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The power of DNN has been successfully demonstrated on a wide variety of high-dimensional problems
that cannot be solved by conventional control design methods. These successes also uncover some
fundamental and pressing challenges in understanding the representability of deep neural networks
for complex and high dimensional input-output relations. Towards the goal of understanding these
fundamental questions, we applied an algebraic framework developed in our previous work to analyze
ReLU neural network approximation of compositional functions. We prove that for Lipschitz continuous
functions, ReLU neural networks have an approximation error upper bound that is a polynomial
of the network’s complexity and the compositional features. If the compositional features do not
increase exponentially with dimension, which is the case in many applications, the complexity of
DNN has a polynomial growth. In addition to function approximations, we also establish ReLU
network approximation results for the trajectories of control systems, and for a Lyapunov function

that characterizes the domain of attraction.
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1. Introduction

The curse of dimensionality (COD), a term coined by Richard
Bellman in his book on dynamic programming [1], is a phe-
nomenon in which the complexity of an approximate solution
grows so fast, such as exponentially, with the state space dimen-
sion that the solution is computationally intractable for practical
applications. COD arises as a major bottleneck in many applica-
tions of dynamical systems and nonlinear control. In recent years,
deep neural network (DNN) has emerged as a promising tool
to mitigate the COD for high dimensional problems that cannot
be solved using conventional computational methods. The power
of DNN has been successfully demonstrated on a wide variety
of high-dimensional problems that cannot be solved by conven-
tional control design methods [2-15]. These empirical successes
uncover some fundamental and pressing challenges especially in
understanding the representability of deep neural networks for
complex and high dimensional input-output relations. Why are
DNNs seemingly capable of mitigating the curse of dimensional-
ity that is commonly suffered by other function approximation
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methods? Not surprisingly, such questions have attracted a large
amount of research, for example, [ 16-27]. The work of this paper
is based upon [19], where an algebraic framework is introduced
to analyze DNN approximation of compositional functions. It is
proved in [19] that, for any compositional function in C!, the
complexity of its DNN approximation is a polynomial of four
compositional features. If these features do not depend on the
function’s input dimension exponentially, which is the case for
many practical problems, the complexity of its DNN approxima-
tion is bounded by a polynomial of the input dimension rather
than exponential function, i.e., the COD is mitigated. The main
goal of this paper is to extend the idea in [19] to C° functions
and to prove a polynomial complexity of DNN approximation for
C° functions using ReLU networks.

It has been commonly observed in science and engineering
that complicated input-output information relations consist of
compositions of simple functions with low input dimensions;
and the connections between the simple functions are sparse.
Interestingly, deep neural networks and many iterative numerical
algorithms for differential equations and optimization problems
can also be viewed as compositional functions. Many nonlinear
feedback control laws also have compositional structures. For ex-
ample, the well-known backstepping [28,29] and adding a power
integrator [30-32] approaches for lower triangular nonlinear sys-
tems, and forwarding [33] and saturation [34] approaches for
upper-triangular systems construct nonlinear controllers recur-
sively, which result in nonlinear controls with some composi-
tional structures. When the state dimension is high, analytically
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deriving nonlinear feedback control using such methods could be
challenging. Numeric approximations of compositional feedback
control by, for example, DNNs, present themselves as promising
tools for such high-dimensional control problems.

In the recent work [19], it has been shown that DNNs of n
number of neurons with smooth activation functions can ap-
proximate any C™ (m > 1) compositional functions with error
bounded by O(n~'/"), where r is the largest radio, d;/m;, between
the input dimension d; and the smoothness m; among all nodes
(components) in a compositional function. Since the approximate
rate, —1/r, does not depend on the overall input dimension of a
compositional function, the COD can be avoided if the dimensions
of individual nodes remain small as the overall input dimension
increases. Such situations appear in many examples that we have
studied, including Lorenz-96 model [35], power system mod-
els [36-38], etc. As shown in [19], similar DNN approximation
results hold for the solution of differential equations and optimal
feedback control.

