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Biogeographic history can set initial conditions for vegetation community assemblages
that determine their climate responses at broad extents that land surface models attempt
to forecast. Numerous studies have indicated that evolutionarily conserved biochemical,
structural, and other functional attributes of plant species are captured in visible-to-short
wavelength infrared, 400 to 2,500 nm, reflectance properties of vegetation. Here, we
present a remotely sensed phylogenetic clustering and an evolutionary framework to
accommodate spectra, distributions, and traits. Spectral properties evolutionarily con-
served in plants provide the opportunity to spatially aggregate species into lineages
(interpreted as “lineage functional types” or LFT) with improved classification accuracy.
In this study, we use Airborne Visible/Infrared Imaging Spectrometer data from the 2013
Hyperspectral Infrared Imager campaign over the southern Sierra Nevada, California
flight box, to investigate the potential for incorporating evolutionary thinking into
landcover classification. We link the airborne hyperspectral data with vegetation plot
data from 1372 surveys and a phylogeny representing 1,572 species. Despite temporal
and spatial differences in our training data, we classified plant lineages with moderate
reliability (Kappa = 0.76) and overall classification accuracy of 80.9%. We present an
assessment of classification error and detail study limitations to facilitate future LFT
development. This work demonstrates that lineage-based methods may be a promising
way to leverage the new-generation high-resolution and high return-interval hyperspec-
tral data planned for the forthcoming satellite missions with sparsely sampled existing
ground-based ecological data.

evolutionary biology | biogeography | hyperspectral | plant ecology | lineage functional types

The evolutionary history of the organisms that make up an ecosystem profoundly con-
strains the attributes and responses of that ecosystem. The trait patterns that result from
evolutionary relatedness have a tangible impact on vegetation climate responses at global
scales (e.g., ref. 1). Patterns of plant distributions that stem from evolutionary and bio-
geographic history influence disturbance regimes (e.g., ref. 2), determine critical biodi-
versity features (3, 4), and impact the trajectory of ecosystem responses to environmental
change (5). Yet ecological forecasting at broad extents (e.g., land surface models (LSMs);
ref. 6) is often coarse and disconnected from the evolutionary history and biogeographic
contingencies that shape ecological communities (7-9).

Remote sensing has the potential to identify a vast array of vegetation properties (e.g.,
from biodiversity to biomass) from plots to landscapes to global extents (e.g., ref. 10).
Numerous studies have indicated that VSWIR (visible-to-short wavelength infrared;
400-2,500 nm) reflectance properties of vegetation capture evolutionarily conserved bio-
chemical, structural, and other functional attributes of plant species (e.g., refs. (11-14)).
Yet, phylogenetic turnover and diversity have not been fully explored as alternative methods
for assessing biodiversity from space. Lineage functional types (LFTs), or vegetation types
informed by evolutionary information, have been proposed as an alternate paradigm to
the use of plant functional types (PFT) in LSMs and thereby incorporate critical bioge-
ographic history into ecological forecasts (15, 16). In this study, we explore the potential
to map this aspect of plant functional diversity remotely.

The LFT concept is a natural extension of the increased inclusion of “tree-thinking” in
biology that has produced significant advancements in community ecology, biogeography,
and trait ecology over the last several decades (e.g., refs. 17-20). We envision LETs as a balance
between broadly defined PFTs and local ecology. On the one end, LFTs would be explicitly
linked through phylogenetic relatedness (e.g., ref. 21), which provides implicit inclusion of
evolutionary patterns that result from history and a better representation of ecological and
biogeographic patterns than physiognomic classification. On the other end, leveraging phy-
logeny in creating vegetation types prevents models from being overly specified for large-scale
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prediction. The goal of including evolution in the creation/develop-
ment of vegetation types is not to simply provide more cover types
(and to some degree, PFTs already include LFTs, e.g., gymnosperms);
instead, the aim is to provide more ecologically realistic and flexible
groupings with the potential to link model parameters directly to
remote sensing and/or field-observed traits at different phylogenetic
scales (15, 16). LETs might capture large-scale groupings that work
for modeling, improve the ability to classify them with remotely
sensed data, and reveal interesting biogeographic patterns that could
otherwise be missed. In this sense, we define LFTs as related species
that, with a given scale of analysis, can be grouped for the purpose
of improved detection or modeling. Distantly related species or
groups of species often co-occur locally, and the manner in which
these assemblages can be represented by phylogenetic clusters will
likely vary by application. For instance, a process model might allow
for fractional representations, or remote sensing approaches might
only detect one or more dominant groups. It remains an open ques-
tion how generally applicable LFT-based approaches can be, espe-
cially in hyperdiverse tropical ecosystems where aggregating by
lineage might either be powerful or impossible. Overall, evolutionary
relatedness provides a potentially fruitful framework for integrating
modeling efforts with the expanding availability of phylogenies, spe-
cies distributions, traits, and remotely sensed data.

