Min-max and stat game representations
for nonlinear optimal control problems

Peter M. Dower'

Abstract— A finite horizon nonlinear optimal control problem
is considered for which the associated Hamiltonian satisfies a
uniform semiconcavity property with respect to its state and
costate variables. It is shown that the value function for this
optimal control problem is equivalent to the value of a min-max
game, provided the time horizon considered is sufficiently short.
This further reduces to maximization of a linear functional over
a convex set. It is further proposed that the min-max game can
be relaxed to a type of stat (stationary) game, in which no time
horizon constraint is involved.

I. INTRODUCTION

Computational solution of nonlinear deterministic optimal
control problems continues to be a particularly challenging
area within the controls field. A classical but surprisingly re-
lated area of research regards solution of n-body problems in
astrodynamics, c.f. [1], [2]. In [1], using an action-functional
approach, it was demonstrated that on sufficiently short time
horizons, gravitational n-body problems can be represented
as zero-sum games. Extension to indefinitely long time
horizons motivated the development of “staticization” and
“stat” duality [3], [4], [5], [6].

The game-based representation provided in [1] generated
solutions of n-body problems as suprema of linear func-
tionals over convex sets of solutions of differential Riccati
equations (DREs). A corresponding representation was pro-
vided in [7] for solutions of certain state constrained control
problems with linear dynamics. In the current work, it is
shown that a class of nonlinear optimal control problems
may be similarly converted into min-max games. These are
of a form such that the value function may again be obtained
through supremization of linear functionals over convex sets
of solutions of DREs. The main result is Corollary 1.

The development commences with the optimal control
problem of interest in Section II, and the relevant notions of
duality for semiconcave functions in Section III. This duality
is used in Section IV to relax the optimal control problem
to a min-max game, for a sufficiently short time horizon. An
extension to longer horizons is discussed in Section V, with
stat duality used in place of semiconcave duality, to propose
solutions via staticization over sets of solutions of DREs.
Efficient numerical implementation is yet to be considered.
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Throughout, the natural numbers, the real numbers, and
the extended reals are denoted by N, R and R respectively.
Euclidean space is denoted by R™, n € N, and the corre-
sponding space of n X n matrices by R™*™. The subsets of
self-adjoint and self-adjoint positive (semi-) definite matrices
are denoted by S™ and (S2,) S%,. Given ¢ € R, C € S,
the inequality cI, > C is equivalent to cI,, — C' € SZ,,
where [, is the identity in R™*". The space of bounded
linear operators mapping between Banach spaces % and
% is denoted by L(%;%Z). Spaces of continuous and k-
times Fréchet differentiable mappings between % and 2
are denoted by ¢(%'; 2) and 6€*(%; &), k € N. Where &
is a Hilbert space, the Riesz representation of the Fréchet
derivative D,© of © € €Y(#;R) evaluated at y € ¥
is denoted by V,0O(y) € #. Where © € €¢*(¥;R),
VyO(y) € L(¥) = L(¥;¥) denotes the second deriva-
tive given by V,,0(y)h = D,V,0O(y)h for all h € #.
With % = R", this second derivative is identified with a
self-adjoint matrix, i.e. V,,©(y) € S, y € R™. Given
an interval I C R, the space of Lebesgue square-integrable
functions mapping I to 2 is denoted by .#?(I;%'). Norms
are denoted by || - || = || - ||#, with the subscript omitted
where the space % involved is contextually clear.

II. OPTIMAL CONTROL PROBLEM

Attention is restricted to a class of finite dimensional input
affine nonlinear systems, evolving in continuous time on the
finite interval [¢,T] according to the dynamics

gs :A§s+f(§s)+Bﬂsa

subject to the initial state & = =z € R™ and control
input p € %[, T] = £*(|t,T];R™), given nonlinear
f € €*(R";R"), and matrices A € R"*" and B € R"*™.
The optimal control problem of interest is defined subject to
(1) via the value and cost functions

jt(I,/L), (2)

s €t T, 1)

