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Abstract— A finite horizon nonlinear optimal control problem
is considered for which the associated Hamiltonian satisfies a
uniform semiconcavity property with respect to its state and
costate variables. It is shown that the value function for this
optimal control problem is equivalent to the value of a min-max
game, provided the time horizon considered is sufficiently short.
This further reduces to maximization of a linear functional over
a convex set. It is further proposed that the min-max game can
be relaxed to a type of stat (stationary) game, in which no time
horizon constraint is involved.

I. INTRODUCTION

Computational solution of nonlinear deterministic optimal

control problems continues to be a particularly challenging

area within the controls field. A classical but surprisingly re-

lated area of research regards solution of n-body problems in

astrodynamics, c.f. [1], [2]. In [1], using an action-functional

approach, it was demonstrated that on sufficiently short time

horizons, gravitational n-body problems can be represented

as zero-sum games. Extension to indefinitely long time

horizons motivated the development of “staticization” and

“stat” duality [3], [4], [5], [6].

The game-based representation provided in [1] generated

solutions of n-body problems as suprema of linear func-

tionals over convex sets of solutions of differential Riccati

equations (DREs). A corresponding representation was pro-

vided in [7] for solutions of certain state constrained control

problems with linear dynamics. In the current work, it is

shown that a class of nonlinear optimal control problems

may be similarly converted into min-max games. These are

of a form such that the value function may again be obtained

through supremization of linear functionals over convex sets

of solutions of DREs. The main result is Corollary 1.

The development commences with the optimal control

problem of interest in Section II, and the relevant notions of

duality for semiconcave functions in Section III. This duality

is used in Section IV to relax the optimal control problem

to a min-max game, for a sufficiently short time horizon. An

extension to longer horizons is discussed in Section V, with

stat duality used in place of semiconcave duality, to propose

solutions via staticization over sets of solutions of DREs.

Efficient numerical implementation is yet to be considered.
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Throughout, the natural numbers, the real numbers, and

the extended reals are denoted by N, R and R respectively.

Euclidean space is denoted by Rn, n * N, and the corre-

sponding space of n× n matrices by Rn×n. The subsets of

self-adjoint and self-adjoint positive (semi-) definite matrices

are denoted by Sn and (Sng0) Sn>0. Given c * R, C * Sn,

the inequality c In > C is equivalent to c In 2 C * Sn>0,

where In is the identity in Rn×n. The space of bounded

linear operators mapping between Banach spaces Y and

Z is denoted by L(Y ;Z ). Spaces of continuous and k-

times Fréchet differentiable mappings between Y and Z

are denoted by C (Y ;Z ) and C k(Y ;Z ), k * N. Where Y

is a Hilbert space, the Riesz representation of the Fréchet

derivative DyΘ of Θ * C 1(Y ;R) evaluated at y * Y

is denoted by 'yΘ(y) * Y . Where Θ * C 2(Y ;R),
'yyΘ(y) * L(Y )

.
= L(Y ;Y ) denotes the second deriva-

tive given by 'yyΘ(y)h
.
= Dy'yΘ(y)h for all h * Y .

With Y
.
= Rn, this second derivative is identified with a

self-adjoint matrix, i.e. 'yyΘ(y) * Sn, y * Rn. Given

an interval I ¢ R, the space of Lebesgue square-integrable

functions mapping I to Z is denoted by L 2(I;Y ). Norms

are denoted by ‖ · ‖ c ‖ · ‖Y , with the subscript omitted

where the space Y involved is contextually clear.

II. OPTIMAL CONTROL PROBLEM

Attention is restricted to a class of finite dimensional input

affine nonlinear systems, evolving in continuous time on the

finite interval [t, T ] according to the dynamics

¿̇s = A¿s + f(¿s) +B µs, s * [t, T ], (1)

subject to the initial state ¿t = x * Rn and control

input µ * U [t, T ]
.
= L 2([t, T ];Rm), given nonlinear

f * C 2(Rn;Rn), and matrices A * Rn×n and B * Rn×m.