Evolutionary lineage—based functional types present a means
to assimilate data from a wide range of datasets (e.g., traits, remote
sensing data) and ask questions incorporating, for example, the
evolutionary drivers that lead to dominance or high endemism
(22). There is also a critical need to better understand and predict
the distribution of functional types and their functional attributes
and to better represent the physiological dynamics of vegetation.
These are critical questions that limit our ability to use LSMs for
ecological forecasts. The 2018 Decadal Survey outlines a set of
important scientific questions related to the “structure, function,
and biodiversity of Earth’s ecosystems,” many of which can be
addressed by the development of LFTs (23). The Decadal Survey
also calls for the development of a wide range of remote sensing
systems, together now called the Earth System Observatory and
including the Surface Biology and Geology (SBG)—designated
observable comprising planned satellites with full VSWIR cover-
age with 16-d return intervals at 30-meter resolution and a thermal
sensor with 60-meter resolution. Furthermore, numerous hyper-
spectral imagers are planned or already deployed. As such, LFTs
mapped via VSWIR remote sensing will have the potential to
leverage temporal dynamics in the function, distribution, and
diversity of plant lineages. These data would form the basis for
spatially explicit and high-resolution ecological forecasting in the
context of the whole Earth System (10).

Biodiversity hot spots cover a small proportion of the land
surface, but they contain irreplaceable biodiversity and represent
a global priority for conservation efforts (24, 25). The California
Floristic Province (CFP) is one of the world’s biodiversity hot
spots, characterized by threats to a large number of endemic spe-
cies (24, 25), and is an ideal model system for these questions
because of its high diversity of ecosystem types and rich data
availability. The CFP is a focal point for many influential lines of
inquiry in biodiversity research (e.g., refs. 7, 9, and 26) and the
evolutionary origins of CFP biodiversity (8, 22, 27) and commu-
nity assembly dynamics (7, 9). The CFP hot spot is characterized
largely by a Mediterranean climate and includes a range of biotic
subregions that together support nearly 7,000 native species or
subspecies of plants (28). Vegetation types within the CFP are a
mosaic of ecosystems ranging from serpentine chaparral to conif-
erous forests and exhibit high spatial variation distributed across
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a topographically diverse landscape (26). This highlights the
importance of Mediterranean ecosystems as islands of diversity
and the importance of evolutionary age of lineages in understand-
ing the biogeographic origins of diversity patterns (8). Here, we
present an approach to creating LFTs for the southern Sierra
Nevada mountains in the CFP to explore high-resolution patterns
of biodiversity with the goal of mapping phylogenetic clusters.

Methods & Results

Rationale of the Approach. We adopted an approach that uses existing
ground reference data (e.g., vegetation surveys) to link with remote sensed data,
which we consider potentially informative for future regional or global-scale
remote sensing hyperspectral products. As such, we began with an exploratory
analysis of remote sensing data, used data reduction approaches to annotate the
spectral variation (e.g., ref. 4), and then moved toward a supervised classification
approach informed by structure and phylogeny assessed from field data. We
started the analysis with the examination of spectral variation in the imagery,
focusing on what can feasibly be retrieved from space. Then, we linked this vari-
ation to abundance and evolutionary relatedness data. We selected lineages to
represent functional types that can be mapped with remote sensing and that
balance evolutionary distinctiveness with abundance.