In this paper we extend the results in [19] in a few directions:
(1) We relax the C! smoothness requirement on the composi-
tional functions to Lipschitz continuous functions. Such extension
not only includes a larger family of compositional functions, but
also is important for control applications because many feedback
controls are non-smooth due to the presence of constraints. (2)
We extend the results in [19] from DNNs with smooth activa-
tion functions to deep ReLU networks. ReLU activation function
has been a popular choice in many DNN applications. It enjoys
desirable properties such as avoiding the gradient degeneracy
in the training process. Recent studies on the expressiveness
of ReLU DNNs also reveal important theoretical properties of
ReLU DNNs for approximating continuous functions [21,22,39].
By combining the algebraic framework in [19] for analyzing com-
positional functions and the ReLU network approximation theory
in [21] for continuous functions, we construct deep ReLU net-
works based on sparse structure of compositional functions. We
show in this paper that the approximation error is a polynomial
function of four compositional features. In particular, the approx-
imation error is O(W~2/9max), where W is the total number of
parameters in a ReLU network and d' , is the maximum input
dimension of nonlinear nodes in a compositional function. Thus,
for high-dimensional compositional functions with small df .
the COD can be mitigated. In addition to function approximation,
we further establish ReLU network results for the trajectories of
control systems, and for a Lyapunov function that characterizes
the domain of attraction of dynamical systems.

In the rest of this paper, we first review some key concepts of
compositional functions represented as layered directed acyclic
graphs (DAG) in Section 2. The main result on deep ReLU network
approximation of Lipschitz continuous functions is presented in
Section 3. It is followed by extensions of the function approxima-
tion results to the ReLU network approximation of trajectories
of differential equations in Section 4, and the approximation of
a Lyapunov function for characterizing the domain of attraction
of dynamical systems in Section 5. We conclude the paper with
a summary of contributions and some concluding remarks in
Section 6.

2. Compositional functions

In this section, we review some key concepts from [19] on
compositional functions. Readers are referred to [19] for more
details and related results. Representing compositional functions
using layered DAGs is essential in this paper. Consider a power
system model in [37,38] as an illustrative example. The electric
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Fig. 1. Layered DAG of (P.); defined in (1).

air-gap torque, P, € R™, is a vector valued function. Its ith
component is

m
(pe)i = EiZGﬁ + Z E,‘Ej(Gij cos(d; — (Sj) =+ Bij sin(§; — (Sj)), (])
J=1.j#i

where m is the number of generators. For the ith generator, §; is
the rotor angle in radian, E; is the electromotive force or internal
voltage of the generator, G;-+jBy; is the ith row jth column element
of the admittance matrix among all electromotive forces, and G;;
is the conductance representing the local load seen from E;. If
the system has m = 20 generators, then the model is a function
P, : R?® — R, It is a compositional function with simple nodes.
Its layered DAG representation is shown in Fig. 1. Except for the
layer of sin(z) and cos(z), all nodes are linear. For nonlinear nodes,
they all have a single input. The layered DAG associated with a
given function is not unique. In this study, two different layered
DAGs are considered as different compositional functions even
if they both represent the same input-output relationship. The
compositional function is formally defined as follows.

Definition 1 (Compositional Function [19]). A compositional func-
tion, denoted by a pair (f, G*), consists of a function, f : RY —
RY, a layered DAG, G'. We use subscripts to represent the layer
number, i.e, f;; is the jth node in the ith layer. Every node in gf
that has at least one inward edge is a function, f;; : RYi — R,
where d;; is the number of inward edges of the node. A node
that has no inward edge is called an input node. It can take any
value in the domain of f. All input nodes in gf are labeled as
layer 0, called the input layer. A node that has no outward edge
is called an output node. All output nodes are located in the final
layer, called the output layer. All layers between input and output
layers are called hidden layers. We always assume that the ranges
and domains of all nodes are compatible for composition, i.e. if
(fij, fix) is an edge in ¢F, then the range of f;; is contained in the
interior of the domain of f .

In a compositional function (f, Gf), f : [—R,R]Y — R9, the
set of nodes in G' is denoted by V. If a node f;; is a 1st order
polynomial, then it is called a linear node. Otherwise, it is called a
general node. All input nodes are treated as linear nodes. The set
of linear nodes is denoted by va and the set of general (nonlinear)
nodes is denoted by V.