The optimal control problem of interest is defined subject to

(1) via the value and cost functions

W t(x)
.
= inf

µ*U [t,T ]
J̄t(x, µ), (2)

J̄t(x, µ)
.
=

∫ T

t

3(¿s) +
1
2 〈¿s, C ¿s〉+ 1

2 ‖µs‖2 ds,

for all x * Rn, µ * U [t, T ], given non-quadratic running

cost term 3 * C 2(Rn;Rg0), and C * Sng0. For simplicity,

the terminal cost is set to zero. The attendant Hamilton-

Jacobi-Bellman (HJB) partial differential equation (PDE) is
ù
ú
û
0 = 2"Us

"s
(x) + H̄(x,'xUs(x)), s * (t, T ),

UT (x) = 0, x * R
n ,

(3)



in which the Hamiltonian H̄ : Rn×Rn ³ R is defined with

respect to its quadratic and non-quadratic dependencies by

H̄(x, p)
.
= Q̄(x, p) + N̄(x, p), (4)

Q̄(x, p)
.
= 2 1

2 〈x, C x〉 2 〈p, Ax〉 + 1
2 〈p, B B2 p〉,

N̄(x, p)
.
= 23(x)2 〈p, f(x)〉,

for all x, p * Rn. Under reasonable conditions [8], [9], the

value function W t of (2) may be characterized as the unique

viscosity solution of (3).

III. SEMICONCAVITY AND STATIONARITY

A. Semiconcavity

Given a Hilbert space Z , (uniform) semiconcavity of

extended real valued functions is defined with respect to a

quadratic function × : Z × Z ³ R given by

×(y, z)
.
= c

2 ‖y 2 z‖2Z , y, z * Z , (5)

with c * R fixed. Spaces of (uniformly) semiconvex and

semiconcave functions on Z are defined respectively by

S+
ϕ = S+

ϕ (Z )
.
=

{
Θ : Z ³ R

∣∣∣∣
y 7³ ×(y, 0) + Θ(y)
convex, lower closed

}
,

S2
ϕ = S2

ϕ (Z )
.
=

{
N : Z ³ R | 2N * S+

ϕ

}
. (6)

These spaces are in duality, via the semiconcave transform

D2
ϕ and its inverse, the semiconvex transform D+

ϕ .

S+
ϕ

D+
ϕ

c [D−

ϕ
]−1

2222222222222222á½2222222222222222
D

−

ϕ c [D+
ϕ ]−1

S2
ϕ

The semiconcave transform and its inverse are given by

D2
ϕ N = sup

z*Z

{N(z)2 ×(·, z)} , N * S2
ϕ ,

[D2
ϕ ]

21 Θ = inf
y*Z

{Θ(y) + ×(y, ·)} , Θ * S+
ϕ ,

(7)

for all y, z * Z , see for example [7], [10]. Note that

D2
ϕ N = 2D+

ϕ (2N) = [D+
ϕ ]

21N,

[D2
ϕ ]

21 Θ = 2[D+
ϕ ]

21 (2Θ) = D+
ϕ Θ.

B. Stationarity

Functions that are simultaneously semiconvex and semi-

concave are of particular interest. Such functions are contin-

uously differentiable.

Lemma 1: S+
ϕ (Z ) + S2

ϕ (Z ) ¢ C 1(Z ;R).
Proof: Fix N * S+

ϕ (Z ) + S2
ϕ (Z ), and let D2N(z)

and D+N(z) denote the sub- and superdifferential of N

at z * Z . Note that D2N(z) 6= ' as N * S+
ϕ (Z ), and

D+N(z) 6= ' as N * S2
ϕ (Z ). With both differentials non-

empty, existence of 'zN(z) is guaranteed, with D2N(z) =
{'zN(z)} = D+N(z). Continuity of z 7³ 'zN(z) fol-

lows, see [11, Theorem 3.3.7, p.60].

Given N * S+
ϕ (Z ) + S2

ϕ (Z ), Lemma 1 motivates

the introduction of a pair of stationarity operations that

generalize sup (inf) and argmax (argmin), as given by

stat
z*O

N(z)
.
=

{
N(z̄)

∣∣∣∣ z̄ * arg stat
z*O

N(z)

}
,

arg stat
z*O

N(z)
.
=

{
z̄ * O

∣∣ 0 = 'zN(z̄)
}
,

(8)

in which O ¢ Z is an open set. A further restriction of N

yields the following [4], [12].

Lemma 2: Given O ¢ Z , suppose that N * C 2(O;R)
satisfies supz*O ‖'zzN(z)‖ .

= c̄ < >. Then, the following

properties hold:

(i) there exists c < > sufficiently large such that the map

z 7³ z 2 1
c
'zN(z) defines a bijection between O and

its image Õ
.
= {z 2 1

c
'zN(z) | z * O} on O;

(ii) given c < > from (i), the stat-quad transform [4] of

N , denoted Dψ N , is uniquely defined via (5) by

Θ(y)
.
= (DϕN)(y)

.
= stat

z*O

{N(z)2 ×(y, z)}, y * Õ,

N(z) = (D21
ϕ Θ)(z)

.
= stat

y*Õ

{Θ(y) + ×(y, z)}, z * O;

(iii) the stat-quad transform Θ
.
= DϕN of (ii) satisfies Θ *

C 2(Õ ;R) with supy*Õ
‖'yyΘ(y)‖ f 2 c̄.

