
optimizing parameters to reach the maximum possible TSS
scores (see Section 3.3).

We contain our parameter grid search on only two
parameters for an SVM, kernels between linear, poly-
nomial, and radial basis functions, finding RBF to
be the optimal choice, and the regularization parameter C.
Interestingly, changes in the C parameter did not lead to
significant changes considering the CV TSS of each model
when parsing through a wide range of 2'-2'°, which Hsu et al.
(2016) determined to be satisfactory.

We only apply one parameter of XGBoost to a grid search;
the learning rate. The default value for this, defined by
DMLC" is 0.3 (in a range of 0-1) to help prevent overfitting.
When building an ensemble, the learning rate inherently
decreases as the weights of each feature change at every
boosting step. This allows the process to not learn too much
from previous steps, which would otherwise incrementally
build upon the initial feature weights to falsely make the first-
built ensemble the most optimal. We see more variation in
model accuracy here compared to how changes in C altered
SVM performance.

Altering minimal hyperparameters, we are not fine-tuning
the SVM or XGBoost algorithms to fit our specific training and
testing configurations. Our results using grid searches when
compared to default parameter model evaluations are just
slightly better (on the order of ~10_2), and therefore, are the
only results considered from this point on (e.g., when
discussing the default SVM model, we regard the SVM model
with its default parameters with a grid search applied on the
model-appropriate arguments mentioned above). We use grid
searches on each type of model evaluation: each model (SVM
and XGBoost) with its default parameters, each model with
imbalance handling weights applied (balanced or scale

' hitps:/ /xgboost.readthedocs.io /en/stable/parameter.html
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Effects of different adjustments
on an SVM towards Solar Proton Event prediction
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Figure 9. Resulting TSS, HSS,, and recall scores of various adjustments made to single-cycle training data on an SVM.

positive), and the model applying standard/SMOTE/
ADASYN oversampling (individually) on the training set.
We assess each model’s performance when making predictions
based on short (trained on a single SC) and long (trained on
two SCs) timescales.

3.3. Model Evaluation Metrics

Predictive scores and output may vary each time an algorithm
is run, calling for methods to provide an average performance
assessment over a large number of model iterations. k-fold CV is
one of the most popular methods to do so. The term k-fold refers
to how the entire training data set is partitioned into multiple
subsets of equal sizes, or folds. k=10 (10 folds) is commonly
used (e.g., Leirvik & Yuan 2021; Bizzarri et al. 2022;
Wang et al. 2023), and Olsen®° discusses how on average, a
model trained on 10 folds can be considered closest to that
most effectively reducing prediction errors. After specifying the
number of folds (which we leave as the default k = 10) to
partition the data into, the model is trained on (k — 1) folds,
leaving the last for testing (each fold is used as a test set only
once). The final performance score assigned to the model is
aggregated from performance metrics across all training—
testing splits, to provide a more comprehensive evaluation of
predictive power. CV optimizes model performance with
respect to a specified scoring scheme, for which we use TSS.
As opposed to the default k-fold technique, we implement
scikit-learn’s modification of this, the stratified k-fold method.
The difference here is that each fold preserves the number of
positive instances in the data set, allowing positive instances to
appear as many times as possible during the training phase to
enhance model performance. Examples of these cross-validated
results using single SC training are shown in Figures 9 and 10.

20 hips: //cran.r-project.org /web /packages /cvms /vignettes /picking_the_
number_of_folds_for_cross-validation.html
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We can see how consistent XGBoost scores remain throughout
different training and testing combinations and oversampling
methods, while SVMs show more variation along with reduced
performance scores.