It has been shown in [19] that the family of compositional
functions is closed under algebraic operations, including composi-
tion, linear combination, vector inner product and scalar function
division. To analyze approximations of compositional functions,
the concept of sensitivity with respect to (w.r.t.) a node is essen-
tial. This concept is defined based on an operation on DAGs called
compositional truncation. We illustrate the concept of composi-
tional truncation using the following simple example. Consider
a compositional function with five layers shown in Fig. 2(a).
Its truncation along the layer | = 1 is another compositional
function, f, that is shown in Fig. 2(b). In the truncation process,
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Fig. 2. Compositional truncation. The function in (b) is the compositional truncation of the function in (a) along layer | = 1.
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Fig. 3. A deep ReLU neural network approximation of compositional functions. Left figure: a compositional function with nodes f;;. Right figure: a deep ReLU neural

network constructed by replacing each f;; by its ReLU network approximation fl")’” .

we first remove all edges that end at nodes in layers [ < 1.
Subsequently, fo.1 and fy , become isolated nodes, i.e., they have
neither outward nor inward edge. All isolated nodes are removed
from the graph. To form the input layer of the truncated function,
we align all nodes in layers | < 1. In this case, they are fi 1, f1.2, fo.3
and fo 4. A set of dummy variables, (z1, 23, z3, z4), is introduced as
the input of f, the truncated function. It is important to clarify
that the domain of z; is the intersection of the domains of all
nodes that are directly connected with z, in f. For example, z;
in Fig. 2 can take any value that is in the domains of f, 1, f> > and
f2.3 simultaneously. The value is not necessarily in the range of
the original node f; , in &f. The formal definition of compositional
truncation can be found in [19].

Definition 2 (The Sensitivity Associated with a Node [19]). Given
a compositional function (f, gf) and a constant 1 < p < oo.
Consider a node, f;j, in the ith layer, where 0 < i < If —1
(lf”ax is the largest layer number in the DAG). Let f(z1, . . ., Zj,...)
be the truncation of f along the ith layer. If 5;; > 0 is a constant

satisfying

€1, ...,z + Az, ..)—f(z1, ..., 7. ...)Hp <sijlAz] (2)

forall (z1,...,z,...)and (z, ..., zj+ Az, ...) within the domain
of f, sij is called a sensitivity constant (under the p-norm) asso-
ciated with f;;. In some discussions, we denote the constant by
s ijto differentiate sensitivity constants associated with different
functions.

Remark 1. Note that in [19] s;; is called a Lipschitz constant
associated with f; ;. To avoid confusion with the standard Lipschitz
constant of f;; itself, we rename it as sensitivity constant.

3. ReLU network approximation of compositional functions

In this section, we apply the algebraic framework introduced
in [19] for compositional functions to analyze the expressiveness
of deep ReLU networks for Lipschitz continuous compositional
functions satisfying the following assumption.

Assumption 1 (Compositional Functions). Given a compositional
function (f, *). We assume that f is a function from [—R, R]? to

RY for some R > 0 and positive integers d and q. Assume that
the nodes, {f;;}, are Lipschitz continuous functions with input
dimension d;; > 1 and a Lipschitz constant I;;. The domain of f;;
is a hypercube with edge length R;; > 0. The ranges and domains
of all nodes are compatible for composition, i.e., if (f;}, fix) is an
edge in Gf, then the range of fij is contained in the interior of the
domain of fj .

Our analysis is based on a recent result by Yarotsky [21] on
the approximation of continuous functions by deep ReLU neural
networks. In this work, an approximation error upper bound was
given in terms of the modulus of continuity defined below.

Definition 3 (Modulus of Continuity). Let w : [0, c0) — [0, c0) be
an increasing real valued function vanishing at 0 and continuous
at 0. A uniformly continuous function f : [—R, R]Y — R admits w
as modulus of continuity if and only if for all x, y € [—R, R]¢

F&)—fW <o dx—=Ylo) -

The following Theorem 1 on the approximation error of ReLU
neural networks was proved by Yarotsky [21] for continuous
function defined on hypercube [0, 1]9; and was extended to do-
mains EO, M1 in [22]. Here, we restate the result on domain
[—R, R]“.

Theorem 1. (Approximation of Continuous Functions by Relu Net-
works [21]) For any continuous function f : [—R, R]® — R with the
modulus of continuity wy, there exists a sequence of fully-connected
ReLU network, f™N, of constant width 2d+ 10 and depth D = O(W),
where W is the size of the network (i.e., the total number of neural
network parameters), such that

IF = F™ g piey < Cr(d)op(ca(d)2RW /1), (3)

where c1(d) and c,(d) are positive constants depending on the input
dimension d but independent of f and W.