W = inf
@)= f
T

Tio) = / €D + 1 (60 CE + 1 ]2 ds,

for all x € R™, u € %|t,T), given non-quadratic running
cost term ¢ € €*(R™;R>p), and C € SZ. For simplicity,
the terminal cost is set to zero. The attendant Hamilton-
Jacobi-Bellman (HJB) partial differential equation (PDE) is

oU, _
0= — s () + H(z,V,Us(x)), se€tT), 3)
UT(I):Ov IER”,



in which the Hamiltonian H : R™ x R® — R is defined with
respect to its quadratic and non-quadratic dependencies by

H(z,p) = Q(x,p) + N(z,p), @
Q(z,p) = —5 (x, Cx) — (p, Az) + 5 (p, BB'p),
N(z,p) = —L(x) — (p, f(x)),

for all z,p € IEg Under reasonable conditions [8], [9], the
value function W, of (2) may be characterized as the unique
viscosity solution of (3).

III. SEMICONCAVITY AND STATIONARITY

A. Semiconcavity

Given a Hilbert space 2, (uniform) semiconcavity of
extended real valued functions is defined with respect to a
quadratic function ¢ : & x Z — R given by

oy, 2) =S lly— 2%, y,z€ 2, Q)

with ¢ € R fixed. Spaces of (uniformly) semiconvex and
semiconcave functions on & are defined respectively by

y = o(y,0) +O(y) }

convex, lower closed

St =8H(2)= {e PN

S, =8,(2)={N:Z—-R|-NeS}}. (6)
These spaces are in duality, via the semiconcave transform

D; and its inverse, the semiconvex transform D;r.

Df = D]} _
8§ = S,
D, = [D}]!

The semiconcave transform and its inverse are given by

D, N = fggw{N(Z) —¢(2)}, Nesg,

—1—1 .

[D;]7" 0 = inf {8(y) +¢(y, )},
for all y, z € Z, see for example [7], [10]. Note that
- N — + _ -1
D, N =-DJ (-N)=[D;]""N,
[D,]7'0=-[Df]"" (-©) =D} 6.

B. Stationarity

7
©es],

Functions that are simultaneously semiconvex and semi-
concave are of particular interest. Such functions are contin-
uously differentiable.

Lemma 1: S} (Z)NS,(Z) C €' (Z;R).

Proof: Fix N € §;(Z)N S, (%), and let D~ N(z)
and DTN (z) denote the sub- and superdifferential of N
at z € Z. Note that D™ N(z) # 0 as N € S} (%), and
DTN(z) # 0 as N € S (2). With both differentials non-
empty, existence of V,N(z) is guaranteed, with D~ N (z) =
{V.N(z)} = D*N(z). Continuity of z — V.N(z) fol-
lows, see [11, Theorem 3.3.7, p.60]. |

Given N € S} (Z) NS, (%), Lemma 1 motivates
the introduction of a pair of stationarity operations that
generalize sup (inf) and arg max (arg min), as given by

Z € argstat N(z)},

stat N(z) = {N(z) g5t

={ze0|0=V.N(2)},

®)
arg stat N(z

in which & C % is an open set. A further restriction of N
yields the following [4], [12].
Lemma 2: Given ¢ C %2, suppose that N € €%(0;R)
satisfies sup, ¢4 || V22N (2)|| = ¢ < oo. Then, the following
properties hold:
(i) there exists ¢ < oo sufficiently large such that the map
2+ z— 1 V_N(z) defines a bijection between & and
its image ‘G = {z—1V.N(2)|z€ O} on O;

(ii) given ¢ < oo from (i), the stat-quad transform [4] of
N, denoted Dy, N, is uniquely defined via (5) by

O(y) = (DN)(y) = stat{N(2) — o(y, 2)},
N(z) = (D;'©)(2) = 3t€a0g{®(. y)+ ey, 2)}, z€0;

ye o,

(iii) the stNat-quad transform © = D, N of (ii) satisfies © €
¢?*(0;R) with sup,c 5 | VyyO(y)|| < 2¢.