Remark 1: Under the restrictions of Lemma 2, the semi-

concave transform and stat-quad transform coincide, allow-

ing the former to be restricted to the open sets O and Õ .

IV. MIN-MAX AND STAT GAME REPRESENTATIONS

Motivated by Remark 1, a special case of problem (2) is

considered in which the non-quadratic dependence N̄ of the

Hamiltonian (4) is restricted to some open set O ¢ R2n.

Assumption 1: N̄ * C 2(O;R) and c * R in (5) satisfy

sup
z*O

‖'zzN̄(z)‖ .
= c̄ f c

4 < >. (9)

Assumption 1 and Remark 1 imply that N̄ has the form

N̄(x, p) = inf
y*Õ

{
Θ̄(y) + c

2 ‖(x, p)2 y‖2
}
,

Õ
.
=

{
z 2 1

c
'zN̄(z) | z * O

}
.

(10)

A. Game representations

Motivated by [1], [2], [7], relaxation of the optimizing

variable y appearing in (10) suggests a game representation

for the optimal control problem (2), involving two players.

With Õ ¢ R2n as per (10), the relevant spaces of actions are

V [t, T ]
.
= L

2([t, T ];Rn), W [t, T ]
.
= L

2([t, T ]; Õ), (11)

noting that V [t, T ] in (11) is different from U [t, T ] in (1)-

(2), see Remark 2. A strategy for the first player is a map

¿̄ : W [t, T ] ³ V [t, T ], while a strategy for the second player

is similarly a map Ë̄ : V [t, T ] ³ W [t, T ]. The corresponding

spaces of non-anticipating strategies are defined by

V .
=

ù
üüú
üüû
¿̄ : W [t, T ] ³ V [t, T ]

∣∣∣∣∣∣∣∣

¿̄[Ë̃]r = ¿̄[Ë̆]r " r * [t, Ç ],
given any Ë̃, Ë̆ * W [t, T ]
and Ç * (t, T ] satisfying

Ë̃r = Ë̆r " r * [t, Ç ]

ü
üüý
üüþ
,

W .
=

ù
üüú

üüû
Ë̄ : V [t, T ] ³ W [t, T ]

∣∣∣∣∣∣∣∣

Ë̄[¿̃]r = Ë̄[¿̆]r " r * [t, Ç ],
given any ¿̃, ¿̆ * V [t, T ]
and Ç * (t, T ] satisfying

¿̃r = ¿̆r " r * [t, Ç ]

ü
üüý

üüþ
.

Define the upper and lower values W± of a differential game,

the lower value V 2 of a static game, and its generalization



Ṽ 2 obtained using the stat operation (8), all in terms of the

same cost J , by (respectively)

W+
t (x)

.
= sup

ω̄*W

inf
ν*V [t,T ]

Jt(x, ¿, Ë̄[¿]), (12)

W2
t (x)

.
= inf

ν̄*V
sup

ω*W [t,T ]

Jt(x, ¿̄[Ë], Ë), (13)

V 2
t (x)

.
= sup

ω*W [t,T ]

inf
ν*V [t,T ]

Jt(x, ¿, Ë), (14)

Ṽ 2
t (x)

.
= stat

ω*W [t,T ]
stat

ν*V [t,T ]
Jt(x, ¿, Ë), (15)

Jt(x, ¿, Ë)
.
=

∫ T

t

L(·s, ¿s, Ës) ds, (16)

L(x, v, w)
.
= 1

2 〈v, Σ v〉 2 1
2 〈x, (c In 2 C)x〉

+ 〈x, cE1 w〉 2 c
2 ‖w‖2 2 Θ̄(w) ,

Γ
.
= c In +BB2, Σ

.
= Γ21,

E1
.
=

(
In 0n×n

)
, E2

.
=

(
0n×n In

)
,

for all x * Rn, ¿ * V [t, T ], Ë * W [t, T ], v * Rn, w * Õ ,

in which Γ,Σ * Sn>0, E1, E2 * Rn×2n, and Θ̄ is as per (10),

while s 7³ ·s satisfies the linear dynamics

·̇s = A·s + ¿s + cE2 Ës , s * [t, T ], (17)

subject to the initial state ·t = x * Rn, and player actions

¿ * V [t, T ] and Ë * W [t, T ]. Under suitable conditions, it

will be shown that the games defined by (12)-(15) coincide

with the optimal control problem (2).

Remark 2: It is important to observe that neither player

in (12)-(15) corresponds to the (single) control player in (2).