Study Area. We focused our study in the southern Sierra Nevada flight box
flown in 2013 by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) as
part of the hyperspectral preparatory data campaign from the Hyperspectral
Infrared Imager program (HysplRI; ref. 29). The flight lines and vegetation sur-
veys (described below) are shown in S/ Appendix, Fig. S1. These data have an
18-m resolution and span 360 to 2,500 nm wavelengths with 224 spectral bands.

Image Processing. All 11 flightlines from June 12,2013, were georeferenced in
ref. 29 to a coregistration accuracy within a half-pixel. Ref. 29 compensated for bright-
ness differences from sun-angle geometry and bidirectional reflectance distribution
function (BRDF) across flight lines by applying a continuum removal, a process which
normalizes spectra to a convex hull (30). Other approaches exist ranging from sim-
ple spectral normalization to more complex flight-specific approaches (e.g., ref. 31).
However, we adopted an approach similar to that described in ref. 32 where albedo
information is maintained (i.e., not normalized) and where transferability to future
studies would be greater. The impact of these effects, which lead to the banding in
Sl Appendix, Figs. S1 and S2, is considered further in the Discussion. Water vapor
absorption features from 1,810 to 1,950 nm and from 1,350 to 1,450 nm were
removed. We used the early-June 2013 flights because mid-yearimages would have
less snow and because other AVIRIS collections are more consistently collected in
June.June 2013 represents a time period of relatively low disturbance to the study
area compared with later AVIRIS flights (i.e., prior to the August 2013 Rim Fire) and
avoids larger fires and the bulk of tree mortality that occurred later in the decade
(33, 34). Furthermore, although observations from the vegetation surveys used in
this study exist from 2,000 to present, over 98% of plots have observations prior to
June 2013.

Plot Data. We used existing vegetation survey data from three distinct sources
that overlapped with the flight box: the Forest Inventory and Analysis (FIA)
Program of the U.S. Forest Service (https://apps.fs.usda.gov/fia/datamart/data-
mart.html) (36) (n = 544), the Vegetation Classification and Mapping Program
(VegCAMP) of the California Department of Fish and Wildlife (https://wildlife.
ca.gov/Data/VegCAMP) (37) (n = 180), and VegBank (38) (n = 542). FIA data
provide exhaustive enumeration of trees with diameter at breast height larger
than 12.7 cm within a cluster plot comprising four fix-radius (7.32 m) subplots
(https://www.fia.fs.usda.gov/program-features/basic-forest-inventory/). FIA data
also include detailed descriptors of near-ground vegetation and coarse woody
material and a plethora of other parameters. We obtained true coordinate infor-
mation for FIA plot location (instead of fuzzed and swapped data). Surveys from
VegCAMP represent manually delineated homogenous polygon areas of 100 m?
to 1,000 m” depending on the vegetation type (from herbaceous to wooded)
taken in representative stands including visual estimates of species cover. The
VegBank data come from a range of independent sources and also ranged from
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100 to 1,000 m? in size, and we used surveys reporting cover abundances (i.e.,
the VegBank “cover” field). Plots were observed from 2000 to 2019, but where
data exist before and after 2013, only data prior to 2013 were used to avoid
impacts from disturbance. VegCAMP canopy cover and VegBank variable cover
metrics were then compiled for the study area. The distribution of species-relative
abundances followed expected patterns of dominance (39, 40), with a few species
dominating 95% of the relative abundance estimates (S/ Appendix, Fig. S3).

Plots were not collected at the same time as the hyperspectral flyovers and
so we used the National Land Cover Database (NLCD) (41) to filter out all plots
that had any history of vegetation cover change noted from 2000 to 2019
(81 Appendix, Fig. S4). This would include fires that led to a vegetation change
(e.g.,ashiftfrom forested to grass) but may not detect mortality that shifts species
abundances within an NLCD cover class.