Remark 1: Under the restrictions of Lemma 2, the semi-
concave transform and stat-quad transform coincide, allpw-
ing the former to be restricted to the open sets ¢ and 0.

IV. MIN-MAX AND STAT GAME REPRESENTATIONS

Motivated by Remark 1, a special case of problem (2) is
considered in which the non-quadratic dependence N of the
Hamiltonian (4) is restricted to some open set & C R?",

Assumption 1: N € €%(0;R) and c € R in (5) satisfy

sup |V..N(z)|| e < 7 <oo. ©)]
z€0
Assumption 1 and Remark 1 imply that N has the form
N(z,p) = inﬁ{@(. -yl*},

|z€ 0} .

2 H € p
_ (10)
0= {z — =V.N(z)

A. Game representations

Motivated by [1], [2], [7], relaxation of the optimizing
variable y appearing in (10) suggests a game representation
for the optimal control problem (2), involving two players.
With & C R?" as per (10), the relevant spaces of actions are

VIt T) = L2, TERY), #[8,T]= L2, T]; 0), (1)

noting that ¥'[t, T in (11) is different from % [t, T] in (1)-
(2), see Remark 2. A strategy for the first player is a map
v: W, T] — V[t, T)], while a strategy for the second player
is similarly amap @ : ¥[¢t,T] — #[t, T]. The corresponding
spaces of non-anticipating strategies are defined by

D[ l-Vrelt,],
weWtT)
and 7 € ( T] satisfying
W =, V71 € [t 7]

w[p), =@P]-Vr € [t 7],
given any 0, v € V[t, T
and 7 € (¢, T] satisfying
Up =0, V71 €t 7]

V=Lu: W T] = V[t T)

R

W={La: VT = Wt T)

Define the upper and lower values W+ of a differential game,
the lower value V'~ of a static game, and its generalization



V= obtained using the stat operation (8), all in terms of the
same cost J, by (respectively)

Wi(w) = sup  inf  Ji(w,v,6l), (12)
W (x) = inf  sup Ji(z, v[w],w), (13)
VEV wew [t,T)

V., (x) = sup inf  Jy(z,v,w), (14)

v () weW [t,T| VEV[t,T] o )

Sy .

‘/t (I) wESVtVa[JitE;T] ves"ft;é[l;ftT] Jt(I v W) {as)
T

Ji(z, v, w) i/ L(Cs,vs,ws) ds, (16)
t

L(z,v,w) = % (v, Zv) — % (z, (¢, — C)x)

+ (@, cErw) - § ull? - B(w),
I=cl,+BB, =07
By = (Lo | Onxn )o Es=( Ouen | I )

forall z € R", v € ¥[t,T], w € #[t,T], v € R", w € O,
inwhichI', ¥ € SY, Eq, B> € R™*27 and O is as per (10),
while s — (, satisfies the linear dynamics

(s=Al+vs+cByw,, selt,T), (17)

subject to the initial state (; = = € R™, and player actions
v e Y[t,T] and w € #[t, T]. Under suitable conditions, it
will be shown that the games defined by (12)-(15) coincide
with the optimal control problem (2).

Remark 2: It is important to observe that neither player
in (12)-(15) corresponds to the (single) control player in (2).
This is a departure from [1], [7], where the first player was
inherited directly from the optimal control problem, while
the second player dealt with the non-quadratic terms in the
running cost. The key difference here is that, unlike [1], [7],
the costate variable features in the relaxation (10), thereby
affecting the underlying dynamics, and hence both players.

B. Relevant properties of the cost (16)

Some useful properties of the cost (16) relevant to exis-
tence of the values (12)-(15) are summarized as follows.
Lemma 3: The cost J; of (16) has the semi-quadratic form

Jt((E,V,(U):fl( ) <f2( ) > YV [t,T] %<B3 v, I/>'1/[t,T]7
(18)

for all x € R™, v € Y[t,T], w € #[t,T], with f; :