This is a departure from [1], [7], where the first player was

inherited directly from the optimal control problem, while

the second player dealt with the non-quadratic terms in the

running cost. The key difference here is that, unlike [1], [7],

the costate variable features in the relaxation (10), thereby

affecting the underlying dynamics, and hence both players.

B. Relevant properties of the cost (16)

Some useful properties of the cost (16) relevant to exis-

tence of the values (12)-(15) are summarized as follows.

Lemma 3: The cost Jt of (16) has the semi-quadratic form

Jt(x, ¿, Ë) = f1(Ë) + 〈f2(Ë), ¿〉V [t,T ] +
1
2 〈B̄3 ¿, ¿〉V [t,T ],

(18)

for all x * R
n, ¿ * V [t, T ], Ë * W [t, T ], with f1 :

W [t, T ] 7³ R, f2 : W [t, T ] 7³ V [t, T ], and self-adjoint and

invertible B̄3 * L(V [t, T ]) given respectively by

f1(Ë)
.
= f1(Ë;x)

.
= 2 1

2 〈x,F 2 (c In 2 C)F x〉Rn

+

〈
Ë,

(
cF x

2cG2 (c In 2 C)F x

)〉

W [t,T ]

2
∫ T

t

Θ̄(Ës) ds

2 c
2

〈
Ë,

(
In 2cG

2cG2 In + cG2 (c In 2 C)G

)
Ë

〉

W [t,T ]

(19)

f2(Ë)
.
= f2(Ë;x)

.
= 2G2 (c In 2 C)F x

+
(
cG2 2cG2 (c In 2 C)G

)
Ë, (20)

B̄3
.
= Σ2 G2 (c In 2 C)G, (21)

in which F * L(Rn;V [t, T ]), G * L(V [t, T ]) are defined

with respect to elements Us,τ
.
= exp(A (s 2 Ç)) * L(Rn),

s, Ç * [t, T ], of the generated semigroup by

[F x]s
.
= Us,t x, [G v]s

.
=

∫ s

t

Us,σ vσ dÃ, (22)

for all s * [t, T ], x * Rn, v * V [t, T ], and

‖F‖ f K1 (T 2 t)
1
2 , ‖G‖ f K1 (T 2 t),

K1
.
= sup

s,σ*[t,T ]

‖Us,σ‖. (23)

Proof: Fix x * R
n, ¿ * V [t, T ], and Ë * W [t, T ].

Applying (22), the unique solution s 7³ ·s of (17) is · =
(F x + cG E2 Ë) + G ¿ = (F x + E2 Ë) + G ¿, with E2 .

=
cG E2. Substituting · in (16),

Jt(x, ¿, Ë)

= 1
2 〈¿, Σ ¿〉V [t,T ] 2 1

2 〈(F x+ E2 Ë) + G ¿,

(c In 2 C) [(F x+ E2 Ë) + G ¿]〉V [t,T ]

+ 〈(F x+ E2 Ë) + G ¿, cE1 Ë〉V [t,T ]

2 c
2 ‖Ë‖2W [t,T ] 2

∫ T

t

Θ̄(Ës) ds

= 2 1
2 〈F x+ E2 Ë, (c In 2 C) (F x+ E2 Ë)〉V [t,T ]

2 〈¿, G2 (c In 2 C) (F x+ E2 Ë)〉V [t,T ]

+ 1
2 〈¿, [Σ2 G2 (c In 2 C)G] ¿〉V [t,T ]

+ 〈¿, cG2 E1 Ë〉V [t,T ]

+ 〈Ë, cE2
1(F x+ E2 Ë)〉W [t,T ]

2 c
2 ‖Ë‖2W [t,T ] 2

∫ T

t

Θ̄(Ës) ds,

in which G2 is the Hilbert adjoint of G on V [t, T ], i.e.

[G2 ¿̃]s =

∫ T

s

U 2
σ,s ¿̃σ dÃ, s * [t, T ], ¿̃ * V [t, T ].

Collecting terms in ¿ * V [t, T ],

Jt(x, ¿, Ë)

= 2 1
2 〈F x+ E2 Ë, (c In 2 C) (F x+ E2 Ë)〉V [t,T ]

+ 〈Ë, cE2
1(F x+ E2 Ë)〉W [t,T ]

2 c
2 ‖Ë‖2W [t,T ] 2

∫ T

t

Θ̄(Ës) ds

+ 〈¿, cG2 E1 Ë〉V [t,T ]

2 〈¿, G2 (c In 2 C) (F x+ E2 Ë)〉V [t,T ]

+ 1
2 〈¿, [Σ2 G2 (c In 2 C)G] ¿〉V [t,T ]

= 2 1
2 〈x, F 2 (c In 2 C)F x〉V [t,T ]