Evaluation metrics TSS and HSS, are widely used in space
weather forecasting (O’Keefe et al. 2023). Following SWPC’s
formulation,21 these are defined as

(@ (P
"~ (TP) + (FN)  (FP) + (TN)’

ey

HSS,
B 2. (TP x TN — FN x FP)
(TP + FN) x (FN + TN) + (TP + FP) x (TN + FP)
(@)

where TP = true positive, FN = false negative, FP = false
positive, and TN = true negative forecasts. Mason & Hoek-
sema (2010) discuss how HSS, measures the performance of
the forecasting model concerning random chance forecasts.
TSS ranges from —1 to +1, where +1 indicates predictions
made in perfect agreement with the testing set. Any
misclassification then reduces this score accordingly. Values
<0 indicate model performance no better than a purely random
forecast (Ahmadzadeh et al. 2021). HSS, ranges from —1 to
+1 as well, where an algorithm of complete accuracy obtains a
score of +1, an algorithm forecasting no events obtains a score
of 0, and an algorithm no better than random guesses obtains
a negative score. An advantage of using TSS to validate our
algorithm is its neutrality toward the class-imbalance ratio—the
score itself does not depend on the inequality in trials.
Bloomfield et al. (2012) and Manzato (2005) echo this in their

2! https:/ /www.swpc.noaa.gov /sites /default/files /images /u30/Forecast%
20Verification%20Glossary.pdf
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Effects of different adjustments
on XGBoost towards Solar Proton Event prediction
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Figure 10. Resulting TSS, HSS,, and recall scores of various adjustments made to single-cycle training data on an XGBoost model.

respective works, agreeing that TSS is an adequate measure of
the overall classifier quality and should be the standard to use
in comparisons of the performance of various classifiers for
flare, weather, and rare event forecasting (Ahmadzadeh et al.
2021). Therefore in this work, we optimize model performance
using CV with respect to TSS.

After the models undergo the process of tenfold CV,
different performance measures are generated. A caveat here
is that given the imbalance, CV scores falsely show model
accuracy to be ~97% even when failing to predict numerous
SPEs. Accuracy is therefore not a reliable measure of predictive
power, and we use recall to describe model capabilities instead.
Recall is the calculation of a model’s ability to predict/observe
all positive instances supplied by the test set. Working directly
on the ratio of predicted SPEs to the total number of observed
SPEs, it is an unambiguous metric to evaluate how well the
model has been trained to reproduce observations. Recall
scores lie in a 0—1 range, where O reflects the model’s inability
to identify any positive instances, and 1 means that the model
correctly identified all positive instances of the test set.

4. SPE Prediction Results and Discussion

Understanding the relations between physical parameters of
solar radiation and energetic particle fluxes across different SCs
is not an extensively studied problem for the prediction of
SPEs. Following our conclusions in Sadykov et al. (2021) and
using exclusively operational proton and SXR GOES flux data,
our statistical catalog (model input data set; Section 2.3)
records a total of 24 flux features. We reduce this to the top
nine ranked features based on results of Gini importance,
Fisher scoring, and XGBoost feature selection. By training
SVM and XGBoost models using only these features along
with the aforementioned grid search applied parameters and
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oversampling methods, we obtain the performance metrics
(TSS, HSS,, and recall) shown in Figure 11.

4.1. Resulting Forecast Accuracy

We find that the SVM model performance varies for single
SC training and testing runs across the three SCs, as well as
across the implemented oversampling strategies, reflected by
the large spread of scores: TSS ranging between 0.12 and 0.68,
HSS, between 0.19 and 0.50, and recall between 0.12 and 0.88.
The lowest of these scores are associated with SVMs used with
default parameters and with no class-imbalance treatment
strategy applied. This reveals that without balancing the
training data set, the classifier demonstrates inadequate results.
Interestingly and in contrast, the XGBoost algorithm varies
only about half as much, with TSS ranging between 0.56 and
0.75, and recall between 0.56 and 0.90, but a somewhat larger
difference with HSS, between 0.22 and 0.75. For XGBoost,
class-imbalance treatments typically result in higher TSS and
recall scores, but simultaneously reduce HSS,. Compared to
SVMs used with default parameters, XGBoost used with
default parameters performs significantly better, with perfor-
mance metrics being ~3x higher than those obtained with a
default SVM. The shaded cells in Figure 11 indicate training—
testing cases, where an SVM performed comparably to, or
better than XGBoost in terms of the different metrics. As one
can see, there are only a few shaded cells (only 23 out of 135),
demonstrating the overall enhanced performance of XGBoost.