Now consider a compositional function (f, Gf), f : [-R, R} —
RY. Based on Theorem 1, each node, f;;, in this compositional
function can be approximated by a ReLU network, f”” Substi-
tuting f"j”" for all nodes in gf results in a deep ReLU network
that is built upon the compositional structure; see Fig. 3 for an
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illustration. Propagation of the approximation errors in each node
can then be tracked using tools introduced in [19]. In this idea, a
set of compositional features is essential.

Definition 4. In a compositional function (f, G), f : [-R, R]¢ —
RY, the set of nodes in gf is denoted by Vf. The set of linear
nodes is denoted by v{ and the set of general (nonlinear) nodes is
denoted by vg. The following quantities are called compositional
features,

df . = max{d;;; for fi; € V},
L, = max{lj; for fi; € VE},
Rf . = max{R;j; forfi; € Vi),
SF o = max{s;j; for fi; € VE},
|VE| = the total number of general nodes f;; € V,

where f;j, d;;, lij, Rij and s;; are introduced in Definitions 1 and
2 and Assumption 1.

Theorem 2. Consider a compositional function (f, %), f : [—R, R]¢
— RY, satisfying Assumption 1. There exists a deep ReLU network of
size W such that

[ fx) — f”’"(x)“oo < CW~—/dnax, for all x € [—R, R°, (4)

where constant

f
C = CyLE G RE ST o [VE |12/ e (5)

max” "max= max

for some constant C; depending on input dimension, d;;, of each
general node f;; € VL.

Proof. We first construct a ReLU network approximation, f¥"(x),
of the compositional function f(x); then estimate the approxima-
tion error. The construction of fNN is based on two steps;

1. approximating each node f;; of the compositional function
by appropriate ReLU networks, fl'}”" ;

2. substituting ;Y for all nodes in g'.

This process generates a deep ReLU network denoted by fNV; see
Fig. 3 for an illustration. To construct iS{N , we distinguish two
cases depending on if f;; is a linear node or not.
e For all linear nodes f;; € VY, it is clear that f;; can be exactly
represented by two neurons with ReLU activation function
as

fii(@) = o(fij(2)) + o (—fij(2)) =

where o(x) = max{x, 0}. The size (total number of parame-
ters) of [ is 2d;; + 2.

e For each general (nonlinear) nodes f; € Vg, based on
Theorem 1, there exists a fully-connected feedforward ReLU
neural network, i?”, of constant width 2d;; + 10 and depth
Di; = O(W,‘vj), such that

NN
i (),

_2 di .
lfis —FNV] < e(dijop (ca(di)2Ri W, ™). (6)

We assign W;; so that they are of the same order. More
precisely, let
Wmin = min{wi,jsfi,j € v(f;}a Wmax = max{wi,jafi,j € V(f;}

Wi are chosen so that k = Wie/Wiin = O(1). Moreover,
without lost of generality, we assume Wy, is sufficiently

large so that Zﬁ_jev{ (2dij+2) < Zﬁjevg Wi
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Substituting all ffJ’N to the corresponding linear and general nodes
leads to a deep ReLU network of size

W= W+ Y (2dij+2)
fuevf: f,'vjEV{
=2 Wi
f,-yjevé
< 2k [VE| Win. 7)
Next we estimate the approximation error of f¥N' with respect
to the features of the compositional function, (f, Gf), and W. Un-
der Assumption 1, each general node, f;j, is Lipschitz continuous.
Its modulus continuity wy;; can be set as a linear function. Thus,
(6) implies that
—2/d; i
Ifij —fi{fN| < 2R jer(dij)ea(di W
-2 dfnax
< 2liRy jer(dij)ea(di )W, /

of
< Cmafo Rf W z/dmax’ (8)

‘max”*max " " min
where Cpngx = max{2ci(d;j)ca(dij), fij € Vé}. From Proposition
3.9in [19] and (8), the approximation error
[fo0 — €00l = D0 siy s =5+ D2 sty — A
fl‘JEV{ fi,jev(f;
f
= > sl
fijevt

o
Z Cmafo Rf Sf W 2/dingx

max"‘max-max " " min

IA

fiijVé

—2/df
= Gl Rl St | VE| Wi e,

max” max= max

Substituting (7) to the above upper bound, we get
[0 — £,

< (2k)X/ 0 G L RE ST [ VE]