+ 〈Ë, [cE2
1 2 E22 (c In 2 C)]F x〉W [t,T ] 2

∫ T

t

Θ̄(Ës) ds

2 1
2 〈Ë, [c In + E22 (c In 2 C) E2

2 cE2
1 E2 2 c E22E1]Ë〉W [t,T ]

+ 〈¿, [cG2 E1 2 G2 (c In 2 C) E2]Ë
2 G2 (c In 2 C)F x〉V [t,T ]

+ 1
2 〈¿, [Σ2 G2 (c In 2 C)G] ¿〉V [t,T ]



= f1(Ë) + 〈f2(Ë), ¿〉V [t,T ] +
1
2 〈B̄3 ¿, ¿〉V [t,T ],

in which f1, f2, and B̄3 are given by (19)-(21). Note further

that B̄3 is self-adjoint on V [t, T ] by definition (21), given

Σ * Sn>0 of (16). Bounds (23) follow from (22), via

|[F x]s| f K1 ‖x‖,

|[G ¿]s| f
∫ s

t

‖Us,σ‖L(Rn) ‖¿σ‖ dÃ f K1

:
T 2 t ‖¿‖V [t,T ],

which hold for all s * [t, T ], x * R
n, ¿ * V [t, T ], with

the latter implying boundness of B̄3. Invertibility of B̄3 also

follows, and the details are omitted.

Lemma 4: Under Assumption 1, the following properties

of (16) hold for all x * Rn, ¿ * V [t, T ], Ë * W [t, T ]:

(i) Ë 7³ Jt(x, ¿, Ë) is concave if c In g C and

T 2 t f T̄0
.
=

1

2K1 c
; (24)

(ii) ¿ 7³ Jt(x, ¿, Ë) is convex if c In f C, or if

T 2 t f T̄1
.
=

1

K1

√
‖c In 2 C‖ ‖c In +BB2‖

. (25)

Proof: Fix x * R
n, ¿ * V [t, T ], Ë * W [t, T ].

(i) Recalling Lemma 3 and (18)-(21), note that the map

Ë 7³ Jt(x, ¿, Ë) is nonlinear. As affine terms do not affect

the desired concavity, and given (³, ³)
.
= Ë, the relevant

remaining terms are (with an abuse of notation)

J0
t (Ë)

.
= 2

∫ T

t

Θ̄(Ës) ds

2 c
2

〈
Ë,

(
In 2cG

2cG2 In + cG2 (c In 2 C)G

)
Ë

〉

W [t,T ]

= 2 c2

2 〈³, G2 (c In 2 C)G ³〉V [t,T ]

2 c
2 ‖Ë‖2W [t,T ] + c2 〈³, G ³〉V [t,T ] 2

∫ T

t

Θ̄(Ës) ds.

By Assumption 1, N̄ * C 2(O;R), so that by Lemma 2,

Cauchy-Schwarz, (23), and with T 2 t f T̄0,

1
2 〈 Ë̃, 'ωωJ

0
t (Ë) Ë̃〉W [t,T ] +

c2

2 〈³̃, G2 (c In 2 C)G ³̃〉V [t,T ]

f 2 c
2 ‖Ë̃‖2W [t,T ] + c2〈³̃, G ³̃〉V [t,T ]

+

∫ T

t

1
2 ‖'wwΘ̄(³s, ³s)‖ ‖Ë̃s‖2 ds

f c2 ‖G‖ ‖³̃‖V [t,T ] ‖³̃‖V [t,T ] 2 ( c2 2 c̄) ‖Ë̃‖2
W [t,T ]

f c2 K1 (T 2 t) ‖³̃‖V [t,T ] ‖³̃‖V [t,T ] 2 c
4 ‖Ë̃‖2W [t,T ]

f 2 c
4 ‖³̃‖2V [t,T ] +

c
2 ‖³̃‖V [t,T ] ‖³̃‖V [t,T ] 2 c

4 ‖³̃‖2V [t,T ]

= 2 c
4

(
‖³̃‖V [t,T ] 2 ‖³̃‖V [t,T ]

)2

f 0,

for all Ë̃
.
= (³̃, ³̃) * W [t, T ]. That is, Ë 7³ J0

t (Ë) is concave.

With c In g C, it then follows that Ë 7³ Jt(Ë) is also

concave. (Note that the asserted requirement c In g C may

be relaxed by further restricting the horizon (24), via (23).)

(ii) As the map ¿ 7³ Jt(x, ¿, Ë) is quadratic by Lemma

3, the relevant term in (18)-(21) is (again abusing notation)

J1
t (¿)

.
= 1

2 〈B̄3 ¿, ¿〉V [t,T ].