Phylogeny. We used the dated phylogeny developed and tested by (22).
We chose to use this phylogenetic tree because it was developed specifically
for this type of biogeographic study and the original authors found that their
biogeographic analyses of CFP flora were robust given this phylogeny. In
this phylogeny, the backbone relationships among plant lineages are well
supported, dated, and provide excellent coverage of our study species. The
phylogeny represents species and groups of species as operational taxonomic
units (OTUs) conducive to generating a robust tree. In essence, 0TUs are math-
ematical definitions of taxonomic units defined by the similarity of molecular
sequences. We scrubbed (cleaned and matched to accepted binomials) the
species names in the vegetation survey data using http://www.theplantlist.
org asimplemented in the Taxonstand R package (42). This process aided the
connection of the scrubbed species table to OTUs in ref. 22, and we found
that 71% of species were linked to the phylogeny automatically. We manually
classified the remaining species into the OTUs, and only 0.13% of surveyed
species could not be confidently assigned to an OTU (Dataset S1). The OTU
tree from ref. 22 is fully bifurcated, and because manual OTU assignment was
only conducted when inclusion was unambiguous (e.g., red versus white Oak
clades), this process did not create polytomies.

Initial Classification of Remote Sensing Data. First, we identified
the dominant spectral classes in the study area using unsupervised classifica-
tion. We extracted the reflectance spectra from the AVIRIS data (examples for
dominant woody species in FIA data shown in Fig. 1) for each vegetation survey
location based on plot coordinate data; location data had a mean error of 5.4 m
forVegCamp, our VegBank subset did not report location accuracy, and for the FIA
data, we used the actual plot coordinates (i.e., not fuzzed or swapped). The major-
ity of FIA plots in the study area were georeferenced using HighPrecision Global
Navigation Satellite System devices and postprocessing with resulting precision

between 1and 2 m (43). We performed a feature selection by canonical discrimi-
nantanalysis (CDA)in the R package "candisc” (44); CDAreduces the dimensions
of the spectral data, producing orthogonal axes that most distinguish groups (e.g.,
dominant species in each plot). We kept the CDA axes that collectively accounted
for two-thirds of the spectral variation, a total of 35 (S/ Appendix, Fig. S5). This
was similar to the approach successfully taken in ref. 33 in a study of vegetation
classification of AVIRIS data for Santa Barbara, California area.

We applied the K-means algorithm to cluster the CDA-transformed spectra
(S Appendix, Fig. S2) into groups that minimize spectral variation within each
of k groups. The elbow method (a common approach to selecting the number
of clusters based on diminishing return in variance explanation when adding
clusters) was used to select 15 spectral clusters, nine of which were logical clus-
ters of vegetation and the remaining were rare groupings or urban areas. This
analysis was performed using the RcppArmadillo package with KMeans_rcpp()
function (45).

To annotate the clusters, we identified the most dominant OTUs in each clus-
ter (Fig. 2) that collectively accounted for 95% of the cover in that cluster and
performed an indicator species analysis (ISA) in the R package indicspecies (46,
47).1SA is a community ecology analysis that finds species that are associated
with communities and our purpose in using it was to create a list of species that
represented each spectral cluster. Statistics for balancing abundance, species
features, phylogeny, and spectral distinctiveness do not exist. ISA based on (47)
worked better than other preexisting methods we tried as it allowed indicator
taxa to exist across spectral clusters to better represent their distributions. As such,
this approach is appropriate for phylogenetic analysis because in this study, we
focus on dominant LFTs that emerge at the plot scale. The ISA also allowed us to
visualize the turnover in important species across the gradient from West to East
across the Sierra Nevada flight box (Fig. 2) and across the phylogeny.

LFT Generation. Next, our goal was to produce remotely detectable vegeta-
tion types. We developed a simple method that balanced the relevance of each
species (i.e., their abundance and association with spectral clusters) with the
tree topology. We compared this method to several other approaches described
in SI Appendix, Supplementary Methods S1. In short, clustering the phylog-
eny based on evolutionary distinctiveness (lineage age alone) or functional
distinctiveness does not appropriately prioritize the need for functional types
to capture the diversity among the most dominant species on the landscape
and resulted in suboptimal LFT classifications. Our LFT generation method is
outlined as follows:

Step 1- Ordinate community data. We started with the presence-absence
matrix from the ISA, meaning that the analysis focused on 129 indicator OTUs
(across eight spectral clusters) that accounted for over 95% of relative abundance.
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Fig. 1. Mean spectral traces for each of the woody species that are dominant in the FIA plot data in the southern Sierra Nevada mountains, California, USA.