Further analyzing these scores, we summarize the highest
prediction scores and identify median TSS scores in Figure 12
for every class-imbalance treatment technique (weight adjust-
ments or oversampling). We again observe that XGBoost
consistently sees improved median TSS scores compared to
SVMs by ~0.04-0.11 (columns 5 and 8). The peak TSS scores
(columns 4 and 7) demonstrate approximately the same range
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e / 5 SVM XGBoost
Case | Training Set = Testing Set = Input data adjustment TSS | HSS: | Recall TsS | HSS: | Recall

#1 SC22 SC23 default parameters 0.20 031 0.20 0.64 0.74 0.64
class-weight balancing* 0.58 0.39 0.65 0.70 0.68 0.72
Standard oversampling 0.55 0.38 0.63 0.72 0.68 0.74
SMOTE oversampling 0.58 0.38 0.66 0.75 0.60 0.80
ADASYN oversampling 0.59 0.36 0.69 0.75 0.53 0.81
#2 SC 22 \ SC 24 default parameters 0.13 0.22 0.13 0.57 0.67 0.58
class-weight balancing 0.60 0.34 0.67 0.64 0.62 0.65
Standard oversampling 0.61 0.34 0.68 0.65 0.62 0.66
SMOTE oversampling 0.61 0.33 0.68 0.65 0.55 0.67
ADASYN oversampling 0.59 0.29 0.68 0.65 0.54 0.68
#3 SC23 \ SCc22 default parameters 0.25 0.36 0.26 0.62 0.69 0.63
class-weight balancing 0.64 0.26 0.82 0.65 0.33 0.77
Standard oversampling 0.63 0.28 0.79 0.66 0.35 0.77
SMOTE oversampling 0.63 0.26 0.81 0.72 0.53 0.77
ADASYN oversampling 0.64 0.22 0.86 0.70 0.40 0.80
#4 SC23 ] SC24 default parameters 0.14 0.23 0.14 0.56 0.68 0.56
class-weight balancing 0.64 0.37 0.70 0.65 0.56 0.67
Standard oversampling 0.58 0.38 0.64 0.65 0.60 0.67
SMOTE oversampling 0.62 0.36 0.68 0.66 0.59 0.68
ADASYN oversampling 0.64 0.33 0.73 0.67 0.53 0.70
#5 SC24 \ SC 22 default parameters 0.35 0.37 0.38 0.64 0.69 0.65
class-weight balancing 0.67 0.25 0.86 0.69 0.37 0.80
Standard oversampling 0.68 0.30 0.82 0.69 0.40 0.78
SMOTE oversampling 0.68 0.28 0.85 0.68 0.26 0.86
ADASYN oversampling 0.66 0.23 0.88 0.67 0.22 0.90
#6 SC24 \ SC23 default parameters 0.36 0.50 0.36 0.67 0.74 0.67
class-weight balancing 0.64 0.41 0.72 0.72 0.53 0.78
Standard oversampling 0.59 0.42 0.65 0.70 0.50 0.76
SMOTE oversampling 0.62 0.42 0.70 0.71 0.32 0.86

ADASYN oversampling 0.67 0.37 0.78 0.70 0.27 0.89
#7 SC23&24 | SC 22 default parameters 0.25 0.36 0.26 0.61 0.68 0.62
class-weight balancing 0.63 0.24 0.83 0.67 0.35 0.78
Standard oversampling 0.64 0.25 0.82 0.66 0.34 0.77
SMOTE oversampling 0.64 0.25 0.83 0.72 0.42 0.81
ADASYN oversampling 0.62 0.19 0.87 0.70 0.34 0.82
#8 SC22&24 | SC 23 default parameters 0.24 0.38 0.24 0.65 0.75 0.65
class-weight balancing 0.53 0.42 0.58 0.71 0.60 0.75
Standard oversampling 0.53 0.42 0.59 0.71 0.63 0.74
SMOTE oversampling 0.53 0.41 0.59 0.75 0.52 0.81
ADASYN oversampling 0.57 0.42 0.64 0.74 0.39 0.86
#9 SC22&23 | SC 24 default parameters 0.12 0.21 0.12 0.58 0.69 0.58
class-weight balancing 0.59 0.36 0.65 0.65 0.61 0.66
Standard oversampling 0.61 0.37 0.67 0.64 0.58 0.65
SMOTE oversampling 0.61 0.36 0.67 0.64 0.56 0.66
ADASYN oversampling 0.62 0.35 0.69 0.68 0.54 0.71