The map ¿ 7³ J1
t (¿) is convex if B̄3 is positive semidefinite.

With c In f C, and noting that Σ * S
n
>0, the first assertion

in (ii) is then immediate by (21). Otherwise, again recalling

(21), given T 2 t f T̄1,

〈¿̃, 'ννJ
1
t (¿) ¿̃〉V [t,T ] = 〈B̄3 ¿̃, ¿̃〉V [t,T ]

g
(
‖Γ‖21 2 ‖G‖2 ‖c In 2 C‖

)
‖¿̃‖2

V [t,T ]

g
(
‖Γ‖21 2K2

1 (T 2 t)2 ‖c In 2 C‖
)
‖¿̃‖2

V [t,T ] g 0,

for all ¿̃ * V [t, T ], yielding the second assertion in (ii).

In view of the time horizons required for application of

Lemma 4, the following is assumed for the remainder.

Assumption 2: Constant c in (5) and horizon T 2 t satisfy

c g ‖C‖, T 2 t * (0, T̄ ), (26)

in which T̄
.
= min(T̄0, T̄1) is defined via (24)-(25).

C. Equivalence of value functions (2) and (12)-(15)

The upper and lower values (12) and (13) can be charac-

terized as the unique viscosity solutions U+ and U2 of the

respective Hamilton-Jacobi-Isaacs (HJI) PDEs [8, p.379]
ù
ú

û
0 = 2"U±

s

"s
(x) +H±(x,'xU

±
s (x)), s * (t, T ),

U±
T (x) = 0, x * R

n,

(27)

in which the corresponding Hamiltonians H± are given by

H+(x, p)
.
= sup

v*Rn

inf
w*Õ

G(x, p, v, w), (28)

H2(x, p)
.
= inf

w*Õ

sup
v*Rn

G(x, p, v, w), (29)

and G is defined with respect to L of (16) by

G(x, p, v, w)
.
= 2L(x, v, w) 2 〈p, Ax+ v + cE2 w〉

= 1
2 〈x, (c In 2 C)x〉 2 〈p, Ax+ v + cE2 w〉 2 1

2 〈v, Σ v〉
2 〈x, cE1 w〉 + c

2 ‖w‖2 + Θ̄(w), (30)

for all x, p, v * Rn, w * Õ .

Lemma 5: The Hamiltonians H̄ and H± of (4) and (28)-

(29) for the optimal control problem (2), and for the upper

and lower values (12)-(13) of the game are equivalent, i.e.

H̄(x, p) = H±(x, p), (31)

for all x, p * Rn, so that Isaacs’ condition holds.

Proof: Fix x, p * Rn. Recalling (28)-(29),

H+(x, p) = sup
v*Rn

inf
w*Õ

G(x, p, v, w)

= sup
v*Rn

inf
w*Õ

{2L(x, v, w)2 〈p, Ax+ v + cE2 w〉}

= 1
2 〈x, (c In 2 C)x〉 2 〈p, Ax〉
+ sup
v*Rn

{2 1
2 〈v, Σ v〉 2 〈p, v〉}

+ inf
w*Õ

{ c2 ‖w‖2 2 〈x, cE1 w〉 2 〈p, cE2 w〉 + Θ̄(w)}

= inf
w*Õ

sup
v*Rn

{2L(x, v, w)2 〈p, Ax+ v + cE2 w〉}

= H2(x, p),



so that Isaacs’ condition holds. By completion of squares

with respect to v, and recalling (4), (10),

H+(x, p) = H2(x, p)

= 2 1
2 〈x, C x〉 2 〈p, Ax〉+ 1

2 〈p, B B2 p〉
+ inf
w*Õ

{Θ̄(w) + c
2 ‖w‖2 2 c 〈(x, p), w〉+ c

2 ‖(x, p)‖2}

= Q̄(x, p) + N̄(x, p) = H̄(x, p).

as required.

Motivated by the lower value (14) of the static game, it is

useful to define an additional optimal control problem with

respect to the same cost. In particular, given any fixed Ë *
W [t, T ], define the value V ω of this additional problem by

V ω
t (x)

.
= inf
ν*V [t,T ]

Jt(x, ¿, Ë), (32)

for all x * Rn, in which J is as per (16). Note that V ω is

the unique viscosity solution of the HJB PDE
ù
ú

û
0 = 2"Uω

s

"s
(x) +Hω

s (x,'xU
ω
s (x)), s * (t, T ),

Uω
T (x) = 0, x * R

n,

(33)

in which the Hamiltonian Hω
s : Rn × Rn ³ R is

Hω
s (x, p)