max”  max=max

f
142/dingy W2/

Thus (4)~(5) is proved with C; = (2k)%/%hex Cprgy. 4

Remark 2. From the proof of Theorem 2, it is clear that the
constructed ReLU network f¥V is a deep feedforward network
with non-constant width. Such networks explore not only the
expressiveness of ReLU networks (for each individual nodes f; ;)
but also the overall sparse compositional structure of f. As a
result, the approximation rate, —2/dfmax in (4), depends on the
input dimension of the individual general nodes, f;; € V(‘;, not the
input dimension of the overall compositional function f. There-
fore, if the input dimension of individual general nodes in a
compositional function is bounded, the error upper bound of
deep neural network approximation is a polynomial function of
the compositional features, {df . Lf ... Rf ... ST [VE|}. Thus, for
compositional functions with low df,,, the curse of dimensional-

ity can be avoided. From the proof it is also clear that linear nodes
fij € v{ do not contribute to the approximation error.

4. ReLU approximation of ODEs and control systems

Consider a system of time-invariant ordinary differential equa-
tions (ODEs)

y=1y,p), yeR? fly,p)eR! peRF, te[0,T], 9)

where y is the state variable and p is the parameter in the model.
For control systems, p represents the parameterized control in-
put, for instance, the value of control input at grid points. The
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result in this section holds also for time-varying ODEs, since a
time-varying ODE can be converted into a time-invariant one. We
assume that f is a compositional function that satisfies Assump-
tion 1. Thus, fis Lipschitz continuous in its domain with respect to
(y, p), which ensures the existence and uniqueness of the solution
to the initial value problem in (9).

Let ¢(t; X, p) represent the solution of (9) satisfying y(0) =
X. We are interested in approximating ¢(T; -, -) x,p) —
@(T; x, p), as a function of the initial condition and the parameter,
by deep ReLU neural networks. Or equivalently, the trained DNN
is a model of the system trajectory. Different from the ODE
model, numerically evaluating a DNN is usually faster in real-time
computation than solving ODEs. Note that although f is a compo-
sitional function, after integration, the compositional structure of
the flow map, ¢(T; X, p), becomes unknown. Therefore, we cannot
apply Theorem 2 directly on ¢(T; X, p). Instead, we approximate
@(T; x, p) by explicit numerical schemes, which can be viewed as
iterations on the compositional function f. In the following, we
focus on forward Euler method. The result can be generalized to
other explicit methods for differential equation.

Let f; : R — R represent the operator of the forward Euler
method, i.e.,

fe(y, p) =y + hf(y, p), (10)

where h = T/K for some positive integer K. Applying (10) from
initial condition x generates a numerical approximation of the
solution

—_—
$(T:x,p) ~ fr o -z o fe(x, P) = (Fe(-, ) (x. p).

It is clear that (fz(-, -))¥ is a compositional function with a DAG
depending on the compositional structure of f. Thus, a ReLU net-
work approximation of f generates a deep ReLU approximation
of (fz(-, -))X, which further approximates the solution ¢(T; X, p).
The result is stated in the following theorem.

Theorem 3. Consider the ODE (9) in which (f, Gf) is a compositional
function of (X, p) satisfying Assumption 1. Suppose Df C [—R, R]%+P
is a compact set such that ¢(t; X, p) € [—R, R]* whenever (x, p) €
Df and t € [0, T]. There exists a deep ReLU network, fiN, of size W,
such that for all (x, p) € Df

I6(T; x, p) — (B (- )X, Plloo < CA(T) (€5(h) + ™ (W), (11)

where C;(T) = eLTL_l with L being a Lipschitz constant of f, h =
T/K, €E(h) is the truncation error of the Euler method satisfying
limy_0 €E(h) = 0 and

f
ENN(W) — C]Lf Rf |]+2/dmax W*Z/dfmx

max maxstfnax |V€;
is the error of the ReLU network approximation of f defined in
Theorem 2. The complexity of the ReLU network (x, p) — (EN(-, -))¥

(x, p) is KW.

Proof. Based on Theorem 2, there exists a ReLU network, f¥N of
size W, such that for all (x, p) € [—R, R]4*?