Figure 11. SVM and XGBoost performance scores for each evaluated training—testing configuration. The shaded cells are the only instances where an SVM produces
better (or comparable) results than XGBoost. Column 1 labels the different training—testing configurations referred to in Figures 12 and 13. Also note that each model
adjustment here includes the grid search optimization discussed in Section 3.2. *Inherent class weight balancing adjustments are the balanced and scale

positive weight parameters inherent to SVM and XGBoost respectively.

of improved scores. This allows us to conclude that XGBoost is
performing statistically better for the considered problem
compared to an SVM. Figure 13 presents the highest TSS,
HSS,, and recall scores found for single-SC and double-SC
training timescales, and the corresponding oversampling
techniques. While the oversampling strategy differs, the
strongest HSS, and recall scores are again higher for the
XGBoost model, except for the experiment presented in the last
row. Interestingly, this figure shows that ADASYN more often
leads to the maxima scores in comparison with other techniques
(for both SVM and XGBoost).

Figures 12 and 13 help understand which class-imbalance
treatment (i.e., various oversampling methods or class weight
adjustments) leads to the best model performance. Columns 5
and 8 in Figure 12 show that all these techniques generate
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scores very close to each other in terms of their median TSS
scores. The only significant difference occurs for XGBoost-
based models trained on double-SC time intervals, where
standard oversampling and class weight adjustment perform
notably worse (TSS=0.66+0.03 and TSS=0.67+0.03
respectively) when compared to SMOTE (TSS =0.72 4+ 0.02)
and ADASYN (TSS =0.70 + 0.02). Overall, we can general-
ize the above findings by stating that the employment of any
balancing technique considered in this work improves predic-
tions, with no clear preference for a single technique.

The data flows utilized for SPE prediction in this work
(proton and SXR fluxes) are available in real time. Therefore, it
is possible and meaningful to compare the effort in this paper
with historical daily operational predictions of SPEs. Here, we
examine the performance of developed ML models considering
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Training | Class-imbalance |Train-test| (a) Max. | (a) Median | Train-test | (b) Max. | (b) Median
timescale treatment case TSS TSS case TSS TSS

Weight adjustment #5 0.67 0.64 £ 0.02 #6 0.72 0.67 £+ 0.03

Single Standard #5 0.68 0.60 £ 0.02 #1 0.72 0.68 £+ 0.02

SC SMOTE #5 0.68 0.62 £ 0.01 #1 0.75 0.69 £ 0.03

ADASYN #6 0.67 0.64 £ 0.03 #1 0.75 0.68 £+ 0.02

Weight adjustment #7 0.63 0.59 &+ 0.05 #8 0.71 0.67 £+ 0.03

Double Standard H7 0.64 0.61 + 0.03 #8 0.71 0.66 £ 0.03

SC SMOTE H#7 0.64 0.61 £ 0.03 #8 0.75 0.72 £+ 0.02

ADASYN #T7 0.62 0.62 £ 0.00 #8 0.74 0.70 £ 0.02

Figure 12. Oversampling techniques used with both (a) an SVM and (b) XGBoost, showing the maximum TSS obtained from each method across different

timescales. Median absolute deviations are also shown.