Wt T)— R, f2 : W [t, T| — V[t,T), and self-adjoint and

invertible B3 € L(¥[t, T]) given respectively by

filw) = filwsz) = -3 (@, F (cI, —C)F

+<w’(—cg’(cclff0)}'a:>> / O(w

c I, —cg
—§<w,< -G IL,+cG (cI, — ) >
(19)
fo(w) = folw;z) = -G (¢, — C) Fx
+ (G | =G (c, -C)G )w, (20)
BgiZ—g/(CIn—C)g, 21)

in which F € L(R™; ¥[t,T]), G € L(V[t,T]) are defined
with respect to elements U, = exp(A (s — 7)) € L(R™),
s,7 € [t,T], of the generated semigroup by

[‘Fx]s = s,t xZ, [gv]s :/ Us,a' Vo da; (22)
t
forall s € [t,T], z € R", v € ¥[t,T], and
IF| < K1 (T —6)%, |Gl < Ky (T —¢),
K= sup ||Useol- (23)
s,0€[t, T

Proof: Fix x € R", v € ¥[t,T], and w € W[t T].
Applying (22), the unique solution s +— (s of (17) is ( =
(Fr+cGEw)+Gv = (Fx+ &w) + G, with & =
¢ G Ejs. Substituting ¢ in (16),

Ji(z,v,w)
= % <V, EV>"1/[t,T] — % <(JTIE + ng) + Qy,
(¢l — C)[(Fx+Ew) + G ypm
+{(Frz+&w)+Gr,cEiw)yy g

T
~ 5l — [ Ow)ds
=-1(Fr+&uw, (cly —C) (Fo+Ew))yum
— (1, G (cI, = C) (Fx+Ew))yp
+5 W [E-G (el —O)Gv)yum
+ (v, G Brw)
+ (W, cB{(Fr+ & W)y 1

T
— e wld e - / O(ws) ds.

in which G’ is the Hilbert adjoint of G on ¥[t, T, i.e

T
G 7, = / U, 5y do,
Collecting terms in v € ¥[t, T,
Ji(z,v,w)

= —% (Fe+&w, (cI,—C)(Fx+ ng)>~,/[t7T]
+ (w, cEY(Fx 4+ & W)y

T
~ 5 lelyn — [ Ow)ds
+ (v, ¢G" Erw)y s my
(v, G (cIy — C) (Fx+ Ew))yi
v, =G (cL, = C)GV)yi.1
<I JT (CIn - O) ]:ZZT>«;/[,5)T]

+(w, [cBy - &' (¢l = O Fa)ypm — / () ds
—%(w, [cl, + &' (cI, —C)& t
—cE1 & — c& Elw)ypn
—G'(cI, = O)&Jw
— G (I, — C) Fa)ypy
v, [ =G (cL, = C)Glv)yp1

e,T], ve V[T

+

wl>—‘ NI

+{v, [cG Fy

+ 3¢



= fiw) + (fo(w), V)11 + 5 (Bsv, V) g1y,
in which f1, f2, and Bs are given by (19)-(21). Note further
that Bj is self-adjoint on ¥[t,T] by definition (21), given
Y € 8%, of (16). Bounds (23) follow from (22), via

[Fald < K |l
G vl < / Usoll e ol do < Ky VT E vy,

which hold for all s € [t,T], x € R", v € ¥[t,T], with
the latter implying boundness of Bs. Invertibility of B3 also
follows, and the details are omitted. |
Lemma 4: Under Assumption 1, the following properties
of (16) hold for all z € R", v € ¥[t,T], w € #[t, T]:
(i) w+— J(x,v,w) is concave if ¢ I, > C and

T—t<Ty= ; 24
>~ 10 2chv ( )
(ii) v — Ji(x,v,w) is convex if ¢ I, < C, or if
— 1
T t<T = (25)

E1y/lleLn = Cll eI, + B B[l

Proof: Fix x e R", v e V[t,T],w e #t,T).

(i) Recalling Lemma 3 and (18)-(21), note that the map
w +— Jy(z,v,w) is nonlinear. As affine terms do not affect
the desired concavity, and given (o, 3) = w, the relevant
remaining terms are (with an abuse of notation)

T —
T () i—/ Olws) ds
t
_c In -c9
2\ @ —cG" Li+cG (cl,—-C)G . W [t,T)
=S (8,6 (cI — C)G By

T
gl + 2 o G By — / O(ws) ds.