[£0x, B) — Pk, D) < Gyl RE ST [VE |2/ 2/

max

for some constant C; depending on input dimension d;; of each
node f;;. Let f¥ be the neural network obtained by substituting
f¥N for f in (10). Then,

|| fE(Xa p) - ng(X, p)“oo =h || f(x! p) - fNN(Xv p)“OO
BCALE g RE St e [VE[ 2/

ax -2/ dfnax
max” “max= max W N

IA
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Applying Proposition 3.10 in [19], we have

ICEeC ) e p) = (B G- D x|

1+ hL)K -1 ff of f
= mhcleameaxSmm Vel

eKhL -1

42/ g2/

f
142/ dinax g 7—2/df

f f f f
G LmameaxSmax ‘ Ve ‘

1+42/df,

= ci(m)aLf R o Yy —2/dmax (12)

‘max maxsrfnax |V(f?|
On the other hand, it is well known that the global approxima-
tion error of the forward Euler method is (see, for instance, [40])

I$(T; %, p) — (£ (-)) (%, P)lloo < C(T)EF(h), (13)

where the truncation error €£(h) — 0 as h — 0. Based on the
triangle inequality and (12)-(13),

I6(T: X, ) — (€ (-, ) (X, P)llo
< [1¢(T; X, p) — (F(-, ) (X, P)lloo
HIEC- )% p) — V) P)lloo
< GJ(T)ef(h) + C5(T)eM (W),
f
where e"V(W) = CyLf  RE ST [VE| T2 me -2/ g
Remark 3. We would like to emphasize that Theorem 3 is about
the existence of DNNs whose error upper bound does not suffer
from the curse of dimensionality. This theorem does not facilitate
a practical algorithm of finding the DNN. The Euler method for
ODEs is a convenient discretization for the purpose of proving the
existence theorem. However, designing a DNN strictly following
the compositional structure of the Euler algorithm may require
an unnecessarily large number of layers.

5. Charactering the domain of attraction

In this section we apply the approximation results in Theo-
rem 3 to analyze the domain of attraction of a dynamical system.
To this end, we first review a key result from [41], where the
domain of attraction is characterized by an explicit construction
of a solution to Zubov’s equation [42].

Consider a system of ODEs

x(t) = f(x(t)), xeR9. (14)

Its solution is denoted by ¢(t, X), which satisfies the initial con-
dition ¢(0,x) = x. Let £ C R? be a closed invariant subset of
the system. Given a positive number §, the §-neighborhood of £
is defined by

Bs(&) = {x e R"; d(x, &) < 8},

where d(-, ) represents the distance under Euclidean norm. Al-
though the results in [41] hold true for any uniformly asymptot-
ically stable system, for the sake of simplicity we assume that £
is exponentially stable in a neighborhood, i.e., there exist § > 0,
M > 0 and A > O such that

d(¢(t, x), £) < Md(x, £)e™

for arbitrary x € Bs(&).

The construction of a solution to Zubov’s equation, which is
also a Lyapunov function, needs a continuous function, U : R" —
R, satisfying

Ux) =0, ifxeeg, (15)
Ux) > 0, otherwise, (16)
lim U(x) = 0. (17)

d(x,£)—0
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In addition, for any § > 0, there exists a y > 0 such that
Ux) >y, (18)

whenever d(x, £) > §. The following system is called the aug-
mented system of (14),

X(t) =f(x(t)), x(0)eR
z =U(x), z(0) =0,

where the initial condition of z is always zero. Given any initial
state, X, the last variable in the solution of (19) is denoted by
z(t, X). Its limit as t — oo is denoted by z(oo, X). The right hand
side of (19) is denoted by f(x).

(19)

Theorem 4 ([41]). Suppose that £ is an exponentially stable and
closed invariant set of (14). Assume that f(X) is locally Lipschitz on
R™ and ||f(x)|| is bounded on Bs(&) for some § > 0. Suppose U(X) is
Lipschitz on Bs(&) satisfying (15)-(18). Then, for any constant « > 0,

tanh(az(oo, X)),

V(x):{ 1,

is a Lyapunov function that characterizes the domain of attraction,
i.e, X is in the domain of attraction of £ if and only if V(x) < 1.

if z(00, X) < 00,

otherwise, (20)

Evaluating the function defined in (20) requires numerically
integrating the system of ODEs (19). This can be computation-
ally too expensive for many real-time applications. However, as
pointed out in [41], one can generate data by solving (20) and
then train a DNN that approximates V(x). In this section, we study
the complexity of the DNN. For a given bounded set Df ¢ R, the
Lyapunov function can be approximated by

V(x) = tanh(ez(T, X))

for some T > 0. The approximation error approaches zero as
T — oo. In the following, we approximate V(x) using a DNN that
is a ReLU network except that the output layer consists of a single
activation function, tanh(-), i.e.,