previous SC (SCs 22-24) operational SWPC forecasts of SPEs.
The SWPC NOAA forecasts considered in this work are daily
probabilistic forecasts (in contrast with binary predictions made
by ML models), with probabilities ranging between 1 and 99
on the possibility of an SPE occurring the next day. Bain et al.
(2021) described how these forecasts relied on corrections
made manually based on forecaster experience. The forecasts
made by SWPC consider predictions made for three con-
secutive days, but we only use next-day predictions for a direct
comparison between these forecasts with SVM and XGBoost
models. To convert the probabilistic forecast to binary
forecasts, we find the probability thresholds (i.e., the minimum
probability starting from which a positive prediction is issued)
that lead to the highest TSS or HSS, on the training data set,
and apply it to the test data set. In addition, we analyze a
persistence model as a baseline to assess our prediction scores.
This model is straightforward and not ML-based—it does not
train and test on data to make predictions. The persistence
model uses the previous day’s input of whether or not there was
an SPE observed. If there was, the model makes a positive
prediction for the next day; if not, the model predicts no events
the next day. We show these scores in Figure 14, and compare
them with the highest SVM and XGBoost performances (in
terms of TSS) obtained from double-SC trained predictions.
There are several observations to mention based on
Figure 14. First, the resulting metrics from the persistence
model are very stable, ranging between 0.65 and 0.70
considering all three metrics. This model also demonstrates,
on average, the highest HSS, of 0.65-0.68 across the
considered models. Here we want to mention that XGBoost
with default parameters (the scores are presented in Figure 13)
leads to higher HSS, (0.74 and 0.75 for single-SC and double-
SC training intervals respectively) than that found with the
persistence model. This default model also led to acceptable
TSS scores of 0.64 and 0.65 for the same experiments.
Interestingly, the probabilistic SWPC NOAA results show
significant variations from SC to SC. While the scores for SC
22 events were TSS =0.49 and HSS, = 0.20—significantly
lower with respect to persistence forecasts, scores increased to

14

TSS =0.69 and HSS, = 0.59 for the next two cycles, slightly
outperforming the persistence forecast in terms of TSS scores.

It is also clear from Figure 14 that XGBoost typically
performs better when considering TSS and recall metrics, albeit
with a slightly lower TSS = 0.68 compared to SWPC NOAA
forecasts during SC 24 (TSS = 0.69). In comparison, SVM and
SWPC probabilistic forecasts typically show weaker perfor-
mance in any training—testing case—together, these models
account for the highest variance across all metrics, as well as
the lowest measured TSS and HSS,. Lastly, the persistence
model showed the lowest variance in every metric, the highest
resulting HSS,, and the cost of the typically lower recall. It is
worth noting that the higher HSS, are associated with the non-
ML-driven models—this remains true even when the ML
models are optimized with respect to HSS,. As discussed in
Section 3.3, increased HSS, indicates that the evaluated model
performs significantly better than random guessing. We can
account for these higher scores reflecting less randomness in
SWPC forecasts given that it receives external input (from an
experienced forecaster) that would only work to make
predictions more accurate (Bain et al. 2021). Including relevant
features in the model in this way could therefore enhance
predictive abilities. Human input would also be very beneficial
in cases where data needs to be re-assessed to continue making
predictions because a machine alone may not know when/how
to correct retrieved data. With persistence models, we already
have knowledge of the occurrence of an SPE, and the model
only continues its last prediction. With SCs dominated by non-
eruptive periods, the relatively stable environment is reflected
in the data and we see no random changes other than changes
in labels from “0” to “1”” and vice versa. This model’s input can
be very similar to the previous day’s last measured proton flux
feature (Section 2.4). Given the small model input, predictions
align well with the observed outcomes, and we see improved
HSS, compared to the ML models. However, in the ML-based
models we use, we have eight additional flux features
contributing to the accuracy of future forecasts. These other
features allow the machines to learn new data and update
forecasts when needed, building patterns between data leading
up to SPEs rather than simply checking SEP counts from the
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Training | Scoring | Train-test | (a) Max. | (a) Oversampling | Train-test | (b) Max. | (b) Oversampling
timescale | metric case score method case score method
TSS #5 0.68 SMOTE #1 0.75 ADASYN
single-SC HSS: #6 0.50 n/a #1 0.74 n/a
Recall #5 0.88 ADASYN #5 0.90 ADASYN
TSS T 0.64 SMOTE #8 0.75 SMOTE
double-SC | HSS, #8 0.42 ADASYN #8 0.75 n/a
Recall T 0.87 ADASYN #8 0.86 ADASYN

Figure 13. Maximum TSS, HSS, and recall obtained using (a) an SVM and (b) XGBoost across different training timescales. Columns 5 and 8 show the
oversampling technique used on the training data to achieve these maximum scores. Note: n/a applies to default model parameters, with no weight or positive-class

adjustments.

day prior. Overall, it is worth noting that the ML-driven
models, if tuned properly, outperform both the persistence
model and SWPC NOAA operational forecasts across all three
SCs, while being based on operational data flows.