Species show a wide range of variation across the spectra and in overall albedo.
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We chose ISAas our approach because we wanted to organize our analysis around
suites of species that would be associated with diagnostic spectral features but
also allow these species to exist across spectral classes. We used nonmetric
multidimensional scaling (S Appendix, Fig. S6) to summarize the community
variation into two axes. The ordination algorithm found a stable solution with a
very low stress value (0.05), which indicates that species were well sorted along

the reduced axes.
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Northeast (Mono Lake)

Fig. 2. Indicator species analysis for the spectral
clusters in SI Appendix, Fig. S2, sorted from West to
East and by phylogenetic relatedness. This phylogeny
represents the 129 OTUs that comprise over 95% of
the relative abundance in the community survey data.
Community similarity between the neighboring clusters
is apparent, especially in Spectral Cluster 8 and 11, 3, and
4 as well as similarity in 13 and 15. From West to East,
expected patterns of turnover are apparent (especially
for canopy species) as the occurrence of broadleaf
species peaks in Spectral Cluster 4 and then shifts
toward Gymnosperms in 10, 13, and 15.

Step 2 - Identify communities. To identify community clusters, we con-
ducted a second K-means clustering to group the community variation into five
communities (again, using the elbow method). The purpose of this step is to
discretize the species into communities that could map to the phylogenetic tree.
Step 3 - Intersect communities and phylogeny. With each OTU across the
phylogeny mapped to 1 of 5 community clusters, we grouped lineages where the

majority of the descendants of a common ancestor shared the same community
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Fig. 3. Lineage functional types (LFTs) classified as the intersection of
community indicator species, spectral clustering, and phylogeny (Methods).
Different colors indicate 60 different LFTs that were produced by our method,
creating fewer, spectrally similar clusters from the original 1572 species. In
Fig. 4, we classify the six dominant woody canopy LFTs that most influence
the spectral signals for the FIA survey data.

cluster association. We labeled these groups of related species from the same
ecological associations as LFTs (e.g., LFT#1, #2, and #3). Some lineages included
an internal branch of one OTU associated with a different community cluster,
and we assigned these instead to the ancestral LFT to avoid the generation of
three groups where one was more parsimonious. This process allowed the LFTs to
emerge from the fusion of the phylogeny with the combinations of species that
were observed to associate with specific communities (Fig. 3). This intersection
resulted in 60 LFTs from across the full phylogeny.

LFT Classification. Finally, we created a supervised classification model for
LFTs, trained on CDA-transformed reflectance data at vegetation plots using a
support vector machine (SVYM). Because of the added complication of creating
asupervised classifier from multistrata community data, we focused this part
of our work on the woody species based on FIA basal area data, which should
dominate spectral signatures of airborne imagery and which were collected
in a consistent way. The woody species of the FIA data comprises just six LFTs
from the 60 that were produced in the LFT generation steps. Models were
developed using a training subset and validated on a stratified random 10%
subset of the data.

Cover Classes
W LFT1

Calocedrus decurrens
Juniperus occidentalis

| LFT2

Quercus chrysolepis
Quercus douglasii
Quercus wislizeni
Quercus kelloggii
Quercus lobata
Quercus garryana
Quercus engelmannii

| LFT3
Abies magnifica
Abies concolor
Tsuga mertensiana

B LFT4
Pinus ponderosa
Pinus jeffreyi
Pinus sabiniana
Pinus attenuata

O LFTS

Pinus contorta

B LFT6

Pinus monticola
Pinus lambertiana
Pinus albicaulis
Pinus flexilis

B Water
O No Veg / Other

10 km

Fig. 4. Supervised classification of six woody LFTs built from FIA data using a
support vector machine classifier. Classification statistics are available in Table 1.
Species associated with each LFT are listed in the legend under each cover class,
and they are ordered by abundance highest to lowest from top to bottom. While
the classifications performed well, flight line artifacts related to solar illumination
and hyperspectral sensor geometry are apparent and discussed in text.