By Assumption 1, N € €?%(0;R), so that by Lemma 2,
Cauchy-Schwarz, (23), and with T' — ¢t < T,
@, VP (@) @ pipr + S (B, G (cIn — C) G By

< =5 @ pmy + @ G B)yiem)
T
+ [ H IV Bl 8l 12 as

< NG el 1By ir — (5§ =) @15
<A K (T = t) @l 1Bllvier — § 19005

< —£ 183+ § 16lrte) 1B1vte) = § 1B
N 2
=5 (lalym ~ 1Blvem) <0,

forall & = (&, §) € #[t, T). Thatis, w — JO(w) is concave.
With ¢, > C, it then follows that w — J;(w) is also
concave. (Note that the asserted requirement ¢ I,, > C' may
be relaxed by further restricting the horizon (24), via (23).)

(ii) As the map v — J(z,v,w) is quadratic by Lemma
3, the relevant term in (18)-(21) is (again abusing notation)

Jtl(V) = % <B3 v, V>"I/[t,T]-

The map v ~ J}(v) is convex if Bs is positive semidefinite.
With cI,, < C, and noting that ¥ € S¢, the first assertion
in (ii) is then immediate by (21). Otherwise, again recalling
21), given T —t < T,

(0, Voo JF () D)y 1oy = (B3 0, D)y 1)
> (1T~ = 1612 e L = CI) 1215 ey
> (TN~ = K (T = )*[le L = CI) 121516y = 0,

for all 7 € ¥[t, T, yielding the second assertion in (ii). M
In view of the time horizons required for application of

Lemma 4, the following is assumed for the remainder.
Assumption 2: Constant c in (5) and horizon T'—¢ satisfy

c>|Cll, T—-te(0,T), (26)

in which T = min(Ty, T}) is defined via (24)-(25).
C. Equivalence of value functions (2) and (12)-(15)

The upper and lower values (12) and (13) can be charac-
terized as the unique viscosity solutions U* and U~ of the
respective Hamilton-Jacobi-Isaacs (HJI) PDEs [8, p.379]

0——%()+Hi( V.U (x)) € (t,T)
= 85 e x, zUg x)), S y y (27)
UZE(x) =0, r € R",

in which the corresponding Hamiltonians H* are given by

H*(z,p) = sup inf G(z,p,v,w), (28)
vER™ wED
H_(‘Tup) = inf~ sup G(‘Tupavaw)a (29)

weO vER™
and G is defined with respect to L of (16) by

G(xupavaw) = —L((E,’U,’w) - <p7 A$+U+CE2'UJ>
=3 {z, (cly = O)x) = (p, Az + v+ cBaw) — § (v, Tv)

2
—(z, cByw) + 5 |[w]|* + O(w), (30)

for all x,p,v € R", w € 0.

Lemma 5: The Hamiltonians A and H* of (4) and (28)-
(29) for the optimal control problem (2), and for the upper
and lower values (12)-(13) of the game are equivalent, i.e.

H(z,p) = H(z,p), (1)

for all x,p € R"”, so that Isaacs’ condition holds.
Proof: Fix x,p € R™. Recalling (28)-(29),

H*(x,p) = sup inf G(z,p,v,w)
vER" wel
= sup inf {—L(z,v,w)— (p, Ax+v+cEyw)}
vER™ wel
=5 (@, (cly —C)a) — (p, Ax)

+ sup {—% <’U, E'U> - <p7 U>}
vER™

+ inf {§ [lw]]? — (2, c By w) — (p, c Exw) + O(w)}
weo

= inf sup {—L(z,v,w) — (p, Ax+v+cEyw)}
weO veER™

= H" (z,p),



so that Isaacs’ condition holds. By completion of squares
with respect to v, and recalling (4), (10),
H"(z,p) = H™ (x,p)
= —3(z, Cz) — (p, Az) + 5 (p, BB'p)
+ 12%{9(10) + 5 [wl|* = e ((z,p), w) + 5 [|(z,p)[*}
= Q(z,p) + N(z,p) = H(z,p).
as required. [ ]