.
= sup
v*Rn

{
2L(x, v, Ës)2 〈p, Ax+ v + cE2 Ës〉

}

= 1
2 〈x, (c In 2 C)x〉 2 〈p, Ax+ cE2 Ës〉+ 1

2 〈p, Γ p〉
2 〈x, cE1 Ës〉+ c

2 ‖Ës‖2 + Θ̄(Ës), (34)

for all s * [t, T ].
Theorem 1: Under Assumptions 1-2, the value (2) of the

optimal control problem, the upper and lower values (12)-

(13) of the differential game, the lower value (14) of the

static game, and its stat generalization (15) are equal, with

W t(x) = W+
t (x) = W2

t (x)

= Ṽ 2
t (x) = V 2

t (x) = sup
ω*W [t,T ]

V ω
t (x), (35)

for all x * R
n, Ë * W [t, T ].

Proof: It is well known, see for example [8], [9], that

V 2
t (x) f W2

t (x) f W+
t (x) f V +

t (x),

for all x * Rn, in which V +
t is the upper value corresponding

to (14) of the static game. By Lemma 5, Isaacs’ condition

holds for the upper and lower Hamiltonians H± of (28)-

(29), i.e. H+ c H2. Hence, by [8, Corollary 6.1, p.387],

the upper and lower values (12)-(13) of the differential game

are equivalent. Moreover, again by Lemma 5, as H̄ c H±,

HJB PDE (3) and HJI PDEs (27) are identical, and so their

respective unique viscosity solutions (2) and (12)-(13) must

be equal. That is, the first two equalities in (35) hold, with

V 2
t (x) f W2

t (x) = W t(x) = W+
t (x),

for all x * Rn.

In order to conclude the third and fourth equalities in (35),

recent results on stat dynamic programming and verification

[3], [12], [13], [14] are applied. In particular, the value Ṽ 2

is the unique solution of a corresponding HJB PDE given by
ù
ú

û
0 = 2"Ũs

"s
(x) + H̃(x,'xŨs(x)), s * (t, T ),

ŨT (x) = 0, x * R
n ,

(36)

in which the Hamiltonian H̃ : Rn × Rn ³ R is

H̃(x, p)
.
= stat
w*Õ

stat
v*Rn

G(x, p, v, w), (37)

for all x, p * Rn, and G is as per (30). Note that v 7³
G(x, p, v, w) is concave as Σ * Sn>0, and w 7³ G(x, p, v, w)
is convex as Θ̄ * S2

ϕ , so that H̄ c H± c H̃ by (28)-(29),

(37). Hence, the unique solution (15) of HJB PDE (36) is

identical to the unique solutions (12)-(14) of HJB PDE (3)

and HJI PDEs (27). Moreover, by Lemma 4, ¿ 7³ Jt(x, ¿, Ë)
is convex, while Ë 7³ Jt(x, ¿, Ë) is concave, so that

W t(x) = W±
t (x)= Ṽ 2

t (x) = stat
ω*W [t,T ]

stat
ν*V [t,T ]

Jt(x, ¿, Ë)

= stat
ω*W [t,T ]

inf
ν*V [t,T ]

Jt(x, ¿, Ë) = sup
ω*W [t,T ]

inf
ν*V [t,T ]

Jt(x, ¿, Ë)

= V 2
t (x),

for all x * Rn, as per the third and fourth equalities in (35).

The fifth equality in (35) follows by (14) and (32).

D. Interpretation of the value (2) via DREs

By inspection of the cost (16), the value V ω of (32)

defines an LQR problem parameterized by Ë * W [t, T ].
Consequently, V ω

t is described by the solution of a DRE.

Theorem 2: Under Assumptions 1-2, and given any Ë *
W [t, T ], the value V ω

t of (32) has the explicit quadratic form

V ω
t (x) = 1

2

〈(
x

1

)
, Πωt

(
x

1

)〉
(38)

for all x * Rn, in which s 7³ Πωs satisfies the DRE
{
2Π̇s = Rω

s (Πs), s * (t, T ),

ΠT = 0 * S
(n+1)×(n+1),

(39)

subject to the problem data

Rω
s (Π)

.
= (Aωs )

2 Π+ΠAωs 2ΠΛΠ+ V ω
s , (40)

Aωs
.
=

(
A cE2 Ës

02n×1 0

)
, Λ

.
=

(
c In +BB2 0n×1

02n×1 0

)
,

V ω
s

.
=

(
2(c In 2 C) cE1 Ës
c (E1 Ës)

2 2c ‖Ës‖2 2 2 Θ̄(Ës)

)
.