We felt most confident in the sample size per LFT (n > 25) and compara-
bility of the FIA data for woody vegetation, and so when projecting the model
outputs across the landscape, we restricted these classifications to the spatial
boundary of the FIA data (specifically, the convex hull of the coordinates)
(Fig. 4). Our simple method identified six LFTs to represent the woody can-
opy cover (from the 60 LFTs that constitute the entire species pool including
herbaceous species) in the southern Sierra Nevada flight box. These LFTs were
derived from the original 1,572 species in the dataset. We found that our SYM
provided moderate calibration (0.76) and validation (0.72) Kappa values for
these LFTs. Mathews correlation coefficient was also 0.76, suggesting that
Kappa was a reliable metric to assess our classifications in this instance (48).
The overall accuracy was 80.9%. Accuracy statistics and a confusion matrix can
be found in Table 1. We performed a spatial classification error assessment
that showed that commission errors were not clustered based on a join-count
test (P = 0.43)and do not visually associate with BRDF banding (S/ Appendix,
Fig. S9). We also calculated phylogenetic dispersion statistics for spectral clus-
ters (SI Appendix, Fig. S10).

Table 1. Classification statistics for the final SVM model

LFT1 LFT 2 LFT 3 LFT 4 LFT5 LFT6
User's accuracy 43.5 97.9 88.6 59.2 96.8 44.4
Producer’s accuracy 90.9 87.9 77.8 76.3 73.2 94.1
Confusion matrix LFT1 LFT 2 LFT 3 LFT 4 LFT5 LFT6 Total
LFT 1 10 1 0 0 0 0 11
LFT 2 1 94 0 12 0 0 107
LFT 3 5 0 70 7 2 6 90
LFT 4 5 1 2 29 0 1 38
LFT5 2 0 6 1 60 13 82
LFT6 0 0 1 0 0 16 17
Total 23 96 79 49 62 36 345

Classification accuracy was 80.9% and Cohen’s Kappa was 0.72 in the validation set.
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Discussion

We found that evolutionary relatedness increased the ability to clas-
sify a hyperspectral image with diverse training data, resulting in a
logical number of vegetation types that could be used in ecological
modeling, and that the classification scheme was rooted in a frame-
work that captured clusters of related species that have resulted from
biogeographic, evolutionary, and ecological processes (Fig. 2).
Vegetation plots with related species had similar spectral signatures
which enabled enhanced classification of the land surface. This find-
ing aligns with research indicating broad-scale biome conservatism
(49-51), patterns of phylogenetic trait and habit conservatism (52,
53), and spectral similarity of related species (11, 13). A major next
step for LFTs is to explicitly include trait data and further ecological
context. As such, LFTs may increase the likelihood that ecological
forecasts and landscape classifications capture, for example, conserved
attributes of trees that determine their drought responses (54),
although there are limitations to a completely automated approach
and the inclusion of expert knowledge or improved phylofunctional
clustering methods may be desired.

We identified patterns of phylogenetic clustering within unsuper-
vised classifications of the spectral data. We mapped the locations
associated with these lineages and processes at a high spatial resolu-
tion using hyperspectral data. Our LFT generation process produced
vegetation clusters that qualitatively agree with visual expectations
for the ecological distributions of plants in the Sierra Nevada
(Figs. 2 and 3). In general, broadleaf vegetation types in the
Southwest transition, with elevation, toward the Northeast into areas
dominated by needleleaf lineages. The oaks were a particularly inter-
esting LFT, as the major evolutionary oak groups become one LFT.
This makes sense in the context of the community analysis, but
potentially misses key attributes within the oaks that might not be
captured (54, 55) or discussed in ref. 22. This possible simplification
highlights the need to include remote sensing of traits directly (e.g.,
leaf mass per area and nitrogen) (56) as well as traits from online
vegetation databases to generate parameter values to potentially also
pull out those unique branches that might be important (57). The
impact of analysis extent (spatial or phylogenetic), as a more focused
study (or one allowing for more community clusters), might divide
lineages more finely. Similarly, within the grasses included in this
analysis, the primarily C lineage comes out as a separate LFT from
the solely C; grass clade which is more common in the region (58).
‘Then, process-based models could be run in a spatially explicit way
to model ecosystem function and distributional change (59).
Inclusion of trait data would also enable testing of hypotheses about
why the woody vegetation LFTs mapped in Fig. 4 are organized the
way they are. Species groups may have similar leaf types, canopy
structure, and albedo, that results in similar spectra.