Motivated by the lower value (14) of the static game, it is
useful to define an additional optimal control problem with
respect to the same cost. In particular, given any fixed w €
#'[t, T), define the value V* of this additional problem by

Vi#(z) = inf

Ji
VeV [T t('rv v, w)a

(32)

for all x € R™, in which J is as per (16). Note that V¢ is
the unique viscosity solution of the HIB PDE

ou¥
= - S t T
0= s€ (LT),

Uzr(x) =0, z € R,

in which the Hamiltonian H : R" x R™ — R is

HZ(x,p) = sup { —L(z,v,ws) — (p, Ax + v+ ¢ B2 wy) }
veER™

= % (z, (cIn = C)x) — (p, Az + c By ws) + % (p, T'p)
—(z, c Bywg) + § [Jws]? + O(ws), (34)

for all s € [t,T].

Theorem 1: Under Assumptions 1-2, the value (2) of the
optimal control problem, the upper and lower values (12)-
(13) of the differential game, the lower value (14) of the
static game, and its stat generalization (15) are equal, with

Wi(z) = Iin+(x) =Wy ()

=V (@) =V, (a) = 35)

sup  Vi¥(z),
weW [t,T)
forall z € R", w e #[t,T).
Proof: 1t is well known, see for example [8], [9], that

Vi(z) < W/ (z) < WtJr(x) < VtJr(x)v

for all z € R™, in which V; is the upper value corresponding
to (14) of the static game. By Lemma 5, Isaacs’ condition
holds for the upper and lower Hamiltonians H* of (28)-
(29), i.e. Ht = H~. Hence, by [8, Corollary 6.1, p.387],
the upper and lower values (12)-(13) of the differential game
are equivalent. Moreover, again by Lemma 5, as H = HT,
HIB PDE (3) and HJI PDEs (27) are identical, and so their
respective unique viscosity solutions (2) and (12)-(13) must
be equal. That is, the first two equalities in (35) hold, with

Vi(z) < W (z) = Wt(x) = Wt+(x)7

for all z € R™.
In order to conclude the third and fourth equalities in (35),
recent results on stat dynamic programming and verification

[31, [12], [13], [14] are applied. In particular, the value V-
is the unique solution of a corresponding HIB PDE given by

U, . -
(i: ~ s (x) + H(x,V,Us(x)), setT), (36)
UT(:C) :Oa CCGR”,
in which the Hamiltonian H : R" x R® — R is
H(z,p) = stat stat G(z,p, v, w), (37
we G VER™

for all z,p € R", and G is as per (30). Note that v —
G(x,p,v,w) is concave as ¥ € S, and w — G(x,p,v,w)
is convex as © € S, » so that H=H*=H by (28)-(29),
(37). Hence, the unique solution (15) of HIB PDE (36) is
identical to the unique solutions (12)-(14) of HIB PDE (3)
and HJI PDEs (27). Moreover, by Lemma 4, v — Ji(z,v,w)

is convex, while w — J;(x,v,w) is concave, so that

— n ~
Wia) = W)= T (@) = stat | stat_Ji(e.v.)
= stat inf  Ji(x,v,w) = sup inf  Ji(z,v,w)
weW [T veV[1,T) wew (1] vEVIE.T)

=V (@),

for all z € R", as per the third and fourth equalities in (35).
The fifth equality in (35) follows by (14) and (32). |

D. Interpretation of the value (2) via DREs

By inspection of the cost (16), the value V“ of (32)
defines an LQR problem parameterized by w € #'[t, T].
Consequently, V' is described by the solution of a DRE.