VM = tanh(az™W)

NN the output of a ReLU network. (21)

Z =

Theorem 5. Consider the ODE in (14) and its augmented system
(19). Suppose the right hand side in (19) is a compositional function,
(f, %), satisfying Assumption 1. Assume that f and U satisfy the same
assumptions as in Theorem 4. For any bounded set Df C RY, there
exists a DNN, VNV in the form of (21) satisfying

V)=V (%)l < (1—tanhX(@2))CHT) (F(h) + e™(W)) . (22)

where Z = min{|z |z(T, x)|}. The complexity of the neural

network is KW. In (22), CT) = ©=1 with L being a Lipschitz
constant of f, h = % €E(h) is the truncation error of the Euler method

satisfying limy_, €(h) = 0, and

NN|
B

1+2/df .
’ +2/dmax W_z/dﬂwx’ (23)

ENN(W) = C1LfnaxRirpnaxS£1ax ’VE
where the constant C; depends on the input dimensions of the
general nodes in G,

Proof. Let z™V : x — R be a ReLU network, then
IV(x) — V™(X)lo = | tanh(ez(T, x)) — tanh(ez™ (X))] oo
= o |tanh'(@8)] |12(T. %) — 2"V (%)l

for some & between z(T,x) and z™V. Because tanh’'(x) = 1 —
tanh?(x) and because tanh(z) is an increasing function, we know

|tanh’(a€)| < 1 — tanh*(az),
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where Z = min{|z"V

, |z(T, x)|}. Therefore,
V(%) = VM(X)[loo < (1 — tanh*(2))]12(T, X) — 2" (X)[|oc. (24)

Because f of the augmented system satisfies the assumptions in
Theorem 3, there exists a ReLU network, z™V, that approximates
z(T, x) with an error upper bound (11). Substituting ||z(T, x) —
ZM(X)|» in (24) by this error upper bound yields (22). ¢

Remark 4. DNNs are trained through solving an optimization
problem. In supervised learning, a typical data set has the follow-
ing form

(%, (%)) k=1,2, ..., Nsumple}y

where Ngmpe is the number of samples and f: R! - Ris a
function whose value is to be predicted by a DNN. Let f"N(g, x)
be a neural network in which 6 is a vector of parameters to be
determined through training. A widely used loss function is

Nsample
2
()= (fx) — ()" + 21013 (25)
i=k

A DNN is trained by finding a & that minimizes the loss func-
tion. There exists a variety of optimization algorithms that are
widely used in machine learning. In Example 1, we adopt a BFGS

algorithm [43].
In the next, we introduce an example to validate the existence

of a DNN that has a O(W~—2/@hax) error upper bound as implied by
(23).

Example 1. Consider the following system of ODEs in R?,

ov ov
(1 =V(X)—
% ( (x)) ox,
X = 5 (26)
av aVv
—— — (1= V(X)) —
8X1 ( ( )) 3X2
where
4 4
vx)={ X +x —jtanh’(x +x), ifV(x) <1, (27)
1, otherwise.

It can be shown that V(x) is a Lyapunov function that fulfills the
assumptions and properties in Theorem 4. The function charac-
terizes the domain of attraction around x = 0, i.e., the trajectory
x(t) with initial condition X(0) = X, converges to the origin if
and only if V(x¢) < 1. The graph of V(x) and the boundary of the
domain of attraction are shown in Fig. 4. The functions in (26)
are C° but not C'. The domain of attraction is non-convex. The
Lyapunov function is C! but not C?.

The functions in (26) and (27) have s‘ilmplle compositional

structures. The nonlinear nodes include x;’, x’, tanh(z) (z =
X1 +x2), and tanh?(z). They all have a single input, which implies
df . = 1. From Theorem 5, there exists a sequence of DNNs that
approximates V(x). According to (23), we expect that the error of
the DNN approximation is O(W~2). For numerical validation, we
train DNNs that approximate every nonlinear node in V(x). Each
DNN has 1 < L < 9 layers and twelve neurons in each layer.
Because the error upper bound in Theorem 5 is based on L*°-
norm, which is generally more difficulty to control than 2-norm
in machine learning, the DNN approximation is further corrected
by a single layer NN that has n < 225 neurons. The complexity
of the DNNs, W, is linearly dependent on L = 1,2,...,9. On
a data set that contains 10 samples, the maximum estimation
error, defined as

max{|V(x) — V™(x)|; x € data set}, (28)
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prediction error
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complexity (W)

Fig. 5. The estimation error of V™(x). The line is the graph of CW~2. The dots
are the error of V™MW(x) for L=1,2,...,9.

is shown in Fig. 5. The error follows O(W~2) closely when the
number of layers is L < 6, or equivalently W < 1036, When the
complexity of the DNN increases beyond this point, the trend of
decreasing error slows down.