Proof: Fix Ë * W [t, T ]. Recall that V ω of (32) is the

unique viscosity solution of the HJB PDE (33). In view of

its quadratic structure, propose the candidate solution

Uω
s (x)

.
= 1

2

〈(
x

1

)
, Πωs

(
x

1

)〉
, Πωs

.
=

(
Pωs qωs
(qωs )

2 rωs

)
,

in which s 7³ Πωs satisfies (39). Note that ∂
∂s
Uω
s (x) =

1
2 〈x, Ṗωs x〉 + 〈x, q̇ωs 〉 + 1

2 ṙ
ω
s and 'xU

ω
s (x) = Pωs x + qωs .

By substitution in HJB PDE (33),

2 "Uω
s

"s
(x) +Hω

s (x,'xU
ω
s (x))



= 2 1
2 〈x, Ṗωs x〉 2 〈x, q̇ωs 〉 2 1

2 ṙ
ω
s + 1

2 〈x, (c In 2 C)x〉
2 〈x, cE1 Ës〉+ c

2 ‖Ës‖2 + Θ̄(Ës)

2 〈Pωs x+ qωs , A x+ cE2 Ës〉
+ 1

2 〈Pωs x+ qωs , Γ (Pωs x+ qωs )〉,
which is of the form 1

2 〈x, Xω
s x〉+ 〈x, yωs 〉+ 1

2 z
ω
s , with

Xω
s = 2Ṗωs + (c In 2 C)2A2 Pωs 2 Pωs A+ Pωs ΓPωs ,

yωs = 2q̇ωs 2 cE1 Ës 2A2 qωs 2 c Pωs E2 Ës + Pωs Γ qωs ,

zωs = 2ṙωs + c ‖Ës‖2 + 2 Θ̄(Ës)

2 2 c 〈qωs , E2 Ës〉+ 〈qωs , Γ qωs 〉.
However, by substitution of s 7³ Πωs in (39), Xω

s = 0, yωs =
0, zωs = 0 for all s * (t, T ). Hence, the proposed candidate

solution (s, x) 7³ Uω
s (x) is indeed the unique solution of the

HJB PDE (33), so that V ω of (32) satisfies V ω
s (x) = Uω

s (x)
for all s * [t, T ], x * Rn. That is, (38) holds.

Theorems 1 and 2 together imply that the value function

W t of the nonlinear optimal control problem (2) is equivalent

to a supremum of an affine function over a family D of

forced DRE solutions, where

D
.
=

{
Πt * S

(n+1)×(n+1)

∣∣∣∣
(39) holds, given any

Ë * W [t, T ]

}
.

Corollary 1: The value function W t of (2) satisfies

W t(x) = sup
Π*coD

1
2

〈(
x

1

)
, Π

(
x

1

)〉
,

for all x * R
n.

The maximization representation provided by Corollary 1

has been applied successfully in an astrodynamics problem

[2], and in a state constrained optimal control problem with

linear dynamics [7]. Similar results are anticipated here.

V. LIMITATIONS AND EXTENSION

Assumptions 1 and 2 are restrictive. Assumption 1 invokes

a uniform bound on the second derivative 'zzN̄(z) * S2n,

which is evaluated for z = (x, p) * R2n via bounds on

'xxN̄(x, p) = 2'xxl(x)2
n∑

i=1

pi'xxfi(x),

'xpN̄(x, p) = (2'xf1(x) | · · · | 2 'xfn(x)) ,

'ppN̄(x, p) = 0n×n.

Uniform bounds on 'xxl and 'xxfi, for i * Nfn, and

on p are thus required. The latter corresponds to a global

Lipschitz requirement for the value function (2), via an

open set selection O
.
= Rn × {p * Rn | ‖p‖ f K} for

some Lipschitz constant K < >. Meanwhile, Assumption 2

invokes a bound on the admissible time horizon (26), which

is further limited by the choice of c in (5) needed to satisfy

Assumption 1.

Assumptions 1 and 2 are both used in the proof of

Lemma 4 to infer convexity and concavity properties of

the cost (16), which are fundamental to the min-max game

formulation of (12)-(14). However, by relaxing min-max to

iterated stat operations at the expense of some regularity

requirements [6], these properties are no longer necessary

(but are sufficient) in an ensuing stat game representation

(15). This type of relaxation has similarly been employed in

related work [1], [3], [4], [13], [15], [16], wherein the order

of stat operations can be interchanged. In the context of (2),

this stat order interchange amounts to being able to equate

the lower value (14) of the static game with its corresponding

upper value, thereby providing a direct connection between

(2) and an appropriate extension of the DRE representation

of Corollary 1. This extension takes the analogous form

W t(x) = stat
Π*coD

1
2

〈(
x

1

)
, Π

(
x

1

)〉
,

for all x * Rn, and the details are omitted.
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