Theorem 2: Under Assumptions 1-2, and given any w €
W [t, T), the value V¥ of (32) has the explicit quadratic form

%%@—%<<T)J¥<f>> (38)
for all x € R™, in which s + II¥ satisfies the DRE
(s o
subject to the problem data
RY(ID) = (AY) T+ AY —ITATI+ VY, (40)

w - A cEyw, . (cl,+BB 0Onx:
AS N <O;z><1 0 >7 A_ ( O;le 0 ,
Ve - —(cI, —C) cEyws

s c(Byws) —cllws]|* —206(ws) )

Proof: Fix w € #[t,T]. Recall that V¥ of (32) is the
unique viscosity solution of the HIB PDE (33). In view of
its quadratic structure, propose the candidate solution

v =3 (1) (7)) = (G £)

in which s — TIY satisfies (39). Note that %U;"(:c) =

3 (z, PP a) + (x, %) + 5 7¥ and V,U¥(z) = P¥ x + ¢¥.

By substitution in HIB PDE (33),

_ ouy
0s

(x) + HY (z, V.U (x))



= =3 o PYa) — (@, §) = 37 + 5 (. (cIn = C) )
- <$, CEl ws> + % ||UJS||2 + @(ws)
—(PYx+q¥, Az + c Fywy)
+ (P a4 ¢, T (PP +q2)),

which is of the form 3 (z, X% z) + (z,y¥) + 3 2%, with

XY =—-P¥+(cl,—C)—APY—P*A+P“T P,
YW =—¢" —cBiws— A ¢ —cPYFEyws + PYT ¢,
= -7y + CHWS||2 + 2(:)(0-/’5)

—2c(qs, Baws) + (¢, T'qy).

However, by substitution of s — II¥ in (39), X =0, y& =
0, z¢ =0 for all s € (¢t,T). Hence, the proposed candidate
solution (s, z) — U (z) is indeed the unique solution of the
HIB PDE (33), so that V* of (32) satisfies V¥(x) = U¥(z)
for all s € [t,T], x € R™. That is, (38) holds. [

Theorems 1 and 2 together imply that the value function
W of the nonlinear optimal control problem (2) is equivalent
to a supremum of an affine function over a family & of
forced DRE solutions, where

. (n+1)x (n+1) | (39) holds, given any
@—{Hteg we Wt T]

Corollary 1: The value function W, of (2) satisfies

w4 {(1)0(5))

for all z € R™.

The maximization representation provided by Corollary 1
has been applied successfully in an astrodynamics problem
[2], and in a state constrained optimal control problem with
linear dynamics [7]. Similar results are anticipated here.

V. LIMITATIONS AND EXTENSION

Assumptions 1 and 2 are restrictive. Assumption 1 invokes
a uniform bound on the second derivative V., N(z) € §*7,
which is evaluated for z = (x,p) € R?" via bounds on

zN(:z:,p) = —le(:c) - Zpi szfi(x)a
i=1

Vi
VapN(z,p) = (=Vafi(z) | -+ | = Vaful2)),
VppN(:v,p) = Onxn-

Uniform bounds on V..l and V. f;, for i € Nc,, and
on p are thus required. The latter corresponds to a global
Lipschitz requirement for the value function (2), via an
open set selection & = R" x {p € R"|||p|| < K} for
some Lipschitz constant &' < co. Meanwhile, Assumption 2
invokes a bound on the admissible time horizon (26), which
is further limited by the choice of c in (5) needed to satisfy
Assumption 1.

Assumptions 1 and 2 are both used in the proof of
Lemma 4 to infer convexity and concavity properties of
the cost (16), which are fundamental to the min-max game
formulation of (12)-(14). However, by relaxing min-max to

iterated stat operations at the expense of some regularity
requirements [6], these properties are no longer necessary
(but are sufficient) in an ensuing stat game representation
(15). This type of relaxation has similarly been employed in
related work [1], [3], [4], [13], [15], [16], wherein the order
of stat operations can be interchanged. In the context of (2),
this stat order interchange amounts to being able to equate
the lower value (14) of the static game with its corresponding
upper value, thereby providing a direct connection between
(2) and an appropriate extension of the DRE representation
of Corollary 1. This extension takes the analogous form

Wt(x)zﬂeco@% << T),H< f >>7

stat

for all x € R™, and the details are omitted.
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