This example is a numerical validation of the error upper
bound in Theorem 5. The DNN design is based on an impractical
assumption that the compositional structure and nonlinear nodes
in V(x) are known. How to find DNNs with guaranteed error
bounded by (22)-(23), in general, is an open problem. This is not
limited to the L*°-norm in this paper. Finding DNNs that have
guaranteed error upper bounds in LP-space is widely recognized
as an open problem in many theoretical studies and machine
learning applications.

6. Conclusions

Applying an algebraic framework developed for the error anal-
ysis of approximating compositional functions, we prove three
theorems on the neural network complexity in the approximation
of functions, control system trajectories, and a Lyapunov function
that characterizes the domain of attraction. Using conventional
approximation methods such as a polynomial interpolation or
a spectrum method, these problems suffer from the curse-of-
dimensionality. The approximation complexity increases expo-
nentially with the state space dimension. The main contributions
of this paper, Theorems 2, 3 and 5, reveal that neural networks
have an approximation error upper bound that is a polynomial
of the network’s complexity and the compositional features. If
the compositional features do not increase exponentially with
dimension, which is the case in all examples that we have studied
in several published papers, the complexity of DNN has a poly-
nomial growth. These results may, to some extend, explain the
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large number of empirical successes of deep learning in solving
high dimensional problems of optimal control and PDEs. Although
we focus on ReLU networks in all theorems, the properties of
compositional features and the error estimation method for DAGs
are applicable to other types of networks, provided that an error
upper bound in the form of Theorem 1 can be proved.

The goal of the paper is to prove that deep neural networks
can avoid an exponentially increasing complexity, which is an
insuperable obstacle for conventional approximation methods for
problems that have moderate or high dimensions. The error upper
bounds proved in this paper could be conservative. For instance,
we use the largest value of compositional features in the error
upper bound, rather than the value associated with individual
nodes. For systems of ODEs, the constructive proof is based on
the Euler method, which has a low convergence rate. As a result,
the ReLU network has many layers. In addition, the proof of the
existence of a ReLU network does not mean it is easy to find the
network. Training and validating DNNs taking advantage of the
compositional features as well as their layered DAGs are some
important and mathematically interesting open problems for next
step research.
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Appendix

The algebraic framework in [19] developed for compositional
functions facilitate error analysis for regression problems that
involves operations such as substitutions and iterative compu-
tation. Two of the propositions in [19] are used in the proof of
theorems in this paper. They are given below without proof.

Proposition 1 (Error Caused by Node Substitution). Let (f, Gf) be
a compositional function. Let {hy, ha, ..., hg} € VE\ VI be a set of
nodes. Under a p-norm, let s]‘f > 0 be the sensitivity associated with
h;, 1 <j < K. Suppose fzj, 1 <j <K, is a set of functions in which Bj
has the same domain as h; and a compatible range for substitution.
Assume that

)Ej(w) - hj(w)‘ <¢. forallw in the domain of h, (29)

where €, j = 1,2,...,K, are some positive numbers. Let f be the
function obtained by substituting h; for h;, j =1, 2, ..., K. Then

Hf(x) — f(x)Hp < Z,I';] Lfej, for all x in the domain of f.  (30)

Proposition 2 (Error Propagation Through Composition). Consider
compositional functions (f, %), f : R — RY, (g, G8), g : R — RY,
and (h,G"), h : RY — RY. Suppose that the domains and ranges
of them are compatible for compositions. Let~Lf and I:" be Lipschitz
constants of f and h under a p-norm. Suppose f, g and h are functions
satisfying

100 )| <er. |g0) 00, < ea. |00~ B <es
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for some e; > 0, e; > 0 and e3 > 0 and all x in corresponding
domains. Given any integer K > 0, we have

K K o & (L —1 1K
[ 0 g00) - (B 080 = e+ (1 e
P (Lf)K -1 (31)

o ()00 — o (0| <o

where (f())¥(x) :== fofo--- o f(x).

e +es.
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