4.2. Assessing SPE-predictive Model Cross Transferability

One of the interesting questions we analyze in this work is
how model performance depends on the SCs on which they are
trained /tested. SPEs remain relatively rare, leading to slightly
different statistical properties and number of days with events
during different SCs (see Figure 6). Interestingly, the
differences in the forecast performances are not so drastic.
Figure 12 illustrates that the median TSS scores for single-SC
and double-SC training are generally comparable, with the
median absolute deviations not exceeding 0.03. Yet, the
individual experiments may demonstrate significant variations.
For example, let us consider SMOTE oversampling for the
XGBoost classifier in Figure 11. Below is a summary of TSS
scores, with the training data intervals indicated in parentheses:

1. Predictions for SC 22: TSS =0.72 (SC 23), TSS =0.68
(SC 24), TSS =0.72 (SCs 23 and 24);

2. Predictions for SC 23: TSS =0.75 (SC 22), TSS =0.71
(SC 24), TSS =0.75 (SCs 22 and 24);

3. Predictions for SC 24: TSS = 0.65 (SC 22), TSS =0.66
(SC 23), TSS =0.64 (SCs 22 and 23).

We show the same for HSS,:

1. Predictions for SC 22: HSS,=0.53 (SC 23),
HSS, =0.26 (SC 24), HSS, =0.42 (SCs 23 and 24);
2. Predictions for SC 23: HSS,=0.60 (SC 22),

HSS, =0.32 (SC 24), HSS, =0.52 (SCs 22 and 24);
3. Predictions for SC 24: HSS,=0.55 (SC 22),
HSS, =0.59 (SC 23), HSS, =0.56 (SCs 22 and 23).

We can make several observations following these scores.
First, the TSS results were typically smaller for SC 24,
irrelevant to the training interval used (SC 22 or 23). For
example, median TSS scores across all the considered training
intervals were TSS = 0.72 for SC 22, TSS =0.75 for SC 23,
and TSS = 0.65 for SC 24. Second, single SC training with SC
24 typically led to less accurate forecasting models (in terms of
TSS and HSS,) when training with SC 22 or 23. Interestingly,
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for double-SC training, the inclusion of SC 24 does not lead to
an increase in TSS scores and even leads to a decrease in HSS,.
Further, according to Figure 6, the median properties of SPEs
during SC 24 were comparable to the properties of SPEs for SC
22, so we cannot claim that the population of SPEs for SC 24
was statistically different from that of SC 22. We also note that
this effect was not observed in SVMs trained on SC 24; the
TSS and HSS, were comparable to the alternatives, yet still
quantitatively smaller than in XGBoost experiments.

One fundamental difference between SCs 22, 23, and 24 is in
the number of SPE events (or days with enhanced proton flux).
Figure 6 points out that there were just 113 days during SC 24
when proton fluxes were enhanced, whereas SCs 22 and 23 saw
182 and 243 of such days, respectively. Overfitting is a known
and expected side effect given the nature of learning models
(Candice et al. 2019), and the problem of how rare SPEs are
comes into play here, as the most common suggestion to reduce
overfitting is by collecting more samples to provide models
more data points to learn and generate complex patterns from.
It is also documented that synthetic oversampling methods
contribute to model overfitting (Li & Hu 2019), while
providing no remedy against this effect. Figure 15 presents
XGBoost’s predictions for all training—testing cases across each
class-imbalance handling technique. While most scores are
acceptable, results also show certain training—testing config-
urations leading to inflated counts of false positives, or false
alarms. This is most prominent when SC 24 serves as the
training set (alone or in combination with another SC), and
when training is done with SC 23 and tested using SC 22.
Although the number of false positives is high, the model still
may have potential in all-clear prediction efforts, given its high
recall values/low false negative values.