Past research on remote sensing of evolutionary history with spec-
tral information relied primarily on field or leaf spectroscopy (11-14,
60). Field-collected spectra represent nearly optimal data, are col-
lected to represent pure spectral signatures of a target, and do not
have positional error, or atmospheric interference. Depending on
how they are collected, they can minimize canopy effects such as
shading, architecture, and multiple scattering that might make this
work difficult in many regions (61). This study represents real-world
application of airborne remote sensing data combined with diverse
vegetation plot data collected at different dates, scales, with different
methods and locational accuracy to map LFTs across a region. In
addition to these nonuniformities in the plot data, the 18-m imagery
contains perennial remote sensing challenges such as mixed pixels
and BRDF correction issues. Despite these challenges, our approach
showed that a majority of spectral clusters from moderate-resolution
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airborne imagery represented species groups that were more phy-
logenetically related than expected, and we succeeded in mapping
LFTs with an overall accuracy of 80.9%. We note that these classi-
fications represent dominant LFTs and that it is likely that distantly
related species or secondary LFTs co-occur within mixed pixels. Roth
et al. (62), who looked at spectral classification of plant species across
a range of ecosystems in North America, found that in the Sierra
Nevada, it was particularly difficult to classify conifer species because
they are so heavily mixed at relatively fine scales (for example, Pinus
lambertiana exists typically as individual crowns). Aggregating at a
higher taxonomic level that is linked by relatedness was a more effec-
tive classification strategy in this complex mixture because clusters
of LFTs are probably more likely to occur than clusters of individual
species. These results indicate promise for scaling these analyses to
larger areas with emerging hyperspectral satellite imagery.

These results also point to the future possibility of scalability
and creating integrated datasets that allow the generation of LFTs
at different spatial scales. Datasets exist to generate phylogenies
(e.g., Open Tree of Life: https://opentreeoflife.github.io/), request
functional traits (e.g., TRY: www.try-db.org), and acquire distri-
bution and abundance data (e.g., https://mol.org/ and BIEN
which also includes a draft phylogeny and traits). Integration of
these data linked through LFTs to remotely sensed hyperspectral
data (such as SBG: https://sbg.jpl.nasa.gov/, EMIT—Earth
Surface Mineral Dust Source Investigation on ISS: https://earth.
jpl.nasa.gov/emit/, HISUI—Hyperspectral Imager Suite on ISS:
www.meti.go.jp, DESIS—DLR Earth Sensing  Imaging
Spectrometer on ISS: www.dlr.de, or CHIME and EnMAP—
Environmental Mapping and Analysis Program: https://www.esa.
int/ and www.enmap.org) could generate model parameters and
biogeographic knowledge dynamically across a range of scales
(spatial and phylogenetic). We suggest that more advanced statis-
tics could be employed to cluster phylogenies in conjunction with
functional distinctiveness, spectral distinctiveness, and abundances
to produce better or tunable groupings.

This work has several important limitations and only represents
astarting point based on best-available data. As discussed, we decided
not to normalize reflectance data and instead look toward method-
ological improvements such as planned BRDF corrections that will
produce uniform spectra for these flight boxes. These BRDF correc-
tions are an integral part of the data-processing pipeline being pre-
pared for future satellites which will have inherently reduced BRDF
sun-angle effects compared to airborne data due to altitude and
collection speed. BRDF correction would provide moderate
improvements to calibration accuracy. In support of this, our spatial
error assessment did not suggest that errors were clustered or associ-
ated with BRDF striping (S Appendix, Fig. S9), and more likely
were associated with issues of scale disparity between plots and pixels,
variation in stand structure, or species richness and phylogenetic
overdispersion (S/ Appendix, Fig. S10).