Additionally, we would like to discuss what methods can
potentially be implemented (none tested in this paper) to avoid
overfitting. Yildirim®> and Brownlee™ discuss the most
popular methods to reduce overfitting in SVMs: by adjusting
C and v parameters, using resampling to estimate model
accuracy, and refraining interactions with a validation data set.

2 https: / /towardsdatascience.com/hyperparameter-tuning-for-support-
vector-machines-c-and-gamma-parameters-6a5097416167

2 hps: / /machinelearningmastery.com/overfitting-and-underfitting-with-
machine-learning-algorithms/
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Scoring | Train-test | Testing SWPC Persistence SVM | XGBoost
metric case cycle |probability | model score | score score
TSS 0.49 0.66 0.64 0.72
HSS, 7 SC 22 0.20 0.65 0.25 0.42
Recall - 0.67 0.83 0.81
TSS 0.51 0.68 0.57 0.75
HSS» #8 SC 23 0.54 0.68 0.42 0.52
Recall - 0.70 0.64 0.81
TSS 0.69 0.65 0.62 0.68
HSS2 #9 SC 24 0.59 0.65 0.35 0.54
Recall - 0.66 0.69 0.71

Figure 14. Comparing SVM and XGBoost performance to NOAA SWPC'’s previously predicted SPE probabilities and a persistence model. For SVM and XGBoost,
we show scores obtained when training each model on the remaining two SCs when considering each testing cycle. Note that the persistence model does not follow a

training—testing framework.

We apply all of these to our model through grid searches,
specifying v = scale, using a k-fold CV to optimize the model
by training and testing on different data subsets, and always
specifying an SC as our test set. However, as noted above, the
SVM does not particularly seem to experience this problem. On
the other hand, the overfitting we see using XGBoost may
come from many different factors. Confining our grid search
here to only the model’s learning rate, and specifying
gradient boosting via trees, we do not au§ment multiple
parameters associated with the algorithm. Jain®* discusses how
in terms of generalizing new data, tuning complexity and
regularization parameters may show improvements. Important
parameters to consider tuning in XGBoost in addition to the
ones adjusted may be max_depth (controls tree depth),
subsample (specifies the number of observations to consider
in each tree), colsample_bytree (specifies the fraction of
features to consider per tree), and setting L1 and L2
regularization terms using parameters lambda and alpha,
respectively. Tuning these parameters was not evaluated in
this work.

5. Summary and Conclusions

In this work, we have investigated the problem of predicting
SPEs using ML-driven algorithms, and the cross cycle
transferability of the developed models. We conclude that the
XGBoost algorithm produces a finer predictive model com-
pared to SVMs across all evaluations considered: each model

* https: //medium.com/ @rithpansanga/the-main-parameters-in-xgboost-and-
their-effects-on-model-performance-4f9833cac7c
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with its default parameters, each model with imbalance
handling class weights applied, and each model using data
oversampled by standard, SMOTE, and ADASYN separately.
We also find that these class-imbalance treatment techniques
lead to approximately the same results with a slight preference
toward oversampling done with synthetic data generation,
especially in the case of XGBoost. A summary of our key
results is as follows:

1. We built two catalogs during this effort using GOES data
from SCs 22-24. The first catalog records the proton flux
features of all SPEs detected during this time. The second
catalog contains daily statistical flux features of these
high-energy (=10 MeV) protons exceeding >10 pfus,
and that of SXRs, which serve as the input data set for
ML-based SVM and XGBoost algorithms.

2. We use Gini importance, Fisher scoring, and XGBoost’s
inherent feature-ranking method to determine which flux
features are most important when building our prediction
models. We find the top five ranked features to be the
same across all methods for every SC considered, though
not in the same order. The last proton flux count from the
previous day is the most important, as can be expected.
Of all flux features retained, those of protons were more
relevant than those relating to both short- and long-
wavelength SXRs.

3. We compare model-inherent class imbalance handling
techniques (SVM: balanced class weights, XGBoost:
scale positive weights) to oversampled versions of
our data set using standard duplication, SMOTE, and
ADASYN oversampling. For both models, we see


https://medium.com/@rithpansanga/the-main-parameters-in-xgboost-and-their-effects-on-model-performance-4f9833cac7c
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THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 270:15 (18pp), 2024 January

Ali et al.

o Observed TP (per cycle)

(a) default parameters

200

TP

N FN

m TP + FN

243
182

113

400
(b) 'scale postitive' weights

200

wlad

400 i
(c) Oversampling

Number ot Days

2004

500

250

750
500

2901

sC 22

onSC23 onSC24 onSC22 onSC24

maximum scores obtained when ADASYN oversampling
is applied (see Figure 13).

. Figure 11 shows TSS, HSS,, and recall scores from using
XGBoost being statistically higher with respect to SVM
scores for most of the considered experiments. On
average, XGBoost predictions generate TSS ~ +0.10,
HSS, ~ 4+0.20, and recall ~ 4+0.10 compared to those
obtained by an SVM.

. We assess our models considering both long (using two
SCs for training) and short (using a single SC for
training) timescales. We find TSS and HSS, to be
comparable in both cases, for both models, for each
tested SC.

. We compare our results to SWPC daily probabilistic
forecasts and a persistence model, shown in Figure 14,

5
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Figure 15. Predicted TP, TN, FP, and FNs made using an XGBoost-based model for different training and testing configurations (the x-axis shows which SC is the
training set, then which SC it is tested on). The horizontal dotted lines are the target TPs as observed per cycle (SC 22: 182, SC 23: 243, SC 24: 113).

and find that XGBoost (optimized with respect to TSS)
outperforms these baseline models concerning TSS and
recall. While the HSS, is higher for the persistence model
(0.65-0.68), we note that some experiments for XGBoost
without oversampling still demonstrated higher scores
(0.74-0.75; see Figure 13) with comparable TSS scores
(0.64-0.65) for these cases. This indicates that ML-driven
models based on operational data can outperform the
current operational forecasts.

. Training done with SC 24 produces weaker TSS and

HSS,, even when paired with SC 22 or SC 23. Inadequate
performance of single SC training based on SC 24 may
potentially indicate XGBoost’s issues with overfitting,
given poorer statistics of SPEs during this cycle. We also



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 270:15 (18pp), 2024 January

observe that TSS for SC 24 are typically lower with
respect to those obtained for other cycles.

8. Even with the highest predicted TSS scores, XGBoost
produces a significant number of FPs in several training—
testing configurations (Figure 15), including all experi-
ments involving training on SC 24. Still, the model may
have potential in all-clear prediction efforts, given its high
recall value.

From these results, we conclude that XGBoost ensemble-based
models combined with class-imbalance treatment (with no clear
preference for any tested treatment) show the most potential
compared to SVMs when building a model, in both the single-
and double-SC trained cases. We find these ML-based models
to outperform both the persistence and SWPC NOAA forecasts
in all training—testing experiments considering only SCs 22-24.
We also claim that the expected performance of the models
may differ depending on the properties of the individual SC,
specifically indicating that training with events during SC 24
may lead to poor model performance.

While TSS and HSS, have shown slight increases across
SCs when changing the aforementioned input of proton and
SXR flux data, there remains a large disparity when aiming for
a reliable SPE forecasting algorithm. We hypothesize further
improvement in predictions by complementing our work with
(1) further hyperparameter tuning or regularization (e.g., using
L1/4 regularization methods (Kolluri et al. 2020), using
Bayesian regularization (Cawley & Talbot 2007), etc.) with
respect to specific metrics, (2) alternative approaches with ML
algorithms such as using neural networks (van der Sande et al.
2023), logistical regression, random forests (Sinha et al. 2022),
etc. and (3) using proton and SXR fluxes’ time series directly
instead of utilizing their statistical moments. We also
hypothesize significant contributions to better predictive scores
by considering additional input data such as properties and
topologies of source ARs (Marroquin et al. 2023), parameters
of coronal mass ejections (Torres et al. 2022), or various
dynamic features of the solar corona (Gibson 2015).
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