While the LET approach did help somewhat with harmonizing
the disparate vegetation datasets, our work highlights the common
classification problem that remotely sensed data and ground-based
training data often differ considerably in spatial extent, temporal
coverage, and information content. For example, classifying the
diversity of the herbaceous layer in mixed pixels with airborne data
remains a major challenge. Some pixels are represented by both her-
baceous understory and woody vegetation or have extremely high
richness, and it is possible that using an approach such as the
Multiple-Endmember Spectral Mixture Analysis or convolutional
autoencoder for subpixel classification or hierarchical random forests
(e.g., HieRanFor) where cover classes could be nested to reflect evo-
lutionary relatedness might produce improved results. Subpixel

pnas.org


https://opentreeoflife.github.io/
https://www.try-db.org
https://mol.org/
https://sbg.jpl.nasa.gov/
https://earth.jpl.nasa.gov/emit/
https://earth.jpl.nasa.gov/emit/
https://www.meti.go.jp
https://www.dlr.de
https://www.esa.int/
https://www.esa.int/
https://www.enmap.org
http://www.pnas.org/lookup/doi/10.1073/pnas.2215533120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2215533120#supplementary-materials

Downloaded from https://www.pnas.org by 73.17.129.185 on March 19, 2024 from IP address 73.17.129.185.

unmixing technique might be increasingly important for
lineage-based approaches if applied to forthcoming satellite missions
that will have lower resolution than AVIRIS data. Our study also
benefited from the use of a fully bifurcated phylogeny based on
groups of species (22) that was able to accommodate the full breadth
of our vegetation plots at regional scales. However, for future studies
requiring higher taxonomic resolution, it is unclear exactly how sen-
sitive LFT generation will be to phylogenies with polytomies. Studies
could also explore the use of a wider range of approaches for arriving
at the optimal number of clusters to use for analysis (e.g., NbClust
R package; ref. 63). Similarly, we were not able to quantitatively
assess the impact that species richness and pixel size played in how
LFTs become discretized. This is an opportunity for improvement,
especially if approaches can be developed that better included pixels
and plots with mixed LFT composition (and the vegetation data do
not necessarily represent true absences in all cases). Future hyper-
spectral imagery with improved revisit times will also allow for
improved multitemporal assessment of LFTs and the inclusion of
LFT-specific phenology (33, 53). Furthermore, this highlights a
potential opportunity for data fusion approaches where other instru-
ments like LIDAR could be used to first estimate the woody canopy
cover and partition woody LFTs to the canopy accordingly (although
stature may not always be a conserved attribute). For example, the
Global Ecosystem Dynamics Investigation aboard the International
Space Station or the NEON AOP (National Ecological Observatory
Network, Airborne Observing Platform) could be tested for this
purpose. As a combined consequence of these limitations, we were
ultimately only able to map six total LFTs whereas we might hope
to distinguish more. This constraint primarily stems from constrict-
ing the analysis to woody vegetation for classification because our
approach and data cannot capture understory vegetation or mixed
vegetation very well. The approach also does not provide a means to
easily test the sensitivity of the classification to changes at each step
of the LFT generation process, or how these errors compound.
Another obvious limitation is that this study does not explicitly bring
in trait data, as the current focus was the development of the classi-
fication approach based on spectral distinctiveness, phylogeny, and
abundance. Finally, another alternative might be to scale the classi-
fication accuracy assessment by the evolutionary distance to the
actual cover class. Ultimately though, our results suggest that
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increased availability of hyperspectral remote sensing data might
enable monitoring of short- and long-term LFT changes induced
by disturbance or the changing climate.

In conclusion, we present remotely sensed phylogenetic clus-
tering and an evolutionary framework to accommodate spectra,
distributions, and traits of plants. Future iterations of this approach
hold promise for elucidating unique biodiversity patterns [e.g.,
rapidly identifying at risk endemism (22), monitoring lineage
turnover as a dimension of biodiversity (4, 16), or generating
parameters for vegetation models used in climate modeling, thus
incorporating patterns produced by the trajectory of biogeo-
graphic history into ecological forecasting.
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